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In the context of damped second order linear dynamical systems, we study the asymptotic behavior of a time discretization of a slowly damped differential equation. We prove that this discretization can be constructed by means of a variable time step that gives rise to the same asymptotic behaviour as for the system in continuous time.

Introduction

In this paper we study the asymptotics of an implicit discretization of the following differential equation on R d ẍ(t) + a(t) ẋ(t) + ∇F (x(t)) = 0, t ≥ 0.

(

) 1 
Here a denotes a real-valued map that will principally satisfy the following assumptions: a will be positive, tending to 0 and merely L ∞ (R + ). This behaviour was referred to, in the literature, as a slowly decaying damping (see [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with nonautonomous damping[END_REF][START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF][START_REF]Asymptotics for a second order differential equation with a linear, slowly timedecaying damping term[END_REF][START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF][START_REF] Balti | Asymptotic for a semilinear hyperbolic equation with asymptotically vanishing damping term, convex potential and integrable source[END_REF]). For example, one can take a(t) := 1 (1+t) β for some β ∈ (0, 1). The function F is a real-valued function given on R d which can be thought as a potential energy.

The asymptotic behaviour of solutions of (1) or some variants (e.g. a might also depend on ẋ) has been extensively studied. Indeed equations like (1) appear naturally as model of physical problems in finite and infinite dimensions. The asymptotic behaviour of such models reflects natural physical questions among which knowing the convergence to some equilibria or to specific sets is important. Let us note that in the framework of infinite dimension, equations like (1) appear while doing space discretizations of nonlinear damped wave equations.

Of course performing numerical simulations in order to illustrate or predict some asymptotic phenomena leads to understand if similar results that can be proved or are expected for models as (1) hold for discretization.

Systems like (1) are a particular case of dynamical systems of ẋ(t) + G(x(t)) = 0 [START_REF] Alaa | Figure 6: Simulation for (7). tive dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF] for which the amount of works on asymptotics is far more huge. Examples occur of G that are gradients (one refers then to gradient systems) and for which non convergence to equilibrium points for [START_REF] Alaa | Figure 6: Simulation for (7). tive dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF] or some discretizations holds. One may quote [START_REF] Palis | Geometric theory of dynamical systems: An introduction[END_REF] (see also [START_REF] Jendoubi | Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping[END_REF]) in which an example of a smooth gradient system that has non convergent bounded trajectories is given and as a prolongation of this result, in contrast with the genericity given in [START_REF] Lions | Structure of the set of the steady-state solutions and asymptotic behavior of semilinear heat equations[END_REF], [START_REF] Horsin | Non-genericity of initial data with punctual ω-limit set[END_REF] gave an example of gradient system with an open set of initial data with non convergent bounded trajectories. For discretizations, a counterexample of convergence is given in [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF]. Also in the context of gradient systems, S. Lojasiewicz [START_REF] Lojasiewicz | Colloques internationaux du C.N.R.S #117. Les équations aux dérivées partielles[END_REF][START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF] showed the convergence of global and bounded solutions when the nonlinearity is analytic. The main ingredient of his proof is an inequality which relates the potential of the gradient (see ( 24)). This result was then generalised to the second order system (1), first in the case where a(t) = 1 (see [START_REF]Convergence of solutions of second-order gradient-like systems with analytic nonlinearities[END_REF]), then in the case where a(t) tends to 0 (see [START_REF]Asymptotics for a second order differential equation with a linear, slowly timedecaying damping term[END_REF]). We consider below (see [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]) an implicit discretization of (1) mostly under the assumptions given in [START_REF]Asymptotics for a second order differential equation with a linear, slowly timedecaying damping term[END_REF] where the asymptotic of (1) is studied.

Our main result (theorem 3.7) essentially says that the asymptotic behaviour of the sequence defined by this discretization is the same as the one given in the aforementioned paper. Precisely we give sufficient conditions in order to assert the existence of the sequence defining the discretization and the convergence of the discretized sequence to an equilibrium point. We would like to emphasize that, in order to obtain the decrease of some energy, we are lead to consider an implicit scheme in time with variable steps. The size of the steps are related to the assumptions on a but allows the time discretization to go to infinity.

We are also able to give the speed of convergence to the equilibrium and it is again the same as in the continuous case.

Let us also mention that the use of variable time steps in the discretization of (1) could also probably be helpful in an explicit or semi-implicit discretization of

ẍ(t) + ẋ(t) α ẋ(t) + ∇F (x(t)) = 0, t ≥ 0, (3) 
but up until now we were only able to study the asymptotic behavior of an implicit scheme for (3). It should be emphasized that, for the implicit discretization of (3), in order to prove the convergence of bounded trajectories, in [START_REF]Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF], a discrete angle condition obtained when F satisfies some Lojasiewicz inequality (see (24) below for the definition of such an inequality) is used. Such angle conditions first appeared in the continuous case and some specific discretizations in [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] (see also [START_REF] Chill | Applications of the Lojasiewicz-Simon, gradient inequality to gradient-like evolution equations[END_REF]), while for discrete situations they were also used in [START_REF] Alaa | Figure 6: Simulation for (7). tive dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF]. Despite their powerful potential, the results of this paper do not rely on them.

The following section presents the construction of our implicit discretization.

Then in section 3 we will state and prove our results of asymptotic convergence for our implicit scheme.

The last part of this paper consists of numerical simulations performed in situations with or without the theoretical assumptions of our main result.

Construction and existence of the variable time-step scheme

In this section we present the discretization that we are going to consider and prove its existence.

Let F : R d -→ R be a C 1 function such that

∃c F > 0/ ∀u, v ∈ R d ∇F (u) -∇F (v) ≤ c F u -v . (4) 
It is easy to check that hypothesis (4) on F implies the following inequality (see for example [START_REF] Alaa | Figure 6: Simulation for (7). tive dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF][START_REF]Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF])

∀u, v ∈ R d < ∇F (u) -∇F (v), u -v >≥ -c F u -v 2 , ( 5 
) ∀u, v ∈ R d F (v) ≥ F (u)+ < ∇F (u), v -u > - c F 2 u -v 2 . (6) 
For (t n ) an increasing sequence of positive numbers and a a non-negative function, we consider a sequence (

u n , v n ) n∈N in R d × R d satisfying            u n+1 -u n ∆t n = v n+1 v n+1 -v n ∆t n = -a(t n+1 )v n+1 -∇F (u n+1 ) u 0 , v 0 ∈ R d , (7) 
where ∀n ∈ N, ∆t n := t n+1 -t n . The reason for which the sequence (∆t n ) is not assumed to be a constant as described in the introduction will appear in inequality [START_REF] Haraux | The convergence problem for dissipative autonomous systems -classical methods and recent advances[END_REF].

The energy of the system governed by ( 7) is defined by

E(u, v) = 1 2 v 2 + F (u).
The existence and uniqueness of a sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] is not clear in general. The proposition below gives some sufficient conditions for which it is the case.

Proposition 2.1. Assume that F is of class C 1 (R d ), coercive and that (4) holds. Let us also assume that a ∈ L ∞ (R d ) and that for any K compact subset of R there exists α k > 0 such that a ≥ α K on K, then for any (u 0 , v 0 ) ∈ R 2d , for any increasing sequence (t n ), if ∀n ∈ N, t n+1 -t n is small enough the sequence (u n , v n ) given by ( 7) is well defined, and we have

∀n ∈ N E(u n+1 , v n+1 ) ≤ E(u n , v n ).
Proof. First of all, according to the continuity of F and its coercivity, we can assume that F ≥ 0. We consider (u 0 , v 0 ) ∈ R 2d and choose R such that if E(u, v) ≤ E 0 := 1 2 v 0 2 +F (u 0 ), then u ∈ B(0, R). If we denote R = √ 2E 0 , we clearly have v 0 < R . Let N be a bounded and continuous and globally lispchitz function coinciding with -∇F on B(0, 3R). We denote L F,R the lipschtiz constant of N . We choose some C > 0 such that for all n ∈ N, one has ∆t n ≤ C. Let us consider the following map defined on R 2d :

F(u, v) = (u 0 + ∆t 0 v, v 0 -∆t 0 a(t 1 )v + ∆t 0 N (u)). ( 8 
)
We claim that for C small enough depending only on R, F is a contraction. Indeed, we have, for

((u, v), (u , v )) ∈ R 2d × R 2d , F(u, v) -F(u , v ) ∞ ≤ C(1 + |a| ∞ + L F,R ) (u, v) -(u , v ) ∞ ,
which proves our claim. This proves the existence of a unique (u 1 , v 1 ) such that

(u 1 , v 1 ) = F(u 1 , v 1 ). Since u 1 ≤ ∆t 0 v 1 + u 0 and v 1 (1 + ∆t 0 a(t 1 )) ≤ v 0 + ∆t 0 N ∞ ,
by the non negativeness of a, we can chose C small enough (depending only on R and R ) so that u 1 < 2R, so that for n = 0 one has

     u n+1 -u n ∆t n = v n+1 v n+1 -v n ∆t n = -a(t n+1 )v n+1 -∇F (u n+1 ).
Now by taking the scalar product of the second relation of ( 7) with ∆t n v n+1 , it comes

< v n+1 -v n ∆t n , ∆t n v n+1 >= -a(t n+1 )∆t n v n+1 2 -< ∇F (u n+1 ), ∆t n v n+1 > or v n+1 2 -< v n , v n+1 >= -a(t n+1 )∆t n v n+1 2 -< ∇F (u n+1 ), u n+1 -u n > . (9) 
By using the Cauchy-Schwarz inequality, there holds

-< v n , v n+1 >≥ - 1 2 v n+1 2 - 1 2 v n 2 . (10) 
Combining ( 9) and ( 10), if follows that

1 2 v n+1 2 - 1 2 v n 2 ≤ -a(t n+1 )∆t n v n+1 2 -< ∇F (u n+1 ), u n+1 -u n >,
and then

E(u n+1 , v n+1 )-E(u n , v n ) ≤ -a(t n+1 )∆t n v n+1 2 +F (u n+1 )-F (u n )-< ∇F (u n+1 ), u n+1 -u n > .
By using (6), we get

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -a(t n+1 )∆t n v n+1 2 + c F 2 u n+1 -u n 2 = -∆t n a(t n+1 ) - c F 2 ∆t n v n+1 2 , (11) 
so that if ∆t n is small enough E n+1 ≤ E n because our assumption on a implies that lim inf t→tn a(t) > 0.

Since then u n+1 ∈ B(0, R) and v n+1 ∈ B(0, R ) we can conclude by induction.

Remark 2.2. It is clear from the proof that proposition 2.1 remains true if instead of (4), ∇F is only assumed to be locally lipschitz.

Remark 2.3. If we only assume that a ∈ L ∞ (R) and that a ≥ 0 a.e. we can still conclude that ∀(u 0 , v 0 ), there exists a non-decreasing sequence (t n ) such that the sequence (u n , v n ) defined by ( 7) is well-defined up to some n such that a(t n+1 ) = 0.

Remark 2.4. In the sequel, we will focus on the asymptotics of a sequence (u n , v n ) satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]. It is though not clear with the mere assumptions made on a that we have t n → ∞. In order to get this, specific a and sequences (t n ) such that t n → ∞ for which proposition 2.1 is true will be considered.

From now on, a will be a positive function in

L ∞ (R) such that ∃c > 0, β ∈ (0, 1)/ ∀t ≥ 0 a(t) ≥ c (1 + t) β . ( 12 
)
We may assume without loss of generality that

∀t ∈ R a(t) ≤ 1. ( 13 
)
This choice of a is motivated by the work [START_REF]Asymptotics for a second order differential equation with a linear, slowly timedecaying damping term[END_REF] in the continuous case.

We will now choose the sequence (t n ) as follows :

t n = c 1 n γ , γ ∈ ( 1 2 , 1), c 1 > 0. ( 14 
)
Let us remark that

∆t n := t n+1 -t n = γc 1 n 1-γ + O( 1 n 2-γ ) ∼ γc 1 n 1-γ . ( 15 
)
We choose γ and c 1 such that

γβ = 1 -γ, c c β 1 - c F 2 γc 1 > 0. ( 16 
)
With these choices, there are two positive constants δ 1 , δ 2 such that for all n ∈ N we have :

δ 1 ∆t n ≤ 1 (1 + t n+1 ) β ≤ 1 (1 + t n ) β ≤ δ 2 ∆t n . (17) 
Note also that, with this choice, there exists η > 0 such that for n large enough

a(t n+1 ) - 1 2 c F ∆t n ≥ η∆t n ,
and thus this proves, by (11), Theorem 2.5. For (t n ) defined by [START_REF] Horsin | Non-genericity of initial data with punctual ω-limit set[END_REF], if F satisfies the same assumptions as in proposition 2.1, then for any (u 0 , v 0 ) ∈ R 2d , if c 1 > 0 is small enough, the sequence given by (7) is well defined. Moreover there exists η > 0 such that for all n large enough we have

E(u n+1 , v n+1 ) -E(u n , v n ) ≤ -η(∆t n ) 2 v n+1 2 . ( 18 
)
Let us remark that with t n defined by ( 14), we have t n → ∞. This will allow us to consider the asymptotic behavior of the sequence defined by ( 7). This will be done in the next section.

3 Asymptotics for the sequence (u n , v n ).

In order to study the asymptotics of a sequence (u n , v n ), we define its ω-limit set

ω((u n , v n ) n∈N ) = {(a, b) ∈ R d × R d : ∃n k → ∞/(u n k , v n k ) -→ (a, b)}.
Proposition 3.1. Assume γ, c 1 as in [START_REF] Jendoubi | Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping[END_REF] and F satisfies (4). Let (u n , v n ) be a sequence satisfying (7) 1 . Assume also that F is bounded from below. Then the following assertions are true:

1. lim n→+∞ E(u n , v n ) exists. 2. (∆t n ) 2 v n+1 2 converges.
Moreover, if we assume that (u n ) is bounded, then we get

3. The set ω((u n , v n ) n∈N ) is a nonempty compact connected subset of R d × R d . 4. The function E is constant on ω((u n , v n ) n∈N ).
5. There is a subsequence

(v n k ) such that v n k -→ 0.
Proof. According to the theorem 2.5, (E(u n , v n )) is non increasing, thus converges in R ∪ {-∞}. For F is bounded from below, we deduce that (E(u n , v n )) converges to a real number. Using again the theorem 2.5,

(∆t n ) 2 v n+1 2 converges. Now as (u n , v n ) is bounded ((v n ) is bounded since (E(u n , v n )) is non increasing and F is bounded from below), the set ω((u n , v n ) n∈N ) is compact in R d × R d .
Besides, from the first relation of [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF], one deduces that (u n+1 -u n ) tends to 0. On the other hand, from the second relation of ( 7), we get

v n+1 -v n = -a(t n+1 )∆t n v n+1 -∆t n ∇F (u n+1 ) -→ n→+∞ 0.
It is therefore standard to prove that ω((

u n , v n ) n∈N ) is a connected part of R d × R d . Let (a, b) ∈ ω((u n , v n ) n∈N ), then there exists a sequence (u n k , v n k ) that converges to (a, b). Since E is continuous, then (E(u n k , v n k )) converges to E(a, b
). This ends the proof of the point 4 by using the point 1. Now we prove the point 5. If it is not true, then

∃ε > 0 ∃N ∈ N ∀n ≥ N v n > ε.
This contradicts the point 2 because (∆t n ) 2 diverges.

Theorem 3.2. Under the hypotheses of the proposition 3.1, let S = {a ∈ R d / ∇F (a) = 0} and assume that

∅ = argmin F = S. (19) 
Let (u n , v n ) be a sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] and assume that (u n ) is bounded. Then

lim n→+∞ v n + ∇F (u n ) = 0.
Remark 3.3. Let us remark that this proves that for all (a, b) ∈ ω((u n , v n )), a ∈ S and b = 0.

Proof. Now let ε be a positive real, and we define for all n ∈ N

Φ ε (u n , v n ) = E(u n , v n ) + ε (1 + t n ) β < ∇F (u n ), v n > .
Lemma 3.4. There are two positives constants ε 1 , δ and an integer

N 1 ∈ N such that for all n ≥ N 1 Φ ε 1 (u n , v n ) -Φ ε 1 (u n+1 , v n+1 ) ≥ δ(∆t n ) 2 [ v n+1 + ∇F (u n+1 ) ] 2 . ( 20 
)
Proof. According to the theorem 2.5, for all n ∈ N :

Φ ε (u n+1 , v n+1 ) -Φ ε (u n , v n ) ≤ -η(∆t n ) 2 v n+1 2 + ε (1 + t n+1 ) β < ∇F (u n+1 ), v n+1 > - ε (1 + t n ) β < ∇F (u n ), v n > .
Now it is easy to see:

ε (1 + t n+1 ) β < ∇F (u n+1 ), v n+1 > = ε (1 + t n+1 ) β < ∇F (u n+1 ), v n -∆t n a(t n+1 )v n+1 -∆t n ∇F (u n+1 ) > (by (7)) = - ε∆t n (1 + t n+1 ) β ∇F (u n+1 ) 2 + ε (1 + t n+1 ) β < ∇F (u n+1 ), v n > - ε∆t n a(t n+1 ) (1 + t n+1 ) β < ∇F (u n+1 ), v n+1 > = - ε∆t n (1 + t n+1 ) β ∇F (u n+1 ) 2 + ε (1 + t n+1 ) β < ∇F (u n+1 ), v n > + ε∆t n a(t n+1 ) (1 + t n+1 ) β ∇F (u n+1 ) v n+1 , - ε (1 + t n ) β < ∇F (u n ), v n > = - ε (1 + t n ) β < ∇F (u n ) -∇F (u n+1 ) + ∇F (u n+1 ), v n > ≤ ε (1 + t n ) β ∇F (u n ) -∇F (u n+1 ) v n - ε (1 + t n ) β < ∇F (u n+1 ), v n > ≤ εc F (1 + t n ) β u n -u n+1 v n - ε (1 + t n ) β < ∇F (u n+1 ), v n > by (4) ≤ εc F ∆t n (1 + t n ) β v n+1 v n+1 + ∆t n a(t n+1 )v n+1 + ∆t n ∇F (u n+1 ) - ε (1 + t n ) β < ∇F (u n+1 ), v n > (by (7)) ≤ εc F ∆t n (1 + t n ) β v n+1 2 + εc F (∆t n ) 2 a(t n+1 ) (1 + t n ) β v n+1 2 + εc F (∆t n ) 2 (1 + t n ) β v n+1 ∇F (u n+1 ) - ε (1 + t n ) β < ∇F (u n+1 ), v n > .
Note that for n large enough, we have

1 (1 + t n+1 ) β - 1 (1 + t n ) β = 1 (1 + c 1 (n + 1) γ ) β - 1 (1 + c 1 n γ ) β = 1 c β 1 n γβ 1 1 c 1 n γ + 1 + 1 n γ β - 1 c β 1 n γβ 1 1 c 1 n γ + 1 β = 1 c β 1 n γβ 1 1 c 1 n γ + 1 + γ n + O( 1 n 2 ) β - 1 c β 1 n γβ 1 1 c 1 n γ + 1 β = since (1<2γ<2) 1 c β 1 n γβ 1 - β c 1 n γ - βγ n + O( 1 n 2γ ) - 1 c β 1 n γβ 1 - β c 1 n γ + O( 1 n 2γ ) = - βγ c β 1 n γβ+1 + O( 1 n 2γ+γβ ) = - βγ c β 1 n γβ+1 + O( 1 n 1+γ ). ( 21 
)
Thus, thanks to ( 21) and ( 16) , there exists k > 0 such that for n large enough, we have

1 (1 + t n+1 ) β - 1 (1 + t n ) β ≤ k n γβ+1 .
Using this we get

ε (1 + t n+1 ) β < ∇F (u n+1 ), v n > - ε (1 + t n ) β < ∇F (u n+1 ), v n > ≤ kε n γβ+1 ∇F (u n+1 ) v n ≤ kε n γβ+1 ∇F (u n+1 ) v n+1 + ∆t n a(t n+1 )v n+1 + ∆t n ∇F (u n+1 ) by (7) ≤ ε k n γβ+1 ∇F (u n+1 ) v n+1 + k∆t n a(t n+1 ) n γβ+1 ∇F (u n+1 ) v n+1 + k∆t n n γβ+1 ∇F (u n+1 ) 2 by (7)
and then

Φ ε (u n , v n ) -Φ ε (u n+1 , v n+1 ) ≥ η(∆t n ) 2 v n+1 2 + ε∆t n (1 + t n+1 ) β ∇F (u n+1 ) 2 - ε∆t n a(t n+1 ) (1 + t n+1 ) β ∇F (u n+1 ) v n+1 -(22) - εc F ∆t n (1 + t n ) β v n+1 2 - εc F (∆t n ) 2 a(t n+1 ) (1 + t n ) β v n+1 2 - εc F (∆t n ) 2 (1 + t n ) β v n+1 ∇F (u n+1 ) - kε n γβ+1 ∇F (u n+1 ) v n+1 - kε∆t n a(t n+1 ) n γβ+1 ∇F (u n+1 ) v n+1 - kε∆t n n γβ+1 ∇F (u n+1 ) 2 .
By using [START_REF] Lojasiewicz | Colloques internationaux du C.N.R.S #117. Les équations aux dérivées partielles[END_REF] we get

ε∆t n (1 + t n+1 ) β ≥ εδ 1 (∆t n ) 2 , εc F ∆t n (1 + t n ) β ≤ εc F δ 2 (∆t n ) 2 .
Combining ( 17) and ( 13), we deduce that

ε∆t n a(t n+1 ) (1 + t n+1 ) β ≤ εδ 2 (∆t n ) 2 , εc F (∆t n ) 2 a(t n+1 ) (1 + t n ) β ≤ εc F (∆t n ) 2 , εc F (∆t n ) 2 (1 + t n ) β ≤ εc F (∆t n ) 2 .
Using ( 16) and ( 15), we get for n large enough

kε n γβ+1 ≤ εδ 1 (∆t n ) 2 , kε∆t n a(t n+1 ) n γβ+1 ≤ εδ 1 (∆t n ) 2 , kε∆t n n γβ+1 ≤ ε δ 1 4 (∆t n ) 2 .
Then ( 22) becomes for n large enough

Φ ε (u n , v n ) -Φ ε (u n+1 , v n+1 ) ≥ [η -εc F δ 2 -εc F ](∆t n ) 2 v n+1 2 + ε 3δ 1 4 (∆t n ) 2 ∇F (u n+1 ) 2 -ε[δ 2 + c F + 2δ 1 ](∆t n ) 2 ∇F (u n+1 ) v n+1 .
Using Young's inequality, then there is a positive constant

K = K(δ 1 , δ 2 , c F ) such that [δ 2 + c F + 2δ 1 ] ∇F (u n+1 ) v n+1 ≤ K v n+1 2 + δ 1 4 ∇F (u n+1 ) .
So we deduce for n large enough

Φ ε (u n , v n ) -Φ ε (u n+1 , v n+1 ) ≥ (∆t n ) 2 [η -ε(c F δ 2 + c F + K)] v n+1 2 + ε δ 1 2 (∆t n ) 2 ∇F (u n+1 ) 2 . ( 23 
)
Now we choose ε = ε 1 small enough such that

ε(c F δ 2 + c F + K) ≤ η 2 .
Then (23) becomes

Φ ε 1 (u n , v n ) -Φ ε 1 (u n+1 , v n+1 ) ≥ η 2 (∆t n ) 2 v n+1 2 + ε 1 δ 1 2 (∆t n ) 2 ∇F (u n+1 ) 2 .
The proof of lemma 3.4 is completed by taking δ = min η 2 , ε 1

δ 1 2 .
End of the proof of theorem 3.2. Thanks to lemma 3.4 and the fact that lim

n→+∞ Φ ε 1 (u n , v n ) = lim n→+∞ E(u n , v n ) exists, the sum (∆t n ) 2 [ v n+1 + ∇F (u n+1 ) ] 2 converges. Now since (∆t n ) 2 diverges, there exists some injection ϕ : N -→ N such that lim n→+∞ v ϕ(n) + ∇F (u ϕ(n) ) = 0.
Up to a subsequence, we may assume that (u ϕ(n) ) converges. Let a ϕ be its limit. Clearly we have (a ϕ , 0) ∈ ω((u n , v n ) n∈N ) and ∇F (a ϕ ) = 0. By [START_REF] Lions | Structure of the set of the steady-state solutions and asymptotic behavior of semilinear heat equations[END_REF] we deduce that a ϕ ∈ argmin F. Now, using the point 4. of the proposition 3.1, we get that for all (a, b)

∈ ω((u n , v n ) n∈N ), we have 1 2 b 2 + F (a ϕ ) ≤ 1 2 b 2 + F (a) = F (a ϕ ).
Then b = 0 and a ∈ argmin F = S. Therefore 0 is the only cluster point of (v n ) and (∇F (u n )), therefore lim

n→+∞ v n + ∇F (u n ) = 0.
In the sequel we assume that there exists θ ∈ (0, 1 2 ] such that

∀a ∈ S ∃r a > 0 ∃ν a > 0/ ∀u ∈ R d : u -a < r a =⇒ ∇F (u) ≥ ν a |F (u) -F (a)| 1-θ . ( 24 
)
Remark 3.5. ( [START_REF] Lojasiewicz | Colloques internationaux du C.N.R.S #117. Les équations aux dérivées partielles[END_REF][START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Kurdyka | Explicit bounds for the Lojasiewicz exponent in the gradient inequality for polynomials[END_REF][START_REF] Chergui | Convergence of global and bounded solutions of a second order gradient like system with nonlinear dissipation and analytic nonlinearity[END_REF]) Assumption ( 24) is satisfied if one of the following two cases holds:

-F is a polynomial, or -F is analytic and S is compact.

For the sequel, we need the following well-known result.

Lemma 3.6. ([3, 11]) Let Γ be a compact and connected subset of S. Then we have

(1) F assumes a constant value on Γ. We denote by F the common value of F (a), a ∈ Γ.

(2) There exist r > 0 and ν > 0 such that

dist(u, Γ) < r =⇒ ∇F (u) ≥ ν|F (u) -F | 1-θ .
The main result of this paper is the following:

Theorem 3.7. We assume that the hypotheses of the theorem 3.2 are true and that F also satisfies (24) and β ∈ (0, θ 1-θ ). Let (u n , v n ) be a sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] such that (u n ) is bounded. Then there exists a ∈ S such that

lim n→+∞ v n + u n -a = 0.
In addition as n → +∞ we have

u n -a = O t - θ-β(1-θ) 1-2θ n = O n -θ-β(1-θ) (1-2θ)(1+β) (25) 
Proof. From proposition 3.1, we know that ω((u n , v n ) n∈N ) is a non-empty compact, connected set. We also know that lim n→+∞ v n = 0 and that ω((

u n , v n ) n∈N ) ⊂ ×{0} (see theorem 3.2). Let Γ = {a/ (a, 0) ∈ ω((u n , v n ) n∈N )} and K = lim n→+∞ E(u n , v n ). Let's put H n = Φ ε 1 (u n , v n )-K where Φ ε 1 as in lemma 3.4.
Then (H n ) n≥N 1 in non-increasing, tends to 0 (and then positive). Assume that for some n 0 ≥ N 1 , H n 0 = K, then for all n ≥ n 0 , H n = K. According to [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF], v n+1 = 0 for all n ≥ n 0 and then u n = u n 0 for all n ≥ n 0 . Otherwise, since we may assume that K = 0 (so that we also have that ∀a ∈ Γ, F (a) = 0), there exists some N 1 ∈ N such that for all n ≥ N 1 , one has 0 < H n ≤ 1. It is easy to see that lim

n→+∞ dist((u n ), Γ) = 0.
Applying lemma 3.6, then there exist r > 0 and ν > 0 such that

∀u ∈ R d dist(u, Γ) < r =⇒ ∇F (u) ≥ ν|F (u)| 1-θ .
Since Γ = {a/ (a, 0) ∈ ω((u n , v n ) n∈N )}, then there exists N ≥ N 1 such that for all n ≥ N , dist(u n , Γ) ≤ r. Then for all n ≥ N

∇F (u n ) ≥ ν|F (u n )| 1-θ . ( 26 
)
As in [START_REF] Merlet | Convergence to equilibrium for the backward Euler scheme and applications[END_REF][START_REF] Alaa | Figure 6: Simulation for (7). tive dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF], let n ≥ N such that

H n+1 > H n 2 . ( 27 
)
We have

H θ n -H θ n+1 = Hn H n+1 θs θ-1 ds ≥ θ[H n -H n+1 ]H θ-1 n ≥ by (27) θ2 θ-1 [H n -H n+1 ]H θ-1 n+1 . ( 28 
)
For all n ≥ N , we have

H 1-θ n+1 = 1 2 v n+1 2 + F (u n+1 ) + ε 1 (1 + t n+1 ) β < ∇F (u n+1 ), v n+1 > 1-θ ≤ 1 2 1-θ v n+1 2(1-θ) + |F (u n+1 )| 1-θ + ε 1-θ 1 ∇F (u n+1 ) 1-θ v n+1 1-θ . (29) 
Thanks to Young's inequality we obtain

∇F (u n+1 ) 1-θ v n+1 1-θ ≤ ∇F (u n+1 ) + v n+1 1-θ θ
According to (26), we get for all n ≥ N

|F (u n+1 )| 1-θ ≤ 1 ν ∇F (u n+1 ) .
Then (29) becomes (using the fact that v n → 0, 1-θ θ ≥ 1 and 2(1 -θ) ≥ 1)

H 1-θ n+1 ≤ 1 2 1-θ + ε 1-θ 1 v n+1 + 1 ν + ε 1-θ 1 ∇F (u n+1 ) ≤ C ( v n+1 + ∇F (u n+1 ) ) (30) 
where

C = max 1 2 1-θ + ε 1-θ 1 , 1 ν + ε 1-θ 1
. By using (30) and ( 20), (28) becomes

H θ n -H θ n+1 ≥ δ C (∆t n ) 2 ( v n+1 + ∇F (u n+1 ) ) .
Then we get

(∆t n ) 2 ( v n+1 + ∇F (u n+1 ) ) ≤ C δ [H θ n -H θ n+1 ]. (31) 
On the other hand, let n ≥ N such that

H n+1 ≤ H n 2 . (32) 
From ( 20), we get

δ(∆t n ) 2 [ v n+1 + ∇F (u n+1 ) ] 2 ≤ H n -H n+1 .
Then we deduce

∆t n v n+1 ≤ 1 δ 1 2 [H n -H n+1 ] 1 2 ≤ 1 δ 1 2 [H n ] 1 2 ≤ 1 δ 1 2 [H n ] θ (H n ≤ 1) ≤ by (32) 1 δ 1 2 2 θ 2 θ -1 H θ n -H θ n+1 . (33) 
Since ∆t n ∼ γc 1 n 1-γ , then we can assume that for all n ≥ N

1 2(1 + β) c 1 n β 1+β = 1 2 γc 1 n 1-γ ≤ ∆t n ≤ 2γc 1 n 1-γ = 2 1 + β c 1 n β 1+β ≤ 1. ( 34 
)
where we used that γ = 1 1+β . Then from (33) we deduce

(∆t n ) 2 v n+1 ≤ 1 δ 1 2 2 θ 2 θ -1 H θ n -H θ n+1 .
In both cases, we have for all n ≥ N

(∆t n ) 2 v n+1 ≤ C 1 H θ n -H θ n+1 (35) 
where

C 1 = max C δ , 1 δ 1 2 2 θ 2 θ -1 . Now we define the map G : s -→ 1 1-2θ s 2θ-1 . For n ≥ N such that H n+1 > Hn 2 .
We have

G(H n+1 ) -G(H n ) = Hn H n+1 s 2θ-2 ds ≥ (H n -H n+1 )H -2+2θ n ≥ 2 -2+2θ (H n -H n+1 )H -2+2θ n+1 ≥ by (30) 2 -2+2θ C 2 H n -H n+1 ( v n+1 + ∇F (u n+1 ) ) 2 ≥ by (20) 2 -2+2θ C 2 δ(∆t n ) 2 .
On the other hand, for n ≥ N such that H n+1 ≤ Hn 2 , we have

G(H n+1 ) -G(H n ) = 1 1 -2θ H 2θ-1 n+1 -H 2θ-1 n ≥ 1 1 -2θ H 2θ-1 n 2 2θ-1 -H 2θ-1 n ≥ 2 1-2θ -1 1 -2θ H 2θ-1 n ≥ 2 1-2θ -1 1 -2θ (H n ≤ 1) ≥ 2 1-2θ -1 1 -2θ (∆t n ) 2 . (∆t n ≤ 1).
Then for all n ≥ N , we have

G(H n+1 ) -G(H n ) ≥ C 2 (∆t n ) 2 (36) 
where

C 2 = min 2 -2+2θ δ C 2 , 2 1-2θ -1 1-2θ
> 0. Let n ≥ N + 1. Summing (36) from N to n -1, and by using (34), it comes

G(H n ) -G(H N ) ≥ n-1 k=N C 2 (∆t k ) 2 ≥ C 2 c 1 2(1 + β) n-1 k=N 1 k 2β 1+β ≥ C 2 c 1 2(1 + β) n N ds s 2β 1+β ≥ C 2 c 1 (1 -β) 2(1 + β) 2 n 1-β 1+β -N 1-β 1+β . Let's pose C 3 = C 2 c 1 (1-β) 2(1+β) 2 . We have successively G(H n ) = 1 1 -2θ H n 2θ-1 ≥ G(H N ) + C 3 n 1-β 1+β -N 1-β 1+β , H 2θ-1 n ≥ (1 -2θ) G(H N ) + C 3 n 1-β 1+β -N 1-β 1+β , H 2θ-1 n ≥ (1 -2θ)G(H N ) -(1 -2θ)C 3 N 1-β 1+β + (1 -2θ)C 3 n 1-β 1+β
.

Thus for all n ≥ N + 1, we get

H n ≤ 1 (1 -2θ)G(H N ) -(1 -2θ)C 3 N 1-β 1+β + (1 -2θ)C 3 n 1-β 1+β 1 1-2θ .
Then there exists a constant λ > 0 such that for all n ≥ N + 1

H n ≤ λ n 1-β (1+β)(1-2θ) . (37) 
Let n ∈ N such that 2 n ≥ N . By using [START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF], we get

H 2 n -H 2 n+1 = 2 n+1 -1 k=2 n H k -H k+1 ≥ δ 2 n+1 -1 k=2 n (∆t k ) 2 v k+1 2 . ( 38 
)
Since for n large enough (∆t n ) is non-increasing, we obtain

2 n+1 -1 k=2 n (∆t k ) 2 v k+1 2 ≥ (∆t 2 n+1 -1 ) 2 n+1 -1 k=2 n (∆t k ) v k+1 2 ≥ c 1 2(1 + β) 1 (2 n+1 -1) β 1+β 2 n+1 -1 k=2 n (∆t k ) v k+1 2 . (39) 
Combining ( 39) and (38) we get

2 n+1 -1 k=2 n (∆t k ) v k+1 2 ≤ 2(1 + β) c 1 (2 n+1 -1) β 1+β 1 δ [H 2 n -H 2 n+1 ] ≤ C 4 2 nβ 1+β H 2 n (40) 
where

C 4 = 2(1+β) c 1 δ (2 β 1+β + 
1). On the other hand, using the Cauchy-Schwarz inequality, we get Using (41), ( 42), ( 40) and (37) leads to (1-2θ) .

2 n+1 -1 k=2 n (∆t k ) v k+1 ≤ 2 n+1 -1 k=2 n ∆t k 1 2 2 n+1 -1 k=2 n (∆t k ) v k+1 2 1 2 . ( 41 
) 2 n+1 -1 k=2 n ∆t k ≤ 2 n+1 -1 k=2 n 2 1 + β c 1 k β 1+β ≤ C 4 2 n+1 -1
2 n+1 -1 k=2 n (∆t k ) v k+1 ≤ C 5 2 n 1 2(1+β) C 4 2 nβ 1+β H 2 n 1 2 ≤ C 5 C 4 λ(2 n ) 1 2(1+β) + β 2+2β - 1-β 2(1+β)(1-2θ) ≤ C 5 C 4 λ(2 n ) -θ-β(1-θ) (1+β)
Yet by assumption β ∈ (0, θ 1-θ ), thus (∆t k ) V k+1 converges.

Numerical simulations

As in [START_REF]Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities[END_REF], we present some numerical simulations with specific F that do not necessarily satisfy our results' assumptions.

The implicit sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF] is constructed via a quasi-newton algorithm.

A convex and coercive function F

The function F that we consider is F (x, y) = ((x -1) 2 + (y -1) 2 -1) 2 χ (x-1) 2 +(y-1) 2 -1≥0 , and we take a(t) = 1 (1 + t) β , β = 0.1.

In figure (1), we observe the numerical decrease of E. In figure (2), we observe the numerical convergence of the sequence satisfying (7).

A non-convex and coercive function F

The function F that we consider is F (x, y) = (x 2 + y 2 -1) 2 , In figure (3), we observe also the numerical decrease of E. In figure (4), we observe the numerical convergence of the sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]. 

A non-convex and non-coercive function F

The function F that we consider here is F (x, y) = (x 2 -2y 2 -1) 2 , and we take again a(t) = 1 (1 + t) β , β = 0.1.

In figure [START_REF] Balti | Asymptotic for a semilinear hyperbolic equation with asymptotically vanishing damping term, convex potential and integrable source[END_REF], we also observe the numerical decrease of E. In figure [START_REF] Cabot | Asymptotics for some semilinear hyperbolic equations with nonautonomous damping[END_REF], we also observe the numerical convergence of the sequence satisfying [START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF]. [3] F. Alvarez, H. Attouch, J. Bolte and P. Redont, A second-order gradient-like dissipa-
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 1 Figure 1: Simulation for (7).
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 2 Figure 2: Simulation for (7).
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 3 Figure 3: Simulation for (7).
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 4 Figure 4: Simulation for (7).
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 5 Figure 5: Simulation for (7).

  

Recall that if moreover F is coercive, there exists a sequence (u n , v n ) satisfying[START_REF] Cabot | On the long time behavior of second order differential equations with asymptotically small dissipation[END_REF].