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Abstract: In this paper I review covariance-based Partial Least Squares
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and optimization criteria. I then show how these algorithms can be ad-
justed for use as optimal scaling tools. Three new PLS-type algorithms are
proposed for the analysis of one, two or several blocks of variables: the Non-
Metric NIPALS, the Non-Metric PLS Regression and the Non-Metric PLS
Path Modeling, respectively. These algorithms extend the applicability of
PLS methods to data measured on different measurement scales, as well as
to variables linked by non-linear relationships.
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1. Introduction

Partial Least Squares (PLS) methods encompass a suite of data analysis tech-
niques based on algorithms belonging to the PLS family. These algorithms
consist of various extensions of the Nonlinear estimation by Iterative PArtial
Least Squares (NIPALS) algorithm, which was proposed by Herman Wold [35]
as an alternative algorithm for implementing a Principal Component Analy-
sis (PCA). Wold also proposed using NIPALS to analyze relationships between
several blocks of variables [36, 38]: this is the PLS approach to Structural Equa-
tion Modeling, later called PLS Path Modeling (PLS-PM) [17, 29, 4]. Svante
Wold, Herman’s son, noticed that the PLS approach could be used in order
to implement a component-based regularized regression, called PLS-Regression
(PLS-R) [39].

PLS techniques were originally devised to handle data sets forming metric
spaces, where variables embedded in the analysis are observed along interval or
ratio scales. In this article, variables measured at ratio or interval scale level
will be referred to as numeric or metric variables. Unfortunately, in many fields
where PLS methods are applied (e.g. genomics, sensory analysis, consumer anal-
ysis, marketing) researchers are also interested in analyzing sets of variables
measured on a non-metric scale, i.e. ordinal and nominal variables. This article
focuses on new methodological proposals to enable PLS techniques able to han-
dle both metric and non-metric variables at once. The next section begins by
presenting NIPALS, PLS-R and PLS-PM, before integrating their algorithmic
flows and correspondent criteria into a unitary framework. Section 3 explains
why PLS methods cannot handle non-metric variables and reviews the remedies
for this drawback proposed in the literature to date. Subsequent sections show
that PLS iteration can indeed be modified to give PLS-type algorithms, called
Non-Metric PLS (NM-PLS), which also work as optimal scaling methods.

2. A brief overview of PLS algorithms

NIPALS, PLS Regression and PLS Path Modeling (when Mode A option in
the estimation process is used, see section 2.3) algorithms share one important
feature. Their iterative loops converge to criteria strongly related to the covari-
ance. Given one set of variables, NIPALS loop maximizes the covariance of a
weighted aggregate of the variables (called component, or latent variable) with
itself (i.e. its variance); given two sets of variables, PLS-R loop maximizes the
covariance of a component in a set with another component belonging to the
other set; finally, given several sets of variables, PLS-PM loop maximizes the
covariance between components belonging to the different sets. The choice to
focus on non-metric extensions of PLS algorithms oriented to the maximization
of covariance between components, in contrast to PLS algorithms that work on
correlation-based criteria, relies on two main reasons. First of all, non-metric ex-
tension of a method necessarily requires a parametric expansion that may affect
the variability of the estimates. This drawback is greatly reduced by working on
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covariance-based criteria, which yield more robust estimates. The second reason,
as will be shown in the rest of the paper, is that in these frameworks optimal
scaling parameter estimates are clearly interpretable.

NIPALS, PLS Regression and PLS Path Modeling algorithms are described
in detail below. Since PLS algorithms work on centered variables, variables are
assumed to be centered throughout the rest of this section.

2.1. PLS approach to PCA: the NIPALS algorithm

The NIPALS algorithm performs a PCA on a set X = [x1 . . .xp . . .xP ] of vari-
ables observed on N individuals. The peculiarity of this algorithm is that it cal-
culates principal components by means of iterated simple ordinary least squares
(OLS) regressions. This feature overcomes computational problems caused by
missing data and landscape data matrices, i.e. matrices with more columns than
rows.

The NIPALS algorithm starts choosing an arbitrary centered vector t
(0)
(1), that

is a first approximation of the first principal component. Next, a loop which at

the s-th iteration (s = 0, 1, . . . ) alternately computes a weight vector w
(s)
(1) and

a score vector t
(s+1)
(1) is repeated. The loop converges [19] to the first principal

component t(1) and to vector w(1) of weights (or loadings), which maximizes
the PCA criterion

arg max
||w(1)||=1

var(Xw(1)). (1)

It is well known that the eigenvector associated to the dominant eigenvalue
of the covariance matrix (1/N)X ′X is the solution to this problem. Since the
dominant eigenvalue of this matrix equals the sum of the squared covariances
between the variables and the first principal component, when variables are
standardized, criterion (1) can be rewritten as:

arg max
||w(1)||=1

∑

p

cor2(xp,Xw(1)). (2)

The second component t(2) is extracted by iterating the same loop on matrix
E1, which is obtained by deflating X. The deflation step consists of calculating
E1 as the residual matrix of the regression of X-variables on t(1). In general, for
each h (1 ≤ h ≤ H ≤ rank(X)), the NIPALS algorithm maximizes the criterion

arg max
||w(h)||=1

var(E(h−1)w(h)) (3)

by implementing the loop described in Step 1 of Algorithm 1 on E(h−1) (with
E(0) = X).
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Algorithm 1 NIPALS algorithm
Input: E(0) = X

Output: W=[w(1), . . . ,w(H)], T=[t(1), . . . , t(H)]
for all h = 1, . . . ,H do

Step 0: Initialize t
(0)

(h)

Step 1:
repeat

Step 1.1: w
(s)

(h)
= E

′

(h−1)
t
(s)

(h)
/(t

(s)′

(h)
t
(s)

(h)
)

Step 1.2: w
(s)

(h)
= w

(s)

(h)
/‖w

(s)

(h)
‖

Step 1.3: t
(s+1)

(h)
= Eh−1w

(s)

(h)

until convergence of w(h)

Step 2: E(h) = E(h−1) − t(h)w
′

(h)

end for

2.2. PLS approach to multivariate regression: the PLS Regression

Generally speaking, PLS-R involves a set X2 = [x12 . . .xp2 . . .xP22] of response
variables and a set X1 = [x11 . . .xp1 . . .xP11] of predictors. PLS-R extracts a
suite of orthogonal components in the predictor space intended both to explain
predictors and to predict response variables.

In the PLS-R algorithm a NIPALS-type loop is iterated to calculate model
parameters for each component. Two slightly different algorithms implement-
ing the PLS-R are found in the literature, described in two works by Tenen-
haus [28] and Höskuldsson [8] respectively; here Höskuldsson’s approach is con-
sidered. To compute the first component, the following procedure is repeated
upon convergence: proxies of X2-scores (t2(1)), X2-weights (w2(1)), X1-scores
(t1(1)) and X1-weights (w1(1)) are sequentially calculated each one being a

function of the previous proxy. The sequences of proxies w
(s)
1(1) and w

(s)
2(1) ob-

tained at the s-th iteration converge to the dominant eigenvectors of matrices
(1/N2)X ′

2X1X
′
1X1 and (1/N2)X ′

1X2X
′
1X2, respectively [8]. Therefore, when

convergence is reached, vectors w1(1) and w2(1) satisfy the criterion

arg max
||w1(h)||=||w2(1)||=1

cov2(X2w2(1),X1w1(1)) (4)

The dominant eigenvectors of (1/N2)X ′
2X1X

′
1X2 and (1/N2)X ′

1X2X
′
1X2 co-

incide respectively with the dominant right and left singular vectors of matrix
(1/N)X ′

2X1. Therefore, vectors w1(1) and w2(1) are also solutions of the crite-
rion

arg max
||w1(1)||=||w2(1)||=1

cov(X2w2(1),X1w1(1)) (5)

This criterion is common to a number of PLS approaches to two-block cross-
covariance analysis, such as SIMPLS [9], PLS canonical analysis [38, 28] and
various approaches, cited in the literature under various names [26, 21, 34,
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32], which may be traced back to Inter-Battery Analysis [33]. However, these
approaches differ between themselves and from the PLS-R in their successive
components, which are obtained using different types of deflation.

In PLS-R, both X1 and X2 are deflated as a function of t1(1), as shown in
detail in Steps 2-5 of Algorithm 2, in order to use the second component to
explain the portion of variability in responses that is not explained by the first
component. Each generic successive component of order h > 1 (1 ≤ h ≤ H ≤
rank(X1)) is then calculated by iterating the same loop (Steps 1 of Algorithm 2)
on the deflated matrices E(h−1) and F (h−1) respectively (with E0 = X1,
F 0 = X2).

After extracting a suitable number of components, chosen by cross-validation,
a standard regression equation can be calculated in order to explain the re-
sponses as a linear combination of the original predictor variables.

Algorithm 2 PLS-R algorithm
Input: E0 = X1,F 0 = X2

Output: W 1,W 2,T 1,T 2,P ,Q
for all h = 1, . . . , H do

Step 0: Initialize t2(h) = t
(0)

2(h)

Step 1:
repeat

Step 1.1: w
(s)

1(h)
= E

′

(h−1)
t
(s)

2(h)
/‖E

′

(h−1)
t
(s)

2(h)
‖

Step 1.2: t
(s)

1(h)
= E(h−1)w

(s)

1(h)

Step 1.3: w
(s)

2(h)
= F

′

(h−1)
t
(s)

1(h)
/‖F

′

(h−1)
t
(s)

1(h)
‖

Step 1.4: t
(s+1)

2(h)
= F (h−1)w

(s)

2(h)

until convergence of w1(h)

Step 2: p(h) = E
′

(h−1)
t1(h)/(t

′
1(h)

t1(h))

Step 3: b(t2(h)|t1(h))
= t′

2(h)
t1(h)/(t

′
1(h)

t1(h))

Step 4: E(h) = E(h−1) − t1(h)p
′
(h)

Step 5: F (h) = F (h−1) − b(t2(h)|t1(h))
t1(h)w

′
2(h)

end for

2.3. PLS approach to Structural Equation Models: the PLS Path

Modeling

Structural Equation Models (SEMs) [2] describe and estimate conceptual struc-
tures where Q latent variables (LVs) ξ1, . . . , ξq, . . . , ξQ, linked to each other by
a network of linear relationships (usually highlighted by means of a path dia-
gram), are measured by Q sets of manifest variables (MVs) X1, . . . ,Xq, . . . ,XQ

observed on N observations. Each SEM has two levels of relationships. The first
level concerns relationships between LVs (structural model); these relations can
be stored in an Q×Q lower triangular binary matrix L, whose generic element
lqq′ is one if ξq depends on ξq′ and zero otherwise. The other level of relations
concerns the links between each LV and its own block of MVs (measurement
model). According to Lohmöller [17], the PLS approach to SEM is a predictive
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Path Modeling procedure oriented towards reconstruction of the data matrix,
in contrast to the covariance-based approach to SEM by Jöreskog [15], which
models relationships between the variables. The PLS-PM estimation procedure
is described in detail in Algorithm 3. First, a PLS loop is iterated to obtain
LV scores through a system of multiple and simple linear regressions (Steps
1-2). Next, structural (or path) coefficients are estimated through OLS multi-

ple/simple regressions on the LV estimates ξ̂q, according to the path diagram
structure (Step 3). In the iterative part of the algorithm (Step 1) outer weights
wpq (p = {1, . . . , Pq}), linking each MV xpq to the corresponding LV, are es-
timated by a procedure in which the final estimates of the latent variables are
obtained through the alternation of their outer and inner estimations. In the
outer estimation phase, a proxy tq for each LV is computed as a linear combi-
nation of its own MVs (Step 1.3-1.4). In the inner estimation phase, a proxy zq

for each LV is computes as a linear combination of the connected LVs, accord-
ing to the path diagram structure (Steps 1.1-1.2). In Wold’s original algorithm

(the one presented in Algorithm 3), inner estimate z
(s)
q at the s-th iteration is a

function of t
(s+1)
q′ if q

′

< q and is a function of t
(s)
q′ if q

′

> q, where q′ indexes LVs
connected to ξq in the path diagram. Wold’s original algorithm [38, 6] was sim-

plified by Lohmöller [17]. In Lohmöller’s algorithm, z
(s)
q is always a function of

t
(s)
q′ . This procedure, used in most commercial softwares, is easier to implement,
but it takes longer to converge.

The PLS-PM algorithm is extremely flexible. Various options, providing slightly
different results, can be used to compute weights for inner and outer estimates
of the LVs. There are three ways to calculate the inner weights (eqq′ ):

1. the centroid scheme (Wold’s original scheme), where eqq′ is equal to the
sign of the correlation between tq and tq′ ;

2. the factorial scheme (the Lohmöller scheme), where eqq′ is equal to the
correlation between tq and tq′ ;

3. the path weighting scheme, where, for each ξq: if ξq′ is a latent predictor
of ξq, eqq′ is equal to the coefficient of tq′ in the regression of tq on the
inner estimates of its latent predictors; if ξq′ is a latent response variable
of ξq, eqq′ is equal to the correlation between tq and tq′ .

Two main methods exist to estimate weights in the outer estimation process:
Mode A (for outwards directed or reflective blocks) and Mode B (for inwards
directed or formative blocks). In Mode B a multiple regression model defines the
relation between the latent and manifest variables. The outer weights are thus
the regression coefficients of a multiple regression model of the inner estimate
of each LV on its own MVs. In Mode A each inner estimate is modeled as a
predictor of corresponding MVs. Hence, the outer weights are the coefficients
of the simple regressions of each MV on the corresponding LV inner estimate.
Therefore, in Mode A PLS-PM, the generic outer weight wpq is a measure of
the linear relationship between each xpq and zq, which is a weighted sum of the
outer estimates tq′ of the LVs linked to ξq.

The rest of this discussion focuses on Mode A PLS-PM, i.e. on the case where
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Algorithm 3 Wold’s PLS Path Modeling algorithm.
Input: X1 . . .XQ,L,C

Output: β1 . . .βJ , w1 . . .wQ, ξ̂1 . . . ξ̂Q

Step 0: Initialize tq = t
(0)
q for all q = 1, . . . , Q

Step 1: Iteration

repeat

for all q = 1, . . . , Q do

Step 1.1: Computation of the inner weights

if q < q
′

then

e
(s)

qq′
= f

(

t
(s)
q , t

(s)

q′

)

else

e
(s)

qq′
= f

(

t
(s)
q , t

(s+1)

q′

)

end if

Step 1.2: Inner estimation of the LVs

z
(s)
q =

∑

q′<q

(

cqq′e
(s)

qq′
t
(s+1)

q′

)

+
∑

q′>q

(

cqq′e
(s)

qq′
t
(s)

q′

)

Step 1.3: Computation of the outer weights






w
(s)
q = (X

′

qXq)−1X
′

qz
(s)
q if Mode B

w
(s)
q = (1/N)X

′

qz
(s)
q if Mode A

w
(s)
q = X

′

qz
(s)
q /‖X

′

qz
(s)
q ‖ if new Mode A

Step 1.4: Outer estimation of the LVs
{

t
(s+1)
q = Xqw

(s)
q if new Mode A

t
(s+1)
q = (N1/2Xqw

(s)
q )/‖Xqw

(s)
q ‖ otherwise

end for

until convergence of wq

Step 2: Computation of the LVs

for all q = 1, . . . , Q do

ξ̂q = (N1/2Xqwq)/‖Xqwq‖
end for

Step 3: Computation of the Path Coefficients

for all j = 1, . . . , J do

βj =
(

Ξ̂′
→jΞ̂→j

)−1
Ξ̂′

→j ξ̂j

{Ξ̂′
→j is the matrix of the latent predictors of the endogenous LV ξ̂j}

end for

Mode A is used for all the blocks. Mode A PLS-PM does not appear to optimize
any criterion: Krämer [10] showed that Wold’s Mode A algorithm is not based
on stationary equations related to the optimization of a twice differentiable
function. However, Tenenhaus and Tenenhaus [31] have recently proposed a
new framework, called Regularized Generalized Canonical Component Analysis
(RGCCA), where Mode B and a slightly adjusted Mode A, called new Mode A,
are unified towards a regularization parameter τq (0 ≤ τq ≤ 1), which provides
a connection between the two. The new Mode A differs from the original Mode
A in normalization constraints: outer estimates are not constrained to unitary
variance, while outer weights are constrained to unitary norm (see Algorithm 3).
Tenenhaus and Tenenhaus [31] also demonstrated that new Mode A PLS-PM,
when centroid or factorial schemes are used, monotonically converges, for each
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Table 1

Iterative steps of the NIPALS algorithm, PLS-R algorithm (first component) and PLS-PM
algorithm with new Mode A option.

NIPALS loop PLS-R loop new Mode A PLS-PM loop

w(1) = X ′(Xw(1)) wq(1) = X ′
q(Xq′wq′(1)) wq = X′

q(
∑

q′
cqq′eqq′Xq′wq′ )

normalize w(1) normalize wq(1) normalize wq

t(1) = Xw(1) tq(1) = Xqwq(1) tq = Xqwq

q, to the criterion

arg max
wq

∑

q 6=q′

cqq′g(cov(Xqwq,Xq′wq′)) (6)

under the constraint ||wq|| = 1. Above, cqq′ represents the generic element of
the binary matrix C = L′ + L defining the path diagram, and function g(·)
depends on the scheme used for the inner estimation of the LVs: it represents
the absolute value function for the centroid scheme and the square function for
the factorial scheme. Criterion (9) can be rewritten as

arg max
∀wq

∑

q

cov(Xqwq, zq) (7)

where, for each q, ||wq|| = 1 [31]. As the next section will show, this criterion
can be used to define a unifying framework which includes NIPALS, PLS-R and
new Mode A PLS-PM loops, and the corresponding convergence criteria.

2.4. A bridge between the three PLS approaches

The algorithmic core of NIPALS, PLS-R and PLS-PM is the iterative process in
which weight and score vectors are alternately estimated. Each iteration of a PLS
algorithm can be summarized in three steps: a weight estimation step, in which
weights are updated; a score estimation step, in which they are linearly combined
to build the score vector(s); a normalization step, where the score vector(s) or
the weight vector(s) (depending on the algorithm used) are normalized. In Mode
A PLS-PM the normalization constraint concerns the score vectors, whereas in
NIPALS, PLS-R and new Mode A PLS-PM loops it concerns the weight vectors.
The strong similarity between these last three loops can be observed in Table 1.
In PLS-PM and PLS-R the steps are repeated for each q and q′ in 1, . . . , Q (in
PLS-R Q = 2) with q 6= q′. Moreover, in PLS-PM cqq′eqq′ is null if ξq′ is not
connected to ξq; otherwise, it represents the corresponding inner weight.

In order to optimize criteria (1), (5) and (7), weights are always worked out
in a way that maximizes the squared correlation of the corresponding variables
with a latent construct. From now onwards I will refer to this latent construct
as Latent Criterion (LC), in contrast to what Hayashi [7] called the outside
criterion in his seminal paper on quantification methods. The LC is an unknown
vector of order N , centered by construction. For each PLS method different LCs
are considered:
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• In NIPALS, the relevant LC is the first principal component t(1) = Xw(1).
• In PLS-R the relevant LCs are vector scores t1(1) = X1w1(1) for the
predictor block X1 and the vector score t2(1) = X2w2(1) for the response
block X2.

• In (new) Mode A PLS-PM framework, there is one relevant LC for each
block of manifest variables Xq, i.e. the corresponding inner estimate zq =
∑

q′ cqq′eqq′Xq′wq′ .

All of these LCs are then expressed using the generic notation γ = f(w).
Through the concept of LC, criteria expressed by equations (1), (5) and (7)
can be summed up in one general criterion expressed as a function of γ:

arg max
∀wq

∑

q

cov(Xqwq,γq) (8)

under the constraint that ||wq|| = 1. Optimization of criterion (8) yields the one-
component NIPALS solution when q ∈ {1}, the one-component PLS-R solution
when q ∈ {1, 2} and the new Mode A PLS-PM solution when q ∈ {1, 2, . . . , Q}.

3. Handling non-metric data in PLS: the statement of the problem

In order to satisfy criterion (8), in NIPALS, PLS-R and new Mode A PLS-
PM, when working on standardized variables, optimal weights are calculated
as Pearson’s product-moment correlation coefficients between each variable and
the LC. This leads to two basic assumptions underlying PLS models:

• Each variable is measured on a interval (or ratio) scale.
• Relationships between variables and latent constructs are linear and, con-
sequently, monotonic.

Therefore, standard PLS methods cannot handle data measured on a scale which
does not have metric properties.

There is a simple way to overcome this problem: replacement each non-metric
variable by the corresponding indicator matrix. Most of the softwares currently
used to perform PLS analyses use this type of coding in order to handle cate-
gorical variables, but it is not a valid solution to the problem considered here,
for three reasons:

• First of all, a complete disjunctive coding conflicts with the idea of the
variable as a whole, because it considers categories as if they were variables
in themselves. Any PLS analysis performed on dummy variables yields a
weight for each category, rather then for the whole categorical variable.
Such weights measure the impact of each individual category on the latent
construct, while PLS weights should measure the intensity of the relation-
ship between the original variables and latent constructs. Binary coding
makes it impossible to evaluate the importance of the whole variable in
the model, or to compare the weight of one variable with the weights of
the other variables.
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• Secondly, the binary coding inflates the dimensionality of the data matrix,
since each categorical variable is transformed into as many binary variables
as the number of its categories. As a result, the measurement of a variable’s
overall impact on the LC is influenced by the number of its categories.
Moreover, if the number of categories is very large, binary coding generates
sparse matrices.

• Finally, the weight of a dummy variable representing a category mainly
associated with central values of the corresponding LC score distribution
is systematically underestimated, because such a binary variable is linked
to the LC by a non-monotonic relationship.

To overcome the drawbacks of binary coding, a new scaling approach has been
proposed in a regression framework: the PLS algorithm for CAtegorical Pre-
dictors (PLS-CAP) [24, 25]. This approach was suggested for handling nominal
predictors, as well as non-linearity, in a PLS Regression. In a Path Modeling
framework, Jakobowicz and Darquenne [14] proposed a modified PLS-PM al-
gorithm, called Partial Maximum Likelihood (PML), that they recommend for
cases where some block are made up of both numeric and nominal MVs. Yet no
comprehensive approach seems to exist for analysis of variables measured on a
variety of measurement scales in a more general PLS framework.

4. Non-Metric PLS approach

The Non-Metric approach for handling measurement heterogeneity in PLS frame-
work (NM-PLS) is based on the concept of Optimal Scaling (OS). OS has been
extensively implemented in multivariate analysis by iterative algorithms be-
longing to the Alternating Least Squares (ALS) family [16, 5]: for this reason,
these algorithms are also called ALSOS (Alternating Least Squares approach
to Optimal Scaling) [41]. The OS principle sees observations as categorical, and
represents each observation category by a scaling parameter. This parameter
is subject to constraints deriving from the measurement characteristics of the
variables. In the ALS approach parameters are divided into two subsets: the pa-
rameters of the model and the parameters of the data (or scaling parameters).
A loss function is then optimized by alternately optimizing with respect to each
subset, keeping the other fixed.

NM-PLS algorithms exploit a PLS-type iteration to implement an OS proce-
dure. This leads to a new class of PLS algorithms that generalize standard PLS
methods to the treatment of non-metric variables. They are called Non-Metric
PLS (NM-PLS) methods [23], because they are able to provide data with a new
metric structure, that does not depend on the metric properties of the original
data. In other words, NM-PLS methods provides non-metric data with a metric,
and provide metric data with a new metric, making relationships between vari-
ables and latent constructs linear, as required in standard PLS models. These
methods could also be named non-linear PLS methods as well, since they dis-
card the linearity assumption intrinsic to the standard PLS methods. However,
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the adjective Non-Metric is preferred because it highlights their suitability for
data without a metric structure.

In the rest of this article, I will refer to a variable x∗ which has been observed
forN units on a given measurement scale and needs to be provided with a metric
as a raw variable. In the OS process a scaling (numeric) value is assigned to each
category (or distinct value) φk (k = 1, . . . ,K ≤ N) of x∗, such that

• it is coherent with the chosen scaling level;
• it optimizes the model criterion.

Each raw variable is transformed as x̂ ∝ X̃φ, where φ′ = (φ1, . . . , φK) is the
vector of optimal scaling parameters and the matrix X̃ defines a space in which
constraints imposed by the scaling level are respected. The symbol ∝ means
that the left side of the equation corresponds to the right side normalized to
unitary variance.

In order to optimize NM-PLS model criteria, for any raw variable x∗ in the
model, the correspondent scaling vector must satisfy the following criterion:

arg max
φ

cor2(X̃φ,γx∗) (9)

Criterion (9) is optimized by means of the ordinary least squares regression
coefficients of the LC on X̃, i.e. by projecting γx∗ on the space defined by the
columns of X̃. The resulting projection, normalized to unitary variance, is the
geometric representation of the scaled variable x̂.

Three levels of scaling are considered here: nominal, ordinal and polynomial.
Each level of scaling has a corresponding ad hoc scaling function Q, which is the
projection operator of the LC in a suitable space spanned by X̃-columns. While
nominal and ordinal scaling involve the quantification of numerals (i.e. numeric
labels with no quantitative meaning), polynomial scaling exclusively addresses
non-linearity, as it involves the transformation of a metric raw variable. The
following explanations refer to Q as either a quantification or a transformation
function, depending on the type of scaling. It is noteworthy that other smoothing
procedures involving an orthogonal projection on a predefined basis (a spline
basis, for instance) could be used as well.

In nominal scaling, a variable is quantified as the orthogonal projection of
the LC γx∗ linked to x∗ on the space spanned by the columns of the indicator

matrix X̃
n
(“n” standing for nominal) generated by the K categories of x∗:

Q(X̃
n
,γx∗) = X̃

n
(X̃

n′

X̃
n
)−1X̃

n′

γx∗ . (10)

The scaling function Q(X̃
n
,γx∗) maximizes (9) under the grouping constraint

that, for each pair of observations i and i′,

(x∗
i ∼ x∗

i
′ ) ⇒ (x̂i = x̂i

′ ), (11)

where the symbol ∼ indicates membership of the same category. The resulting
scaling values for the categories of x∗ are the K least squares regression coef-
ficients of X̃

n
on γx∗ , which correspond to the averages of γx∗ conditioned to
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categories of x∗. The scaled variable contains the LC values predicted by the
regression of γx∗ on X̃

n
.

Ordinal scaling may involve ordinal or metric variables, since it retains the
order property of x∗. In ordinal scaling the following scaling function [40] is
used:

Q(X̃
o
,γx∗) = X̃

o
(X̃

o′

X̃
o
)−1X̃

o′

γx∗ . (12)

where Xo (“o” standing for ordinal) is constructed by Kruskal’s secondary least
squares monotonic transformation [11] of x∗. Kruskal’s up-and-down block al-
gorithm, also known as the pool-adjacent-violators algorithm, may be imple-
mented in order to obtain X̃

o
[12]. The vector of the regression coefficient

(X̃
o′

X̃
o
)−1X̃

o′

γx∗ contains the optimal scaling values which preserve the order
of the categories of x∗, as required by the conditions

(x∗
i ∼ x∗

i
′ ) ⇒ (x̂i = x̂i

′ ) and (x∗
i ≺ x∗

i
′ ) ⇒ (x̂i ≤ x̂i

′ ). (13)

where the symbol ≺ indicates empirical order.
Nominal and ordinal quantification functions provide easily and clearly in-

terpretable scalings, due to the fact that in a PLS framework the weight of a
variable is a function of its correlation with the corresponding LC. When func-
tion Q(X̃

n
,γx∗) is used, the relationship between γx∗ and x∗ in terms of linear

correlation can be expressed as the Pearson’s correlation ratio ηγ
x
∗ |x∗ :

cor(γx∗ , x̂) = ηγ
x
∗ |x∗ . (14)

Since 0 ≤ η ≤ 1, this correlation will never be negative. This implies that the
relation between a variable generated by a nominal scaling function and the LC
can be interpreted in terms of intensity, but not in terms of sign. This makes
sense, as it is a conceptual error to expect a sign in the covariation between
a numerical variable (the LC) and a nominal variable, even after providing
the nominal variable with a metric: by definition, this type of variable neither
increases nor decreases.

When using Kruskal’s secondary transformation, instead, the weight of the
scaled variable indicates the extent to which relationship between x∗ and the
LC approaches monotonicity, as it is closely related to Kruskal’s badness-of-fit
STRESS index [11] by the following equations:

cor(γx∗ , x̂) =







√

1− STRESS2
(γ

x
∗ ,x∗) if cor(γx∗ , x̂) ≥ 0

−
√

1− STRESS2
(γ

x
∗ ,x∗) if cor(γx∗ , x̂) < 0

The STRESS index is bounded between zero and one. It expresses the departure
of the relationship between x∗ and γx∗ from the assumption of monotonicity.
The sign of cor(γx∗ , x̂) depends on the type of monotonic transformation is
applied to x∗, which can be increasing or decreasing. Therefore, if cor(γx∗ , x̂) =
1 a perfect increasing monotonic relationship exists between γx∗ and x∗, while
if cor(γx∗ , x̂) = −1 this relationships is perfectly decreasing and monotonic.
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Advance knowledge of the degree D of a polynomial relationship between
a raw numerical variable and the LC makes it possible to use the polynomial
scaling. According to Young [41], optimal parameters for the polynomial trans-
formation are found by projecting γx∗ on the space spanned by the columns of

matrix X̃
p
(“p” standing for polynomial). Matrix X̃

p
is built with one row for

each observation and with D+ 1 columns, each column being an integer power
of the vector x∗:

Q(X̃
p
,γx∗) = X̃

p
(X̃

p′

X̃
p
)−1X̃

p′

γx∗ . (15)

Assuming that the raw variable and the LC are linked by a linear relationship,
all that is required is to set D = 1. If this is the case for all of the variables,
NM-PLS methods provide the same results as standard PLS methods applied
to standardized data.

It is noteworthy that scaling functions (10), (12) and (15) cannot be di-
rectly applied to raw variables, as the LC is unknown by definition. NM-PLS
algorithms use PLS iteration in order to overcome this issue: model and scaling
parameters are alternately estimated in a modified PLS-type loop with an added
quantification step. In standard PLS steps the model parameters are estimated
for given scaling parameters, while in the quantification step scaling parame-
ters are estimated for given model parameters and raw variables are suitably
transformed into interval variables normalized to unitary variance.

The Non-Metric approach to NIPALS, PLS-R and (new) Mode A PLS-PM
algorithms are described in detail in the following sections.

5. A PLS algorithm for non-metric PCA: Non-Metric NIPALS

Non-Metric NIPALS (NM-NIPALS) performs a non-metric PCA on a matrixX∗

representing a set of P raw variables observed on N units. In particular, it yields
a matrix X̂ = [x̂1 . . . x̂P ] of standardized scaled variables x̂p ∝ X̃pφp satisfying
criterion (2), to which scaling parameters are added. From a mathematical point
of view, the NM-NIPALS criterion can be expressed as

arg max
∀φp,w(1)

∑

p

cor2(X̃pφp, X̂w(1)) (16)

under the constraints ‖w(1)‖ = 1 and var(x̂p) = 1. A further restriction is given

by matrices X̃p, defined in advance for each variable according to the chosen
scaling level.

For fixed t(1) = X̂w(1), criterion (16) is separable with respect to the opti-
mally scaled data for each variable and can be considered as a sum of criteria
each of which is a function of the vector φp only. Therefore, the scaling param-
eters can be identified by separately maximizing ∀p ∈ {1, . . . , P}

arg max
φp

cor2(X̃pφp, t(1)). (17)

This criterion is optimized by the scaling functions Q(X̃p, t(1)) discussed in
section 4.
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For fixed scaling parameters, on the other hand, criterion (16) is optimized by
iterating the standard NIPALS loop until convergence. However, in criterion (17)
the scaling parameters are functions of t(1), while t(1) in its turn is a function of
the quantified variables x̂p. The NM-NIPALS algorithm overcomes this issue by
integrating the standard NIPALS loop with a quantification step in which scaling
functions are applied. Scaling parameters can thus be estimated simultaneously
with the PCA parameters by alternating maximization of criterion (16) with
respect to scaling and model parameters.

The NM-NIPALS loop starts with a quantification step in which the functions
Q(X̃p, t(1)) are applied to each raw variable in order to obtain a first estimate of
each x̂p (Step 1.1.1 of Algorithm 4). Then, for fixed x̂p, optimal model parame-
ters are determined each one a function of the previous one, as in the standard
NIPALS loop (Steps 1.1.2-1.1.4). This procedure is iterated until convergence.
Since in each iteration the quantification step and the the standard NIPALS
steps yield scaling and model parameter proxies which increase criterion (16),
the procedure monotonically converges to a maximum for criterion (16). After

obtaining convergence, the matrix X̂ = [x̂1 . . . x̂p] is deflated (Step 1.2), and
the second principal component is added by implementing the standard NIPALS
algorithm to the residual matrix E(1). Higher order components are extracted
in a similar way.

Algorithm 4 NM-NIPALS algorithm
Input: X∗

Output: W = [w(1) . . .w(H)],T = [t(1) . . . t(H)], X̂ = [x̂1 . . . x̂p]

Step 1.0: Initialize t(1) = t
(0)

(1)

Step 1.1:
repeat

for all p = 1, . . . , P do

Step 1.1.1: x̂
(s)
p ∝ Q(X̃p, t

(s)

(1)
)

end for

Step 1.1.2: w
(s)

(1)
= X̂

(s)′

t
(s)

(1)
/(t

(s)′

(1)
t
(s)

(1)
)

Step 1.1.3: w
(s)

(1)
= w

(s)

(1)
/‖w

(s)

(1)
‖

Step 1.1.4: t
(s+1)

(1)
= X̂

(s)
w

(s)

(1)

until convergence of w(1)

Step 1.2: E1 = X̂ − t(1)w
′

(1)

for all h = 2, . . . ,H do

Step 2.0: Initialize t
(0)

(h)

Step 2.1:
repeat

Step 2.1.1: w
(s)

(h)
= E

′

(h−1)
t
(s)

(h)
/(t

(s)′

(h)
t
(s)

(h)
)

Step 2.1.2: w
(s)

(h)
= w

(s)

(h)
/‖w

(s)

(h)
‖

Step 2.1.3: t
(s+1)

(h)
= Eh−1w

(s)

(h)

until convergence of w(h)

Step 2.2: E(h) = E(h−1) − t(h)w
′

(h)

end for
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5.1. Links with other non-metric approaches to PCA

If all the variables are analyzed at a nominal scaling level, the NM-NIPALS
solution for t(1) corresponds, up to a multiplying factor, to the dominant (non-

trivial) eigenvector of (1/N) ˜̃XD−1 ˜̃X ′, where D = diag( ˜̃X ′ ˜̃X) is the diagonal

matrix of the frequencies of the modalities and ˜̃
X = [X̃

n

1 | . . . |X̃
n

P ]. In fact, if
all of the variables are nominal, step 1.1.1 of Algorithm 4, for each p, becomes

x̂p ∝ X̃
n

p(X̃
n′

p X̃
n

p)
−1X̃

n′

p t(1).

For these scaling values

cor2(t(1), x̂p) ∝ t′(1)X̃
n

p(X̃
n′

p X̃
n

p)
−1X̃

n′

p t(1)

and criterion (16) can be written

arg max
∀φp

∑

p

t′(1)X̃
n

p(X̃
n′

p X̃
n

p)
−1X̃

n′

p t(1)

which is equal to

t′(1)
˜̃
XD−1 ˜̃X ′t(1).

Therefore, for less than a constant factor, the NM-NIPALS first component
equals the one dimensional solution for the unit scaling in well-known methods
such as Multiple Correspondence Analysis [1] and Homogeneity Analysis [5].

When the analysis is generalized at a variety of scaling levels, for less than
a constant factor due to different normalization constraints, the NM-NIPALS
solution coincides with the one-dimensional solution of others algorithms im-
plementing non-metric PCA, as it optimizes the PCA criterion subject to the
same scaling restrictions. In particular:

• In nominal scaling, we observe the restrictions used by the discrete-nominal
option in PRINCALS [5, 18] and PRINCIPALS [42] and in PRINQUALS
[27] algorithms.

• In ordinal scaling, we observe the restrictions used by the discrete-ordinal
option in PRINCALS and PRINCIPALS, and by secondary approach to
monotonicity in Kruskal and Shepard’s non-metric PCA [13].

Finally, when all raw variables are observed on a metric scale and a polynomial
transformation of degree D = 1 is chosen for all of them, we observe the restric-
tions involved in standard PCA (variables are centered and scaled to unitary
variance).

6. Non-Metric PLS Regression

Let two blocks of raw variables X∗
1 and X∗

2 be measured on a variety of mea-
surement scales. The generic variable of X∗

2 is x∗
p2 (with p = 1 . . . P2), while the
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generic variable of X∗
1 is x∗

p1 (with p = 1 . . . P1). NM-PLSR searches for opti-

mally scaled data matrices X̂1, with the generic column x̂p1 ∝ X̃p1φp1, and

X̂2, with the generic column x̂p2 ∝ X̃p2φp2. For the p-th variable, matrix X̃pq

(q ∈ {1, 2}) defines the constraints due to the scaling level and φpq represents
the vectors of the scaling values.

NM-PLSR scalings are optimal in the sense that they optimize the single
component PLS-R criterion

arg max
wp1(1),wp2(1),∀φp1,∀φp2

cov2(X̂2w1(1), X̂1w2(1)) (18)

under the constraints ‖w1(1)‖ = ‖w2(1)‖ = var(x̂p1) = var(x̂p2) = 1. It is
noteworthy that, since this criterion involves only the first component, it can also
be applied to the other PLS approaches to two-block cross-covariance analysis
cited in section 2.2. Criterion (18) depends on two sets of parameters. The first
set consists of the model parameters, constrained to unitary norm. The other set
consists of scaling parameters, which must respect restrictions due to the scaling
level chosen for each variable and to the standardization constraint applicable
to the scaled variables.

For fixed scaling parameters, the NM-PLSR optimization problem becomes

arg max
‖w1(1)‖=1,‖w2(1)‖=1

cov2(X̂2w1(1), X̂1w2(1)) (19)

Optimal w2(1) and w1(1) are respectively dominant right and left singular vec-

tors of matrix (1/N)X̂
′

2X̂1 (see section 2.2). Therefore, in order to optimize
criterion (19), conditions

w2(1) = X̂
′

2X̂1w1(1)/‖X̂
′

2X̂1w1(1)‖ (20)

and

w1(1) = X̂
′

1X̂2w2(1)/‖X̂
′

1X̂2w2(1)‖ (21)

must be respected.
When the other parameters remain fixed, the response scaling parameters

must optimize the following criterion:

arg max
∀φp1

cov2(X̂2w1(1), X̂1w2(1)) (22)

=
1

N2
w′

2(1)X̂
′

2X̂1X̂
′

1X̂2w2(1)

=
1

N2
t′2(1)X̂1X̂

′

1t2(1)

=

P1
∑

p

cov2(x̂p1, t2(1))

=

P1
∑

p

cor2(x̂p1, t2(1))var(x̂p1)var(t2(1))
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Since var(x̂p1) = 1 and var(t2(1)) is fixed with respect to the sum, criterion (22)
can be rewritten as

arg max
∀φp1

P1
∑

p

cor2(X̃p1φp1, t2(1)) (23)

This function is separable with respect to each φp1, and it can be considered as
a sum of P1 components, each of which is a function of the scaling parameters
of one variable only:

∀p ∈ {1 . . . P1} arg max
φp1

cor2(X̃p1φp1, t2(1)). (24)

Since optimizing each criterion (24) is equivalent to optimize criterion (22),
scaling parameters can be independently calculated as OLS coefficients of the
regressions of t2(1) on each matrix X̃p1. Hence, each optimally scaled predictor
x̂p1 can be calculated as

x̂p1 ∝ Q(X̃p1, t2(1)). (25)

Specular reasoning can be used to find the optimal quantifications for response
variables, leading, for each p ∈ {1 . . . P2}, to the criterion

arg max
φp2

cor2(X̃p2φp2, t1(1)), (26)

which is satisfied by

x̂p2 ∝ Q(X̃p2, t1(1)). (27)

This specular treatment is due to the fact that the single component PLS-R
model is symmetric. The PLS-R model becomes asymmetric only when succes-
sive latent dimensions are computed by deflating both predictors and responses
with respect to the components in the predictor space.

In the NM-PLSR algorithm conditions (20), (21), (25) and (27) are integrated
into a modified PLS-R loop which starts by quantifying each predictor through
the quantification functions Q(X̃p1, t2(1)) (Step 1.1.1 of Algorithm 5), so as to

get a first approximation of the matrix of the quantified predictors X̂1. Once
this is done, w1(1) is calculated as a function of X̂1 and t2(1) (Step 1.1.2).

Then, t1(1) is computed as a function of X̂1 and w1(1) (Step 1.1.3), and X2-

variables are quantified by means of the quantification functions Q(X̃p2, t1(1))

(Step 1.1.4). The weights w2(1) are then computed as a function of X̂2 and t1(1)

(Step 1.1.5). Finally, the vector t2(1) is computed as a function of X̂2 and w2(1)

(Step 1.1.6). This loop is repeated until convergence is reached. In each step
of the loop, criterion (18) is maximized with respect to one of the parameters,
keeping the others constant.

Since in each loop of the iterative process the criterion increases, convergence
is reached when a maximum is encountered. The MN-PLSR algorithm continues
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by calculating residuals matrices Ê1 and F̂ 1 as functions of X̂1 and X̂2 respec-
tively (Steps 1.2-1.5). Residuals matrices are then entered into the standard
PLS-R loop in order to extract a second set of components, and so on.

This procedure is based on the PLS-R algorithm described in [8] and shown
in Algorithm 5; however, the version presented in [28] can be modified in a
similar way in order to deal with non-metric variables.

Algorithm 5 NM-PLSR algorithm
Input: X∗

1, X
∗
2

Output: W 1,W 2,T 1,T 2,P , X̂1, X̂2

Step 1.0: Initialize t2(1) = t
(0)

2(1)

Step 1.1:
repeat

for all p = 1, . . . , P1 do

Step 1.1.1: x̂
(s)
p1 ∝ Q(X̃p1, t

(s)

2(1)
)

end for

Step 1.1.2: w
(s)

1(1)
= X̂

(s)′

1 t
(s)

2(1)
/‖X̂

(s)′

1 t
(s)

2(1)
‖

Step 1.1.3: t
(s)

1(1)
= X̂

(s)
1 w

(s)

1(1)

for all p = 1, . . . , P2 do

Step 1.1.4: x̂
(s)
p2 ∝ Q(X̃p2, t

(s)

1(1)
)

end for

Step 1.1.5: w
(s)

2(h)
= X̂

(s)′

2 t
(s)

1(1)
/‖X̂

(s)′

2 t
(s)

1(1)
‖

Step 1.1.6: t
(s+1)

2(1)
= X̂

(s)
2 w

(s)

2(1)

until convergence of w1(1)

Step 1.2: p(1) = X̂
′
1t1(1)/(t

′
1(1)

t1(1))

Step 1.3: b(t2(1)|t1(1)) = t′
2(1)

t1(1)/(t
′
1(1)

t1(1))

Step 1.4: E(1) = X̂1 − t1(1)p
′
(1)

Step 1.5: F (1) = X̂2 − b(t2(1)|t1(1))t1(1)w
′
2(1)

for all h = 2, . . . ,H do

Step 2.0: Initialize t2(h) = t
(0)

2(h)

Step 2.1:
repeat

Step 2.1.1: w
(s)

1(h)
= E

′

(h−1)
t
(s)

2(h)
/‖E

′

(h−1
t
(s)

2(h)
‖

Step 2.1.2: t
(s)

1(h)
= E(h−1)w

(s)

1(h)

Step 2.1.3: w
(s)

2(h)
= F

′

(h−1)
t
(s)

1(h)
/‖F

′

(h−1)
t
(s)

1(h)
‖

Step 2.1.4: t
(s+1)

2(h)
= F (h−1)w

(s)

2(h)

until convergence of w1(h)

Step 2.2: p(h) = E
′

(h−1)
t1(h)/(t

′
1(h)

t1(h))

Step 2.3: b(t2(h)|t1(h))
= t′

2(h)
t1(h)/(t

′
1(h)

t1(h))

Step 2.4: E(h) = E(h−1) − t1(h)p
′
(h)

Step 2.5: F (h) = F (h−1) − b(t2(h)|t1(h))
t1(h)w

′
2(h)

end for
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7. Non-Metric PLS Path Modeling

The basic principles of the NM-PLSR algorithm can be extended to the PLS
approach to predictive Path Modeling, as the single component PLS-R algo-
rithm is the same as the two-block PLS-PM algorithm, except for normalization
constraints. In the PLS-PM vocabulary, t2(1) can be interpreted as the outer es-
timate of the LV associated with block X2 (t2(1) = X2w2(1)), as well as the
inner estimate of the LV underlying X1 by means of which the outer weights
(w1(1) = X ′t2(1)/‖X

′t2(1)‖) are calculated. Symmetrically, t1(1) can be con-
sidered simultaneously as the outer estimate of the LV underlying X1 and the
inner estimate of the LV underlying X2. These double functions are justified by
the inner linear relationship t2(1) = αt1(1). This is a hidden step in the PLS-R
algorithm, which, in PLS-PM terms, can be interpreted as: the outer estimate
of the LV in one block is used the as inner estimate of the LV in the other block.

In view of these considerations, it can been stated that in the NM-PLSR
model, interpreted as a two-block path model, any quantified variable is com-
puted as a function of the inner estimate of the corresponding LV. Therefore, the
non-metric extension of the PLS-R algorithm can also be applied to PLS-PM al-
gorithm by adding to the PLS-PM loop a quantification step in which any scaled
MV is computed as a function of the inner estimate of the corresponding LV.

The NM-PLSPM algorithm is described in Algorithm 6. It starts by initializ-

ing LV outer estimates by means of centered vectors t
(0)
q . A first approximation

of the inner weights (Step 1.1) and of the LV inner estimates z
(0)
q (Step 1.2)

are then computed as functions of t
(0)
q . The LV inner estimates are in turn used

for computing a first quantification x̂
(0)
pq of the MVs by means of the functions

Q(X̃pq, z
(0)
q ) (Step 1.3). Parameter X̃pq of the scaling functions depends on the

scaling level defined in advance for each MV. Afterwards, a first estimate of the

outer weights is computed as a function of z
(0)
q and X̂

(0)

q (Step 1.4). Finally, a

new proxy of LV outer estimates t
(1)
q is computed by Mode A estimation mode

(Step 1.5). This loop is repeated upon convergence. It yields final outer weights,
which are used to calculate the final LV scores (Step 2). Path coefficients are
then calculated as in the standard PLS-PM algorithm.

7.1. The optimizing criterion of Non-Metric PLS Path Modeling

Unfortunately, Mode A NM-PLSPM suffers from the same drawbacks as Mode
A PLS-PM. That is, since the criterion to which the Mode A PLS-PM algorithm
converges is unknown, it is not possible to state that scalings provided by the
Mode A NM-PLSPM algorithm are mathematically optimal with respect to the
model. However, this problem disappears if the new Mode A scheme is used, i.e.
by implementing a RGCCA with the regularization parameter τq = 1 for all the
blocks [31].

As seen in section 2.3, new Mode A PLS-PM has recently been shown to
optimize criterion (7) when a centroid or factorial scheme is used. In the non-
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Algorithm 6 NM-PLS Path Modeling algorithm: estimation of the LVs.
Input: X∗

1 . . .X∗
Q, C

Output: X̂1 . . . X̂Q, w1 . . .wQ, ξ̂1 . . . ξ̂Q

Step 0: Initialize tq = t
(0)
q for all q = 1, . . . , Q

Step 1: Iteration

repeat

for all q = 1, . . . , Q do

Step 1.1: Computation of the inner weights

if q < q
′

then

e
(s)

qq′
= f

(

t
(s)
q , t

(s)

q′

)

else

e
(s)

qq′
= f

(

t
(s)
q , t

(s+1)

q′

)

end if

Step 1.2: Inner estimation of the LVs

z
(s)
q =

∑

q′<q

(

cqq′e
(s)

qq′
t
(s+1)

q′

)

+
∑

q′>q

(

cqq′e
(s)

qq′
t
(s)

q′

)

Step 1.3: Quantification step

for all p = 1, . . . , Pq do

x̂
(s)
pq ∝ Q(X̃pq, z

(s)
q )

end for

Step 1.4: Computation of the outer weights
{

w
(s)
q = (1/N)X̂

(s)′

q z
(s)
q if Mode A

w
(s)
q = X̂

(s)′

q z
(s)
q /‖X̂

(s)′

q z
(s)
q ‖ if new Mode A

Step 1.5: Outer estimation of the LVs
{

t
(s+1)
q = X̂

(s)
q w

(s)
q if new Mode A

t
(s+1)
q = (N1/2X̂

(s)
q w

(s)
q )/‖X̂

(s)
q w

(s)
q ‖ otherwise

end for

until convergence of wq

Step 2: Computation of the LVs

for all q = 1, . . . , Q do

ξ̂q = (N1/2X̂qwq)/‖X̂qwq‖
end for

metric version of the new Mode A PLS-PM, scaling parameters φpq are added

in criterion (7) in order to obtain quantified variables x̂pq ∝ X̃pqφpq. Particular
consideration is given to the following criterion:

arg max
∀wq,∀φpq

∑

q

cov(X̂qwq, zq)

=
∑

q

1

N
w′

qX̂
′

qzq

=
1

N

∑

q

z′
qX̂qX̂

′

qzq

||X̂
′

qzq||

=
1

N

∑

q

∑

p(N × cov(x̂pq, zq))
2

√

∑

p(N × cov(x̂pq, zq))2
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=
∑

q

∑

p cov
2(x̂pq, zq)

√

∑

p cov
2(x̂pq, zq)

=
∑

q

√

∑

p

cov2(x̂pq, zq)

=
∑

q

√

var(zq)

√

∑

p

cor2(x̂pq, zq) (28)

under the constraints ||wq|| = 1 and var(x̂pq) = 1. For fixed zq, criterion (28)
consists of a sum of p×q criteria, each of which is a function of a scaled variable.
Hence, it can be optimized by separately maximizing

∀p, q arg max
φpq

cor2(X̃pqφpq, zq) (29)

by means of the scaling functions Q(X̃pq, zq). This implies that when new Mode
A is used, the quantification step 1.3 in Algorithm 6 optimizes model criterion
with respect to scaling parameters for fixed model parameters. Therefore, a
procedure that alternates the PLS-PM iterative estimation (for fixed scaling
parameters) and the quantification step (for fixed model parameters) is expected
to converge to a maximum for criterion (7), as in each of the two steps criterion
(7) cannot decrease. However, in order to avoid unnecessary computations, in
the NM-PLSPM algorithm the quantification step is directly inserted into the
PLS loop, exactly as in Algorithm 6.

8. Missing data

Standard OS algorithms apply different solutions for handling missing data. Gifi
[5] distinguishes among three options. In the first option (missing data passive)
the row of X̃ is a zero row if the corresponding observation is missing for the
variable x∗; this option corresponds to assigning that category a zero scaling
value. The second option is called missing data multiple category; it implies that
a new category is added, to which all missing terms belong. The third option
is the missing data single category; it means that for each missing term a new
category is added.

All these solutions require advance imputation of missing data, and they can
also be implemented in an NM-PLS framework. However, in the PLS framework
a fourth option is possible: data pre-handling can be avoided, since PLS algo-
rithms need no advance imputation of missing data. In PLS procedures, each
score, as well as each weight, is calculated by means of an iterated sequence of
dot products. In the case of missing data, dot products are obtained by pair-
wise deletion, that is by summing products calculated on available pairs. This
characteristic of standard PLS algorithms is retained in NM-PLS quantifica-
tion procedures, where missing values are left missing and available data are
quantified.
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9. An application to macroeconomic data

The data-set for this example consists of 9 macroeconomic variables observed
for 47 countries. Three variables measure the inequality of land distribution:

• gini: Gini’s index of concentration;
• farm: complement of the percentage of farmers that own half of the lands,
starting with the smallest ones. Thus if farm is 90%, then 10% of the
farmers own half of the lands;

• rent: percentage of farm households that rent all their land.

Two variables measure industrial development:

• gnpr: gross national product pro capite (in U.S. dollars) in 1955;
• labo: the percentage of labor force employed in agriculture.

Four variables measure political instability:

• inst: an index, bounded from 0 (stability) to 17 (instability), calculated as
a function of the number of the chiefs of the executive and of the number
of years of independence of the country during the period 1946-1961;

• ecks: the Eckstein’s index, which measures the number of violent internal
war incidents during the same period;

• death: number of people killed as a result of violent manifestations during
the period 1950-1962;

• demo: a categorical variable that classifies countries in three groups: stable
democracy, unstable democracy and dictatorship.

These data were collected and analyzed by Russett [22] in order to assess the
hypothesis that the political instability of a country depends on the inequal-
ity of land distribution and the industrial development. Years later, the same
data-set was analyzed by Gifi [5], Tenenhaus [28] and Tenenhaus and Tenen-
haus [31]. Gifi used an optimal scaling technique to address the high degree of
non-linearity of data, scaled in such a way as to maximize the canonical correla-
tion between the variables reflecting the inequality of land distribution and the
industrial development and the variables reflecting political instability. Indeed,
Gifi himself noticed that partitioning data in three sets of variables (agricultural
inequality, industrial development and political instability) would have been a
more rational approach. Starting from this idea, Tenenhaus [28] analyzed the
data-set in a multi-block framework; he addressed non-linearity by approximat-
ing Gifi’s scalings by means of a priori monotone functional transformations and
handled the variable demo by splitting it into three binary variables. However,
Tenenhaus [28] pinpointed that approximating Gifi’s transformations is not the
best choice, while transformations optimized for PLS-PM would be preferable.

Here two approaches are compared. In the first one the standard PLS-PM
algorithm is run on the original data1, and the nominal variable demo is split into

1In the original data-set three values are missing for variable rent. According to Tenenhaus
and Tenenhaus [31], they have been replaced for Australia, Nicaragua and Peru by the values
25.3, 9.9 and 12.6.
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Fig 1. The path model. Drawing conventions: outward directed arrows joining LVs (in ellipses)
to MVs (in boxes) indicate that (New) Mode A estimation mode is used in the algorithm; the
arrows linking LVs indicate the dependence flow which specifies the inner model.

Table 2

Parameters of the inner model (path coefficients β) and of the outer model (loadings λ) in
standard and Non-Metric PLS path models, with corresponding 95% confidence intervals

(C.I.) built by means of 2000 bootstrap samples [3]

.
(a) Standard PLS

LV β C.I.

Agr. In. 0.23 [0.11; 0.43]
Ind. Dev. -0.67 [−0.72;−0.58]

MV λ C.I.

gini 0.98 [0.89; 0.99]
farm 0.99 [0.91; 0.99]
rent 0.18 [−0.36; 0.63]

gnpr 0.95 [0.93; 0.97]
labo -0.95 [−0.97;−0.93]

inst 0.17 [−0.10; 0.45]
ecks 0.67 [0.41; 0.84]
death 0.53 [0.40; 0.69]
stab -0.87 [−0.94;−0.72]

unstab 0.10 [−0.25; 0.38]
dict 0.74 [0.53; 0.88]

(b) Non-Metric PLS

LV β C.I.

Agr. In. 0.30 [0.19; 0.50]
Ind. Dev. -0.71 [−0.80;−0.54]

MV λ C.I.

gini 0.95 [0.89; 0.97]
farm 0.96 [0.86; 0.97]
rent 0.63 [−0.60; 0.82]

gnpr 0.96 [0.94; 0.98]
labo -0.96 [−0.98;−0.95]

inst 0.63 [0.47; 0.80]
ecks 0.90 [0.82; 0.94]
death 0.90 [0.85; 0.94]
demo 0.82 [0.72; 0.90]

three binary variables. In the second one the NM-PLSPM algorithm is run, in
order to obtain quantifications coherent with the path model. The quantitative
MVs are transformed at the ordinal scaling level to discard the hard assumption
of linearity in favor of a milder assumption of monotonicity, and the categorical
MV demo is analyzed at the nominal scaling level. In both the cases, according to
Tenenhaus’ previous works, Agricultural Inequality and Industrial Development
have been modeled as predictors of Political Instability, as shown in Figure 1; the
option centroid and both Mode A and new Mode A estimation procedures are
used. Since the two estimation procedures provide outputs identical up to the
second decimal digit, the outputs presented in Table 2 can be referred to both,
and only the differences between the standard and the non-metric PLS models
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Fig 2. Variable original values plotted versus corresponding optimal scaling values.

will be commented. The interpretations of the two inner models are similar:
industrial development is the main driver for political instability, on which it
has a negative impact. As one can expect, agricultural inequality positively
impacts on political instability. However, the criterion optimized by the PLS
iteration increases from 2.29 to 3.42. The improvement is due to the monotone
transformations of the quantitative MVs (shown in Figure 2), and it is reflected
in both the inner and the outer models. The LVs Agricultural Inequality and
Industrial Development are more strongly related to Political Instability in NM-
PLS model than in the standard PLS model, providing a greater explained
variance (the R2 index increases from 0.60 to 0.76). Moreover, the LVs are on
average more correlated to the corresponding MVs; the manifest variables rent,
inst, ecks and deat show sensibly increased loadings, due to their marked non-
linearity.

The comparison of the two models (Table 2) suggests two further remarks:
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• In this example the introduction of the scaling parameters did not af-
fect the stability of the estimates and allowed to discover a statistically
significant loading for variable inst;

• In non-metric approach the loading of the MV demo clearly points out a
strong relation with the LV Political Instability. On the contrary, in the
standard PLS model the three dummy variables labeled as stab, unstab
and dict show quite different loadings, which do not make easy the in-
terpretation of the role of the variable demo as a whole. Indeed, there is
a strong relation between Political Instability and all of the binary vari-
ables representing the categories of MV demo. However, while relations
between binary variables dict and stab and Political Instability are pretty
monotone (and so they can be easily detected in a linear framework), the
binary variable unstab is non-monotonically related to political instability
and consequently its importance is underestimated. This drawback of the
binary coding has been already discussed in section 3.

10. Discussion

Ten years after Herman Wold proposed the Nonlinear Iterative LEast Squares
(NILES, later renamed NIPALS) procedure [35], an iterative algorithm based
on an Alternating Least Squares (ALS) procedure [16] was proposed by Jan de
Leeuw, Yoshio Takane and ForrestW. Young for implementing optimal scaling in
additive structure analysis. The authors themselves noticed, in respect to ALS,
that “this type of procedure is philosophically much like the NILES/NIPALS
procedure developed by Wold and his associates with the distinction that Wold
is usually concerned with optimizing only model parameters” [16].

Over the last 35 years these two procedures have been developed indepen-
dently for completely different aims. NIPALS-based algorithms have been de-
veloped for implementing a number of well-known two- and multi-block analysis
methods (see [30] for a review), as well as two new approaches: a component-
based regularized regression (the PLS-R) and a predictive Path Modeling in a
soft modeling framework (the PLS-PM). Meanwhile, ALS has become the most
widely used procedure for optimal scaling in joint non-parametric multivariate
analysis of non-metric and metric data. A whole system of non-linear multivari-
ate analysis, based on ALS principles, has been developed by the data theory
group of Leiden University [5]. This article shows that PLS algorithms, correctly
adjusted, can also work as optimal scaling algorithms. This new and previously
totally unexplored feature of PLS make it possible to devise one, two and multi-
block PLS methods with optimal scaling features. NM-PLS methods preserve
all the features of standard PLS algorithms, since

• they work on landscape matrices;
• they handle missing data without the need for advance data imputations;
• they do not require hard assumptions about population distribution.

Moreover, with NM-PLS methods it is possible to:



1666 G. Russolillo

• introduce into the models variables observed on different measurement
scales;

• investigate non linearity;
• discard the hard assumption of linearity in favor of a milder assumption
of monotonicity.

NM-PLS scalings have been proved to be suitable, coherent and optimal. They
are suitable because they respect the relevant constraints depending on which
properties of the original measurement scale are to be preserved. They are coher-
ent because the statistical relationship of a latent construct with the associated
raw variable is reflected into its statistical relationship with the corresponding
quantified variable. Finally, they are optimal because they optimize the crite-
rion of the model in which they are involved. However, NM-PLS quantifications
are optimal with respect to the first component, while the scaling parameters
optimality in multiple component models is not assured. This is not a relevant
drawback in PLS-PM framework, where multidimensional latent variables are
rarely investigated, but it represents a restriction in Non-Metric PLS approaches
to regression and Principal Component Analysis (PCA), which require multi-
component models in most of the applications. The impossibility to search for
quantifications optimal with respect to multi-component models is due to the
fact that the PLS algorithms extract components sequentially, by alternating an
estimation step and a deflation step. As a consequence, the extraction of each
successive component is conditioned to the knowledge of the previous ones.
This procedure is efficient in standard PLS algorithms because PLS solutions
are nested, but it prevents from ensuring the optimality of the parameters in
multi-component non-metric models, as NM-PLS solutions are not nested.

NM-NIPALS, NM-PLSR and NM-PLSPM algorithms are implemented in R
routines [20] which are available from the author upon request.
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