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Abstract: The development of embedded systems in sustainable precision agriculture has provided
an important benefit in terms of processing time and accuracy of results, which has influenced the
revolution in this field of research. This paper presents a study on vegetation monitoring algorithms
based on Normalized Green-Red Difference Index (NGRDI) and Visible Atmospherically Resistant
Index (VARI) in agricultural areas using embedded systems. These algorithms include processing
and pre-processing to increase the accuracy of sustainability monitoring. The proposed algorithm
was evaluated on a real database in the Souss Massa region in Morocco. The collection of data was
based on unmanned aerial vehicles images hand data using four different agricultural products.
The results in terms of processing time have been implemented on several architectures: Desktop,
Odroid XU4, Jetson Nano, and Raspberry. However, this paper introduces a thorough study of
the hardware/Software Co-Design approach to choose the most suitable system for our proposed
algorithm that responds to the different temporal and architectural constraints. The evaluation proved
that we could process 311 frames/s in the case of low resolution, which gives real-time processing
for agricultural field monitoring applications. The evaluation of the proposed algorithm on several
architectures has shown that the low-cost XU4 card gives the best results in terms of processing time,
power consumption, and computation flexibility.

Keywords: sustainable precision agriculture; vegetation; sustainability; agricultural products

1. Introduction

Precision agriculture can be considered a research field that focuses on using different
tools to increase agricultural fields’ productivity [1]. Generally, it is based on various
sensors depending on the field of application [2,3]. Among these sensors, we can find
different types of cameras, from Red, Green, Blue (RGB) to hyperspectral and multispectral
cameras. All these tools have a common goal based on increasing yield and production
improvement [4]. The algorithmic side in precision agriculture is rich and depends on
the nature of the application chosen. These applications aim to solve different problems
encountered in traditional agriculture. For example, weeds, various plant diseases, as
well as monitoring vegetation and vital visual signs using different indices [5–8]. These
applications require a feasibility study in real scenarios to validate the different approaches
proposed in the literature. As a solution, the use of embedded systems can help not only
the validation but also the improvement of the different methods. The implementation of
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these methods requires an algorithmic and architectural study in order to propose optimal
implementations that increase the reliability of calculation as well as reduce the processing
time in applications that require a precise time. Besides processing time and reliability,
we can also find the calculation accuracy in the different data collection tools [9]. For
example, robots and unmanned aerial vehicles are equipped with various tools that help
the autonomous mobility of these robots. The accuracy of movement can be solved using
GPS sensors or localization and mapping algorithms. But the problem here is that this
autonomous movement of robots or Unmanned Arial Vehicle (UAVs) can create problems
such as camera blur as well as memory saturation, which can influence the quality of the
results obtained.

In fact, several approaches have been developed based on embedded systems, but
they remain limited in real-time constraints as well as in time and complexity. For example,
J. Rodríguez et al., 2021 proposed a system for monitoring potato fields. The work was
based on a Tarot 680PRO hexacopter UAV and a MicaSense RedEdge multispectral camera.
The authors used two types of data A and B; the results showed high accuracy in field
A while field B had low accuracy [10]. For the monitoring of agricultural fields, we can
also find the work of [11], which was based on a drone and a multispectral camera to
monitor agricultural fields. Similarly, for the detection of weeds, A. Wang et al., 2020
used deep learning approaches to detect weeds. The study presented a detection accuracy
about 96.12% [12]. The work of S. Abouzahir et al., 2021 detects weeds on several types
of crops based on an embedded platform with an accuracy that varies between 71.2%
and 97.7% [13]. In the case of counting plants, we can also find S. Tu et al., 2020 who
proposed a fruit counting approach based on depth calculation to increase the counting
accuracy. The work showed a counting accuracy and an F1 score that reaches up to 0.9 [14].
All these approaches and systems proposed give us an idea of the different algorithms
and embedded architecture proposed in this sense. This reflects the massive evolution
of precision agriculture. However, the problem of these algorithms is the evaluation in
real cases where time influences the accuracy of the results. This pushes us to investigate
further the study of how we can embed these algorithms in low-cost architecture and
energy consumption to guarantee an autonomy of treatment without the intervention of
farmers. In addition, these algorithms and their implementation require a preprocessing
that includes the detection of blur and its elimination that directly influences the accuracy
and reliability of the results. Another critical factor when we talk about applications based
on soil robots and UAVs is the memory saturation that requires data compression after
their processing, which we will address in this study.

In our work, we propose a system divided into three parts. The first part focuses on
the measurement of blur and then the elimination of this blur. In this context, we have used
a hybrid algorithm that combines blur measurement and filtering to ensure images without
motion. This blur removal algorithm uses blur measurement before removal compared to
the other technique proposed in the literature, which is only based on blur suppression
without measurement [15]. The second part calculates the most general indices based
on RGB images. These indices are NGRDI and VARI; choosing these indices is due to
the high sensitivity to agricultural land cover [16]. Moreover, they are easy to interpret
compared to other indices, which are strongly related to our study. The third part of the
work focused on studying the memory saturation problem. We have added a compression
algorithm to eliminate this significant problem as a solution. These three parts combined
on a single algorithm that processes agricultural fields’ images in real-time. Our novelty
and contribution are as follows:

(1) The proposition of a new algorithm based on various techniques for compression,
blur detection, and RGB indices processing such as NGRDI and VARI.

(2) The evaluation of the algorithm was based on our original database using a Phantom
DJI pro 4 drone in different agricultural areas.

(3) The study of the temporal constraints was proposed based on the hardware/Software
Co-Design approach.
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(4) A hardware acceleration was developed on several low-cost embedded architectures
in order to respect the architectural and temporal constraints.

Our algorithm has been evaluated on several embedded systems such as XU4, Jetson
Nano, and Raspberry. The objective of these implementations is to study the adequacy
between the hardware and the software. The results showed that the XU4 card remains the
best choice for our application, thanks to its low consumption and cost, as well as the solid,
parallel computation. The tools used in this evaluation are based on C/C++, OpenMP, and
OpenCL. The C/C++ language has been used to validate the algorithm proposed in the
chosen system and OpenMP to exploit the parallelism in the selected card. For OpenCL,
we used it to exploit the Graphics Processing Unit (GPU) part of our card for acceleration
in order to minimize the processing time. The proposed algorithm has a complexity of
O = K × (i × j) Log2 (i × j), where K is the number of data used and i × j is the image
size. This study’s data were based on the Souss Massa region’s agriculture in the south of
Morocco, which is considered one of the most productive regions of agriculture in Morocco.
Our database was collected using UAV type DJI and RGB cameras for the fields of maize
and orange, as well as a hand database for parsley and mint.

Our paper is summarized as follows: the first part focuses on the different recent
works and an overview of the RGB index used in agriculture. The second part describes
our methodology based on the algorithmic study and the agricultural fields that have been
used. The third part is based on the proposed implementation and the software–hardware
results obtained from the embedded systems used. Then, we have the real results obtained
from the selected agricultural fields. Finally, we finish with a conclusion and future work.

2. Background and Related Work

Monitoring in agricultural fields helps a significant part of farmers to construct an idea
about the different plants. This monitoring needs a special system able to extract useful
information in the agricultural fields. Among the most relevant information in the crop
coverage, we find the vegetation indexes. These indexes are based on algebraic equations
that use as an argument the special bands of the cameras. Usually, the bands used vary
between the different indices that will be used later. Vegetation in plants is based on an
absorption and reflection process of the red, green, blue, shortwave, and near-infrared
bands. Each reflection or absorption of these bands indicates different indices. For example,
to calculate the vegetation and water index, it is necessary to use the R, G, B, and Near
InfraRed (NIR) bands. On the other hand, the humidity index is based on the Short Wave
Near-InfraRed (SWIR) and R waves. Data collection is done using several tools; the choice
depends on the specific application. We can also find indices based on the R, G, and B
bands only; these indices have proved a reliable precision in monitoring agricultural fields.
Table 1 shows the different indexes based on the three RGB bands.

Table 1. RGB vegetation index.

Index Algebraic Equation Purpose Utility References

NGRVI BGreen−BRed
BGreen+BRed

Normalized Green-Red Vegetation
Index (NGRVI) used to identify the

vegetal biomass in plants
E.R. Hunt et al., 2005 [17]

MGRVI (BGreen)
2−(BRed)

2

(BGreen)
2+(BRed)

2

Modified Green-Red Vegetation Index
(MGRVI) dedicated to measure the

absorption of chlorophyll
J. Bendig et al., 2015 [18]

RGBVI (BGreen)
2−(BRed×BBlue)

2

(BGreen)
2+(BRed×BBlue)

2

Red-Green-Blue Vegetation Index
(RGBVI) dedicated to measure the

absorption of chlorophyll
J. Bendig et al., 2015 [18]

VARI BGreen−BRed
BGreen+BRed−BBlue

Visible Atmospherically Resistant Index
dedicated to vegetation rate calculation A.A. Gitelson et al., 2002 [19]
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Table 1 shows the most common vegetation indices used in precision agriculture; these
indices are easy to calculate using RGB cameras. However, the Normalized Difference
Vegetation Index (NDVI) aims to extract the vegetation amount from various plants and
requires a multispectral camera, which is expensive compared to RGB cameras. A.A.
Gitelson et al. showed that the VARI presented an error of <10% vegetation fraction [19].
This shows the robustness of this index for vegetation estimation. The evaluation of the
index was on a region near the city of Beer-Sheva, Israel. The authors in [18] used a UAV to
calculate these indexes with an acquisition frequency of two frames/s [18]. We also find
the work of P. Rand̄elović et al., 2020, which was based on RGB indexes in order to predict
plant density [20].

The scientific literature presents various tools, but the most well-known and effective
ones are the sole robot, the satellite, the UAVs, and the hand data. We can also find
several sensors such as RGB, multispectral, and hyperspectral cameras. All these tools
and sensors have a common goal based on monitoring and tracking the agricultural fields’
plantations. Nowadays, several works have been elaborated in this context, aiming to
improve the quality of monitoring and the reliability of the results. D. Shadrin et al., 2019
propose an embedded system based on GPU that does plant growth analysis via artificial
intelligence. They used an algorithm based on Long Short-Term Memory (LSTM); the
evaluation of this algorithm was on a Desktop and a Raspberry Pi 3B card. The embedded
tool used in this study is the GPU card, but the weak point here is the limitation of the
Raspberry card at the level of computation in the GPU; also, these cards do not support the
Compute Unified Device Architecture (CUDA) tool that accelerates processing in the GPU
card. However, this work’s results have been detailed and are rich in information either at
the level of execution time or the low energy consumption [21]. Another work has been
proposed to ensure robots’ autonomous movement to perform tasks such as weed detection,
plant counting, or vegetation monitoring. The result was based on applying localization
and mapping algorithms in agricultural fields using different Simultaneous Localization
and Mapping (SLAM) algorithms. However, the work was evaluated on a laptop, and no
embedded study has been made. This pushes us to conclude that the evaluation of these
types of algorithms in conventional machines does not apply the implementation in low-
cost embedded systems to ensure the optimal movement of the robot in agricultural fields.
However, the work has shown the usefulness of the localization and mapping algorithms
that were developed just for the automotive field, which shows that these algorithms can
also be helpful in the agricultural area [22]. X.P. Burgos-Artizzu, et al., 2011 proposed
two subsystems for agricultural field monitoring and weed detection. The first system is
dedicated to trajectory identification and the second one to weed detection. The algorithm
was evaluated on a desktop with eight frames/s processing based on C++ language; the
results showed an accuracy of 90% for weed detection [23]. Table 2 presents a synthesis of
the different works on agricultural field monitoring.

Table 2. Vegetation indexes-based application and tools.

Work RGB Index Used Application Data Tools Camera Type References

J. Bendig et al., 2015 NGRVI, RGBVI Biomass monitoring UAV RGB [18]

P. Rand̄elović et al., 2020 VIs (Vegetation
indices) Plant density UAV RGB [20]

M.d.J. Marcial-
Pablo et al., 2019 ExG, VIg Estimation of vegetation

cover UAV RGB, and
Multispectral [24]

K.C. Sumesh et al., 2020 ExG, GRVI, SI Estimate of production
in sugarcane fields UAV RGB [25]

P. Rand̄elović et al., 2020 VIs Calculation of soybean
plant density UAV RGB [20]
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Table 2. Cont.

Work RGB Index Used Application Data Tools Camera Type References

T. De Swaef et al., 2021 VIs Evaluation of drought in
forage grasses UAV RGB, and

Thermal [26]

N. Chebrolu et al., 2017 – Sugar beet classification Sol robot RGB-D [27]

C. Potena et al., 2019 ExG Agricultural field
monitoring UGV and UAV RGB-D and RGB [28]

X. Zhou et al., 2021 VIs Vineyards monitoring UAV and satellite UAV and
Sentinel-2 [29]

All these applications have been based on the monitoring of indices. These RGB
indices are an alternative to the index based on multispectral cameras. This alternative
allows us to monitor agricultural fields based on low-cost systems such as RGB cameras.
The scientific development of embedded systems has enabled us to have a flexibility of
choice, generally characterized by the use of low power, cost, and performance architecture,
especially if we consider autonomous applications that do not require intervention. For this
reason, if we want to develop this kind of system, we will have to consider the algorithmic,
architecture, and energy consumption constraints, keeping the reliability and precision
of the results [24]. The use of embedded systems in agriculture will help us to achieve
complicated tasks as fast as possible. Generally, we find a variety of systems; these systems
are divided into two parts, either homogeneous, which is based on CPU, FPGA, and DSP,
or heterogeneous, which combines CPU and CPU/GPU/FPGA/DSP; their primary role is
the acceleration of algorithms based on high-level language. Usually, C/C++ is dedicated
to homogeneous systems like CPU and DSP. For the construction of dedicated architecture,
we can find the use of FPGA, which is characterized by low energy consumption. Still, its
weak point is the coding complexity in this type of architecture. The C/C++ language is
generally limited in the context where we want to speed up the processing [30–32]. For
this reason, the OpenMP directive remains an excellent solution to accelerate the code
in C/C++.

On the other hand, CUDA and OpenCL offer a high-performance acceleration in
heterogeneous systems type CPU-GPU for CUDA and CPU-GPU/FPGA/DSP for OpenCL.
Despite its huge advantage, CUDA remains limited in heterogeneous systems due to its use
only for Nvidia architecture, which encourages the use of OpenCL that gives flexibility in
different architectures. For this reason, we have chosen to use OpenMP and OpenCL. The
use of these languages as well as heterogeneous systems is still very limited in precision
agriculture, as most of the works are based on software and workstations, which restrict
the use of autonomous systems in real scenarios.

The non-use of embedded systems makes the processing offline, and this process-
ing does not take into consideration a variety of problems that it can be confronted with.
Among these problems, we can find the blur generated by the type of cameras or movement
of tools used for data collection, either robots or UAVs. This blur can affect the reliability
of the results, which does not respect the constraints of an autonomous embedded sys-
tem [33]. Moreover, a very critical parameter influencing the data collection is memory
saturation [34].

3. Methodologies and Area Study

In this part, we will focus on our field of study as well as the methodology for the
evaluation of our contribution.

3.1. Area Study 1

Agriculture in the Souss Massa region in Morocco is very interesting. It occupies an
important percentage of the national agriculture. The choice of this region in our study
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is due to the variety of agricultural products. Our field of study is separated into four
agricultural products, namely maize, oranges, parsley, and mint. These four products are
separated into two agricultural areas. Figure 1 shows the fields used in this study.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 29 
 

3. Methodologies and Area Study 

In this part, we will focus on our field of study as well as the methodology for the 

evaluation of our contribution. 

3.1. Area Study 1 

Agriculture in the Souss Massa region in Morocco is very interesting. It occupies an 

important percentage of the national agriculture. The choice of this region in our study is 

due to the variety of agricultural products. Our field of study is separated into four agri-

cultural products, namely maize, oranges, parsley, and mint. These four products are sep-

arated into two agricultural areas. Figure 1 shows the fields used in this study. 

 

Figure 1. Souss Massa agricultural area. 

3.1.1. Area I 

The first area contains two types of products: mint and parsley, and it is located in 

the Souss Massa region in the south of Morocco. Mint is a highly effective plant that can 

grow up to 80 cm high. It belongs to the family of Lamiaceae. The most used compounds 

are menthol (between 35% and 55%) and menthone (10% to 40%). Mint has several types; 

in our case, we used the green mint. Just like parsley, it is a real mine of nutritional quali-

ties. The collection of the images was done in February 2021 for mint and parsley. The 

agricultural area has a surface of 821 ha, which varies between mint and parsley. The 

choice of these two agricultural products is due to the great demand for them in this re-

gion as well as the great surface reserved for this type of product. These images were 

based on a hand database collection, which presents a low-cost technique of image collec-

tion. The database contains more than 100 images of different positions in the agricultural 

area. Due to the large surface of the farming fields in the mentioned products, we have 

chosen two small surfaces to make our study. The first field is mint, which contains a total 

surface of 1.27 ha, and the second one is parsley, with 3.08 ha calculated with GPS, which 

implies 12,700 m2 for the mint and 30,800 m2 for the parsley. The two selected fields are 

located between Lat 30°22′01” N, Long 9°29′32” W, and Lat 30°22′01” N, Long 9°29′24” W, 

for ↔, as well as between Lat 30°22′05” N, Long 9°29′24” W and Lat 30°22′15” N, Long 

9°29′26” W for ↕. Figure 2 shows the location of selected fields. 
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3.1.1. Area I

The first area contains two types of products: mint and parsley, and it is located in the
Souss Massa region in the south of Morocco. Mint is a highly effective plant that can grow
up to 80 cm high. It belongs to the family of Lamiaceae. The most used compounds are
menthol (between 35% and 55%) and menthone (10% to 40%). Mint has several types; in our
case, we used the green mint. Just like parsley, it is a real mine of nutritional qualities. The
collection of the images was done in February 2021 for mint and parsley. The agricultural
area has a surface of 821 ha, which varies between mint and parsley. The choice of these
two agricultural products is due to the great demand for them in this region as well as
the great surface reserved for this type of product. These images were based on a hand
database collection, which presents a low-cost technique of image collection. The database
contains more than 100 images of different positions in the agricultural area. Due to the
large surface of the farming fields in the mentioned products, we have chosen two small
surfaces to make our study. The first field is mint, which contains a total surface of 1.27 ha,
and the second one is parsley, with 3.08 ha calculated with GPS, which implies 12,700 m2

for the mint and 30,800 m2 for the parsley. The two selected fields are located between Lat
30◦22′01′′ N, Long 9◦29′32′′ W, and Lat 30◦22′01′′ N, Long 9◦29′24′′ W, for↔, as well as
between Lat 30◦22′05′′ N, Long 9◦29′24′′ W and Lat 30◦22′15′′ N, Long 9◦29′26′′ W for l.
Figure 2 shows the location of selected fields.
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Figure 2. Localization of the mint and parsley fields.

For the mint field, it is separated into small squares of 2 m × 2 m throughout the
area, which can give in the high season up to seven packets for each square. For the
parsley, we have a rectangle of 3 m × 1.5 m with ten boxes approximately, according to the
experience of the farmers in the region. Figure 3 shows images of the database of the first
area. Part 1 in Figure 3 shows the mint, and part 2, the parsley. The database was collected
using a Samsung SM-J8 10F camera with a resolution of 5256 × 3790 for the first database,
which contains the two agricultural products mint and parsley.
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Figure 3. Mint and parsley ponds.

3.1.2. Area II

The second area of study contains two agricultural products: oranges and maize.
These areas are also located in the Souss Massa region near Agadir city. The choice of
these two types of products is due to the large field reserved for these types of products
in this region, which encourages the study of oranges and maize. This region of southern
Morocco contains large farms reaching up to 40,000 ha for citrus, representing a percentage
of 30%; for maize, we find two types: sweet corn and forage corn. The sweet corn can
reach up to (0.7–0.9 m) × 0.3 m. The population density recommended for forage maize
ranges from 6 to 10 plants per m2, corresponding to a seeding density of approximately
20 to 30 kg/ha. For the early varieties, the density varies from 8 to 10 plants/m2, and in
the late varieties, the density varies between six and seven plants per m2. The distance
between the rows is 60 to 80 cm, with a space of 13 to 21 cm between each plant. Our
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study has chosen three fields, two for the maize and one for the oranges. The field of the
oranges has a surface of 51.5 ha with a perimeter of 3.3 km, and for the first field of maize,
13.6 ha with a perimeter of 1. 82 km, and for the second field of maize, we have an area of
9.34 ha with a perimeter of 1.45 km. The selected fields are located between 30◦26′51′′ N,
Long 9◦01′10′′ W and 30◦26′51′′ N, Long 9◦00′00′′ W for↔, and from 30◦26′51′′ N, Long
9◦00′00′′ W until 30◦27′27′′ N, Long 9◦00′00′′ W for l. Figure 4 shows the location of the
second study area.
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The second database was collected by an unmanned aerial vehicle based on an RGB
camera. The type of camera is DJI model FC6310R with a resolution of 5472 × 3648. The
type of UAV used is DJI Phantom Pro 4. Figure 5 shows the two fields of maize and orange.
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Therefore, we can conclude that we have two databases, one collected by hand and
the other using unmanned aerial vehicles. We have four agricultural products, two for the
first database and two for the second. Figure 6 and Table 3 show the characteristics of each
database.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 29 
 

 

Figure 6. Different agricultural products used in our study based on mint, parsley, oranges, and 

maize. 

Table 3. Database specification. 

Crop 

Types 
Surface Tools Resolution Location Camera Specification Altitude 

Maize 

S1 = 13.6 ha, 

S2 = 9.34 ha 

 

UAV (DJI Phantom 

Pro4) 
5472 × 3648 

East of the Souss 

Massa region, Mo-

rocco 

Focal: F/5.6, 

Focal distance: 9 mm 
356 m 

Orange S = 51.5 ha 
UAV (DJI Phantom 

Pro4) 
5472 × 3648 

East of the Souss 

Massa region, Mo-

rocco 

Focal: F/5.6, 

Focal distance: 9 mm 
356 m 

Mint S = 1.27 ha Hand 5256 × 3790 

Agadir (the Souss 

Massa region), 

Morocco 

Focal: F/1.7, 

Focal distance: 4 mm 
__ 

Parsley S = 3.08 ha Hand 5256 × 3790 

Agadir (the Souss 

Massa region), 

Morocco 

Focal: F/1.7,  

Focal distance: 4 mm 
__ 

Table 3 shows the different specifications of the collected databases, i.e., the tools 

used, the resolution of the images, the type of crop, and the altitude in the case of UAVs, 

as well as the surface of each field, where S1 is the surface of Maize 1 fields and S2 the 

surface of Maize 2 fields. 

3.2. Methodologies 

Our methodology focuses on four steps to study a real scenario of a plant index mon-

itoring system. Generally, we have the acquisition step, then the measurement and blur 

detection, the index calculation, and the image compression to reduce images size for stor-

age. 

3.2.1. Image Acquisition 

The acquisition of the images was based on two low-cost RGB cameras in order to 

build the database that will be evaluated in the following paper. The collected images 

were divided into two databases: one collected by hand and the other with a UAV type 

DJI phantom Pro4 in two different areas. The UAV used for the acquisition has a Dual 

Frequency Control Signal of 2.4 and 5.8 Ghz, with a 7 km range, with a flight time of 30 
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Table 3. Database specification.

Crop Types Surface Tools Resolution Location Camera
Specification Altitude

Maize S1 = 13.6 ha,
S2 = 9.34 ha

UAV (DJI
Phantom Pro4) 5472 × 3648

East of the Souss
Massa region,

Morocco

Focal: F/5.6,
Focal distance:

9 mm
356 m

Orange S = 51.5 ha UAV (DJI
Phantom Pro4) 5472 × 3648

East of the Souss
Massa region,

Morocco

Focal: F/5.6,
Focal distance:

9 mm
356 m

Mint S = 1.27 ha hand 5256 × 3790
Agadir (the Souss

Massa region),
Morocco

Focal: F/1.7,
Focal distance:

4 mm
__

Parsley S = 3.08 ha hand 5256 × 3790
Agadir (the Souss

Massa region),
Morocco

Focal: F/1.7,
Focal distance:

4 mm
__

Table 3 shows the different specifications of the collected databases, i.e., the tools used,
the resolution of the images, the type of crop, and the altitude in the case of UAVs, as well
as the surface of each field, where S1 is the surface of Maize 1 fields and S2 the surface of
Maize 2 fields.

3.2. Methodologies

Our methodology focuses on four steps to study a real scenario of a plant index
monitoring system. Generally, we have the acquisition step, then the measurement and
blur detection, the index calculation, and the image compression to reduce images size
for storage.
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3.2.1. Image Acquisition

The acquisition of the images was based on two low-cost RGB cameras in order to
build the database that will be evaluated in the following paper. The collected images
were divided into two databases: one collected by hand and the other with a UAV type
DJI phantom Pro4 in two different areas. The UAV used for the acquisition has a Dual
Frequency Control Signal of 2.4 and 5.8 Ghz, with a 7 km range, with a flight time of
30 min. The drone’s weight is 1388 g, and it integrates a GPS/GLONASS. The precision
of displacement of this tool is about ±0.1 m for the vertical position and ±0.3 m for the
horizontal position. Each image collected by the UAV integrates the different information
needed to show the type of camera used and the image’s different characteristics (i.e., focal
length, exposure time, and other). The precise localization is based on the GPS coordinates
of each image. This will provide a database with the coordinates of each image collected.
Then, we also find the altitude of the UAV in the time it collected the image.

3.2.2. Blur Detection

Blur detection and elimination are very important steps to avoid images containing
a high amount of noise, such as blur. In a real case, blur is among the most encountered
problems in image acquisition; this blur is generated due to the source movement that
collects the data, between the camera and the scene during the exposure time. For example,
in the case of a drone, this blur can be created when we have a movement caused by wind.
For the ground robots, we can also find the blur caused by the movement of robots in
agricultural fields. For this reason, the blur measurement is very important in this case.
Generally, blur elimination is based on several techniques, but the most used that we find
is the filter of Wiener, Discrete Fourier Transform (DFT) and Lucy-Richardson (LR) [35–37].
Generally, blur elimination techniques aim to extract the image and eliminate the blur
kernel. The representation of an image with blur is shown in Equation (1).

BL = O_i ⊗ K_b + ß (1)

where BL is the blurred image, K_b is the blur kernel, O_i unblurred image, and ß is
overload noise in the image. Equation (1) was used based on images without blur to add
blur, as shown in the equation. This technique allowed us to add the blur to some images in
our data to test the algorithm’s different functionality. If there is a blurred image, then it will
filter it; if not, then it will move directly to the processing. The technique chosen in our case
is based on the Discrete Fourier Transform (DFT), thanks to its low complexity compared
with other iterative methods such as LR and Wiener. The other techniques are based on the
repetition approach to eliminate blur, which can create a problem at the level of temporal
constraint. In our case, low-time processing is very important to avoid a processing latency,
and the high complexity will also influence our study. For this reason, we chose the DFT
technique based on low complexity conventional products. Equations (2)–(4) describe the
Discrete Fourier Transform and the convolution product [38].

Cp


(i = 0, j = 0) · · · (i = 0, j = C1)

...
...
...

(i = L1, j = 0) · · · (i = L1, j = C1)

 = Iimage


(i = 0, j = 0) · · · (i = 0, j = C2)

...
...
...

(i = L2, j = 0) · · · (i = L2, j = C2)

 ⊗
F


(i = 0, j = 0) · · · (i = 0, j = C)

...
...
...

(i = L, j = 0) · · · (i = L, j = C)

 (2)

which implies (2)

Iimage(i, j)
⊗

F(i, j) =
L−1

∑
m=0

C−1

∑
n=0

Iimage(L, C) F(i−m, j− n)

For the convolution product, we have Cp(i,j) the convolution results, Iimage (i,j) the
input image, and F(i,j) the convolution object [36]. Moreover, we have 0 ≤ i, m ≤ L-1; and
0 ≤ j, n ≤ C-1, with L × C the dimensions of F(i,j) and L1 × C1 for Cp and L2 × C2
for Iimage.
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Then, the Discrete Fourier Transform (DFT) of image Iimage (i,j) [38]:

F(x, y) =
L2−1

∑
i=0

C2−1

∑
j=0

Iimage(i, j)e−j2π( xi
L2

+
yj

C2
) (3)

where Iimage(i,j) is the input image with size L2 × C2, and the discrete variables x = 0,1,2,3
. . . .. → L2-1 and y = 0,1,2,3 . . . .. → C2-1. For the reverse or inverse DFT we have:

Iimage(i, j) = ∑L2−1
i=0 ∑C2−1

j=0 F(x, y)ej2π( xi
L2

+
yj

C2
) (4)

Equation (2) is based on the convolution product between the convolution object in our
case, a matrix F(i,j), and the input image Iimage, which is also a matrix of pixels that have i,j
as dimension. Similarly, Equations (3) and (4) present Discrete Fourier Transform (DTF) and
Inverse Discrete Fourier Transform (iDFT), based on the input image Iimage. We also have
the results of the Fourier Transform that will be stored in an output image F(x,y). These
two equations have been used in our work for the blur elimination part. Table 4 shows the
description of the variables used in the different equations.

Table 4. Variable description of the equations used.

Equation Variables Description

2 CP Convolution results

Iimage Input image

F Convolution object

L × C Dimensions of F

L1 × C1 Dimensions of CP

3,4 Iimage Input image

L2 × C2 Dimensions of Iimage

x,y Discrete variables, vary between 0 and L2-1 for x and
0 to C2-1 for y

5,6 N Number of blocks for Discrete Cosine Transform (DCT).

D Discrete Cosine Transform

a,b Variables of Discrete Cosine Transform range from
0 to N-1

The blur measurement is very important for good image filtering, but we also used this
option to reduce processing time in our hybrid algorithm. If we have a significant amount
of blur calculated from mask of the Laplacian, then it is necessary to apply blur elimination.
Otherwise, it will pass directly to the calculation of indices. The blur elimination algorithm
is based on three mathematical approaches: the convolution product, the Discrete Fourier
Transform (DFT), iDFT, and Laplacian (LPA). The first step aims to measure the blur and
then apply a thresholding operation to determine if the image contains blur or not. This
test operation will help us pass the blur elimination procedure if the captured image
does not have blur, minimizing the overall processing time. If the image contains blur,
it will apply the Discrete Fourier Transform and the convolution product between the
measured kernel gaussian DFT and the image DFT to recover the unblurred image based
on the Inverse Discrete Fourier Transform. Then, this filtered image will be sent to the
second algorithm to do the processing. Algorithm 1 presents the steps of blur detection
and elimination.
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Algorithm 1. Blur measurement and filtering.
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3.2.3. Indexes Processing

This part focuses on evaluating the indices based on the algorithm proposed in [30].
The work aims to present an algorithm dedicated to vegetation monitoring based on
multispectral databases and their implementation in real-time. The algorithm proposed in
this paper is based on three functional blocks; the first block is for the preparation of images
to calculate the indices. The second functional block is for Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water Index (NDWI) indices processing. The
third block focuses on the thresholding operation. In this part of our work, we will focus
on our proposed algorithm. The change that will be made in this part is the indices
used. In our case, we will focus on Normalized Green-Red Difference Index (NGRDI) and
Visible Atmospherically Resistant Index (VARI) based on an RGB camera. The NGRVI
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and VARI indices generally range from −1 to 1, but the operating range of these indices is
from 0 to 1. Both indices represent the vegetation of the plants, except that VARI is more
sensitive to vegetation compared to NGRVI. Table 1 shows to algebraical equation used for
these indexes.

3.2.4. Image Compression

After acquiring images, blur elimination, and index processing, a very important
step will be used in the proposed algorithm. This step is based on the compression of
images. The use of compression in our case will help us decrease the size of images used.
Generally, the image size depends on the resolution; this resolution varies between VGA
with a resolution of 640 × 480, and 61,440 × 34,560 for 64 K. A large number of pixels in
each image allows us to have excellent quality, but the problem here is the memory size,
which requires compression of the image. Table 5 shows the different resolutions with
different sizes.

Table 5. Image different sizes and resolution.

Resolution Types Pixel Resolution Number of Pixels Uncompressed Size
File (MB)

VGA 640 × 480 307,200 0.3
XGA/EVGA 1024 × 768 786,432 0.8

UXGA 1600 × 1200 1,920,000 1.9
2 K 2048 × 1080 2,211,840 2.21
4 K 4096 × 2160 8,847,360 8.85

Our case 5472 × 3648 19,961,856 19.96
8 K 7680 × 4320 33,177,600 33.18

64 K 61,440 × 34,560 2,123,366,400 2.12 (GB)

Therefore, from Table 5, we can conclude that every time we use high-resolution
images, the size of the image increases, influencing the monitoring of agricultural fields in
large areas due to the camera memory limitation. In our case, we have a maximum size of
19.96 Mb for each image with high resolution. We can find several techniques in the com-
pression of images, but the most used approaches are based on Discrete Cosine Transform
DCT. Equation (5) describes how we could calculate the discrete cosine transform [34].

D(a, b) =
4
N

U(a)V(b)∑N−1
i=0 ∑N−1

j=0 Iimage(i, j)cos
(2i + 1)a

2N
π cos

(2j + 1)b
2N

π (5)

With:

U(a) =

{
1√
2

, a = 0, 1
1, Other

We have the 2D-DCT sequence data where {Iimage(i, j) : i, j = 0, 1, 2, . . . . . . . . . . . . . . . .,
N − 1} and 2D-DCT sequence {D(a, b) : a, b = 0, 1, 2, . . . . . . . . . . . . . . . ., N − 1}.

For the same way we have the Inverse DCT in Equation (6).

Iimage(i, j)= ∑N−1
i=0 ∑N−1

j=0 U(a)V(b)D (a, b)cos cos
(2i + 1)a

2N
π cos cos

(2j + 1)b
2N

π (6)

For Equations (5) and (6), we used the Discrete Cosine Transform (DCT) for the image
compression. In both equations, we have D (a,b), which presents the results of the Discrete
Cosine Conversion. In the same way, we have I image, which presents the image that must
be compressed in our algorithm.

The compression block has an important role in storing the data, which helps us to have
two types of data; one contains the calculated indices and the other the corresponding
image for each index. For this reason, it is necessary to keep the original images in order
to create a map of the agricultural fields that contains the original images and the indices.
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This compression will be applied twice, once to the output of block 1 and the other to the
output of block 2. The algorithm chosen for this operation begins with converting the
image in gray level and then converting pixels in double precision. After this conversion,
it is necessary to apply the Discrete Cosine Transform and quantization. Then the image
was sent to build a histogram to complete the table of Huffman after encoding DCT while
being based on this table. The last stage consists of applying a test to know which image
of the block was compressed. If it is the image of block 1, then the storage will be in the
base RAW_DATA; if not, the images contain indexes, then the storage will be in the base
Data_Indexes. Algorithm 2 describes the processing of block 3.

Algorithm 2. Image compression.
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The system’s main objective is to increase the performance of the agricultural field
monitoring based on a hybrid algorithm that combines three blocks. The first block focuses
on the blur measurement in order to apply the blur elimination algorithm. The first step is
to test the blur density in the image if it exists, then the algorithm moves to the filtering
process; if not, the algorithm passes directly to the second block for the processing of the
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images. The second block is dedicated to calculating indices to generate images containing
a matrix of values or apply thresholding. A threshold operation is based on the nature and
morphology of the plant. After the calculation of indices, block 3 comes for the compression
and storage of images. This block is very important because it allows us to avoid memory
saturation; this type of problem appears in the case where a drone or a ground robot takes
images of large agricultural fields; the memory saturation will prevent the tools used for
the collection of images. Thus, this compression will allow it to take and use the memory in
an optimal way. The compression algorithm begins as soon as the processing of the indexes
finishes. Thus, it compresses the image that contains the RGB bands and not the images
separated in R, G, and B bands. These bands will be deleted after the processing because
they are not of interest after the indexes processing. Then, the storage procedure allows us
to store the compressed RGB images and the images containing the indexes. At the end of
the algorithm, it offers us two databases. One contains the original compressed and filtered
images, and the other includes the images containing the indexes corresponding to each
RGB image. Figure 7 shows the global algorithm separated into three blocks.
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4. Hardware-Software Results based on CPU and CPU-GPU Architecture

The methodology followed in our hybrid algorithm implementation aims firstly to
validate the global algorithm on the desktop in order to interpret the results. Once the
algorithm is validated in the conventional machine, we go directly to the implementa-
tion in the embedded cards. The implementation of the algorithm passes firstly by the
C/C++ language in order to evaluate the temporal constraint. Then we try to separate the
algorithm into various blocks; in our case, we have three blocks. The first block is for the
elimination and detection of the blur, the second is for the calculation of indices, and the
third is for image compression—the technique followed in this block separation based on
preprocessing, processing, and post-processing. After separating the blocks, we pass to the
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separation of each block in Functional Blocks (FB) and then the temporal evaluation of each
block. As a result, we separate block 1 into six functional blocks (FB) and the third block
into the six functional blocks. The temporal evaluation showed that FB4 in the first block
consumes most of processing time, and in the third block, we have FB4 and FB5 consume
more. The acceleration was based on OpenMP and OpenCL to exploit the parallelism in
the CPU and the GPU. The choice of the card that will be studied after does not depend
only on treatment time but also on energetic consumption, because the idea of the system
is based on an architecture with low cost and consumption of energy.

4.1. Specific Systems

Our implementation was based on a desktop for validation and three embedded
architectures for comparison. The desktop is intel i5-5200U with a CPU @ 2.2 Ghz based
on Broadwell architecture and it supports a GPU @ 954 Mhz type GeForce 920M Nvidia
based on Kepler architecture. For the embedded architecture, we used Odroid XU4, which
supports OpenCL and has a CPU @ 2 Ghz for Cortex A15, @ 1.4 Ghz for cortex A7, and
a GPU @ 600 Mhz type ARM Mali. The processor that integrates this architecture is
Exynos5422 (Samsung), as well as the Raspberry 3 B+ card with a CPU @ 1.4 Ghz Cortex-
A53 ARM and a GPU @ 400 Mhz type Broadcom Videocore-IV. The third architecture used
in our evaluation is Jetson Nano with a CPU @ 1.43 Ghz based on ARM A57 and a GPU @
640 Mhz based on 128-core Maxwell. Table 6 defines the system specification used.

Table 6. Used embedded system specification.

Systems Jetson Nano Raspberry 3B+ XU4

Frequency CPU @ 1.43 Ghz CPU @ 1.4 Ghz Cortex A15 @ 2 Ghz,
cortex A7 @ 1.4 Ghz

GPU Type Nvedia Maxwell Broadcom
Videocore-IV Advanced Mali

CPU Type ARM A57 ARM A53 ARM A7/A15

Energy Max 10 W 2 W 5 W

Weight 136 g 49.7 g 60 g

Dimensions 95.3 × 100 mm 87 × 58.5 mm 82 × 58 mm

Support Language C/OpenMP/Cuda/
OpenGL

C/OpenMP/
OpenCL

C/OpenMP/OpenCL/
OpenGL

Processor Type Tegra SoC Broadcom Exynos 5422

Price (2020) $99 $35 $50

The data used in this paper is divided in two types—one collected by hand and the
other collected by an unmanned aerial vehicle (UAV) type DJI. Figure 8 shows an example
of the data used in our evaluation. The left image was collected by a UAV for the maize
and orange products. On the other hand, the figure on the right is for mint and parsley.
The choice of this agricultural product was made due to the popularity of this type of farm
in the southern Moroccan region.
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4.2. Sequential Implementation of the CPU-Based Algorith

The implementation on the CPUs of the used architecture is generally done in a
sequential mode. This implementation, in our case, is based on the C/C++ language. After
the temporal evaluation of the different blocks, we proceed to the distribution of each block
in functional blocks, which reflect the various treatments used in the chosen block. Table 7
shows the processing time consumption of each block in our algorithm.

Table 7. Processing time of each block.

Time (ms)

Blocks Desktop Jetson Nano XU4 Raspberry

B1 33.9 96.2 120.5 222

B2 38.3 93 110 181

B3 61.4 127.2 155.9 300.8

Total 133.6 316.4 386.4 703.8

The time evaluation on several machines showed that the desktop consumes less time
than the other tools used, giving a total time of 133.6 ms to process each image. In the
other part, we have the two embedded systems, Jetson nano, and XU4, which consume,
respectively, 316.4 and 386.4 ms for the processing of each image. These processing times
are close, given the characteristics of each system. We also have the Raspberry card, which
consumes 703.8 ms for each image. From the first analysis, we can say that blocks 1 and 3,
which deal with blur detection and compression, consume more time than block 2, except
in the desktop. This pushes us to analyze each block to see which part consumes more.
The approach is to separate each block into functional blocks. These functional blocks take
various tasks in the main block. In our case, we have tried to divide the first block into six
functional blocks. Figure 9 shows the functional blocks used in our case based on block 1,
which is responsible for blur detection and elimination as indicated in Algorithm 1.
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Figure 9. Functional block flow of blur detection algorithm.

The first functional block is dedicated to the blur test; this test is very important to
avoid the processing if an image does not contain blur, which will decrease the processing
time in some cases. The advantage, here, over the other techniques used is that, if we do
not have blur, the algorithm will go directly to block 2 to calculate the indices. FB2 focuses
on image preparation if we have blurred images. The third functional block is for the
application of DFT to the image and the kernel. FB4 focuses on the convolution between
the image and kernel DFT. FB5 for the Inverse Discrete Fourier Transform and finally FB6
for the magnitude and rearrangement to send the image to block 2 for indexes processing.
Algorithm 1 shows the processing details of B1. This functional block separation will
convert our algorithm into a functional block map which consists of 6 FB in block 1, giving
a global view on the processing of this algorithm. Figure 10 shows block map 2.
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In our case, the second block is described in [30]; for this reason, we focused only
on blocks 1 and 3. Figure 10 shows that the compression algorithm is also divided into
six functional blocks. FB1 focuses on searching optimal size to separate the image into
8*8 blocks and then convert it to 64 bits. FB2 takes care of the DCT application and the
quantization, and FB3 for the histogram. Then FB4 and FB5 fill the Huffman table and
the image coding based on these tables, respectively. The six functional blocks focus on
the storage of the compressed images and the database management by applying a test to
the image to see if it is an image that contains the different indices or a raw RGB image.
After the specification of the different block functions, the time evaluation for the different
blocks has to be applied in order to conclude which functional blocks consume more time.
The time evaluation was based on the desktop, XU4, Jetson Nano, and Raspberry. Figure 11
shows the results obtained for each FB.
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Figure 11 shows the results of the time evaluation for block 1 and 3; from the processing
time analysis, we can conclude that in the case of block 1 (figure on the right), we have
FB1 consuming 6.4 ms for Jetson Nano, 8.1 ms on the XU4 board, 3.1 ms for the desktop,
and 5 ms for the Raspberry board. For FB2, we have 2.8 ms consumed by the Jetson Nano,
5.4 ms for XU4, 1.2 ms, and 13 ms for the desktop and Raspberry board, respectively.

FB3 occupies a processing time between 3.7 ms and 19 ms for the desktop and Rasp-
berry and 12 ms for both the XU4 and Jetson Nano. Functional block 4 takes the largest
percentage of time due to the conventional product between the image and the kernel,
shown in the yellow curve. This increase in time reflects the fact that the function block se-
lected for acceleration is FB4, which will reduce the total time of block 1. On the other hand,
FB5 and FB6 consume less time compared to FB4. For block 3, the time evaluation showed
that FB4 and FB5 consume more time compared to the other functional blocks, which
requires an acceleration in these functional blocks. The time evaluation of the blocks was
based on a sequence of 100 images in order to calculate the average processing time. Table 7
summarizes the different processing times obtained. From this table, we can conclude that
the Jetson Nano card and the desktop are given the best results.

Although the desktop gives a lower time compared to other systems, the problem of
this conventional machine is the power consumption and the high weight. In the same
way, the Jetson nano card gives a difference of 70 ms compared to the XU4 card. This card
indeed has a low cost, but it has a very high-power consumption compared to the XU4 and
Raspberry cards. This does not reflect our interest because the study aims to build a reliable
real-time system with low cost and low power consumption. In this case, the best choice is
the XU4 and Raspberry board. The processing time analysis showed that the Raspberry
board consumes more time by a factor of ×2.22 compared with XU4, which consumes
316 ms. That pushed us to select the XU4 board for the acceleration of the algorithm based
on the exploitation of the CPU and GPU parts of this heterogeneous system. Due to the
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energy consumption in our case, we need to ensure the autonomy of the drone or the
robot to provide the maximum processing capacity. Table 8 shows the processing time of
different FBs.

Table 8. Processing time of FBs.

Functional Block
Time (ms)

Jetson XU4 Desktop Raspberry

Block 3

FB1 0.17 0.136 0.094 3.3

FB2 1.5 3.7 2.03 8.5

FB3 2.2 2.9 0.317 7

FB4 41 52 22 100

FB5 80 94 37 173

FB6 2.4 3.2 0.034 9

Block 1

FB1 6.4 8.1 3.1 5

FB2 2.8 5.4 1.2 13

FB3 12 12 3.7 19

FB4 50 70 15.7 150

FB5 18 15 7.3 24

FB6 7 10 2.9 11

4.3. CPU-GPU Boarding Based OpenCL and OpenMP

Our second implementation was based on OpenCL and OpenMP to accelerate the
functional blocks that take most of the time. In our study, we used both languages to
ensure the exploitation of the CPU part using OpenMP and the different GPU cores using
OpenCL. The acceleration in the CPU of the XU4 board was used for the compression
part and OpenCL for the blur elimination and index processing part. Figure 12 shows the
implementation model based on the acceleration on the GPU part using OpenCL.

After the time evaluation shown in Table 8 and Figure 12, we have concluded that FB4
in block 1 consumes the most processing time. For this reason, we have opted to accelerate
this FB in the GPU part of the board. Figure 13 shows that after FB3, we call the kernel
for running on the GPU part; in this case, the CPU part provides the necessary data for
the execution. Thus, we have accelerated block two, which also takes a lot of time. After
the kernels have been executed, we move on to FB4 and FB5 in block 3, which has been
accelerated in the CPU part via OpenMP. Figure 13 shows the results obtained.

Figure 14 shows the temporal evaluation obtained based on a sequence of 100 images.
The image on the left shows the block 2 time graph, which varies between a minimum
value of 9.2 ms and a maximum value of 17.8 ms; after taking the average of the image
sequence, we obtained a processing time of 14.89 ms for the handling of each image. This
shows an improvement of ×7.3. compared to the sequential version, which consumes
110 ms. The time variation in the curves is due to the fact that each image contains a
different information weight, which causes a variation in processing time. The image on
the right also shows the processing time for 100 frames of FB 4 in block 1. The time varies
between a minimum value of 2.24 ms and a maximum of 8.2 ms, which gives an average
of 5.8 ms with an improvement ×12 compared to the sequential version, which consumes
70 ms. After improving blocks 1 and 2, we also enhanced block 3. Figures 14 and 15 show
the results obtained.
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Figure 13. GPU processing time based on OpenCL.

Figure 14 shows the processing time of FB4 and FB5 of block 3, which took the most
processing time. In this context, we obtained an average of 22 ms compared to the sequential
version, which consumes 52 ms for FB4 and 62 ms for FB5, and which consumes in the
sequential version 94 ms. Figure 15 shows a comparison between the different times that
include the sequential version and the improved version, as well as the case where we did
not detect the blur in the image, so the algorithm moved directly to block 2 for the indices
processing. This shows an improvement of ×3.3 in global processing time compared to the
sequential version that took 386.4 ms. Figure 16 shows the total time obtained between the
improved and sequential versions based on 100 iterations.
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We subsequently evaluated our implementation based on several resolutions to see
the effect of the resolution on the processing time and the number of images processed.
Table 9 shows the result obtained.

Table 9. Global processing time with different resolution.

Resolution CPU-GPU Fps

640 × 480 3.21 311

1024 × 768 10.95 91

1600 × 1200 36.31 27

2048 × 1080 51.47 19

4096 × 2160 97.52 10

5472 × 3648 165.12 6

Table 9 shows that using 640 × 480 resolution, we can achieve a processing rate of
311 frames/s, and 5472 × 3648 resolution, we can process 6 frames/s. The fact that the
number of frames in this resolution is six is due to the high resolution of the images, but
it is still sufficient, and it respects the real-time constraint. If we take as an example the
most used cameras in precision agriculture, we find Red-Edge Mecasens or Parrot Sequoia,
which have a time-lapse of two frames/s in the case of 1280 × 960 resolution for the
different bands Red, Green, and Blue and 4608 × 3456 for the case of RGB, which means
the various bands in the same image. Our algorithm respects the time constraint, which is
2 fps making the real-time processing.

5. Experimental Results from Real Area

The temporal evaluation of our hybrid algorithm, which combines blur detection,
index calculation, and image compression, has shown that we can use it in a real-time
scenario. The compression results allowed us to reduce the image size by a factor of
×63. The decompression process to achieve the image construction was applied after the
end of the sequence. This means that the decompression process is used after the global
algorithm has processed all the images. For the blur detection, we tried to add a Gaussian
blur to filter the image to see the result. Figure 17 shows the original image, with blur and
after blur removal.
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sufficient, and it respects the real-time constraint. If we take as an example the most used 

cameras in precision agriculture, we find Red-Edge Mecasens or Parrot Sequoia, which 

have a time-lapse of two frames/s in the case of 1280 × 960 resolution for the different 

bands Red, Green, and Blue and 4608 × 3456 for the case of RGB, which means the various 

bands in the same image. Our algorithm respects the time constraint, which is 2 fps mak-

ing the real-time processing. 

5. Experimental Results from Real Area 

The temporal evaluation of our hybrid algorithm, which combines blur detection, 

index calculation, and image compression, has shown that we can use it in a real-time 

scenario. The compression results allowed us to reduce the image size by a factor of ×63. 

The decompression process to achieve the image construction was applied after the end 

of the sequence. This means that the decompression process is used after the global algo-

rithm has processed all the images. For the blur detection, we tried to add a Gaussian blur 

to filter the image to see the result. Figure 17 shows the original image, with blur and after 

blur removal. 
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The indices evaluated in this work are the Normalized Green-Red Difference Index
(NGRDI) and Visible Atmospherically Resistant Index (VARI). The choice of these indices is
due to the robustness of the results given as well as their popularity in the field of precision
agriculture. For this reason, we have evaluated both databases based on these indices.
The images used in this evaluation are based on images collected by UAV and hand data.
Figure 18 shows images from the database used in this work.
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Figure 18. Used data based on mint, maize, orange, and parsley.

In Figure 18, we have the different images used in our evaluation. On the top left,
we have an agricultural field of maize collected by a UAV; on the top right, we have a field
of orange trees also collected by a UAV. We have a parsley field on the bottom left, and on
the right, the mint field. These data were evaluated using the indices listed in Table 1; in
our case, we chose the two indices NGRDI and VARI. Figure 19 shows the results obtained
after the evaluation.

Figure 19 shows the evaluation of the NGRDI based on mint plants; image A shows
the agricultural field, B is the green band, C is the red band, and D is the calculated index
based on a threshold of 0.12. Images E and F show the same calculated index but we varied
the threshold; in this case, we used a threshold of 0.45. Image G shows an index matrix
generated by MATLAB to see the different values that exist in the image. Figure 20 shows
the evaluation of parsley fields based on the NGRDI.

Thus, we have evaluated the orange plants as shown in Figure 21.
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Figure 19. Evaluation of NGRDI based on mint. ((A) represents RGB image; (B) is green band; (C) is
red band; (D) is the NGRDI processing; (E) is NGRDI processing but using a modified thresholding;
(F) represent the same index but using red color; (G) is the NGRDI processing using a MATLAB.)
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Figure 20. Evaluation of NGRDI based on parsley. ((A) represents RGB image; (B) is green band; (C) is
red band; (D) is NGRDI processing but using a modified thresholding; (E) represent the same index
but using red color; (F) is the NGRDI processing; (G) is the NGRDI processing using a MATLAB.)
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Figure 21. Evaluation of NGRDI based on orange. ((A) represents the original RGB image, (B) the
red band of the image, and (C) the green band. Image (D) shows the binary image of the NGRDI
with a threshold of 0.35, as same for image (F), by coloring the image in red for the regions with an
index of 0.35. For image (E), we have modified the threshold based on 0.5 this time instead of 0.35.
Image (G) presents a matrix data of the index.)

Figure 22 shows a comparison between NGRVI and VARI using parsley (in the left)
and maize (in the right) plants. The image on the right shows the evaluation based on an
image collected by UAV, and on the right, the database is collected by hand. The results
showed that the VARI is more sensitive to vegetation than NGRVI based on the same
threshold. Still, the results show that the VARI is robust to the sensitivity of the vegetation
to be monitored.
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Figure 22. Result comparison between NGRVI and VARI based on parsley and maize.

Figure 23 shows the interpretation of the index results, the image on the right shows
that we have parts of the agricultural field with a low index after the threshold operation.
The appropriate threshold comes with using a soil sensor to determine the suitable threshold
for each plant. The blue squares show the soil parts with a low index, which implies a low
vegetation cover that requires an intervention.
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6. Conclusions and Future Work

Real-time monitoring of agricultural fields requires a robust monitoring system that
satisfies the time constraint as well as the many other requirements. The hybrid algo-
rithm proposed in this work tries to address the different constraints such as memory
saturation during processing as well as blur detection due to camera movement during
capture. The evaluation was based on several benchmarks to validate the algorithm’s
implementation on several homogeneous low-cost embedded architectures such as the
Raspberry board and heterogeneous ones such as Odroid XU4 and Jetson Nano. A hard-
ware/Software Co-Design study followed the validation of the algorithm to conclude that
the XU4 board remains the best choice in terms of processing time, power consumption,
and low cost. The evaluation results show that we can reach a processing performance up
to 311 frames/s. Thus, the algorithm has been validated using our database collected with
an RGB camera and a DJI Phantom Pro 4 drone. In terms of algorithmic complexity, the
proposed algorithm has low complexity. The study of the temporal complexity has shown
that the sequential implementation consumes a very high processing time that does not
respect real-time. For this reason, hardware acceleration has been proposed to improve
the proposed algorithm based on an acceleration factor of ×3.3 compared to sequential
implementation. This acceleration is based on OpenCL and OpenMP language in XU4
embedded architecture. Future work aims to integrate precise localization algorithms
to improve the quality of monitoring in agricultural fields based on multi-sensor fusion
algorithms and accurate localization.
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