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1. Too big ? 

• Estimation and tests become useless 
• Everything is significant! 

• with n=106  a correlation coefficient = 0,002 is  
significantly different from  0 but without any 
interest 

• Usual distributional models are rejected since 
small discrepancies  between model and data 
are significant 

• Confidence intervals have zero length 
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2. Which kind of models? 

• Data Scientists and Data Miners use models in 
a data driven way 
– Models come from data, not from a theory 
– Quite different from classical modelling 

 

• Toolbox: a mix of statistical and machine 
learning procedures 
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• Standard conception (models for understanding) 
– Provide some comprehension of data and their 

generative mechanism through a parsimonious 
representation.  

– A model should be simple and its parameters 
interpretable  for the specialist : elasticity, odds-
ratio, etc.  

• Paradoxes 
–  a model with a good fit may provide poor 

predictions at an individual level 
– Good predictions may be obtained with 

uninterpretable models 
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• In « Big Data Analytics » one focus on 
prediction 
– For new observations «generalization » 
– Differs from having a good fit in the learning step 

(predicting the past) 
• risk of overfitting  

• Models are merely algorithms 
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3. How to validate a model? 

• Combining Machine Learning and Statistics 
– A good model must give good predictions 
– Goodness of fit ≠ prediction  

• Predicting the past or the future? 

– Bootstrap, cross-validation 
– Learning and validation sets 
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The three samples procedure for selecting a 
family of models 

• Learning set: estimating model parameters 
• Test set : choice of the best model in terms of 

prediction 
– Reestimation of  the final model: with all available 

observations 
• Validation set : estimate the performance for future 

data. « Generalization » 
– Parameter estimation ≠ performance estimation 
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• One split is not enough! 
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• Elementary? 
– Not that sure… 
– Have a look on  publications in econometrics, 

epidemiology, .. 
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• William of Ockham            
(c. 1287 – 1347) 
 
 
 
 
 

• Vladimir Vapnik (1990) 
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4. Model choice and the search 
for sparsity (or parsimony) 



• Ockham’s razor 
–  a scientific principle for avoiding useless 

hypothesis 
     pluralitas non est ponenda sine necessitate 
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• Ockham’s razor 
–  a scientific principle for avoiding useless 

hypothesis 
     pluralitas non est ponenda sine necessitate 

• AIC, BIC and other penalized likelihood 
techniques are often considered as modern 
versions of Ockham’s razor 

  AIC = -2 ln(L) + 2K   
  BIC = -2 ln(L) + K ln(n) 
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 A misleading similarity 
 AIC and BIC come from quite different theories 

• AIC : approximation  of the Kullback-Leibler 
divergence between the true distribution and 
the best choice inside a family 

• BIC : bayesian choice among  parametric models 
with equal priors 
 

• Use AIC and BIC simultaneously is illogical 
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AIC BIC realistic? 

• Likelihood not always computable: need distributional 
assumptions (trees, neural networks..). 

• How to define the number of parameters? (trees, but 
also ridge, PLS..) 

• Is there a « true » model? 

 “Essentially, all models are wrong, but some are useful ” 
(G.Box,1987) 

 
 
 

 

 *  Box, G.E.P. and Draper, N.R.: Empirical Model-Building and Response Surfaces, p. 424, Wiley, 1987 
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The VC inequality between learning risk and 
generalization risk 
 
In supervised classification: 
 
 
 
 
 
holds with probability1- α 
 
 h : VC dimension , a measure of model complexity 
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Minimizing the right-hand side 
when n is known 



• The upper bound depends from n/h, hence 
surprising results: 
– If h increases slower than n,  it improves the 

generalization. 
– One may use more and more complex models 

when n is big! 

• Not necessarily a good idea mainly if Data are 
Big according to p 
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• A particular kind of regularization may solve 
the problem of high dimensional data 
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• Elastic net  
 
Combines L2 (ridge) and L1 (lasso) regularization  
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Disjunctive table 

 

Selection of a categorical variable: selection of a block of indicators 
 

technique: use the group Lasso penalty 
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5.Sparse  MCA 

Bernard, A. , Guinot, C. , Saporta, G. Compstat 2012, 99-106 
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Single Nucleotide Polymorphisms 

Data: 
 

n=502 individuals 
p=537 SNPs (among more than 
 800 000 of the original data base, 15000 
genes)  
q=1554 (total number of columns)  
 

X : 502 x 537matrix of qualitative 
variables 
 

K : 502 x 1554 complete disjunctive 
table   K=(K1, …, K1554) 
 

1 block 
=  

1 SNP = 1 Kj matrix 

Application on genetic data 
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Single Nucleotide Polymorphisms 

Application on genetic data 
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λ= 0:005: CPEV= 0:32% and 174 columns selected on Comp 1 

25 



Comparison of the loadings  

Application on genetic data 

.  . 
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Properties MCA Sparse MCA 

Uncorrelated Components TRUE FALSE 

Orthogonal loadings TRUE FALSE 

Barycentric property TRUE PARTLY TRUE 

% of inertia 

Total inertia 
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6. The end of theory? 
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Petabytes allow us to say: "Correlation is enough." We can stop looking 
for models. We can analyze the data without hypotheses about what it 
might show. We can throw the numbers into the biggest computing 
clusters the world has ever seen and let statistical algorithms find 
patterns where science cannot. 



• Correlation is not causality 
• A regression coefficient does not measure the 

influence of a predictor  (P.Bühlmann) 

–  « holding all other variables fixed » is nonsense 
– When a predictor changes , it implies that other 

do (intervention vs correlation) 
– Causal schemes are necessary 
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• complementing a regression scheme (linear or 
not) with a causal diagram 
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ˆ ( )y f= x

x4 x3 

x1 
x2 

DAG: Directed Acyclic Graph 



Conclusions 

• Massive data need specific approaches 
– Models are algorithms 
– Validation  

• Combine complexity and sparsity 
• Good old methods (SVD, k-means) are still 

efficient especially in unsupervised contexts 
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Thanks for your attention 
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