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Abstract
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1 Introduction

In this paper we study the asymptotics of an implicit discretization of the following differ-
ential equation on Rd

ẍ(t) + a(t)ẋ(t) +∇F (x(t)) = 0, t ≥ 0. (1)

Here a denotes a real-valued map that will principally satisfy the following assumptions: a
will be positive, tending to 0 and merely L∞(R+). This behaviour was referred to, in the
literature, as a slowly decaying damping (see [6, 7, 13, 20, 5]). For example, one can take
a(t) := 1

(1+t)β
for some β ∈ (0, 1). The function F is a real-valued function given on Rd which

can be thought as a potential energy.
The asymptotic behaviour of solutions of (1) or some variants (e.g. a might also depend

on ẋ) has been extensively studied. Indeed equations like (1) appear naturally as model
of physical problems in finite and infinite dimensions. The asymptotic behaviour of such
models reflects natural physical questions among which knowing the convergence to some
equilibria or to specific sets is important. Let us note that in the framework of infinite
dimension, equations like (1) appear while doing space discretizations of nonlinear damped
wave equations.

Of course performing numerical simulations in order to illustrate or predict some asymp-
totic phenomena leads to understand if similar results that can be proved or are expected
for models as (1) hold for discretization.

Systems like (1) are a particular case of dynamical systems of

ẋ(t) +G(x(t)) = 0 (2)

for which the amount of works on asymptotics is far more huge. Examples occur of G that are
gradients (one refers then to gradient systems) and for which non convergence to equilibrium
points for (2) or some discretizations holds. One may quote [22] (see also [16]) in which an
example of a smooth gradient system that has non convergent bounded trajectories is given
and as a prolongation of this result, in contrast with the genericity given in [19], [14] gave
an example of gradient system with an open set of initial data with non convergent bounded
trajectories. For discretizations, a counterexample of convergence is given in [4].
Also in the context of gradient systems, S. Lojasiewicz [17, 18] showed the convergence of
global and bounded solutions when the nonlinearity is analytic. The main ingredient of his
proof is an inequality which relates the potential of the gradient (see (24)). This result was
then generalised to the second order system (1), first in the case where a(t) = 1 (see [12]),
then in the case where a(t) tends to 0 (see [13]).

We consider below (see (7)) an implicit discretization of (1) mostly under the assumptions
given in [13] where the asymptotic of (1) is studied.

Our main result (theorem 3.7) essentially says that the asymptotic behaviour of the
sequence defined by this discretization is the same as the one given in the aforementioned
paper. Precisely we give sufficient conditions in order to assert the existence of the sequence
defining the discretization and the convergence of the discretized sequence to an equilibrium
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point. We would like to emphasize that, in order to obtain the decrease of some energy, we
are lead to consider an implicit scheme in time with variable steps. The size of the steps are
related to the assumptions on a but allows the time discretization to go to infinity.

We are also able to give the speed of convergence to the equilibrium and it is again the
same as in the continuous case.

Let us also mention that the use of variable time steps in the discretization of (1) could
also probably be helpful in an explicit or semi-implicit discretization of

ẍ(t) + ‖ẋ(t)‖αẋ(t) +∇F (x(t)) = 0, t ≥ 0, (3)

but up until now we were only able to study the asymptotic behavior of an implicit scheme
for (3). It should be emphasized that, for the implicit discretization of (3), in order to
prove the convergence of bounded trajectories, in [15], a discrete angle condition obtained
when F satisfies some Lojasiewicz inequality (see (24) below for the definition of such an
inequality) is used. Such angle conditions first appeared in the continuous case and some
specific discretizations in [1] (see also [9]), while for discrete situations they were also used
in [2]. Despite their powerful potential, the results of this paper do not rely on them.

The following section presents the construction of our implicit discretization.
Then in section 3 we will state and prove our results of asymptotic convergence for our

implicit scheme.
The last part of this paper consists of numerical simulations performed in situations with

or without the theoretical assumptions of our main result.

2 Construction and existence of the variable time-step

scheme

In this section we present the discretization that we are going to consider and prove its
existence.
Let F : Rd −→ R be a C1 function such that

∃cF > 0/ ∀u, v ∈ Rd ‖∇F (u)−∇F (v)‖ ≤ cF‖u− v‖. (4)

It is easy to check that hypothesis (4) on F implies the following inequality (see for example
[2, 15])

∀u, v ∈ Rd < ∇F (u)−∇F (v), u− v >≥ −cF‖u− v‖2, (5)

∀u, v ∈ Rd F (v) ≥ F (u)+ < ∇F (u), v − u > −cF
2
‖u− v‖2. (6)
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For (tn) an increasing sequence of positive numbers and a a non-negative function, we con-
sider a sequence (un, vn)n∈N in Rd × Rd satisfying

un+1 − un
∆tn

= vn+1

vn+1 − vn
∆tn

= −a(tn+1)vn+1 −∇F (un+1)

u0, v0 ∈ Rd

, (7)

where ∀n ∈ N, ∆tn := tn+1 − tn. The reason for which the sequence (∆tn) is not assumed
to be a constant as described in the introduction will appear in inequality (11).
The energy of the system governed by (7) is defined by

E(u, v) =
1

2
‖v‖2 + F (u).

The existence and uniqueness of a sequence satisfying (7) is not clear in general. The
proposition below gives some sufficient conditions for which it is the case.

Proposition 2.1. Assume that F is of class C1(Rd), coercive and that (4) holds. Let us
also assume that a ∈ L∞(Rd) and that for any K compact subset of R there exists αk > 0
such that a ≥ αK on K, then for any (u0, v0) ∈ R2d, for any increasing sequence (tn), if
∀n ∈ N, tn+1− tn is small enough the sequence (un, vn) given by (7) is well defined, and we
have

∀n ∈ N E(un+1, vn+1) ≤ E(un, vn).

Proof. First of all, according to the continuity of F and its coercivity, we can assume that
F ≥ 0. We consider (u0, v0) ∈ R2d and choose R such that if E(u, v) ≤ E0 := 1

2
‖v0‖2+F (u0),

then u ∈ B(0, R). If we denote R′ =
√

2E0, we clearly have ‖v0‖ < R′.
Let N be a bounded and continuous and globally lispchitz function coinciding with −∇F
on B(0, 3R). We denote LF,R the lipschtiz constant of N .
We choose some C > 0 such that for all n ∈ N, one has ∆tn ≤ C.
Let us consider the following map defined on R2d :

F(u, v) = (u0 + ∆t0v, v0 −∆t0a(t1)v + ∆t0N (u)). (8)

We claim that for C small enough depending only on R, F is a contraction. Indeed, we have,
for ((u, v), (u′, v′)) ∈ R2d × R2d,

‖F(u, v)−F(u′, v′)‖∞ ≤ C(1 + |a|∞ + LF,R)‖(u, v)− (u′, v′)‖∞,

which proves our claim.
This proves the existence of a unique (u1, v1) such that

(u1, v1) = F(u1, v1).
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Since ‖u1‖ ≤ ∆t0‖v1‖ + ‖u0‖ and ‖v1‖(1 + ∆t0a(t1)) ≤ ‖v0‖ + ∆t0‖N‖∞, by the non
negativeness of a, we can chose C small enough (depending only on R and R′) so that
‖u1‖ < 2R, so that for n = 0 one has

un+1 − un
∆tn

= vn+1

vn+1 − vn
∆tn

= −a(tn+1)vn+1 −∇F (un+1).

Now by taking the scalar product of the second relation of (7) with ∆tnvn+1, it comes

<
vn+1 − vn

∆tn
,∆tnvn+1 >= −a(tn+1)∆tn‖vn+1‖2− < ∇F (un+1),∆tnvn+1 >

or
‖vn+1‖2− < vn, vn+1 >= −a(tn+1)∆tn‖vn+1‖2− < ∇F (un+1), un+1 − un > . (9)

By using the Cauchy-Schwarz inequality, there holds

− < vn, vn+1 >≥ −
1

2
‖vn+1‖2 −

1

2
‖vn‖2. (10)

Combining (9) and (10), if follows that

1

2
‖vn+1‖2 −

1

2
‖vn‖2 ≤ −a(tn+1)∆tn‖vn+1‖2− < ∇F (un+1), un+1 − un >,

and then

E(un+1, vn+1)−E(un, vn) ≤ −a(tn+1)∆tn‖vn+1‖2+F (un+1)−F (un)− < ∇F (un+1), un+1−un > .

By using (6), we get

E(un+1, vn+1)− E(un, vn) ≤ −a(tn+1)∆tn‖vn+1‖2 +
cF
2
‖un+1 − un‖2

= −∆tn

[
a(tn+1)−

cF
2

∆tn

]
‖vn+1‖2, (11)

so that if ∆tn is small enough En+1 ≤ En because our assumption on a implies that
lim inf
t→tn

a(t) > 0.

Since then un+1 ∈ B(0, R) and vn+1 ∈ B(0, R′) we can conclude by induction.

Remark 2.2. It is clear from the proof that proposition 2.1 remains true if instead of (4),
∇F is only assumed to be locally lipschitz.

Remark 2.3. If we only assume that a ∈ L∞(R) and that a ≥ 0 a.e. we can still conclude
that ∀(u0, v0), there exists a non-decreasing sequence (tn) such that the sequence (un, vn)
defined by (7) is well-defined up to some n such that a(tn+1) = 0.
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Remark 2.4. In the sequel, we will focus on the asymptotics of a sequence (un, vn) satisfying
(7). It is though not clear with the mere assumptions made on a that we have tn →∞. In
order to get this, specific a and sequences (tn) such that tn → ∞ for which proposition 2.1
is true will be considered.

From now on, a will be a positive function in L∞(R) such that

∃c > 0, β ∈ (0, 1)/ ∀t ≥ 0 a(t) ≥ c

(1 + t)β
. (12)

We may assume without loss of generality that

∀t ∈ R a(t) ≤ 1. (13)

This choice of a is motivated by the work [13] in the continuous case.
We will now choose the sequence (tn) as follows :

tn = c1n
γ, γ ∈ (

1

2
, 1), c1 > 0. (14)

Let us remark that

∆tn := tn+1 − tn =
γc1
n1−γ +O(

1

n2−γ ) ∼ γc1
n1−γ . (15)

We choose γ and c1 such that

γβ = 1− γ, c

cβ1
− cF

2
γc1 > 0. (16)

With these choices, there are two positive constants δ1, δ2 such that for all n ∈ N we have :

δ1∆tn ≤
1

(1 + tn+1)β
≤ 1

(1 + tn)β
≤ δ2∆tn. (17)

Note also that, with this choice, there exists η > 0 such that for n large enough

a(tn+1)−
1

2
cF∆tn ≥ η∆tn,

and thus this proves, by (11),

Theorem 2.5. For (tn) defined by (14), if F satisfies the same assumptions as in proposition
2.1, then for any (u0, v0) ∈ R2d, if c1 > 0 is small enough, the sequence given by (7) is well
defined. Moreover there exists η > 0 such that for all n large enough we have

E(un+1, vn+1)− E(un, vn) ≤ −η(∆tn)2‖vn+1‖2. (18)

Let us remark that with tn defined by (14), we have tn → ∞. This will allow us to
consider the asymptotic behavior of the sequence defined by (7). This will be done in the
next section.
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3 Asymptotics for the sequence (un, vn).

In order to study the asymptotics of a sequence (un, vn), we define its ω−limit set

ω((un, vn)n∈N) = {(a, b) ∈ Rd × Rd : ∃nk →∞/(unk , vnk) −→ (a, b)}.

Proposition 3.1. Assume γ, c1 as in (16) and F satisfies (4). Let (un, vn) be a sequence
satisfying (7) 1. Assume also that F is bounded from below. Then the following assertions
are true:

1. lim
n→+∞

E(un, vn) exists.

2.
∑

(∆tn)2‖vn+1‖2 converges.

Moreover, if we assume that (un) is bounded, then we get

3. The set ω((un, vn)n∈N) is a nonempty compact connected subset of Rd × Rd.

4. The function E is constant on ω((un, vn)n∈N).

5. There is a subsequence (vnk) such that vnk −→ 0.

Proof. According to the theorem 2.5, (E(un, vn)) is non increasing, thus converges in R ∪
{−∞}. For F is bounded from below, we deduce that (E(un, vn)) converges to a real

number. Using again the theorem 2.5,
∑

(∆tn)2‖vn+1‖2 converges. Now as (un, vn) is

bounded ((vn) is bounded since (E(un, vn)) is non increasing and F is bounded from below),
the set ω((un, vn)n∈N) is compact in Rd × Rd. Besides, from the first relation of (7), one
deduces that (un+1− un) tends to 0. On the other hand, from the second relation of (7), we
get

vn+1 − vn = −a(tn+1)∆tnvn+1 −∆tn∇F (un+1) −→
n→+∞

0.

It is therefore standard to prove that ω((un, vn)n∈N) is a connected part of Rd × Rd.
Let (a, b) ∈ ω((un, vn)n∈N), then there exists a sequence (unk , vnk) that converges to (a, b).
Since E is continuous, then (E(unk , vnk)) converges to E(a, b). This ends the proof of the
point 4 by using the point 1.
Now we prove the point 5. If it is not true, then

∃ε > 0 ∃N ∈ N ∀n ≥ N ‖vn‖ > ε.

This contradicts the point 2 because
∑

(∆tn)2 diverges.

1Recall that if moreover F is coercive, there exists a sequence (un, vn) satisfying (7).
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Theorem 3.2. Under the hypotheses of the proposition 3.1, let S = {a ∈ Rd /∇F (a) = 0}
and assume that

∅ 6= argminF = S. (19)

Let (un, vn) be a sequence satisfying (7) and assume that (un) is bounded. Then

lim
n→+∞

‖vn‖+ ‖∇F (un)‖ = 0.

Remark 3.3. Let us remark that this proves that for all (a, b) ∈ ω((un, vn)), a ∈ S and
b = 0.

Proof. Now let ε be a positive real, and we define for all n ∈ N

Φε(un, vn) = E(un, vn) +
ε

(1 + tn)β
< ∇F (un), vn > .

Lemma 3.4. There are two positives constants ε1, δ and an integer N1 ∈ N such that for all
n ≥ N1

Φε1(un, vn)− Φε1(un+1, vn+1) ≥ δ(∆tn)2[‖vn+1‖+ ‖∇F (un+1)‖]2. (20)

Proof. According to the theorem 2.5, for all n ∈ N :

Φε(un+1, vn+1)− Φε(un, vn)

≤ −η(∆tn)2‖vn+1‖2 +
ε

(1 + tn+1)β
< ∇F (un+1), vn+1 > −

ε

(1 + tn)β
< ∇F (un), vn > .

Now it is easy to see:

ε

(1 + tn+1)β
< ∇F (un+1), vn+1 >

=
ε

(1 + tn+1)β
< ∇F (un+1), vn −∆tna(tn+1)vn+1 −∆tn∇F (un+1) > (by (7))

= − ε∆tn
(1 + tn+1)β

‖∇F (un+1)‖2 +
ε

(1 + tn+1)β
< ∇F (un+1), vn >

−ε∆tna(tn+1)

(1 + tn+1)β
< ∇F (un+1), vn+1 >

= − ε∆tn
(1 + tn+1)β

‖∇F (un+1)‖2 +
ε

(1 + tn+1)β
< ∇F (un+1), vn >

+
ε∆tna(tn+1)

(1 + tn+1)β
‖∇F (un+1)‖‖vn+1‖,
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− ε

(1 + tn)β
< ∇F (un), vn >

= − ε

(1 + tn)β
< ∇F (un)−∇F (un+1) +∇F (un+1), vn >

≤ ε

(1 + tn)β
‖∇F (un)−∇F (un+1)‖‖vn‖ −

ε

(1 + tn)β
< ∇F (un+1), vn >

≤ εcF
(1 + tn)β

‖un − un+1‖‖vn‖ −
ε

(1 + tn)β
< ∇F (un+1), vn > by (4)

≤ εcF∆tn
(1 + tn)β

‖vn+1‖‖vn+1 + ∆tna(tn+1)vn+1 + ∆tn∇F (un+1)‖

− ε

(1 + tn)β
< ∇F (un+1), vn > (by (7))

≤ εcF∆tn
(1 + tn)β

‖vn+1‖2 +
εcF (∆tn)2a(tn+1)

(1 + tn)β
‖vn+1‖2 +

εcF (∆tn)2

(1 + tn)β
‖vn+1‖‖∇F (un+1)‖

− ε

(1 + tn)β
< ∇F (un+1), vn > .

Note that for n large enough, we have

1

(1 + tn+1)β
− 1

(1 + tn)β

=
1

(1 + c1(n+ 1)γ)β
− 1

(1 + c1nγ)β

=
1

cβ1n
γβ

1(
1

c1nγ
+
(
1 + 1

n

)γ)β − 1

cβ1n
γβ

1(
1

c1nγ
+ 1
)β

=
1

cβ1n
γβ

1(
1

c1nγ
+ 1 + γ

n
+O( 1

n2 )
)β − 1

cβ1n
γβ

1(
1

c1nγ
+ 1
)β

=
since (1<2γ<2)

1

cβ1n
γβ

[
1− β

c1nγ
− βγ

n
+O(

1

n2γ
)

]
− 1

cβ1n
γβ

[
1− β

c1nγ
+O(

1

n2γ
)

]
= − βγ

cβ1n
γβ+1

+O(
1

n2γ+γβ
)

= − βγ

cβ1n
γβ+1

+O(
1

n1+γ
). (21)

Thus, thanks to (21) and (16) , there exists k > 0 such that for n large enough, we have∣∣∣∣ 1

(1 + tn+1)β
− 1

(1 + tn)β

∣∣∣∣ ≤ k

nγβ+1
.
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Using this we get

ε

(1 + tn+1)β
< ∇F (un+1), vn > −

ε

(1 + tn)β
< ∇F (un+1), vn >

≤ kε

nγβ+1
‖∇F (un+1)‖‖vn‖

≤ kε

nγβ+1
‖∇F (un+1)‖‖vn+1 + ∆tna(tn+1)vn+1 + ∆tn∇F (un+1)‖ by (7)

≤ ε

(
k

nγβ+1
‖∇F (un+1)‖‖vn+1‖+

k∆tna(tn+1)

nγβ+1
‖∇F (un+1)‖‖vn+1‖+

k∆tn
nγβ+1

‖∇F (un+1)‖2
)

by (7)

and then

Φε(un, vn)− Φε(un+1, vn+1)

≥ η(∆tn)2‖vn+1‖2 +
ε∆tn

(1 + tn+1)β
‖∇F (un+1)‖2 −

ε∆tna(tn+1)

(1 + tn+1)β
‖∇F (un+1)‖‖vn+1‖ − (22)

− εcF∆tn
(1 + tn)β

‖vn+1‖2 −
εcF (∆tn)2a(tn+1)

(1 + tn)β
‖vn+1‖2 −

εcF (∆tn)2

(1 + tn)β
‖vn+1‖‖∇F (un+1)‖ −

kε

nγβ+1
‖∇F (un+1)‖‖vn+1‖ −

kε∆tna(tn+1)

nγβ+1
‖∇F (un+1)‖‖vn+1‖ −

kε∆tn
nγβ+1

‖∇F (un+1)‖2.

By using (17) we get

ε∆tn
(1 + tn+1)β

≥ εδ1(∆tn)2,

εcF∆tn
(1 + tn)β

≤ εcF δ2(∆tn)2.

Combining (17) and (13), we deduce that

ε∆tna(tn+1)

(1 + tn+1)β
≤ εδ2(∆tn)2,

εcF (∆tn)2a(tn+1)

(1 + tn)β
≤ εcF (∆tn)2,

εcF (∆tn)2

(1 + tn)β
≤ εcF (∆tn)2.

Using (16) and (15), we get for n large enough

kε

nγβ+1
≤ εδ1(∆tn)2,

kε∆tna(tn+1)

nγβ+1
≤ εδ1(∆tn)2,

kε∆tn
nγβ+1

≤ ε
δ1
4

(∆tn)2.
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Then (22) becomes for n large enough

Φε(un, vn)− Φε(un+1, vn+1)

≥ [η − εcF δ2 − εcF ](∆tn)2‖vn+1‖2 + ε
3δ1
4

(∆tn)2‖∇F (un+1)‖2

−ε[δ2 + cF + 2δ1](∆tn)2‖∇F (un+1)‖‖vn+1‖.

Using Young’s inequality, then there is a positive constant K = K(δ1, δ2, cF ) such that

[δ2 + cF + 2δ1]‖∇F (un+1)‖‖vn+1‖ ≤ K‖vn+1‖2 +
δ1
4
‖∇F (un+1)‖.

So we deduce for n large enough

Φε(un, vn)− Φε(un+1, vn+1)

≥ (∆tn)2[η − ε(cF δ2 + cF +K)]‖vn+1‖2 + ε
δ1
2

(∆tn)2‖∇F (un+1)‖2. (23)

Now we choose ε = ε1 small enough such that

ε(cF δ2 + cF +K) ≤ η

2
.

Then (23) becomes

Φε1(un, vn)− Φε1(un+1, vn+1) ≥
η

2
(∆tn)2‖vn+1‖2 + ε1

δ1
2

(∆tn)2‖∇F (un+1)‖2.

The proof of lemma 3.4 is completed by taking δ = min
(
η
2
, ε1

δ1
2

)
.

End of the proof of theorem 3.2. Thanks to lemma 3.4 and the fact that lim
n→+∞

Φε1(un, vn) =

lim
n→+∞

E(un, vn) exists, the sum
∑

(∆tn)2[‖vn+1‖ + ‖∇F (un+1)‖]2 converges. Now since∑
(∆tn)2 diverges, there exists some injection ϕ : N −→ N such that

lim
n→+∞

‖vϕ(n)‖+ ‖∇F (uϕ(n))‖ = 0.

Up to a subsequence, we may assume that (uϕ(n)) converges. Let aϕ be its limit. Clearly
we have (aϕ, 0) ∈ ω((un, vn)n∈N) and ∇F (aϕ) = 0. By (19) we deduce that aϕ ∈ argminF.
Now, using the point 4. of the proposition 3.1, we get that for all (a, b) ∈ ω((un, vn)n∈N), we
have

1

2
‖b‖2 + F (aϕ) ≤ 1

2
‖b‖2 + F (a) = F (aϕ).

Then b = 0 and a ∈ argminF = S. Therefore 0 is the only cluster point of (vn) and
(∇F (un)), therefore

lim
n→+∞

‖vn‖+ ‖∇F (un)‖ = 0.
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In the sequel we assume that there exists θ ∈ (0, 1
2
] such that

∀a ∈ S ∃ra > 0 ∃νa > 0/ ∀u ∈ Rd : ‖u−a‖ < ra =⇒ ‖∇F (u)‖ ≥ νa|F (u)−F (a)|1−θ. (24)

Remark 3.5. ([17, 18, 10, 8]) Assumption (24) is satisfied if one of the following two cases
holds:
- F is a polynomial, or
- F is analytic and S is compact.

For the sequel, we need the following well-known result.

Lemma 3.6. ([3, 11]) Let Γ be a compact and connected subset of S. Then we have

(1) F assumes a constant value on Γ. We denote by F̄ the common value of F (a), a ∈ Γ.

(2) There exist r > 0 and ν > 0 such that

dist(u,Γ) < r =⇒ ‖∇F (u)‖ ≥ ν|F (u)− F̄ |1−θ.

The main result of this paper is the following:

Theorem 3.7. We assume that the hypotheses of the theorem 3.2 are true and that F also
satisfies (24) and β ∈ (0, θ

1−θ ). Let (un, vn) be a sequence satisfying (7) such that (un) is
bounded. Then there exists a ∈ S such that

lim
n→+∞

‖vn‖+ ‖un − a‖ = 0.

In addition as n→ +∞ we have

‖un − a‖ = O

(
t
− θ−β(1−θ)

1−2θ
n

)
= O

(
n−

θ−β(1−θ)
(1−2θ)(1+β)

)
(25)

Proof. From proposition 3.1, we know that ω((un, vn)n∈N) is a non-empty compact, connected
set. We also know that limn→+∞ ‖vn‖ = 0 and that ω((un, vn)n∈N) ⊂ ×{0} (see theorem
3.2). Let Γ = {a/ (a, 0) ∈ ω((un, vn)n∈N)} and K = lim

n→+∞
E(un, vn).

Let’s put Hn = Φε1(un, vn)−K where Φε1 as in lemma 3.4. Then (Hn)n≥N1 in non-increasing,
tends to 0 (and then positive). Assume that for some n0 ≥ N1, Hn0 = K, then for all n ≥ n0,
Hn = K. According to (20), vn+1 = 0 for all n ≥ n0 and then un = un0 for all n ≥ n0.

Otherwise, since we may assume that K = 0 (so that we also have that ∀a ∈ Γ, F (a) = 0),
there exists some N1 ∈ N such that for all n ≥ N1, one has 0 < Hn ≤ 1.
It is easy to see that

lim
n→+∞

dist((un),Γ) = 0.

Applying lemma 3.6, then there exist r > 0 and ν > 0 such that

∀u ∈ Rd dist(u,Γ) < r =⇒ ‖∇F (u)‖ ≥ ν|F (u)|1−θ.
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Since Γ = {a/ (a, 0) ∈ ω((un, vn)n∈N)}, then there exists N ≥ N1 such that for all n ≥ N ,
dist(un,Γ) ≤ r. Then for all n ≥ N

‖∇F (un)‖ ≥ ν|F (un)|1−θ. (26)

As in [21, 2], let n ≥ N such that

Hn+1 >
Hn

2
. (27)

We have

Hθ
n −Hθ

n+1 =

∫ Hn

Hn+1

θsθ−1 ds

≥ θ[Hn −Hn+1]H
θ−1
n

≥
by (27)

θ2θ−1[Hn −Hn+1]H
θ−1
n+1. (28)

For all n ≥ N , we have

H1−θ
n+1 =

∣∣∣∣12‖vn+1‖2 + F (un+1) +
ε1

(1 + tn+1)β
< ∇F (un+1), vn+1 >

∣∣∣∣1−θ
≤ 1

21−θ ‖vn+1‖2(1−θ) + |F (un+1)|1−θ + ε1−θ1 ‖∇F (un+1)‖1−θ‖vn+1‖1−θ. (29)

Thanks to Young’s inequality we obtain

‖∇F (un+1)‖1−θ‖vn+1‖1−θ ≤ ‖∇F (un+1)‖+ ‖vn+1‖
1−θ
θ

According to (26), we get for all n ≥ N

|F (un+1)|1−θ ≤
1

ν
‖∇F (un+1)‖.

Then (29) becomes (using the fact that vn → 0, 1−θ
θ
≥ 1 and 2(1− θ) ≥ 1)

H1−θ
n+1 ≤

(
1

21−θ + ε1−θ1

)
‖vn+1‖+

(
1

ν
+ ε1−θ1

)
‖∇F (un+1)‖

≤ C (‖vn+1‖+ ‖∇F (un+1)‖) (30)

where C = max
(

1
21−θ

+ ε1−θ1 , 1
ν

+ ε1−θ1

)
. By using (30) and (20), (28) becomes

Hθ
n −Hθ

n+1 ≥
δ

C
(∆tn)2 (‖vn+1‖+ ‖∇F (un+1)‖) .

Then we get

(∆tn)2 (‖vn+1‖+ ‖∇F (un+1)‖) ≤
C

δ
[Hθ

n −Hθ
n+1]. (31)

13



On the other hand, let n ≥ N such that

Hn+1 ≤
Hn

2
. (32)

From (20), we get
δ(∆tn)2[‖vn+1‖+ ‖∇F (un+1)‖]2 ≤ Hn −Hn+1.

Then we deduce

∆tn‖vn+1‖ ≤ 1

δ
1
2

[Hn −Hn+1]
1
2 ≤ 1

δ
1
2

[Hn]
1
2

≤ 1

δ
1
2

[Hn]θ (Hn ≤ 1)

≤
by (32)

1

δ
1
2

2θ

2θ − 1

(
Hθ
n −Hθ

n+1

)
. (33)

Since ∆tn ∼ γc1
n1−γ , then we can assume that for all n ≥ N

1

2(1 + β)

c1

n
β

1+β

=
1

2

γc1
n1−γ ≤ ∆tn ≤

2γc1
n1−γ =

2

1 + β

c1

n
β

1+β

≤ 1. (34)

where we used that γ = 1
1+β

.

Then from (33) we deduce

(∆tn)2‖vn+1‖ ≤
1

δ
1
2

2θ

2θ − 1

(
Hθ
n −Hθ

n+1

)
.

In both cases, we have for all n ≥ N

(∆tn)2‖vn+1‖ ≤ C1

(
Hθ
n −Hθ

n+1

)
(35)

where C1 = max
(
C
δ
, 1

δ
1
2

2θ

2θ−1

)
.

Now we define the map G : s 7−→ 1
1−2θs

2θ−1.

For n ≥ N such that Hn+1 >
Hn
2

. We have

G(Hn+1)−G(Hn) =

∫ Hn

Hn+1

s2θ−2ds

≥ (Hn −Hn+1)H
−2+2θ
n

≥ 2−2+2θ(Hn −Hn+1)H
−2+2θ
n+1

≥
by (30)

2−2+2θ

C2

Hn −Hn+1

(‖vn+1‖+ ‖∇F (un+1)‖)2

≥
by (20)

2−2+2θ

C2
δ(∆tn)2.
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On the other hand, for n ≥ N such that Hn+1 ≤ Hn
2

, we have

G(Hn+1)−G(Hn) =
1

1− 2θ

(
H2θ−1
n+1 −H2θ−1

n

)
≥ 1

1− 2θ

(
H2θ−1
n

22θ−1 −H
2θ−1
n

)
≥ 21−2θ − 1

1− 2θ
H2θ−1
n

≥ 21−2θ − 1

1− 2θ
(Hn ≤ 1)

≥ 21−2θ − 1

1− 2θ
(∆tn)2. (∆tn ≤ 1).

Then for all n ≥ N , we have

G(Hn+1)−G(Hn) ≥ C2(∆tn)2 (36)

where C2 = min
(

2−2+2θδ
C2 , 2

1−2θ−1
1−2θ

)
> 0.

Let n ≥ N + 1. Summing (36) from N to n− 1, and by using (34), it comes

G(Hn)−G(HN) ≥
n−1∑
k=N

C2(∆tk)
2

≥ C2
c1

2(1 + β)

n−1∑
k=N

1

k
2β
1+β

≥ C2
c1

2(1 + β)

∫ n

N

ds

s
2β
1+β

≥ C2
c1(1− β)

2(1 + β)2

[
n

1−β
1+β −N

1−β
1+β

]
.

Let’s pose C3 = C2
c1(1−β)
2(1+β)2

. We have successively

G(Hn) =
1

1− 2θ
Hn

2θ−1 ≥ G(HN) + C3

(
n

1−β
1+β −N

1−β
1+β

)
,

H2θ−1
n ≥ (1− 2θ)

[
G(HN) + C3

(
n

1−β
1+β −N

1−β
1+β

)]
,

H2θ−1
n ≥

[
(1− 2θ)G(HN)− (1− 2θ)C3N

1−β
1+β + (1− 2θ)C3n

1−β
1+β

]
.

Thus for all n ≥ N + 1, we get

Hn ≤
1[

(1− 2θ)G(HN)− (1− 2θ)C3N
1−β
1+β + (1− 2θ)C3n

1−β
1+β

] 1
1−2θ

.
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Then there exists a constant λ > 0 such that for all n ≥ N + 1

Hn ≤
λ

n
1−β

(1+β)(1−2θ)

. (37)

Let n ∈ N such that 2n ≥ N . By using (20), we get

H2n −H2n+1 =
2n+1−1∑
k=2n

Hk −Hk+1 ≥ δ

2n+1−1∑
k=2n

(∆tk)
2‖vk+1‖2. (38)

Since for n large enough (∆tn) is non-increasing, we obtain

2n+1−1∑
k=2n

(∆tk)
2‖vk+1‖2 ≥ (∆t2n+1−1)

2n+1−1∑
k=2n

(∆tk)‖vk+1‖2

≥ c1
2(1 + β)

1

(2n+1 − 1)
β

1+β

2n+1−1∑
k=2n

(∆tk)‖vk+1‖2. (39)

Combining (39) and (38) we get

2n+1−1∑
k=2n

(∆tk)‖vk+1‖2 ≤
2(1 + β)

c1
(2n+1 − 1)

β
1+β

1

δ
[H2n −H2n+1 ]

≤ C42
nβ
1+βH2n (40)

where C4 = 2(1+β)
c1δ

(2
β

1+β + 1).
On the other hand, using the Cauchy-Schwarz inequality, we get

2n+1−1∑
k=2n

(∆tk)‖vk+1‖ ≤

(
2n+1−1∑
k=2n

∆tk

) 1
2
(

2n+1−1∑
k=2n

(∆tk)‖vk+1‖2
) 1

2

. (41)

2n+1−1∑
k=2n

∆tk ≤
2n+1−1∑
k=2n

2

1 + β

c1

k
β

1+β

≤ C4

∫ 2n+1−1

2n−1

dt

t
β

1+β

where C4 = 2c1
1+β

. Now, a straightforward calculation gives∫ 2n+1−1

2n−1

dt

t
β

1+β

= (1 + β)
[(

2n+1 − 1
) 1

1+β − (2n − 1)
1

1+β

]
≤ (1 + β)2n

1
1+β

[
2

1
1+β + 1

]
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2n+1−1∑
k=2n

∆tk ≤ C4(1 + β)2n
1

1+β

[
2

1
1+β + 1

]
and then (

2n+1−1∑
k=2n

∆tk

) 1
2

≤ C52
n 1

2(1+β) (42)

where C5 =
(
C4(1 + β)

[
2

1
1+β + 1

]) 1
2
.

Using (41), (42), (40) and (37) leads to

2n+1−1∑
k=2n

(∆tk)‖vk+1‖ ≤ C52
n 1

2(1+β)

(
C42

nβ
1+βH2n

) 1
2

≤ C5

√
C4λ(2n)

1
2(1+β)

+ β
2+2β

− 1−β
2(1+β)(1−2θ)

≤ C5

√
C4λ(2n)−

θ−β(1−θ)
(1+β)(1−2θ) .

Yet by assumption β ∈ (0, θ
1−θ ), thus

∑
(∆tk)‖Vk+1‖ converges.

4 Numerical simulations

As in [15], we present some numerical simulations with specific F that do not necessarily
satisfy our results’ assumptions.

The implicit sequence satisfying (7) is constructed via a quasi-newton algorithm.

4.1 A convex and coercive function F

The function F that we consider is

F (x, y) = ((x− 1)2 + (y − 1)2 − 1)2χ(x−1)2+(y−1)2−1≥0,

and we take

a(t) =
1

(1 + t)β
, β = 0.1.

In figure (1), we observe the numerical decrease of E.
In figure (2), we observe the numerical convergence of the sequence satisfying (7).

4.2 A non-convex and coercive function F

The function F that we consider is

F (x, y) = (x2 + y2 − 1)2,

17



Figure 1: Simulation for (7).

Figure 2: Simulation for (7).

and we take again

a(t) =
1

(1 + t)β
, β = 0.1.

In figure (3), we observe also the numerical decrease of E.
In figure (4), we observe the numerical convergence of the sequence satisfying (7).
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Figure 3: Simulation for (7).

4.3 A non-convex and non-coercive function F

The function F that we consider here is

F (x, y) = (x2 − 2y2 − 1)2,

and we take again

a(t) =
1

(1 + t)β
, β = 0.1.

In figure (5), we also observe the numerical decrease of E.
In figure (6), we also observe the numerical convergence of the sequence satisfying (7).
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