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Abstract—In this paper we present a heuristic method to pro-
vide individual explanations for those elements in a dataset (data
points) which are wrongly predicted by a given classifier. Since
the general case is too difficult, in the present work we focus on
faulty data from an underfitted model. First, we project the faulty
data into a hand-crafted, and thus human readable, intermediate
representation (meta-representation, profile vectors), with the
aim of separating the two main causes of miss-classification:
the classifier is not strong enough, or the data point belongs
to an area of the input space where classes are not separable.
Second, in the space of these profile vectors, we present a method
to fit a meta-classifier (decision tree) and express its output
as a set of interpretable (human readable) explanation rules,
which leads to several target diagnosis labels: data point is
either correctly classified, or faulty due to a too weak model,
or faulty due to mixed (overlapped) classes in the input space.
Experimental results on several real datasets show more than
80% diagnosis label accuracy and confirm that the proposed
intermediate representation allows to achieve a high degree of
invariance with respect to the classifier used in the input space
and to the dataset being classified, i.e. we can learn the meta-
classifier on a dataset with a given classifier and successfully
predict diagnosis labels for a different dataset or classifier (or
both).

Index Terms—machine learning, interpretability, explainabil-
ity, XGBoost, MLP, model validation, debugging, kNN.

I. INTRODUCTION

Recent machine learning models for prediction have attained
excellent performance in many data classification tasks, and
are widely applied in various scenarios where prediction is
needed (e.g. medical diagnostics or financial analysis). How-
ever, as applications begin to concern every aspect of our
daily life, there is an increased need for transparency and
interpretability of the model decision process, in order to earn
user’s trust and reveal the reasoning behind model decision in
terms comprehensible by humans [1].

Indeed, interpretability of machine learning algorithms has
grown to become an important topic in recent years, especially
due to the black box nature of many ML algorithms [2],
aspect which is even more important when they fail: users
need to understand the causes of failures such as to avoid
them in the future. The concept of interpretability for machine
learning aims at presenting model predictions in a human-
understandable way, or providing information to interpret the
predictions or the failures [3].

Modern ML models (such as XGBoost [4] or artificial
neural networks [5]) are powerful enough to fit the most
complex patterns in data distributions with rather contained
computation costs but, unfortunately for most of them, the
decision-making process is not transparent to users (black-
box behavior). In such a case it is important to have tools to
investigate their behavior, especially when they fail, such as
to be able to detect general patterns of model’s behavior on
its faulty predicting data, if they exist [6].

In this direction, we propose in this work an analysis
and diagnostic pipeline to interpret the behavior of an ML
model in the input space, around data points where it fails
to give the expected prediction. More precisely, the task is to
analyse and diagnose faulty individual points, where the label
predicted by the model differs from the ground truth. More
specifically, because it is difficult to approach the problem
with full generality, we restrict ourselves to the more amenable
situation when the model is underfitted. Recall that underfitting
is a global property of a model which summarizes the fact that
the accuracy, as a classification performance measure, fails to
achieve high values on both training and test sets; furthermore,
there is no big gap in accuracy between the train and test sets.
In this situation, given a faulty data point (wrongly classified),
our aim is to reach one of the two following diagnostics :

• The model is too weak: the model fits poorly the
true data distribution, because its capacity as well as
complexity is not high enough so it fails to get sufficient
information on the true decision boundary (model under-
fitting). An example of this case is trying to fit a linear
classifier on a dataset that is separable, e.g., by a parabola.
In this case, the solution is to use a more complex (and
possibly more expensive) classifier, able to fit the data.

• Data classes are mixed-up: the data point belongs, in
the input space, to an area where several class labels mix
up beyond statistical resolution, meaning that different
training samples would give very different separating
boundaries. In this case it is impossible to generalize from
one sample to the other (e.g. from training to test), even
using a very strong classifier, implying that the data in this
area cannot be separated properly in terms of their labels.
To do better in this case, the user needs to devise more
powerful features for the data, to resolve the ambiguity.

To achieve this, we project original feature space X into a



hand-crafted intermediate representation space Z (x → z),
where the representation z of a point x encodes the local
behavior of the classifier C(x) in the X space around the point
x, compared to what its output should be (the ground-truth).
We hand-craft the variables defining the Z space, instead
of learning them from data, because we want them to be
meaningful to a human user, thus easy to interpret. In the
second stage we fit a decision tree in the Z space, to obtain
a meta-classifier M(z(x)) capable of assigning a diagnostic
label to any data point x ∈ X: ”data point is well classified”
(no classification error), ”model is too weak”, or ”point is in
a mixed-up data region”.

To summarize, the main contributions of our proposal are
as follows :
• We propose an intermediate representation of the input

data which is model agnostic and data agnostic, that is
it does not use specific information about the type of
classifier or data being employed.

• The proposed approach is end-to-end interpretable: it uses
a human readable representation (hand-crafted features)
and an interpretable meta-model (decision tree) to help
the user understand the behavior of a black-box classifier
around the data points where it fails to function properly.

By employing our method the user will know if she needs
to put more effort into improving the classifier or into the
data harvesting activity, and also have a clear view on why
this is the case. We test our framework on several large real
datasets. The results show systematically more than 80% accu-
racy for the meta-classifier (in the Z space), confirming that
the proposed intermediate representation permits to achieve
a reasonably high degree of invariance with respect to the
classifier used in the input space and also to the dataset
being classified. That is, we can learn the meta-classifier
on an initial collection of classification problems (couples
dataset/classifier) and successfully predict diagnosis labels
for a different couple dataset/classifier. The workflow of our
method is shown in Fig. 1.

The paper is organized as follows: in Sec II we present
related work and position our proposal with respect to these,
in Sec. III we present our framework followed by the experi-
mental validation on several real world datasets in Sec. IV and
we conclude in Sec. V with a synthesis of our achievements
and a discussion of future work.

II. RELATED WORK

In this section we present a brief synthesis of the existing
state of the art on the topic of diagnosis and interpretability of
faulty cases from validation/test data, and position our work
with respect to these.

A. Model validation and debugging

Several existing works focus on machine learning model
validation, data analysis and debugging, which serve a similar
objective as ours:

SecureMLdebugger [7] presents a model debugger by ac-
cessing metadata such as model’s hyper-parameters, training

epochs, evaluation measures and network layouts, without
using specific user data to ensure privacy during the analysis.
The idea of exploiting model’s metadata for debugging and
investigation is quite pervasive in the field; we also make use
of it but in a different way, i.e. to form a set of meta-features
characterizing the model, and develop interpretability based
on them.

Slice Finder [8] is a tool for slicing datasets to obtain
certain data subgroups which are identified as problematic
to the model. The goal is to provide a more granular view
and analysis of model behavior: investigating such kind of
problematic data helps explain model poor performance. A
slice is defined as a conjunction of feature-value (rule) pairs, in
which the number of rule pairs should be few enough to ensure
human readability, each acquired slice should have significant
impact to affect model performance, and also large enough
coverage on validation data.

MLCube [9] proposes a tool allowing the user to define
instance subsets in form of feature-condition conjunctions, and
explore the aggregate statistics (like accuracy) or evaluation
metrics over these subsets. [10] also investigate data subgroups
via similar feature-value conjunctions: they identify trouble
data subgroups by measuring a divergence metric defined on
false positive or false negative rates using Shapley values.

The fore-mentioned methods share a common pathway,
that is they assess certain data subgroups via feature-value
conjunction structures, which actually match the basic split
rules used in decision trees — they suit thus well the logic of
tree-based models. Their drawback comes from their nature:
the interpretability power of these methods depends on the
simplicity of the slice, meaning the granularity of investigation
and interpretation is limited by the complexity of the acquired
rule set. Unlike them, our method is based on training in-
stances, thus it does not face the issue of rule set complexity
but rather draws inferences from data-local population.

Another drawback when using these methods to solve the
model validation and debugging problem is that none of them
integrates prior knowledge of model diagnosis categories: their
aim is partially the identification of faulty/problematic data,
without further analyzing the reason behind the faulty cases. In
contrast, our method relies on a clarification of the relationship
between the data distribution and the model prediction pairs,
and ends up providing interpretations on the reason why
certain cases lead the model to make wrong predictions.

B. Data Complexity recognition

As we already discussed, the mismatch between data dis-
tribution in terms of classes and model prediction labels does
not always come from model fitting error only, but also from
the complexity of the classification problem with respect to
the intrinsic distribution of the data.

In this sense, surveys like [11], [12] list several measures
of data distribution complexity in terms of decision boundary
dividing different classes. This geometrical point of view leads
to three grand classes of measures: linear classifier based (such
as minimized error, error rate by Linear Programming); nearest



Fig. 1: Main pipeline of our proposal: a black-box model is trained with the train set {xi, yi}train, the goal being to predict
whether the sample is miss-classified and achieve, for each miss-classified sample x (for which y 6= ŷ), an understanding of
the cause of miss-classification: ”the model is too weak” or ”data classes are mixed-up”. To achieve this, each data point x
is projected by the Meta-Features Extraction module into a profile vector z consisting of several statistical indicators; then
the collection of all acquired profile vectors is used by the Feature Aggregation module to train a decision tree on the three
classes mentioned above. This will help the user obtain a diagnosis result, understand the reason behind the faulty case, and
thus arrive at a practical solution for post-hoc treatment.

neighbor based (fraction of points on boundary by Minimum
Spanning Tree method, ratio of average intra/inner class near-
est neighbour (NN) distance, error rate and nonlinearity of
1NN classifier); geometry or topology based (maximal Fisher
discriminant ratio, overlap region volume, maximal feature
efficiency, fraction of points with adherence subsets retained,
average number of samples per dimension) [12]. Some of these
measures focus on data separability or mixture identification,
some on individual feature value overlapping, others examine
the geometrical properties of the decision boundary such as
space covering and non-linearity. While we are not using these
results directly, we are taking inspiration from them in devising
our meta-features (see next section).

III. METHOD PROPOSAL

A. Problem Formulation

In this study we only consider binary classification prob-
lems. A classifier C is classifying a point x ∈ X (usually
Rd) in one of two classes, 0 or 1, i.e. C(x) = y ∈ {0, 1}.
Our purpose is to explain why a classifier fails to classify
a test point in the right class in the special case when the
model is known to be underfitted. We refer to these points as
“faulty” and to the other points as “normal”. For each faulty
point, we further diagnose the cause of classification error by
considering two main types of behavior:

• The model is too simple, i.e. there exists a larger capacity
model (i.e. with more parameters) of the same type that
can correctly classify the faulty data considered, while
achieving a superior cross-validation performance.

• The faulty data belongs to a region of space where
classes 0 and 1 overlap, i.e. we cannot find a more
complex model that correctly classifies the faulty data
while achieving superior cross-validation performance.
This can happen for instance if the features x are too
weak, i.e. not providing enough discriminant information
regarding the classification problem at hand. We refer to
this case as “mixed-up” data in the following.

Our goal is to train a meta-classifier F which maps the test
data to three output classes: a normal data is assigned to the
class Good Prediction, a faulty data is assigned either to the
class Weak Model or to the class Data Mixed-Up. The meta-
classifier takes as input a set of meta-features related to the
faulty input point x. Meta-features are computed using both
x, and training points belonging to a neighborhood of x along
with their labels.

B. Meta-features extraction

Simple meta-features characterizing local configurations are
extracted around a point of interest using K-nearest neighbors
(KNN). A value for K, found by trial and error, of 0.05 ×



(dataset size) provided good results in our case. Training data
is then used to compute label-based indicators inside these
neighborhoods. In particular, in a neighborhood we extract:
• The local model prediction accuracy.
• The two-class confusion matrix.
• A confidence in the prediction: if the model prediction ŷi

is the probability of class 0, let

Conf(xi) =
|ŷi − 0.5|

0.5
∈ [0, 1]

then the higher this value, the more confident the model
is considered to be in its prediction.

• The average confidence in the neighborhood, which re-
flects the local model confidence around the point of
interest.

• The average distance to “allies”, i.e. the points from the
neighborhood with the same label as xi:

Dally(xi) =
1

|Ai|
∑

xj∈Ai

d (xi, xj)

where Ai = {xj ∈ KNN (xi) |yj = yi}
• The average distance to “opponents”, i.e. the points from

the neighborhood with a different label than that of xi:

Dopp(xi) =
1

|Oi|
∑

xj∈Oi

d (xi, xj)

where Oi = {xj ∈ KNN (xi) |yj 6= yi}.
Two other meta-features not using KNN neighborhoods but

still characterizing data configurations at a local scale are also
extracted:
• A Minimum Spanning Tree (MST) based feature de-

scribed in [11]. This feature requires to compute the
MST of the training dataset using a distance criterion
to keep only connections between close points. This
feature characterizes class separability at a local scale. It
is computed as the number of opponents of xi connected
to xi over the total number of points connected to xi. As
such, it is valued between 0 and 1. A value close to zero
corresponds to a configuration where the point lies in an
homogeneous region of ally points. A value close to 0.5
corresponds to a configuration where the point lies in a
non-homogeneous region made both of ally and opponent
points (mixed-up data).

• A tree-based meta-feature that can only be added when
the binary classifier is a tree ensemble model (other meta-
features are model agnostic). This feature is inspired
from [13] where it is referred to as Tree space prototype
measure. Given a query point xi and a point xj in which
to compute the measure, it is obtained as the number of
leaves of the tree ensemble model that contain both xi and
xj . This feature is dependent on model complexity, i.e.
the bigger the number of trees in the ensemble model,
the higher it tends to be on average. When averaged
over the K nearest neighbors, it quantifies to what extent
the K nearest neighbors fall in the same leaves as the

query point. As such, it is an indirect measure of model
complexity in the considered neighborhood.

C. Training the meta-classifier

The previously described meta-features are aggregated to
form profile vectors zi ∈ Z associated with each test data. A
three-class meta-classifier under the form of a decision tree
is trained on these meta-features/profile vectors. The output
classes are the ones described in Sec. III-B. The choice of a
decision tree is justified here by the aim to keep the meta-
classifier decisions interpretable. In particular, decision rules
can be extracted by following the path between the root and a
leaf of the tree. The decision tree selects in a greedy way
the most discriminative characteristics for the classification
problem at hand and provides an importance score for each of
these characteristics. The extracted rules give a more detailed
explanation of the meta-classifier decision, all the more since
the meta-features are themselves interpretable.

Once the meta-classifier is trained, it can be employed to
understand the behavior of other classifiers around the points
where they fail to predict the correct label, that is to decide
if they need a more powerful classifier or more discriminant
features. For this, the user should first extract the meta-features
for the dataset on which the investigated classifier was trained.

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental validation of our
method on several binary classification problems (datasets).
To do this we start by pre-processing each dataset in order to
generate the ground-truth labels needed for the meta-classifier
(Sec. IV-A). By employing this ground truth we train the meta-
classifier and use prediction accuracy, precision and recall as
a measures of success (Sec. IV-B). We also show examples
of output interpretations, and we discuss the strengths and
weaknesses of our approach.

A. Meta-classifier ground truth generation

Suppose we are given a dataset D associated to a binary
classification problem. Each data point is seen as a vector x
in the input feature space X . Suppose also that we trained a
classifier C on some part of D (the training set) and we test
on the rest of the dataset (the test set).

Each input point x ∈ X has a meta-feature vector z ∈ Z
associated with it, computed by the procedure described in
Sec. III-B. To be able to train the meta-classifier F in the Z
space we need to attach to each element in the input space
x ∈ X one diagnosis label (with respect to the classifier
C): “Good Prediction”, “Weak Model”, “Data Mixed-Up”.
This is obvious for correctly classified data points, but for
the miss-classified ones we need to ensure the cause of miss-
classification is guaranteed to be the one associated with the
label. We describe below the procedure we use to generate
these labels.

We start by choosing a strong classifier, for example an
XGBoost model with a very large number of trees and large
depth. We then iterate several times the following procedure:



1) Randomly split the initial dataset D into two equal
disjoint parts, D1 and D2.

2) Train the classifier with D1 as training set to obtain model
C1. Similarly, train the classifier with D2 as training set
to obtain model C2.

3) Remove from D1 the elements miss-classified by C2,
obtaining the set D′1, and remove from D2 the elements
miss-classified by C1, obtaining the set D′2.

4) Consider D = D′1 ∪D′2 and repeat the whole procedure
until there are no more miss-classified elements by C1

and C2 (or very few, e.g. an accuracy of 99.9% for both).
In practice, we found that two-three iterations are enough

in the procedure above to obtain classifiers with very high
accuracy (99.9%) on the remaining data. The procedure cleans
up the dataset, so we are sure that the remaining data can be
correctly classified by a model of very high capacity (thus,
classes are not mixed-up in the regions covered by this data).

From here we use two procedures to generate diagnosis
labels for miss-classified data:

1) Lower the capacity of the model. For example, for an
XGBoost model decrease the number of trees and their
depth. For an MLP reduce the number of hidden layers
and neurons, or simply add noise to the weights. When
training a lower capacity model on the cleaned-up data,
some of the test sample will be miss-classified, and we
can assign them the label “Weak Model”.

2) In the input space X , drop some of the components of the
features, which is equivalent to projecting the data to a
lower dimensional vector space. This entails information
loss, and classes that were well separated in the input
space X may overlap (mix up) in the projection space
X ′. Then train a strong classifier in the X ′ space, without
overfitting it. This classifier, because some classes are
mixed-up in the reduced feature space, cannot achieve
perfect accuracy, so there are some miss-classified data
points on the test set. For this reason, these miss-classified
data points can be labeled as “Data Mixed-up”. Because
strong classifiers are still very good even after throwing
away a lot of features, at least on the datasets we
are using, we actually perform a principal component
analysis in the input space X and then eliminate the most
important components (to quickly remove components of
high variance). In order to achieve the desired effect, it
is important to train the best model on the projected data
without overfitting, since because the trained classifier is
strong, overfitting is indeed a risk. Fig. 2 illustrates a
situation when both MLP and XGBoost classifiers overfit
depending on the dataset. If a classifier overfits when
dropping data components, that indicates that a weaker
version of it should be used to avoid this phenomenon.

B. Meta-classifier: training and prediction

Each dataset is processed by the proposed method to extract
meta-feature profile vectors for each element, together with
the associated diagnosis labels, the result being a three class

classification vector set. After the usual train/test dataset split
we use a decision tree as our meta-classifier, because this type
of model can be used to generate interpretable decision rules
easily. A decision tree can also easily deal with large training
sets, which is an important factor in our case, because we
employ several large datasets to build the ground-truth for
the meta-classifier. Meta-feature extraction time grows linearly
with the input dataset size, but this process is only performed
once.

The meta-classifier is evaluated using the accuracy, pre-
cision and recall scores. Our meta-classifier is capable of
suggesting a diagnosis label for a new data point, miss-
classified by a different classifier on a different dataset and,
if desired, decision rules extracted from the meta-classifier.
These should help understanding if the data point has been
wrongly classified because the classifier was too weak or the
classification classes are mixed up in the feature space, and
the decision rule gives insight into what happens locally in the
feature space around the miss-classified point.

C. Evaluation results

To test our proposal we use eight datasets set up for binary
classification: MNIST 3-8 [14] (classes 3 and 8, number of
features reduced to 87 by PCA), Fashion MNIST 0-6 [15]
(classes 0 and 6, number of features reduced to 100 by PCA),
Weather Australia1, Spotify2, Human Resource Analytics3,
Water Potability4, Indian Diabetes5, Banknote authentication6.

On each dataset we train two types of classifiers: an
XGBoost and a Multi Layer Perceptron (MLP). Each of
them provides three models: the base model (obtained on the
cleaned-up dataset (also called “easy dataset” in the follow-
ing), as explained in Sec. IV-A), the weak model (obtained by
weakening the base model either by reducing the number of
trees and their depth, for XGBoost, or by reducing the size of
the hidden layer, for the MLP), and the truncated feature space
model (obtained after cutting off a number of components
from the feature space).

In the Table I we present the details of the involved datasets
and configurations during the diagnosis label generation pro-
cess: the dataset size including number of label 0 and label 1
points, the number of features, the number of extracted meta-
vectors (corresponding to miss-classified samples), the param-
eters of baseline models on the easy (cleaned up) dataset,
parameters of the weak model (for “Weak Model” label
generation) and the number of cut-off data feature components
(for “Data Mixed-up” label generation). For the “MLP cut” we
also give the variance of the cut-off components (percentage in
brackets). Notice that the first five datasets each provide 2000
meta-vectors, while the last three datasets, which are much
smaller, give roughly ten times less meta-vectors.

1http://www.bom.gov.au/climate/dwo
2https://github.com/rfordatascience/tidytuesday/tree/master/data/2020
3https://www.kaggle.com/datasets/rohandx1996/human-resource-analytics
4https://www.kaggle.com/datasets/adityakadiwal/water-potability
5https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
6https://archive.ics.uci.edu/ml/datasets/banknote+authentication

http://www.bom.gov.au/climate/dwo/
https://github.com/rfordatascience/tidytuesday/tree/master/data/2020/2020-01-21
https://www.kaggle.com/datasets/rohandx1996/human-resource-analytics
https://www.kaggle.com/datasets/adityakadiwal/water-potability
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/banknote+authentication


(a) Spotify, XGB model (b) Spotify, MLP model

(c) Fashion MNIST, XGB model (170 trees, depth 6) (d) Fashion MNIST, MLP model (hidden layer size = 50)

(e) Fashion MNIST, weaker XGB model (50 trees, depth 3) (f) Fashion MNIST, weaker MLP model (hidden layer size = 10)

Fig. 2: Accuracy curves demonstrating the underfitting checking process: each graph shows the training accuracy and testing
accuracy along with the percentage of data variance being removedUpper two graphs a) and b) correspond to the underfitting
scenarios we aim at, since training accuracy drops together with the testing accuracy. The middle two graphs c) and d) show
an overfitting situation, where testing accuracy drops quickly while training accuracy remains close to 100%, and the gap
between the two becomes larger and larger. This case should be avoided by choosing a weaker base model in the input feature
space X . Graphs e) and f) then show that a weaker base model on the same dataset as c) and d) leads to underfitting when
compared to the overfitting base model.



Table II presents results for four main configurations on
extracted meta-vectors to train the meta-classifier decision tree
and test its performance:
• Row 1: train on 4 datasets randomly sampled from #1 to

#5 and test on datasets #6 to #8.
• Row 2: train on 4 randomly selected datasets and test on

the rest.
• Row 3: train on XGBoost generated meta-vectors, test on

MLP generated meta-vectors and vice-versa.
• Row 4: train/test on the union of all datasets: split 75%

train / 25% test.
These configurations aim to test the ability of the meta-

classifier to generalize across different datasets (train on a
collection of datasets and predict on a different dataset: rows 1
and 2) and also to generalize across different classifiers (train
on a classifier and predict on another classifier: row 3). The
last configuration (row 4) represents the case where training
and testing are done on the union of all the datasets and, as
expected, provides slightly better results compared to the other
configurations because the training dataset is much larger.

The decision tree structure, including tree depth, number of
leaves, training set and testing set size, most important meta-
features from the tree, and particularly the most impacting
decision rules extracted from the tree, are also shown in
Table II. Performance of the meta-classifiers is provided by
predicting precision and recall scores on the test set (each
contains three elements corresponding to each of the three
diagnosis classes), where the precision/recall values are col-
lected statistically from several rounds of training, giving the
mean and standard derivation.

Looking at Table II, for all experimental configurations,
after proper label re-balancing on training vectors, the ob-
tained decision trees have similar structure: the number of
features with a high score according to the decision tree
feature importance score is quite low (usually less than 5
or 6), although the specific features may vary depending
on the configuration. Some of the meta-features are always
present and provide significant discriminative power on three-
diagnosis-labels classification task (e.g. rTN/rFN – rate of
True Negative/False Negative data, rate dist gt/pred – rate of
average distance to ally neighbors against opponent neighbors
in terms of ground truth labels/model predicted labels, KNN
pred conf – KNN average predicted probability confidence
measure; see Sec. III-B for a detailed description of these
features). They are thus good candidates to form a small meta-
feature set in terms of which to present the decision rules.

Most meta-classifiers have precision and recall values
around 80%–90% on all three diagnosis labels, showing that
our method provides a high degree of invariance over the
dataset and classifier type. This means that we can learn the
meta-classifier on a collection of datasets and predict diagnosis
labels for different datasets and classifiers.

In a few cases a wee see a higher uncertainty level (accuracy
drop under 80%). To explain this performance drop, one reason
might be the lack of enough training meta-vectors (see, for
example, Table II row 2) causing decision tree to overfit on

Fig. 3: Linked Bar plots of meta feature ablation experiment,
showing that prediction accuracy score decays with important
meta-feature removed (from least important ones to more
important ones).

the training data, or the different geometrical nature of decision
boundaries from different types of model (see Table II row 3).
This indicates that in order to improve the meta-classifier with
respect to the pipeline performance, more datasets of diverse
types and complexity are needed.

Based on previous findings we performed an ablation test
(see Fig. 3). We remove meta-features in the order of their
increasing importance score (starting with the smallest but
non-zero value): as more and more meta-features are removed
(actually being made zero thus muted during training), we
see the evolution of precision and recall value, on the three
diagnosis classes. The curves are stable up until dropping
the last 5 or 6 meta-features, indicating that indeed, these
most important meta-features contain the majority of the
discriminating power in terms of the three diagnosis classes,
while the rest of the meta-features hold for the ability to gain
higher predictive accuracy on more granular patterns in meta-
feature space.

Concerning the computing resources, to perform the evalu-
ations presented here, we used a standard personal computer
with a 2.5GHz Intel Core i5-12600HX CPU (12 cores 16
threads) and 16GB of RAM. The most expensive part is the
generation of the meta-features, which for the largest dataset
used here (Spotify Pop) took around 20 min to obtain a total
of 4000 meta-vectors. This time grows linearly with the size
and the number of features of the dataset but can be reduced
by using a more sophisticated KNN retrieval algorithm like the
one in [16]. Training the meta-classifier took a few minutes



Dataset # of data points # of # of XGB base XGB weak MLP base MLP weak
#label0, #label1 features meta-vectors easyset size XGB cut easyset size MLP cut

1) MNIST 3-8 11982 87 xgb 2000 50 trees, depth 3 40 trees, depth 1 100 iter, (200,)hl 5 iter (10,)hl
6131, 5851 mlp 2000 10343 40 comp (90%) 11153 70 comp (98%)

2) Fashion MNIST 0-6 12000 100 xgb 2000 50 trees, depth 3 10 trees, depth 1 100 iter (500,)hl 7 iter (4,)hl
6000, 6000 mlp 2000 9214 30 comp (80%) 8699 12 comp (50%)

3) Weather AUS 20000 17 xgb 2000 100 trees, depth 3 10 trees, depth 2 500 iter (30,)hl 7 iter (4,)hl
15669, 4331 mlp 2000 16114 3 comp (60%) 16062 6 comp (80%)

4) Spotify Pop 32833 12 xgb 2000 120 trees, depth 4 50 trees, depth 2 500 iter (100,)hl 7 iter (10,)hl
18871, 13962 mlp 2000 18551 6 comp (60%) 14762 4 comp (50%)

5) Human Resource 14999 5 xgb 2000 100 trees, depth 4 10 trees, depth 1 1000 iter (100,)hl 20 iter (5,)hl
11428, 3571 mlp 2000 14512 3 comp (60%) 14441 3 comp (60%)

6) Water Potability 3276 9 xgb 200 20 trees, depth 4 10 trees, depth 1 1000 iter (50,)hl 50 iter (10,)hl
1998, 1278 mlp 500 1994 5 comp (60%) 1769 5 comp (60%)

7) Diabetes 767 8 xgb 194 25 trees, depth 3 10 tree3, depth 1 200 iter (50,)hl 100 iter (5,)hl
500, 267 mlp 200 534 3 comp (60%) 568 3 comp (60%)

8) Banknote 1371 4 xgb 500 50 trees, depth 3 10 trees, depth 2 1000 iter (40,)hl 60 iter (5,)hl
761, 610 mlp 500 1354 2 comp (60%) 1366 2 comp (60%)

TABLE I: Information about the used datasets and the parameters of base models, weak models and cut-off models. All MLP
models have one hidden layer (its size is given by the HL parameter). For the XGBoost model, we give the number of trees
and their depth. See Sec. IV-C for a detailed description of each column.

Data # of Dtree Dtree Important Extracted # of Prediction
Configuration train vectors depth leafs meta features Decision Rules test vectors Precision / Recall

train 11075 16 188 rTN 0.31, WM: (rFN>0.17)&(rate dist gt<=0.435) 1659 Prec: [0.83±0.0465
4 datasets rate dist gt 0.27, 0.978±0.0144

from 1)-5); rate dist pred 0.14 C: (rTN<=0.03)&(rate dist pred<=0.493) 0.828±0.0431]
test 6)-8) proximity 0.07 Rec: [0.854±0.0688

knn pred conf 0.05 MD: (rFN>0.03)&(knn pred conf>0.097) 0.932±0.011
&(rate dist gt>0.501)&(rate dist pred<=0.381) 0.838±0.0648]

train random 12450 16 153 rTN 0.39, WM: (rTN>0.63)&(rate dist gt<=0.533) 16560 Prec: [0.766 ±0.0736
4 datasets; rate dist gt 0.24, &(MST frac gt>0.02)&(rate dist pred<=0.509) 0.964 ±0.02

test rest rate dist pred 0.10, C: (rTN<=0.01)&(rate dist pred<=0.501) 0.774 ±0.0886 ]
4 datasets knn pred conf 0.06, Rec: [0.804 ±0.0952

MST frac gt 0.05 MD: (rTN>0.01)&(rate dist gt>0.56) 0.904 ±0.0548
&(rate dist pred<=0.39)&(knn pred conf>0.09) 0.778 ±0.0835 ]

train all 11050 18 163 rFN 0.42, WM: (rFN>0.13)&(rate dist gt<=0.437) 12200 Prec: [0.7575 ±0.0538
XGB vec; rate dist gt 0.22, &(MST frac gt>0.112)&(local set cardinality pred>0.078) 0.9425 ±0.0471

test all rate dist pred 0.14, C: (rFN<=0.03)&(rate dist pred<=0.498) 0.7675 ±0.0316 ]
MLP vec. proximity 0.06, &(rTN<=0.68) Rec: [0.8075 ±0.0983
and vice rTN 0.04 MD: (rFN>0.03)&(rate dist gt>0.467) 0.9 ±0.0763

versa &(rate dist pred<=0.297)&(proximity<=0.997) 0.7475 ±0.0792 ]
train all 11300 15 181 rFN 0.31, WM: (rFN>0.15)&(rate dist gt<=0.413) 3885 Prec: [0.9±0.00931

random split rate dist gt 0.26, &(MST frac gt>0.112) 0.972±0.011
75%; rate dist pred 0.13 C: (rFN<=0.03)&(rate dist pred<=0.49) 0.882 ±0.0144]

test rest proximity 0.06 &(rTN<=0.19)
25% knn pred conf 0.05 MD: (rFN>0.03)&(rate dist gt>0.501) Rec: [0.908 ±0.011

&(rate dist pred<=0.37)&(knn pred conf>0.096) 0.92 ±0.0246
&(MST frac gt<=0.459) 0.898 ±0.0172]

TABLE II: Learned meta classifier (decision trees), their properties and predicting performance scores.

using a standard Scikit-learn7 decision tree implementation.

V. CONCLUSION

In this work we propose a framework to help the user gain
information about why a classifier failed to give a correct result
for a given data point (given individual query). We introduce
several quantities describing what happens around the faulty
point in the feature space and, with the aid of these, we
extract profile vectors as intermediate representations capable
of unifying faulty data from different datasets and different
classifiers. These profile vectors are aggregated by a decision
tree meta-classifier to match three diagnosis cases. The final
interpretation rules provided by the decision tree could be
useful to help the user distinguish and understand the reason
of faulty data.

7https://scikit-learn.org

Users may employ the proposed set of interpretability tools
to debug an ML model: decide whether they should add
more data or more features, prune the model, or fine-tune
other hyper-parameters inside the model, in order to achieve
higher prediction accuracy and better generalisation, or else
just correct certain parts of the dataset to remove ambiguity.

One obvious direction in which to develop the presented
method is to extend the framework to include the overfitting
case. The difficulty comes from the fact that in a region where
several classes overlap, a weak classifier will underfit, while a
strong one will overfit, both leading to poor generalisation. We
may need in this case a finer graduation of diagnosis scenarios,
which might not be feasible in all situations.

An important development direction of our proposal would
be to extend it to work in the case of multi-class classifiers.
Indeed, in the present work we tested our framework in the

https://scikit-learn.org


case of binary classifiers, but there is nothing that limits it
to this: the definition of a miss-classified sample remains the
same (a sample that that is attributed by the classifier a wrong
label) and the construction of the ground-truth for the meta-
classifier can be done by the procedure described in Sec. IV-A
in a one-vs-rest manner. The meta-features list should probably
be updated to include a measure of the degree of local non-
separability of different pairs of classes in the neighbourhood
of the test point. We also expect a linear increase in the scale of
certain meta-features calculation, such as the confusion matrix,
since there should be an element for each class.

Another direction worthy of investigation is to develop the
meta-features automatically, for example by using a neural
network to project the input space into an intermediate rep-
resentation that maximizes separability between the clusters
associated with each diagnosis label. This might indeed lead
to better meta-classifiers but would likely require a much larger
training set and, in addition, would lose the interpretability of
the meta-features.
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