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(Fractional) differential equations have seen increasing use in physics, signal process-
ing, fluid mechanics, viscoelasticity, mathematical biology, electrochemistry, and many
other fields over the last two decades, providing a new and more realistic way to capture
memory-dependent phenomena and irregularities inside systems using more sophisticated
mathematical analysis (see, for example, [1] and the references therein).

The study of the stability of (fractional) differential equations has attracted a lot of
attention as a result of its growing applications. Furthermore, fractional- and integer-order
controllers have received increased attention in recent years. Among these are optimal
control, CRONE controllers, fractional PID controllers, lead-lag compensators, and sliding
mode control.

The purpose of this Special Issue is to carry out studies on fractional/integer-order con-
trol theory and its applications to practical systems modeled using fractional/integer-order
differential equations such as design, implementation, and application of fractional/integer-
order control to electrical circuits and systems, mechanical systems, chemical systems,
biological systems, finance systems, etc.

Ten high-quality papers were accepted for publication in this Special Issue. The
papers were written by different authors (note that no author published more than one
paper, which proves the wide scope of the Special Issue). The published papers are briefly
summarized as follows.

According to [2], the discrete fractional Fourier transform (DFRFT) has several def-
initions, the most common of which is the multiweighted fractional Fourier transform
(M-WFRFT). It is difficult to demonstrate its unitarity. The weighted-type fractional Fourier
transform, fractional-order matrix, and eigendecomposition-type fractional Fourier trans-
form are used as basic functions to demonstrate and describe unitarity. They observed that
the M-WFRFT has just four effective weighting terms, none of which are extended to M
terms, as stated by the definition. Furthermore, the program code is examined, and the
results demonstrate that the prior work (Digit Signal Process 2020: 104: 18) for unitary
verification based on MATLAB is incorrect.

According to [3], there has been a recent surge in the number of papers addressing
the overall issue of fractional-order controllers, with a concentration on fractional-order
PID. This controller has been offered in several versions, each with its own set of tweaking
techniques and implementation possibilities. A number of recent studies have discussed
the practical application of such controllers. However, industrial acceptance of these
controllers is still a long way off. Auto-tuning approaches for fractional-order PIDs may
increase their desirability in relation to industrial applications. The existing auto-tuning
approaches for fractional-order PIDs are reviewed in this work. The emphasis is on the most
recent discoveries. For various processes, a comparison of many auto-tuning algorithms
is addressed. Numerical examples are provided to demonstrate the applicability of the
methodologies, which might be applied to simple industrial operations.

Fractal Fract. 2023, 7, 48. https://doi.org/10.3390/fractalfract7010048 https://www.mdpi.com/journal/fractalfract1
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The study [4] proposes an interval estimator for a fourth-order nonlinear susceptible–
exposed–infected–recovered (SEIR) model with disturbances using noisy counts of sus-
ceptible patients given by Public Health Services (PHS). According to the World Health
Organization, infectious diseases are the leading cause of mortality among the top 10 causes
of death worldwide (WHO). As a result, tracking and assessing the progression of these dis-
eases is critical for developing intervention methods. The authors investigate a real-world
situation in which some uncertain variables, such as model disturbances and uncertain
input and output measurement noise, are not precisely available but fall within an interval.
Furthermore, the unclear transmission bound rate from the susceptible to the exposed stage
cannot be measured. They created an interval estimator based on an observability matrix
that yields a tight interval vector for the SEIR model’s actual states in a guaranteed man-
ner without computing the observer gain. The developed approach provides additional
freedom because it is not dependent on observer gain. For the estimated state vector, the
convergence of the width to a known value in a finite period is explored to demonstrate
the stability of the estimation error. Finally, simulation results show that the suggested
approach performs well.

Ref. [5] discusses a novel finite time stability (FTS) of neutral fractional-order systems
with a time delay (NFOTSs). In light of this, the Gronwall inequality is used to demonstrate
the FTSs of NFOTSs in the literature. The application of fixed-point theory to show the FTS
of NFOTSs is a novel component of our proposed study. Finally, two instances are used to
validate and substantiate the theoretical contributions.

The authors of [6] introduce a framework of distributed interval observers for fractional-
order multiagent systems with nonlinearity. First, a frame was created to construct the
system’s upper and lower boundaries. The positivity of the error dynamics might be
ensured by applying monotone system theory, implying that the constraints could trap
the initial state. Second, a sufficient condition was used to ensure that distributed inter-
val observers are bounded. The adequate condition was then based on an expansion of
the Lyapunov function in the realm of fractional calculus. An algorithm related to the
observer design technique was also provided. Finally, a numerical simulation was utilized
to demonstrate the distributed interval observer’s usefulness.

The paper [7] investigates an approximate method for solving the generalized frac-
tional diffusion equation that combines the finite difference and collocation methods
(GFDE). The presented method’s convergence and stability analyses are also thoroughly
established. To ensure the proposed method’s effectiveness and accuracy, test examples
with different scale and weight functions are taken into account, and the numerical results
obtained are compared to the existing methods in the literature. The suggested method
works particularly well with generalized fractional derivatives (GFDs), as the existence of
scale and weight functions in a GFD makes discretization and further analysis problematic.

According to [8], autonomous underwater vehicles (AUVs) have a wide range of
uses due to their capacity to travel great distances, their ability conceal themselves well,
their high level of intelligence, and their ability to replace humans in dangerous missions.
AUV motion control systems, which can assure steady operation in the complicated ocean
environment, have piqued the interest of researchers. The authors suggest a single-input
fractional-order fuzzy logic controller (SIFOFLC) as an AUV motion-control system in
this research. First, a single-input fuzzy logic controller (SIFLC) based on the signed
distance approach was presented, with its control input being a linear combination of the
error signal and its derivative. The SIFLC reduces the controller design and calculation
procedure significantly. Then, a SIFOFLC with the error signal’s derivative extending to a
fractional order was produced, providing additional flexibility and adaptability. Finally,
comparative numerical simulations of spiral dive motion control were performed to validate
the superiority of the suggested control algorithm. Meanwhile, the hybrid particle swarm
optimization (HPSO) technique was used to optimize the parameters of several controllers.
The simulation results demonstrate the suggested control algorithm’s enhanced stability
and transient performance.
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The traditional approach to the integration of fractional-order starting value issues, ac-
cording to [9], is based on the Caputo derivative, whose beginning conditions are employed
to build the classical integral equation. The authors show, using a simple counter example,
that this technique results in incorrect free-response transients. The frequency-distributed
model of the fractional integrator and its distributed beginning conditions are used to
solve this fundamental problem. They answer the preceding counter-example using this
model and provide a methodology that is a generalization of the integer-order approach.
Finally, in the linear situation, this technique is used to model Fractional Differential Sys-
tems (FDS) and for the formulation of their transients. Two expressions are constructed,
one based on the Mittag–Leffler function and the other on the notion of a distributed
exponential function.

According to [10], fractional-order differential equations are effective tools for mod-
eling dynamic systems with long-term memory effects. The verified simulation of such
system models using interval tools enables the computation of assured enclosures of attain-
able pseudo-state regions over a finite time horizon. In prior work, the author published an
iteration method based on Picard iteration that uses Mittag–Leffler functions to determine
guaranteed pseudo-state enclosures. In this study, the corresponding iteration is gener-
alized to use exponential functions during the iteration scheme evaluation. A validated
solution of integer-order sets of differential equations yields such exponential functions.
The goal of this work is to show that using exponential functions for Mittag–Leffler func-
tions instead of pure box-type interval enclosures not only improves the tightness of the
calculated pseudo-state enclosures, but also minimizes the required computational cost.
These claims are supported by a realistic simulation model of the charging/discharging
kinetics of Lithium-ion batteries.

Finally, Ref. [11] investigates the synchronization of fractional-order uncertain delayed
neural networks with an event-triggered communication strategy. By developing an
appropriate Lyapunov–Krasovskii functional (LKF) and inequality approaches, sufficient
criteria for the stability of delayed neural networks are obtained. The criteria are expressed
as linear matrix inequalities (LMIs). To accomplish synchronization, a controller is derived
using the drive-response idea, the LMI technique, and the Lyapunov stability theorem.
Finally, numerical examples are provided to validate the effectiveness of the major findings.

Acknowledgments: The Guest Editors of this Special Issue would like to thank the anonymous
reviewers and the editorial office for their hard work during the review and publication process.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This work deals with a new finite time stability (FTS) of neutral fractional order systems
with time delay (NFOTSs). In light of this, FTSs of NFOTSs are demonstrated in the literature using
the Gronwall inequality. The innovative aspect of our proposed study is the application of fixed point
theory to show the FTS of NFOTSs. Finally, using two examples, the theoretical contributions are
confirmed and substantiated.

Keywords: fractional calculus; neutral systems; fixed-point theory

1. Introduction

The Fractional Order System (FOS) is a nonlinear system presented with a non-integer
derivative. It is well established that mathematical models can be used to describe physical
systems. These mathematical models are used to operate such systems in a variety of ways,
including controlling, observing, and detecting. The faults and errors of modelization
may affect the system quality and performance. Therefore, the use of Fractional deriva-
tives can approach such a mathematical model to physical reality. This fact is proved in
many real physical systems, see for example [1]. Recently, the fractional calculus has at-
tracted the attention of many researchers and numerous works have been published in this
context [2–11]. In fact, by using quantum calculus, the work in [6] deals with the extension
of a hybrid fractional differential operator. Utilizing the local fractional Laplace variational
iteration methods and the local fractional reduced differential transform, authors in [7]
have obtained an approximation of the solutions for coupled Korteweg De Vries Equations.
The application of these FOSs is numerous in different domain applications, whether in
electricity [10], thermal [5], chemistry [11], signal processing [12], biology [13,14] or control
theory, such as fault estimation [15], stabilization [16], observer design [16,17], optimal
control [18], and asymptotic stability [19,20].

The study of FTS for the Fractional Order Time Delay Systems (FOTDSs) has been largely
studied in the literature in the case of continuous and discrete time [21–30]. In [30], H. Ye et al.,
have shown a Generalized Gronwall Inequality (GGI). After that, authors in [25] have used
the GGI to study the FTS for FOTDSs. The stability of neutral fractional order time delay
systems with Lipschitz nonlinearities in finite time has been investigated by F. Du et al.
in [23]. The finite-time stability of a class of fractional delayed neural networks with
commensurate order between 0 and 1 was studied by the authors in [28]. Additionally,
the authors in [26] have provided an analytical method based on the Laplace transform
and the ‘inf-sup’ approach for evaluating the finite-time stability of singular fractional-
order switching systems with delay. The authors have proposed a constructive geometric
design for switching laws based on the partitioning of the stability state regions in convex
cones. The suggested technique allows for the development of novel delay-dependent

Fractal Fract. 2022, 6, 289. https://doi.org/10.3390/fractalfract6060289 https://www.mdpi.com/journal/fractalfract5
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adequate conditions for the system’s regularity, impulse-free, and finite-time stability in
terms of tractable matrix inequalities and Mittag–Leffler functions. A case study is offered
to demonstrate the proposed method’s efficacy. Using the Lyapunov method, Thanh et al.
in [27] have investigated a novel FTS analysis of FOTDSs. By using Banach fixed point
method, author in [21] has studied the FTS for FOTDSs. In the discrete case, one has the
following references [22,24,29]. Indeed, authors in [24] have proposed a sufficient condition
for ensuring the FTS for Nabla uncertain FOS. Furthermore, authors in [22] have established
a new Gronwall Inequality and they have used it to study the FTS of a class of nonlinear
fractional delay difference systems. Furthermore, in [29], the FTS of Caputo delta fractional
difference equations is investigated. On a finite time domain, a generalized Gronwall
inequality is given. For fractional differential equations, a finite-time stability condition is
suggested. The concept is then generalized to discrete fractional cases. There are finite-time
stable conditions for a linear fractional difference equation with constant delays. To support
the theoretical result, one example is numerically shown.

Motivated by the above study, this article treats the FTS for FOS of neutral type by
using a version of the Banach fixed point theorem and some properties of the Mittag–Leffler
Function (MLF). The contribution of this work is summarized as follows:

• Knowing that, FTS of NFOTSs are proved in the literature based on the Gronwall
inequality, see [23]. The novelty of our suggested work comes from the use of the
fixed point theory to demonstrate the FTS of NFOTSs;

• A novel FTS result of FOS of neutral type is given;
• The theoretical contributions are confirmed and validated by two examples.

The rest of the paper is organized as follows. The second section deals with some
preliminaries. Some basic results related to fractional calculus, fixed point theory, as well
as finite time stability are shown. In regards to the third section, the stability analysis
of the suggested system (2), in the case of (λ1 < λ2) and (λ1 = λ2), is investigated and
described. Note that the fixed point approach is used to demonstrate the main results.
The fourth section is concentrated to show the validity of the proposed results. Two
examples are suggested to demonstrate the efficiency of the main results. Finally, to end
the work, a conclusion is presented in the fifth section showing the principle fundamentals
of the work.

2. Basic Results

Definition 1 ([31]). Given 0 < χ < 1. The CFD is given by,

CDχ
a g(s) =

1
Γ(1− χ)

d
ds

∫ s

a
(s−ω)−χ

(
g(ω)− g(a)

)
dω. (1)

Definition 2 ([31]). The MLF is defined by :

Eχ(s) =
+∞

∑
q=0

sq

Γ(qχ + 1)
,

with χ > 0, s ∈ C.

Lemma 1 ([21]). We have for s ≥ 0

sχ

Eχ

(
λsχ
) ≤ Γ(χ + 1)

λ
,

where 0 < χ < 1 and λ > 0.

Remark 1. The function d(t) = Eχ

(
b(t− τ)χ

)
satisfies CDχ

a d(t) = bd(t), where b ∈ R∗.
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Definition 3. A mapping β : B× B → [0, ∞] is called a generalized metric on a nonempty set
B if:

S1 β(ω1, ω2) = 0 if, and only if, ω1 = ω2;

S2 β(ω1, ω2) = β(ω2, ω1) for all ω1, ω2 ∈ B;

S3 β(ω1, ω3) ≤ β(ω1, ω2) + β(ω2, ω3) for all ω1, ω2, ω3 ∈ B.

Theorem 1. Let (B, β) be a generalized complete metric space. Suppose that K : B → B is
contractive with k < 1. If there is an integer k0 ≥ 0, such that β(Kk0+1b0, Kk0 b0) < ∞ for some
b0 ∈ B, so:

(a) lim
n−→+∞

Knb0 = b1 with K(b1) = b1;

(b) b1 is the unique fixed point of K in B∗ := {b2 ∈ B : β(Kk0 b0, b2) < ∞};

(c) If b2 ∈ B∗, then β(b1, b2) ≤ 1
1−k β(Kb2, b2).

We consider the following system:

CDλ2
0 x(t)− C CDλ1

0 x(t− ς(t)) = B0x(t) + B1x(t− ς(t))

+B2υ(t) + F(t, x(t), x(t− ς(t)), υ(t)), t ≥ 0, (2)

with the initial condition x(s) = ζ(s) for −ς ≤ s ≤ 0, with 0 < λ1 ≤ λ2 < 1, ς(t) is
continuous, 0 ≤ ς(t) ≤ ς, υ(t) ∈ Rp is the disturbance, ζ ∈ C1([−ς, 0],Rq), C ∈ Rq×q,
B0 ∈ Rq×q B1 ∈ Rq×q, B2 ∈ Rq×p.

The function F is continuous and satisfies:

‖F(τ, σ1, σ2, σ3)− F(τ, ψ1, ψ2, ψ3)‖ ≤ f (τ)
(
‖σ1 − ψ1‖+ ‖σ2 − ψ2‖+ ‖σ3 − ψ3‖

)
, (3)

and F(τ, 0, 0, 0) = 0, for all (τ, σ1, σ2, σ3, ψ1, ψ2, ψ3) ∈ R+ ×Rq ×Rq ×Rp ×Rq ×Rq ×Rp

where f is a continuous function.
The function υ is continuous and satisfies:

∃� > 0 : υT(t)υ(t) ≤ �2. (4)

Definition 4. The FOS (2) possesses FTS w.r.t. {γ1, γ2, �, T}, γ1 < γ2 if

‖ζ‖ ≤ γ1,

implies:
‖x(t)‖ ≤ γ2, ∀t ∈ [0, T],

for all υ satisfying (4), where ‖ζ‖ = sup
τ∈[−ς,0]

‖ζ(τ)‖.

3. Stability Analysis

This section is used to show our main results.
First, let us denote bi = max

r∈[0,T]

(
f (r) + ‖Bi‖

)
for i = 0, 1, 2 and c = ‖C‖.

In the next subsections, we study the FTS of (2) when λ1 < λ2 and when λ1 = λ2.

7
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3.1. The Case λ1 < λ2

From Theorem 1 in [23], we have the solution of the FOS (2) is the solution of the
following system

x(t) = ζ(0)− Cζ(−ς(0))
tλ2−λ1

Γ(λ2 − λ1 + 1)
+

1
Γ(λ2 − λ1)

∫ t

0
(t− s)λ2−λ1−1Cx

(
s− ς(s)

)
ds

+
1

Γ(λ2)

∫ t

0
(t− s)λ2−1

[
B0x(s) + B1x(s− ς(s))

+ B2υ(s) + F(s, x(s), x(s− ς(s)), υ(s))
]
ds, 0 ≤ t ≤ T,

x(t) = ζ(t),−ς ≤ t ≤ 0.

Theorem 2. The FOS (2) is FTS w.r.t. {γ1, γ2, �, T}, γ1 < γ2 if there exist η1, η2 > 0, such that

G(γ1, �) ≤ γ2, (5)

where

G(γ1, �) =
(

δ + c1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
�, (6)

δ = 1 + c Tλ2−λ1
Γ(λ2−λ1+1) , c1 =

1
(1− η)

( cδM1

Γ(λ2 − λ1 + 1)
+

b0δM2

Γ(λ2 + 1)
+

b1δM2

Γ(λ2 + 1)

)
,

c2 =
b2M2

(1− η)Γ(λ2 + 1)
, M1 = sup

τ∈[0,T]

( τλ2−λ1

Eλ2−λ1

(
(c + η1)τλ2−λ1

)),

M2 = sup
τ∈[0,T]

( τλ2

Eλ2

(
(b0 + b1 + η2)τλ2

)) and η =
( c

c+η1
+ b0+b1

b0+b1+η2

)
.

Proof. Let ζ ∈ C1([−ς, 0],Rq), such that ‖ζ‖ ≤ γ1.
Let F = C

(
[−ς, T],Rq) and consider the metric β on F by

β(y1, y2) = inf

{
r ∈ [0, ∞] : ‖y1(t)− y2(t)‖ ≤ rg(t), ∀t ∈ [−ς, T]

}
,

where g is given by g(τ) = Eλ2−λ1

(
(c + η1)τ

λ2−λ1
)
Eλ2

(
(b0 + b1 + η2)τ

λ2
)

for τ ∈ [0, T]
and g(τ) = 1, for τ ∈ [−ς, 0].

We consider the operator: D : F → F , such that

(DX)(w) = ζ(0)− Cζ(−ς(0))
wλ2−λ1

Γ(λ2 − λ1 + 1)

+
1

Γ(λ2 − λ1)

∫ w

0
(w− s)λ2−λ1−1CX

(
s− ς(s)

)
ds

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1

[
B0X(s) + B1X(s− ς(s))

+B2υ(s) + F(s, X(s), X(s− ς(s)), υ(s))
]
ds, (7)

for w ∈ [0, T] and (DX)(w) = ζ(w), for w ∈ [−ς, 0].
Note that,D is well defined, (F , β) is a generalized complete metric space, β(DX0, X0) <

∞, and {X1 ∈ F : β(X0, X1) < ∞} = F , ∀X0 ∈ F .
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Let X1, X2 ∈ F , for w ∈ [−ς, 0], we get (DX1)(w)− (DX2)(w) = 0.
For w ∈ [0, T], we have∥∥∥(DX1)(w)− (DX2)(w)

∥∥∥
≤
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
c‖X1(r− ς(r))− X2(r− ς(r))‖dr

+
∫ w

0

(w− r)λ2−1

Γ(λ2)

[(
f (r) + ‖B0‖

)
‖X1(r)− X2(r)‖

+
(

f (r) + ‖B1‖
)
‖X1(r− ς(r))− X2(r− ς(r))‖

]
dr

≤ c
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
‖X1(r− ς(r))− X2(r− ς(r))‖dr

+b0

∫ w

0
(w− r)λ2−1 ‖X1(r)− X2(r)‖

Γ(λ2)
dr

+b1

∫ w

0
(w− r)λ2−1 ‖X1(r− ς(r))− X2(r− ς(r))‖

Γ(λ2)
dr. (8)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

≤ c
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)

‖X1(r− ς(r))− X2(r− ς(r))‖
g(r− ς(r))

g(r− ς(r))dr

+
b0

Γ(λ2)

∫ w

0
(w− r)λ2−1 ‖X1(r)− X2(r)‖

g(r)
g(r)dr

+
b1

Γ(λ2)

∫ w

0
(w− r)λ2−1 ‖X1(r− ς(r))− X2(r− ς(r))‖

g(r− ς(r))
g(r− ς(r))dr

≤ cβ(X1, X2)
∫ w

0

(w− r)λ2−λ1−1

Γ(λ2 − λ1)
g(r− ς(r))dr

+
b0β(X1, X2)

Γ(λ2)

∫ w

0
(w− r)λ2−1 g(r)dr

+
b1β(X1, X2)

Γ(λ2)

∫ w

0
(w− r)λ2−1 g(r− ς(r))dr.

Therefore,∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ cβ(X1, X2)

∫ w

0

(w− τ)λ2−λ1−1

Γ(λ2 − λ1)
g(τ)dτ

+
(b0 + b1)β(X1, X2)

Γ(λ2)

∫ w

0
(w− τ)λ2−1 g(τ)dτ

≤ cβ(X1, X2)Eλ2

(
(b0 + b1 + η2)wλ2

)
×

∫ w

0

(w− τ)λ2−λ1−1

Γ(λ2 − λ1)
Eλ2−λ1

(
(c + η1)τ

λ2−λ1
)
dτ

+ (b0 + b1)β(X1, X2)Eλ2−λ1

(
(c + η1)wλ2−λ1

)
×

∫ w

0

(w− τ)λ2−1

Γ(λ2)
Eλ2

(
(b0 + b1 + η2)τ

λ2
)
dτ.

Using Remark 1, we get

9
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∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ c

c + η1
β(X1, X2)g(w) +

b0

b0 + b1 + η2
β(X1, X2)g(w)

+
b1

b0 + b1 + η2
β(X1, X2)g(w)

≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2)g(w). (9)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

g(w)
≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2).

Thus,

β(DX1,DX2) ≤
( c

c + η1
+

b0 + b1

b0 + b1 + η2

)
β(X1, X2).

Therefore, D is contractive.
Let x0 be the function given by x0(τ) = ζ(τ), for τ ∈ [−ς, 0] and x0(τ) = ζ(0) −

Cζ
(
− ς(0)

)
τλ2−λ1

Γ(λ2−λ1+1) for τ ∈ [0, T].
Then, we have

‖x0(τ)‖ ≤
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
,

for all τ ∈ [−ς, T].
For τ ∈ [−ς, 0], we get (Dx0)(τ)− x0(τ) = 0.
For w ∈ [0, T], we have∥∥∥(Dx0)(w)− x0(w)
∥∥∥ ≤

∫ w

0

(w− s)λ2−λ1−1

Γ(λ2 − λ1)
c‖x0

(
s− ς(s)

)
‖ds

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1[b0‖x0(s)‖+ b1‖x0

(
s− ς(s)

)
‖+ b2�

]
ds

≤ c
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
) wλ2−λ1

Γ(λ2 − λ1 + 1)

+
(

b0
(
‖ζ‖+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
+ b1

(
‖ζ‖

+ c‖ζ‖ Tλ2−λ1

Γ(λ2 − λ1 + 1)
)
+ b2�

) wλ2

Γ(λ2 + 1)

≤ c‖ζ‖δ
wλ2−λ1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2�

) wλ2

Γ(λ2 + 1)
. (10)

Then ∥∥∥(Dx0)(w)− x0(w)
∥∥∥

g(w)
≤ c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2�

) M2

Γ(λ2 + 1)
, (11)

for all w ∈ [0, T].
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Therefore,

β(Dx0, x0) ≤ c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2�

) M2

Γ(λ2 + 1)
. (12)

It follows from Theorem 1 that there is a unique solution x of (2) with initial conditions
of ζ, such that

β(x0, x) ≤ 1
1− η

[ c‖ζ‖δM1

Γ(λ2 − λ1 + 1)

+
(
b0‖ζ‖δ + b1‖ζ‖δ + b2�

) M2

Γ(λ2 + 1)

]
≤ c1γ1 + c2�. (13)

Therefore,

‖x0(t)− x(t)‖ ≤
(
c1γ1 + c2�

)
Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
,

for every t ∈ [0, T].
Then,

‖x(t)‖ ≤ ‖x0(t)‖+ ‖x(t)− x0(t)‖
≤

(
δ + c1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
�, (14)

for every t ∈ [0, T].
Thus, ‖x(t)‖ ≤ γ2, for all t ∈ [0, T], if (5) is satisfied.

Remark 2. Using Lemma 1, we get

c1 ≤
1

(1− η)

( cδ

c + η1
+

b0δ

b0 + b1 + η2
+

b1δ

b0 + b1 + η2

)
and

c2 ≤
1

(1− η)

b2

b0 + b1 + η2
.

Let
c̃1 =

1
(1− η)

( cδ

c + η1
+

b0δ

b0 + b1 + η2
+

b1δ

b0 + b1 + η2

)
and

c̃2 =
1

(1− η)

b2

b0 + b1 + η2
.

Therefore, the condition (5) can be relaxed by:

G̃(γ1, �) ≤ γ2, (15)

where

G̃(γ1, �) =
(

δ + c̃1Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

))
γ1

+ c̃2Eλ2−λ1

(
(c + η1)Tλ2−λ1

)
Eλ2

(
(b0 + b1 + η2)Tλ2

)
�. (16)
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3.2. The Case λ1 = λ2

The solution of the FOS (2) is the solution of

x(t) = ζ(0) + C
(

x
(
t− ς(t)

)
− ζ(−ς(0))

)
+

1
Γ(λ2)

∫ t

0
(t− s)λ2−1

[
B0x(s) + B1x(s− ς(s))

+ B2υ(s) + F(s, x(s), x(s− ς(s)), υ(s))
]
ds, 0 ≤ t ≤ T,

x(t) = ζ(t),−ς ≤ t ≤ 0.

Theorem 3. The FOS (2) is FTS w.r.t. {γ1, γ2, �, T}, γ1 < γ2 if there exist θ > 0, such that

η < 1,

and
K(γ1, �) ≤ γ2, (17)

where
η =

(
c +

b0 + b1

b0 + b1 + θ

)
,

K(γ1, �) =
(

1 + c1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c2Eλ2

(
(b0 + b1 + θ)Tλ2

))
�, (18)

c1 =
1

(1− η)

(
2c +

b0M
Γ(λ2 + 1)

+
b1M

Γ(λ2 + 1)

)
, c2 =

b2M
(1− η)Γ(λ2 + 1)

and

M = sup
τ∈[0,T]

( τλ2

Eλ2

(
(b0 + b1 + θ)τλ2

)).

Proof. Let ζ ∈ C1([−ς, 0],Rq), such that ‖ζ‖ ≤ γ1.
Let F = C

(
[−ς, T],Rq) and consider the metric β on F by

β(y1, y2) = inf

{
r ∈ [0, ∞] :

‖y1(l)− y2(l)‖
g(l)

≤ r, ∀l ∈ [−ς, T]

}
,

where g is given by g(l) = 1, for l ∈ [−ς, 0] and g(l) = Eλ2

(
(b0 + b1 + θ)lλ2

)
for l ∈ [0, T].

We consider the operator: D : F → F , such that

(DX)(w) = ζ(0) + C
(

X
(
w− ς(w)

)
− ζ(−ς(0))

)
+

1
Γ(λ2)

∫ w

0
(w− s)λ2−1

[
B0X(s) + B1X(s− ς(s))

+ B2υ(s) + F(s, X(s), X(s− ς(s)), υ(s))
]
ds, (19)

for w ∈ [0, T] and (DX)(w) = ζ(w), for w ∈ [−ς, 0].
Note that,D is well defined, (F , β) is a generalized complete metric space, β(DX0, X0) < ∞,
and {X1 ∈ F : β(X0, X1) < ∞} = F , ∀X0 ∈ F .
Let X1, X2 ∈ F , for w ∈ [−ς, 0], we get (DX1)(w)− (DX2)(w) = 0.

12
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For w ∈ [0, T], we have∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

≤ c‖X1(w− ς(w))− X2(w− ς(w))‖

+
∫ w

0

(w− r)λ2−1

Γ(λ2)

[(
f (r) + ‖B0‖

)
‖X1(r)− X2(r)‖

+
(

f (r) + ‖B1‖
)
‖X1(r− ς(r))− X2(r− ς(r))‖

]
dr

≤ c
‖X1(w− ς(w))− X2(w− ς(w))‖

g
(
w− ς(w)

) g
(
w− ς(w)

)
+b0

∫ w

0

(w− u)λ2−1

Γ(λ2)

‖X1(u)− X2(u)‖
g(u)

g(u)du

+b1

∫ w

0

(w− u)λ2−1

Γ(λ2)

‖X1(u− ς(u))− X2(u− ς(u))‖
g
(
u− ς(u)

) g
(
u− ς(u)

)
du

≤ cβ(X1, X2)g
(
w− ς(w)

)
+

b0β(X1, X2)

Γ(λ2)

∫ w

0
(w− u)λ2−1 g(u)du

+
b1β(X1, X2)

Γ(λ2)

∫ w

0
(w− u)λ2−1 g(u)du. (20)

Using Remark 1, we get∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥ ≤ cβ(X1, X2)g(w) +

b0

b0 + b1 + θ
β(X1, X2)g(w)

+
b1

b0 + b1 + θ
β(X1, X2)g(w)

≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2)g(w). (21)

Then, ∥∥∥(DX1)(w)− (DX2)(w)
∥∥∥

g(w)
≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2),

Thus,

β(DX1,DX2) ≤
(
c +

b0 + b1

b0 + b1 + θ

)
β(X1, X2).

Therefore, D is contractive.
Let x0 be the function given by x0(τ) = ζ(τ), for τ ∈ [−ς, 0] and x0(τ) = ζ(0) for

τ ∈ [0, T].
Then, we have

‖x0(τ)‖ ≤ ‖ζ‖,

for all t ∈ [−ς, T].
For τ ∈ [−ς, 0], we get (Dx0)(τ)− x0(τ) = 0.
For w ∈ [0, T], we have∥∥∥(Dx0)(w)− x0(w)
∥∥∥ ≤ 2c‖ζ‖

+
1

Γ(λ2)

∫ w

0
(w− s)λ2−1[b0‖x0(s)‖+ b1‖x0

(
s− ς(s)

)
‖+ b2�

]
ds

≤ 2c‖ζ‖+ wλ2

Γ(λ2 + 1)

(
b0‖ζ‖+ b1‖ζ‖+ b2�

)
. (22)
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Then, ∥∥∥(Dx0)(w)− x0(w)
∥∥∥

g(w)
≤ 2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2�

) M
Γ(λ2 + 1)

, (23)

for all w ∈ [0, T].
Therefore,

β(Dx0, x0) ≤ 2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2�

) M
Γ(λ2 + 1)

. (24)

Theorem 1 implies that (2) has a unique solution x with initial conditions of ζ, such that

β(x0, x) ≤ 1
1− η

[
2c‖ζ‖

+
(
b0‖ζ‖+ b1‖ζ‖+ b2�

) M
Γ(λ2 + 1)

]
≤ c1γ1 + c2�. (25)

Therefore,

‖x0(t)− x(t)‖ ≤
(
c1γ1 + c2�

)
Eλ2

(
(b0 + b1 + θ)Tλ2

)
,

for all t ∈ [0, T].
Then,

‖x(t)‖ ≤ ‖(x− x0)(t)‖+ ‖x0(t)‖
≤

(
1 + c1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c2Eλ2

(
(b0 + b1 + θ)Tλ2

)
�. (26)

Thus, ‖x(t)‖ ≤ γ2, for all t ∈ [0, T], if (17) is satisfied.

Remark 3. Using Lemma 1, we get

c1 ≤
1

(1− η)

(
2c +

b0

b0 + b1 + θ
+

b1

θ + b1 + b0

)
and

c2 ≤
1

(1− η)

b2

b0 + b1 + θ
.

Let us consider

c̃1 =
1

(1− η)

(
2c +

b0

θ + b1 + b0
+

b1

b0 + b1 + θ

)
and

c̃2 =
1

(1− η)

b2

θ + b1 + b0
.

Therefore, the condition (17) can be relaxed by:

K̃(γ1, �) ≤ γ2, (27)

14



Fractal Fract. 2022, 6, 289

where

K̃(γ1, �) =
(

1 + c̃1Eλ2

(
(b0 + b1 + θ)Tλ2

))
γ1

+ c̃2Eλ2

(
(b0 + b1 + θ)Tλ2

)
�. (28)

Remark 4. In the Theorem 3, c < 1 it is a necessary condition.

Remark 5. In the case when C = 0, we get the results in [21].

4. Examples

Two examples are studied to prove the applicability of Theorems 2 and 3.

Example 1. Consider the NFOTDSs (2), with λ2 = 0.7, λ1 = 0.2, ς(s) = 0.1,

υ(τ) =
(
0.5, 0

)T , ζ(τ) =
(
0.05, 0

)T , for τ ∈ [−0.1, 0],

F(s, x(s), x(s− ς(s)), υ(s)) = 0.01
(

sin
(
x2(s− ς(s))

)
, sin

(
x1(s)

))T
,

and

B0 =

(
0 0.4

0.1 0

)
, B1 =

( −0.6 0
−0.2 0

)
, B2 =

(
0.3 0
0.4 0

)
, C =

(
0.2 0
−0.1 0

)
.

We get b0 = 0.41, b1 = 0.64, b2 = 0.51 and c = 0.2236.
For η1 = η2 = 1, � = 1, γ1 = 0.3 and γ2 = 60. Moreover, if we calculate δ, c̃1 and c̃2, then

G̃(γ1, �) 
 59 < γ2, for T = 0.61. Based on theorem 2 it is clear that the NFOTDSs is FTS w.r.t(
0.3, 60, 1, 0.61

)
.

Example 2. Consider the NFOTDSs (2), with λ2 = λ1 = 0.6, ς(s) = 0.1,

υ(τ) =
(
0, 0.5, 0

)T , ζ(τ) =
(
0.04, 0, 0.02

)T , for τ ∈ [−0.1, 0],

F(s, x(s), x(s− ς(s)), υ(s)) = 0.01
(

sin
(

x2(s− ς(s))
)
, sin

(
x3(s− ς(s)

)
, sin

(
x1(s))

))T
,

and

B0 =

⎛⎝ 0.01 −0.2 0.25
−0.02 0.05 0.1

0.2 −0.01 0.15

⎞⎠, B1 =

⎛⎝ 0.01 −0.15 0.31
0.25 0.12 −0.14
0.13 −0.12 0.22

⎞⎠,

B2 =

⎛⎝ 0.08 0.07 0.2
0.08 −0.07 −0.06
−0.12 −0.03 −0.14

⎞⎠, C =

⎛⎝ 0.1 0.2 0.03
0.12 0.22 0.05
−0.17 0.05 −0.21

⎞⎠.

We get b0 = 0.37, b1 = 0.47, b2 = 0.30, and c = 0.35.
For � = 1, θ = 1, γ1 = 0.4, γ2 = 100, and T = 1.05, we get K̃(γ1, �) 
 97 < γ2.
Theorem 3 implies that the NFOTDSs is FTS w.r.t

(
0.4, 100, 1, 1.05

)
.

5. Conclusions

In this paper, a new robust FTS for NFOTDSs was described. By suggesting an
approach based on the fixed point theory, novel sufficient conditions for the robust FTS of
such systems are obtained. Finally, two examples were described to show the validity and
the useless of the suggested result.
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Abstract: The usual approach to the integration of fractional order initial value problems is based on
the Caputo derivative, whose initial conditions are used to formulate the classical integral equation.
Thanks to an elementary counter example, we demonstrate that this technique leads to wrong free-
response transients. The solution of this fundamental problem is to use the frequency-distributed
model of the fractional integrator and its distributed initial conditions. Using this model, we solve
the previous counter example and propose a methodology which is the generalization of the in-
teger order approach. Finally, this technique is applied to the modeling of Fractional Differential
Systems (FDS) and the formulation of their transients in the linear case. Two expressions are de-
rived, one using the Mittag–Leffler function and a new one based on the definition of a distributed
exponential function.

Keywords: initial value problem; fractional differential systems; fractional integral equation; infinite-
state approach; Riemann–Liouville integral; frequency distributed exponential function

1. Introduction

The integration of Fractional Differential Equations (FDE) and Systems (FDS) is con-
sidered to be a well-founded and approved topic for most fractional calculus researchers.
Therefore, the title of the paper appears as an ingenuous and unrealistic objective to revisit
an established mathematical result. Nevertheless, our purpose is to provide an objective
analysis of this fundamental problem and to formulate a satisfactory solution to fractional-
order initial-value problems.

In fact, the initial-value problem, or Cauchy problem, is obviously trivial in the
integer order case [1,2]. On the other hand, the solution of the fractional-order case
appears as a generalization of the integer-order one. However, due to the multiplicity of
fractional-order derivative definitions, researchers have considered it necessary to adapt
the classical approach by referring to a particular derivative and its corresponding initial
conditions [3–5]. Practically, most of the time, the Caputo derivative [3,6] is used because
its “initial conditions” can be physically interpreted. Many critics have already addressed
this choice, based on initialization considerations [7–15]. In those papers, the authors
emphasize the inability of the Caputo derivative technique to solve the initialization
problem, but, contrary to the history function technique [9,10,16–21] and the infinite-state
approach [13,22–24], they do not provide a solution to this problem. Recently, some
solutions based on new fractional derivatives (see, for example, [25–28]), which are in
fact local derivatives [29,30], have been proposed. Practically, the direct consequence of
these multiple choices is that different theoretical free responses are possible for the same
FDE/FDS problem, which is of course physically inconsistent.

Our objective in this paper is to prove (in fact to recall) theoretically, using an elemen-
tary initial value problem, that the solution predicted by the Caputo derivative approach
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leads to a false free response. Then, we treat the same example with the frequency-
distributed model of the fractional integrator [31–34]. We demonstrate that using a dis-
tributed initial condition, in fact that of the fractional integrator, provides the good solution
to the considered problem. The conclusion of this analysis is that any fractional-order
initial-value problem has to be treated such as in the integer-order case, using essentially
the fractional integrator and its distributed initial state or its initialization function. Then,
this technique is applied to the modeling of FDE/FDS and the formulation of their tran-
sients in the linear case. Two expressions are derived, one using the classic Mittag–Leffler
function and a new one based on the definition of a distributed exponential function.

The theory developed in the paper is not a new one, since the first paper [35] related to
the fractional integrator was published in 1999. Since that original publication, this research
has been applied to the modeling and identification of real-world diffusive processes:
electrochemical [36], thermal [37], and rotor skin effect, see chapter 5, volume 1 of [34]. The
modeling of fractional systems based on the fractional integrator, known as the infinite-
state approach, has been presented in several articles, see, for example, [22,33,38], with a
particular focus on system initialization [23,24]. Moreover, it has been applied to the stability
analysis of linear and nonlinear systems with a distributed formulation of the Lyapunov
function [39]. The theory of the infinite state approach and its applications to various
domains of control theory are presented in a two-volume monograph [34]. However,
in spite of its contributions to initialization and Lyapunov system stability, this theory
is ignored or considered as an exotic contribution to fractional calculus, although it has
been adopted by researchers for initialization purposes [21,40–42] and Lyapunov stability
analysis [43–48]. Moreover, although the pseudo initial conditions of the Caputo derivative
are frequently criticized [8,9,16,20], mainly for their use in system initialization [7,14,15,21],
they are still used because they provide apparently simple solutions. Consequently, there is
an important challenge to provide a general and satisfactory solution to the initialization
problem, using the same approach as in the integer-order case, where the initial conditions
are those of the fractional integrator.

Thus, this paper intends to treat the FDE initial-value problem with a new and theo-
retical presentation of the infinite state approach, demonstrating that we do not have to
refer to any fractional derivative and, on the contrary, can focus on the Riemann–Liouville
integral and its distributed initial conditions. It is important to note that the authors have
privileged a theoretical formalism contrary to their previous publications, where numerical
simulations were abundantly used. So, the reader can refer to these previous papers to
find numerical illustrations related to initialization. A restricted version of the paper has
already been published in a recent conference [49].

The paper is composed of six sections and a conclusion. Section 1 is the introduction.
Sections 2–4 present the materials and methods related to initial-value problems and the
infinite state approach. In Section 5, an elementary counter-example permits us to invalidate
the usual Caputo derivative initial value approach. In Section 6, the frequency-distributed
integrator model is used to solve the previous counter-example and to formulate a new
approach to the FDE initial-value problem. This methodology is used in Section 6 to express
the dynamics of the general FDS initial-value problem.

2. Materials and Methods

2.1. The ODE Initial-Value Problem (or Cauchy Problem [1])

Let us consider the following Ordinary Differential System:

dx(t)
dt

= f (x(t), u(t)) (1)

where x(t) = x(0) at t = 0 is the initial value.

20
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The Picard-Lindelöf theorem [50] guarantees the existence of a unique solution to
(1). The principle of this theorem consists in reformulating the problem as an equivalent
integral equation:

x(t) = I1
t

[
dx(t)

dt

]
+ x(0) =

t∫
0

f (x(τ), u(τ))dτ + x(0) (2)

and to construct a sequence of functions

φk+1(t) =
t∫

0

f (φk(τ), u(τ))dτ + x(0) with φ1(t) = x(0), (3)

which converges to the solution of (1) and thus to the solution of the initial-value problem.
Such a construction is called Picard’s method [51] or the method of successive approximations.
In the linear and multidimensional case, Equation (1) can be expressed as:

dx(t)
dt

= Ax(t) + Bu(t) x(t) = x(0) at t = 0, (4)

where x(t) ε RN, and A and B are matrices of appropriate dimensions.
It is well known that its solution, based on the exponential matrix function or transition matrix

Φ(t) = eAt with Φ(t) ∈ RN×N

is given by [52]:

x(t) = Φ(t)x(0) +
t∫

0

Φ(t− τ)Bu(τ)dτ. (5)

2.2. The FDE/FDS Initial Value Problem

Let us consider the elementary FDE

Dn
t (x(t)) = f (x(t), u(t)) 0 < n < 1, (6)

where n is the fractional order and x(t) = x(0) at t = 0.
Contrary to the integer-order case, several approaches are derived from the frac-

tional derivative definitions of Dn
t (x(t)). The main popular ones are the Caputo and

Riemann–Liouville derivatives [3].
Practically, Equation (6) is integrated with the Caputo derivative definition, since its

initial condition is considered equal to x(0).
Then, in order to prove the existence and the uniqueness of the solution x(t) of (6),

Picard’s method [3–5] is frequently used.
In the linear multidimensional commensurate order case, Equation (6) becomes:{

Dn
t (x(t)) = Ax(t) + Bu(t)

y(t) = Cx(t)
0 < n < 1, (7)

where x(t) ε RN, and A and B are matrices of appropriate dimensions.
The general solution of (7), expressed in terms of the Mittag–Leffler matrix function [53]

Φ(t) = En,1(Atn), Φ(t) ∈ RN×N

is

x(t) = Φ(t)x(0) +
t∫

0

Φ(t− τ)Bũ(τ)dτ with ũ(τ) = D1−n(u(τ)). (8)

21



Fractal Fract. 2022, 6, 550

As mentioned in the introduction, the main objective of this paper is to revisit the
integration of the FDE/FDS initial-value problem, using the infinite-state approach, which
is directly related to the integer order ODE case and does not need any derivative definition,
as it is exhibited in Section 4.

3. Integration of FDE/FDS Based on Derivative Definitions

3.1. Riemann–Liouville Integral

The fractional integral of a function v(t), also called the Riemann–Liouville integral is
defined by

x(t) = 0 In
t ( f (t)) =

t∫
0

(t− τ)n−1

Γ(n)
v(τ)dτ 0 < n < 1, (9)

where (n) is the gamma function.
The fractional integral is in fact a convolution integral, characterized by the impulse

response or Kernel, hn(t), such that:

hn(t) =
tn−1

Γ(n)
and x(t) = hn(t) ∗ v(t). (10)

Using the Laplace transform, we obtain

L{hn(t)} =
1
sn , (11)

where 1
sn corresponds to the fractional order integration operator.

3.2. Fractional Derivatives Definitions

Contrary to the fractional integral, the fractional derivative is not uniquely defined.
Usually, two main derivatives are considered; since they are used for the integration of
FDE/FDS, we focus on the case 0 < n < 1 [34].

3.2.1. Caputo Derivative Definition

This definition corresponds to first differentiate x(t) and then calculates a fractional
integral with order (1−n). Since 0 < n < 1, then 0 < 1−n < 1.

CDn
t (x(t)) = I1−n

t

(
dx
dt

)
= h1−n(t) ∗

dx
dt

(12)

Definition (12) clearly shows that the Caputo derivative corresponds to the Riemann–
Liouville integral of the derivative of x(t).

In the Laplace domain, the Caputo derivative definition leads to

L
{(

CDn
t (x)

)}
=

1
s1−n L

{
dx(t)

dt

}
=

1
s1−n [sX(s)− x(0)]. (13)

So, X(s) =
1
sn L
{

CDn
t (x)

}
+

x(0)
s

, (14)

Or in the time domain,

x(t) = In
t

(
CDn

t (x)
)
+ x(0). (15)

Thus, the solution of FDE/FDS (6) according to the Caputo approach is

x(t) = 0 In
t ( f (x(t), u(t))) + x(0) for t ≥ 0 0 < n < 1, (16)
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where x(0) is interpreted as the initial condition of the FDE/FDS and also as the initial
value of the Riemann–Liouville integral.

This simple integral Equation (16), apparently equivalent to the integer order case (2),
has made the success of the Caputo derivative approach.

3.2.2. Riemann–Liouville Derivative Definition

This definition shows that the Riemann–Liouville derivative corresponds to the integer-
order derivative of the Riemann–Liouville integral of x(t).

RLDn
t (x(t)) =

d
dt

[
I1−n
t (x)

]
=

d
dt
[h1−n(t) ∗ x(t)] (17)

Using the Laplace transform, we obtain

L
{RLDn

t (x)
}
= s
(

L
{

I1−n
t (x)

})
− g(0) = s

(
1

s1−n X(s)
)
− g(0) = snX(s)− g(0)

with g(0) =
{
−∞ I1−n

t (x)
}

t=0

.

Since g(0) does not have a physical and direct interpretation, the Riemann–Liouville
derivative is generally not used to integrate system (6) or (7).

It is important to note that the two derivative definitions only require integer-order dif-
ferentiation

(
d
dt

)
and fractional-order integration

(
I1−n). So, contrary to a common belief,

the basic operation of fractional calculus is not fractional differentiation but
fractional integration.

3.2.3. The Grünwald–Letnikov Derivative

Instead of the two previous fractional derivatives, it is possible to use the Grünwald-
Letnikov (G.L.) derivative, with appropriate initial conditions. In fact, it is preferable to consider
the G.L. integrator that corresponds to the discretization of the Riemann–Liouville integral.

The Nth integer order Euler derivative of x(t) is defined as

(
DN(x(t))

)
t=kTe

= lim
Te→0

(
1− q−1)N

Te
N xk, (18)

where Te is the sample time, xk = x(kTe), and q−1 is the delay operator.
The generalization to the fractional order case provides the Grünwald–Letnikov derivative

(
GLDn(x(t))

)
t=kTe

= lim
Te→0

(
1− q−1)n

Te
n xk 0 < n < 1. (19)

Since L
{

q−1} = e−Tes, we obtain

L
{

GLDn(x(t))
}
= lim

Te→0

(
1− e−Tes)n

Te
n L{x(t)} = snX(s). (20)

Notice that (
1− q−1)n

Te
n =

1
Te

n

[
1 +

∞

∑
i=0

αi,GLq−i

]
, (21)

with αi,GL = (−1)i n
1

n−1
2

n−2
3 . . . . . . n−(i+1)

i ,

so
(

GLDn(x(t))
)

t=kTe
=

1 +
∞
∑

i=0
αi,GLq−i

Te
n xk, (22)

which is the Moving Average formulation of the Grünwald–Letnikov derivative.
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Reciprocally, we can define the Grünwald–Letnikov integral operator [34] as

GL In( fk) =
Te

nq−1

1 +
∞
∑

i=0
αi,GLq−i

fk, (23)

which is the Auto-Regressive formulation of the Grünwald–Letnikov integrator.
Notice that

L
{

GL In( f (t))
}
= lim

Te→0

Te
ne−Tes

(1− e−Tes)
n L{ f (t)} = 1

sn F(s), (24)

which means that the Grünwald–Letnikov integrator is the time discretization of the
Riemann–Liouville integral.

Consider now the elementary FDE initial value problem (6):

Dn
t (x(t)) = f (x(t), u(t)) 0 < n < 1.

Using the Grünwald–Letnikov integrator, we can express {x(k)} as:

{x(k + 1)} = GL In( f ({xk}, {uk})) + g{xinit}, (25)

where {xinit} = {x(0), x(−1), . . . . . . , x(−i), . . . . . . , x(−∞)}.
This means that the initial conditions are composed of all the past values of x(−i),

since k = −∞.
Practically, this technique is used for the numerical simulation of the FDE/FDS problem.
The interested reader can refer to chapter 3 volume 1 of [34], where different initializa-

tions of the G.L. integral and the short memory principle [3] are analyzed.

4. The Infinite State Approach

4.1. Introduction

The infinite-state approach (do not confuse it with diffusive representation, see chapter
7 of [34]) is a modeling technique based on the fractional-integration operator, which is at
the heart of any modeling and simulation system, either integer or fractional order, linear
or non-linear [22,52].

4.2. The Frequency-Distributed Model of the Fractional Integrator

As shown in Section 3, the Riemann–Liouville integral of a function v(t) is defined as
the convolution of v(t) with the impulse response hn(t) of the fractional integrator.

Another expression of hn(t) can be derived from the inverse Laplace transform of
1
sn [31,32,34], for 0 < n < 1, i.e., hn(t) = L−1

{
1
sn

}
.

Using a Bromwich contour, we can write (see [34] and the references therein):

hn(t) =

⎧⎪⎨⎪⎩
1

2π j

γ+jω∫
γ−jω

1
sn est ds for t > 0

0 for t < 0

.

Thus, we obtain

hn(t) =
∞∫
0

μn(ω)e−ωtdω = tn−1

Γ(n) for 0 < n < 1

with μn(ω) = sin(nπ)
π ω−n

(26)
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Note that, in the particular case where v(t) = (t) is an impulse function, the output x(t)
corresponds to the impulse response hn(t) and is provided by the following distributed
integer-order differential system⎧⎪⎨⎪⎩

∂z(ω,t)
∂t = −ωz(ω, t) + δ(t) ω ∈ [0,+∞)

hn(t) =
∞∫
0

μ(ω)z(ω, t)dω
(27)

Thus z(ω, t) = e−ωt, which leads to hn(t) =
∞∫
0

μ(ω)e−ωtdω.

More generally, for any input v(t), the corresponding output x(t) of the fractional
integrator is provided by the following distributed frequency system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂z(ω,t)
∂t = −ωz(ω, t) + v(t) ω ∈ [0, ∞)

x(t) =
∞∫
0

μn(ω)z(ω, t)dω

with μn(ω) = sin(nπ)
π ω−n

(28)

It is fundamental to notice that the original model of the fractional integrator has
been transformed into an infinite-dimension integer-order differential system (28), where
integer-order differentiation ∂

∂t has been substituted to fractional-order differentiation, and
where the fractional order n appears in the weighting function μn(ω). This means that the
fractional integrator 1

sn is an infinite-dimension linear system [54]. These models are the
two “faces” of the fractional integrator.

In fact, according to linear system theory [52], the fractional integrator has two types
of models, as does any other linear system:

- the Equation X(s) = 1
sn V(s) is the input/output representation of the fractional

integrator, characterized by its impulse response hn(t) and its frequency response
1

(jω)n .

- the distributed differential system (28) is the infinite-dimension state-space model of
the integrator, where the internal state z(ω, t) permits a complete representation of
system dynamics and particularly its free response from an initial condition z(ω, 0).

Remark 1: let us consider the Laplace transform of (27):

L{hn(t)} = L

⎧⎨⎩
∞∫

0

μ(ω)e−ωtdω

⎫⎬⎭ =

∞∫
0

μn(ω)L
{

e−ωt}dω =

∞∫
0

μn(ω)
1

s + ω
dω

The previous equality and Equation (11) lead to

1
sn =

∞∫
0
μn(ω) 1

s+ω dω 0 < n < 1. (29)

This relation exhibits that the fractional integrator is composed of an infinity of modes
ω, ranging from 0 to +∞, whereas the integer-order integrator corresponds to only one
mode situated at ω = 0. Figure 1 displays the graphic representation of Equation (28).
Note that the distributed differential Equations of (28) correspond to the first-order systems
displayed in Figure 1. Due to the distributed nature of the differential system, the graph of
Figure 1 is composed of an infinity of first-order systems.
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Figure 1. The frequency-distributed model of the fractional integrator.

Remark 2: The classical Laplace transform of the integer order derivative is known as
L
{

dx(t)
dt

}
= sX(s)− x(0), which corresponds in fact to the relation X(s) = 1

s L
{

dx(t)
dt

}
+ x(0)

s

i.e., in the time domain, to x(t) =
t∫

0

dx(τ)
dτ dτ + x(0), which means that x(0) is not the initial

condition of the derivative but is, in fact, the initial condition of the integrator which has
memorizing capability.

4.3. Transients of the Fractional Integrator

Consider the Laplace transform of (28):⎧⎨⎩
sZ(ω, s)− z(ω, 0) = −ωZ(ω, s) + V(s) ω ∈ [0, ∞)

X(s) =
∞∫
0

μn(ω)Z(ω, s)dω
(30)

where z(ω, 0) is the initial value of z(ω, t) at t = 0.
This means that Z(ω, s) = z(ω,0)

s+ω + V(s)
s+ω

and X(s) =
∞∫

0

μn(ω)
z(ω, 0)
s + ω

dω +

∞∫
0

μn(ω)
V(s)
s + ω

dω (31)

Since 1
sn =

∞∫
0

μn(ω) 1
s+ωdω 0 < n < 1

we can write in the time domain:

x(t) =
∞∫

0

μn(ω)z(ω, 0)e−ωtdω + 0 In
t (v(t)) (32)

26



Fractal Fract. 2022, 6, 550

where:

- x(t) =
∞∫
0
μn(ω)z(ω, 0)e−ωtdω is the free response of the fractional integrator initial-

ized by the distributed initial conditions z(ω, 0) ∀ω ∈ [0, ∞).
- In

t (v(t)) is the forced response of the fractional integrator caused by the input v(t).

Previously, using the definition of the Caputo derivative “initial condition”, we wrote
(20) x(t) = In

t (v(t)) + x(0).
The conclusion is that this expression of the free response is wrong, since

∞∫
0
μn(ω)z(ω, 0)e−ωtdω is the initialization function of the integrator. In fact,

x(0) =
∞∫
0
μn(ω)z(ω, 0)dω, and Equation (15) is correct only at t = 0 and is wrong for

t > 0.
The conclusion is that the fractional-integrator transients require to refer to its dis-

tributed model.
Basically, the initial condition of the differential system Dn

t (x(t)) = f (x(t), u(t)) is
related to the initial condition of the fractional integrator 1

sn used for the integration of the
FDE/FDS, not to the pseudo-initial condition of any fractional derivative. Notice that if
this FDE/FDS is related to a real system, its dynamics must not depend on the fractional
derivative definition choice of the user.

5. A Counter Example

In previous papers related to the infinite-state representation, we have already demon-
strated that the so-called initial conditions of the Caputo derivative are unable to correctly
express the dynamics of FDE/FDS free responses. However, attracted by the apparent
simplicity of the Caputo initial conditions, most fractional calculus researchers ignore the
more complex (in fact not too complex) infinite-state approach.

Consequently, this paper intends to prove the fundamental errors of the usual Caputo
derivative approach using an elementary theoretical counter example. Then, with the
frequency-distributed integrator allowing the theoretical computation of the true free
response, we prove the necessity to use frequency-distributed initial conditions to solve
any FDE/FDS initial-condition problem.

5.1. Problem Formulation

Consider the simplest FDE initial value problem{
Dn(x(t)) = u(t) 0 < n < 1

x(t) = x(0) at t = 0
(33)

Consider the special function u(t), composed of two delayed Heaviside functions,
UH(t) and −UH(t− T), with u(t) = UH(t)−UH(t− T).

Consequently, see Figure 2

u(t) =
{

U f or 0 ≤ t < T
0 f or t ≥ T

(34)

Moreover, assume that the system is at rest at t = 0, i.e., x(0) = 0.

Remark 3: The interest of this example is to create a realistic initial condition at t = T, where
the free response can be calculated with two approaches, the first one from t = 0 with no
ambiguity using usual fractional calculus theory and the second one from t = T, using
Equation (15) at t0 = T.
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Figure 2. True free response and Caputo derivative initialization for n = 0.5.

5.2. The Exact Solution

Since x(0) = 0, we obtain x(t) = In
t (UH(t)−UH(t− T)) = x+(t) + x−(t).

So x+(t) = hn(t) ∗ UH(t) =
t∫

0

(t−τ)n−1

Γ(n) UH(τ)dτ = tn

Γ(n+1)UH(t) and

x−(t) = −hn(t) ∗UH(t− T) = − (t−T)n

Γ(n+1)UH(t− T).
Consequently, see Figure 2 (for n = 0.5):

x(t) =

{
tnU

Γ(n+1) f or 0 ≤ t ≤ T
U

Γ(n+1)

[
tn − (t− T)n] f or t ≥ T

(35)

where x(t) f or t ≥ T represents the free response of (33) at t0 = T.

5.3. Solution Derived from the Caputo Derivative Definition

This free response can also be expressed using Equation (15) at t0 = T with
x(t0) = x(T), i.e., x(t) = In

t (u(t)) + x(T) f or t ≥ T.
Thus (see Figure 2),

x(t) = x(T) f or t ≥ T (36)

This result is obviously in complete contradiction with Equation (35), i.e.,
x(t) = U

Γ(n+1)

[
tn − (t− T)n] f or t ≥ T.

Notice that, for n = 1, we obtain:
x(T) = UT f or t = T and x(t) = U[t− (t− T)] = UT f or t ≥ T.
Thus, we verify that x(t) = x(T) f or t ≥ T, i.e., Equation (36) is only correct in the

integer-order case.
With this very simple example, we have demonstrated that Equation (15) is wrong in

the fractional-order case. So, what is the reason of this basic error?
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5.4. Solution Derived from the Distributed Frequency Model of the Fractional Integrator

Consider again the elementary example (33):

Dn(x(t)) = u(t) 0 < n < 1

This system is supposed at rest at t = 0, i.e., z(ω, 0) ∀ω ∈ [0, ∞).
So, using (30) we obtain

Z+(ω, s) =
U

s(s +ω)
f or u(t) = UH(t)

Thus, according to (29), X(s) =
∞∫
0
μn(ω) 1

(s+ω)
U
s dω = U

sn+1

and

{
x+(t) = tnU

Γ(n+1) H(t)

x−(t) = −U(t−T)n

Γ(n+1) H(t− T)
.

Obviously, we recover the same result as (35) using the distributed model. Moreover,
this model allows us to express z(ω, t), i.e.,

z+(ω, t) =
U
ω

(
1− e−ωt)H(t)

So

⎧⎪⎪⎨⎪⎪⎩
x+(t) = UH(t)

∞∫
0

μn(ω)
ω

(
1− e−ωt)dω

x−(t) = −UH(t− T)
∞∫
0

μn(ω)
ω

(
1− e−ω(t−T)

)
dω

(37)

Consequently, the free response is expressed as:

x(t) = U
∞∫

0

μ(ω)

ω

(
e−ω(t−T) − e−ωt

)
dω f or t ≥ T, (38)

which is the distributed equivalent of Equation (35).
Moreover, we can verify that it is now possible to calculate the response of the integra-

tor for t ≥ T using the expression (32).
So, consider the response initialized at t = T with u(t) = 0 for t ≥ T.
Since z(ω, T) is the initial condition at t = T, with

z(ω, T) = z+(ω, T) =
U
ω

(
1− e−ωT

)
, (39)

and since In
t (0) = 0, we obtain

x(t) = U
∞∫

0

μn(ω)z(ω, T)e−ω(t−T)dω f or t ≥ T

So

x(t) = U
∞∫

0

μn(ω)

ω

(
1− e−ωT

)
e−ω(t−T)dω f or t ≥ T

And we obtain the same result as previously (38), i.e.,

x(t) = U
∞∫

0

μn(ω)

ω

(
e−ω(t−T) − e−ωt

)
dω f or t ≥ T
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We can conclude that the distributed state-space model provides the exact expression
of the free response using the usual tools of linear system theory. Consequently, this
distributed model is the necessary tool to express transients of the fractional integrator.

Notice that numerical simulations corresponding to this counter example are
available in [33].

5.5. Conclusions

Two main conclusions can be stated from this counter example:

- The integration of FDE/FDS based on the Caputo derivative definition (or on the
Riemann–Liouville derivative) are wrong approaches leading to erroneous free responses.

- The frequency-distributed state-space model provides the exact expression of the free
response using the usual tools of linear system theory. Consequently, this distributed
model is the necessary tool to express transients of the fractional integrator and thus
those of FDE/FDS.

Notice that the Grünwald–Letnikov approach based on relation (25) provides a correct
solution to the integration of FDE/FDS. However, its initial conditions, composed of past
values of x(−i) since k = −∞, are not easy to use, particularly for an initialization objective.

5.6. The Caputo Derivative Definition Revisited

We have demonstrated with the previous elementary counter example that the inte-
gration technique based on the Caputo derivative definition is unable to provide a correct
expression of the free response of an elementary initial-value problem. Of course, we have
pointed out the reason of this failure, i.e., x(0) does not represent the initial condition of
the fractional integrator. Basically, what is the origin of this error?

In order to understand why so many researchers have been misled by the so-called “ini-
tial condition” x(0), we have to once again consider the definition (12) of the
Caputo derivative:

CDn
t (x(t)) = I1−n

t

(
dx(t)

dt

)
This derivative relies on a fractional integrator 1

s1−n , so we have to take into account
its internal state variables zC(ω, t) at t = 0 (notice that zC(ω, t) �= z(ω, t)) [34].

Thus, the distributed-frequency model of the Caputo derivative corresponds to that of
the fractional integrator I1−n

t (.), where, in this case, the input and the output are dx(t)
dt and

CDn
t (x(t)), respectively:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂zC(ω,t)
∂t = −ωzC(ω, t) + dx(t)

dt ω[0, ∞)

CDn
t (x(t)) =

∞∫
0

μ1−n(ω)zC(ω, t)dω

μ1−n(ω) = sin((1−n)π)
π ω−(1−n) and 0 < n < 1

(40)

with the initial condition zC(ω, 0) and ω ∈ [0, ∞).
By using the Laplace transform, we can write⎧⎨⎩ZC(ω, s) = zC(ω,0)

s+ω +
L
{

dx(t)
dt

}
s+ω ω ∈ [0, ∞)

with L
{

dx(t)
dt

}
= sX(s)− x(0)

Thus, we obtain

L
{

CDn
t (x(t))

}
=

∞∫
0

μ1−n(ω)ZC(ω, s)dω = snX(s)− x(0)
s1−n +

∞∫
0

μ1−n(ω)

s + ω
zC(ω, 0)dω (41)
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We can conclude that the usual initial condition of the Caputo derivative is wrong
because it does not take into account the transients of its associated integrator 1

s1−n , i.e., its
distributed initial conditions zC(ω, 0).

Notice that the same conclusions apply to the Riemann–Liouville derivative [34].
Consequently, the Caputo derivative approach to the integration of FDE/FDS must

be rejected because it provides wrong solutions to fractional initial-value problems. This
approach is wrong for two main reasons:

- The exact initial conditions of the Caputo derivative are x(0) and the distributed state
variable initial condition zC(ω, 0).

- The technique based on the Caputo derivative is not natural because the true and
physical initial conditions are those of the fractional integrator 1

sn of Equation (30), i.e.,
z(ω, 0), such as in the integer order case.

Numerical simulations of the Caputo and Riemann–Liouville derivatives exhibiting
the role of their initial conditions are available in [38] and in Volume 1 of [34].

6. Fractional Differential Systems Transients

6.1. Integration of a FDE

We demonstrated in the previous section that it is necessary to use the frequency-
distributed model of the fractional integrator to take into account the transients of the free
response. Thus, we have to apply the same approach for the integration of any FDE/FDS
initial value problem (6,7). As we have shown, the solution is provided by the fractional
integral equation, which is equivalent to the integer order case (2):

x(t) = In
t ( f (x(t), u(t))) + x0(t), (42)

where x0(t) is the initialization function of the Riemann–Liouville integral

x0(t) =
∞∫

0

μn(ω)z(ω, 0)e−ωtdω. (43)

Notice that (42) is a Volterra integral equation.
Fundamentally, Figure 3 displays the graphical representation of the integral Equation (42),

which underlines the closed-loop behavior of the FDE/FDS based on the fractional integra-
tor 1

sn with the initialization function x0(t).

Figure 3. Closed-loop model of the FDE/FDS.
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However, we can also use the frequency-distributed model of the fractional integra-
tor, where its input is v(t) = Dn(x(t)) = f (x(t), u(t)), which leads to the distributed
representation of the FDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂z(ω,t)
∂t = −ωz(ω, t) + f (x(t), u(t))

x(t) =
∞∫
0

μn(ω)z(ω, t)dω

μ(ω) = sin(nπ)
π ω−n 0 < n < 1

(44)

In this case, the solution z(ω, t) is provided by the distributed integer-order
integral equation:

z(ω, t) =
t∫

0
[−ωz(ω, t) + f (x(τ), u(τ))]dτ+ z(ω, 0) ∀ω ∈ [0, ∞)

= I1
t (−ωz(ω, t) + f (x(t), u(t))) + z(ω, 0)

(45)

where z(ω, 0) is the initial condition of the integer order integral.
We can represent (see Figure 4) this frequency distributed system graphically, where

frequency varies from ω = 0 to ω = +∞, according to its Laplace transform. This graph
corresponds to Figure 3, where the fractional integrator is replaced by its distributed graph
of Figure 1.

Figure 4. Closed-loop model of the FDE/FDS based on the fractional integrator distributed-frequency model.

Equations (42) and (43) and the graph of Figure 3 focus on the pseudo-state variable
x(t), whereas Equation (44) and the graph of Figure 4 focus on the internal state variables
z(ω, t) of the integrator, which are in fact those of the FDE/FDS.

Notice that, for the isolated integrator (Figure 1), with input v(t) and output x(t),
the state variables are decoupled and evolve independently. On the other hand, in sys-
tem (44), i.e., in the graph of Figure 4, the state variables are coupled by the relation
v(t) = f (x(t), u(t)). This means that the evolution of the state variable z(ω, t) (for the
particular value) depends on all the other state variables z(ξ, t) ξ ∈ [0, ∞). Namely, the
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original FDE/FDS (6) has been transformed into an infinite-dimension system of first-order
differential Equations (44).

These are the two “faces” of the same problem:

- Equation (42) and Figure 3 correspond to the pseudo-state variable x(t), directly taking
into account the fractional order n.

- Equation (44) and Figure 4 correspond to the system of distributed state variables
z(ω, t), whose solution is obtained through an integer-order approach. The pseudo-
state variable x(t) is provided by a weighted integral, where μn(ω) is the link between
the integer order and fractional order domains.

In Figures 3 and 4, there is no hypothesis about the nature of f (x(t), u(t)) which can
be either linear or nonlinear. In the nonlinear case, the integral formulation of the FDE/FDS
initial-value problem leads to (42) or (45). The solution of these integral equations can be
obtained with Picard’s method, which is currently used to solve nonlinear fractional order
problems (see for instance [3]).

Of course, the nonlinear case is a very wide topic, and our objective is not to treat it in
this paper. In fact, the linear case is also of fundamental interest, and we propose to revisit
it, essentially to formulate free responses.

6.2. FDS Transients and the Mittag–Leffler Function

First, we consider the elementary FDE initial-value problem:

Dn(x(t)) = ax(t) 0 < n < 1 (46)

with the distributed initial condition z(ω, 0) ∀ω ∈ [0, ∞).
System (46) can be transformed into the distributed frequency one:⎧⎪⎨⎪⎩

∂z(ω,t)
∂t = −ωz(ω, t) + ax(t)

x(t) =
∞∫
0
μn(ω)z(ω, t)dω

(47)

with the initial condition z(ω, 0).
Using the Laplace transform, we can write

sZ(ω, s)− z(ω, 0) = −ωZ(ω, s) + aX(s),

i.e., X(s) = sn

sn−a

∞∫
0

μn(ω) z(ω,0)
s+ω dω

or X(s) = s
sn−1

sn − a
X0(s), (48)

with X0(s) =
∞∫
0

μn(ω) z(ω,0)
s+ω dω

So,

x0(t) = L−1

⎧⎨⎩
∞∫

0

μn(ω)
z(ω, 0)
s +ω

dω

⎫⎬⎭ =

∞∫
0

μn(ω)z(ω, 0)e−ωtdω (49)

Let us remember that

L{En,1(atn)} = sn−1

sn − a
(50)

where En,1(atn) is the Mittag–Leffler function:

En,1(atn) =
∞

∑
k=0

(atn)k

Γ(nk + 1)
, (51)
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which is the generalization of the exponential function, since for n = 1 we obtain

E1,1
(
at1) = ∞

∑
k=0

(at1)
k

k! = eat.

Consequently, we obtain

x(t) = L−1{X(s)} = d
dt
{En,1(atn) ∗ x0(t)}. (52)

We can easily generalize this result to any linear FDS initial value problem:

Dn(x(t)) = Ax(t) + Bu(t) 0 < n < 1, (53)

with the distributed initial condition z(ω, 0) ∀ω ∈ [0, ∞).
Defining the matrix Mittag–Leffler function:

En,1(Atn) =
∞

∑
k=0

(Atn)k

Γ(nk + 1)
, (54)

we can write

x(t) =
d
dt
{En,1(Atn) ∗ x0(t)}+

t∫
0

En,1
(

A(t− τ)n)Bũ(τ)dτ, (55)

where ũ(τ) = D1−n(u(τ)) and x0(t) =
∞∫
0

μn(ω)z(ω, 0)e−ωtdω.

Obviously, the free response d
dt{En,1(Atn) ∗ x0(t)} of x(t) is more complex than the

wrong usual one derived from (8), i.e., x(t) = En,1(Atn)x(0).
Moreover, there is a major difficulty, i.e., the convolution between the Mittag–Leffler

function and x0(t), which is not a straightforward operation. Thus, the interest of this
expression is essentially theoretical.

Notice also that the matrix Mittag–Leffler function does not verify the semi-group
properties of the matrix exponential function [53,54].

Remark 4: The use of the Caputo derivative is based on the assumption
x0(t) = x(0) = cte ∀t. Is this requirement always wrong? In addition, if it is correct, what
does it mean?

Consider the following system

Dn(x(t)) = ax(t) + bu(t) 0 < n < 1

and suppose that it is at rest at t = 0 and that u(t) = UH(t).
Since, in this case,

Z(ω, s) = aX(s)+b U
s

s+ω and X(s) =
∞∫
0

μn(ω)Z(ω, s)dω, we obtain Z(ω, s) = b sn

sn−a
1

s+ω
U
s .

Thus

z(ω, ∞) = limsZ(ω, s)
s→0

= 0 ∀ω �= 0 and z(0, ∞) = lim
s→0

bU
s1−n = ∞ (56)

On the other hand, we can also write x(∞) = − b
a U for a stable system, i.e., a < 0 in

our case.
Assume that we have applied the same step input UH(t), but, at t = −∞, this means

that at t = 0, we obtained x(0) = − b
a U for a long time in the past (t < 0).

Consequently, the condition x0(t) = x(0) = cte ∀t requires that the system has been
at rest for a very long time.
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Then

x0(t) =
∞∫

0

μn(ω)z(ω, 0)e−ωtdω =

∞∫
0

μn(ω)z(0, 0)e−0tdω = x(0) = cte. (57)

Since z(ω, ∞) = 0∀ω �= 0.
Theoretically, the condition x0(t) = x(0) = cte ∀t can be achieved, but it is completely

unrealistic. Moreover, it would require infinite energy [34].

Remark 5: Consider again the revisited definition of the Caputo derivative (see Section 5.6):

CDn
t (x(t)) = I1−n

t

(
dx(t)

dt

)
⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂zC(ω,t)

∂t = −ωzC(ω, t) + dx(t)
dt ω ∈ [0, ∞)

CDn
t (x(t)) =

∞∫
0

μ1−n(ω)zC(ω, t)dω

μ1−n(ω) = sin((1−n)π)
π ω−(1−n) and 0 < n < 1

with zC(ω, t) = zC(ω, 0) at t = 0.

We have demonstrated (41) that:

L
{

CDn
t (x(t))

}
= snX(s)− x(0)

s1−n +

∞∫
0

μ1−n(ω)

s +ω
zC(ω, 0)dω.

If x(t) = cte, for a long time in the past (t < 0), then dx(t)
dt = 0. This means that

zC(ω, t) = 0 ∀ ω for a long time in the past (t < 0), and consequently zC(ω, 0) = 0 ∀ ω.
Then, we can write L

{CDn
t (x(t))

}
= snX(s)− x(0)

s1−n .
Obviously, the previous conditions are very restrictive, and the usual initial condition

is wrong as soon as there is a variation of x(t).

Remark 6: We have demonstrated (52) that:

x(t) =
d
dt
{En,1(atn) ∗ x0(t)} = En,1(atn) ∗ d

dt
x0(t)

Since x0(t) = x(0) = cte ∀t, we can write x0(t) = x(0)H(t), so d
dt x0(t) = x(0)δ(t).

Then,
x(t) = En,1(atn) ∗ x(0)δ(t) = En,1(atn)x(0) (58)

is the usual result corresponding to the Caputo derivative assumption.
The conclusion is that many results obtained with the Caputo derivative approach are

not necessarily wrong, but they require the previous very restrictive assumptions related
to x(0).

6.3. FDS Transients Expressed with the Distributed Exponential Function

Previously, the problem of fractional transients has been focused on the pseudo-state
variable dynamics, with no insight in the distributed state variable. So, we propose now to
express the dynamics of z(ω, t). Let us start again with the elementary system (46):

Dn(x(t)) = ax(t) 0 < n < 1

with the distributed initial condition z(ω, 0) ∀ω ∈ [0, ∞).
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The corresponding distributed frequency model (47) leads to:

∂z(ω, t)
∂t

= −ωz(ω, t) + a
∞∫

0

μn(ξ)z(ξ, t)dξ ∀ω ∈ [0, ∞). (59)

Notice that we have to separate the current frequency ω from all the other ones
ξ ∈ [0, ∞). This means that the behavior of z(ω, t) depends on all the behaviors of the other
state variables z(ξ, t).

Let us define δ(ξ), which is the frequency Dirac impulse verifying
∞∫
0
δ(ξ)dξ = 1.

Then,

∞∫
0

ωδ(ξ−ω)z(ξ, t)dξ = ω

∞∫
0

δ(ξ−ω)z(ξ, t)dξ = ωz(ω, t). (60)

Let us define
ψ(ω, ξ) = −ωδ(ξ−ω) + aμn(ξ) (61)

Then, (59) can be expressed as:

∂z(ω, t)
∂t

= −ω
∞∫

0

δ(ξ−ω)z(ξ, t)dξ+ a
∞∫

0

μn(ξ)z(ξ, t)dξ =

∞∫
0

ψ(ω, ξ)z(ξ, t)dξ (62)

The solution z(ω, t) requires the integration of the integer-order distributed system
(59) with the initial condition z(ω, 0) ∀ω ∈ [0, ∞). Basically, the solution verifies the
integral relation:

z(ω, t) =
t∫

0

[
∞∫
0

Ψ(ω, ξ)z(ξ, τ)dξ

]
dτ + z(ω, 0)

= 0 I1
t

[
∞∫
0

Ψ(ω, ξ)z(ξ, τ)dξ

]
+ z(ω, 0) ω ∈ [0, ∞)

(63)

This integration is performed with Picard’s method, which is an iterative technique (3).
At the first iteration, z(ω, t) is approximated by z(ω, 0).

Since z(ω, 0) and
∞∫
0
ψ(ω, ξ)dξ are constants for 0 I1

t , we obtain

z1(ω, t) = z(ω, 0) + 0 I1
t

⎡⎣ ∞∫
0

ψ(ω, ξ)z(ω, 0)dξ

⎤⎦ = z(ω, 0) + z(ω, 0)t
∞∫

0

ψ(ω, ξ)dξ. (64)

At the second iteration, z(ω, t) is approximated by z1(ω, t). So, we obtain

z2(ω, t) = z(ω, 0) + z(ω, 0)t
∞∫

0

ψ(ω, ξ)dξ+ z(ω, 0)
t2

2

⎡⎣ ∞∫
0

ψ(ω, ξ)dξ

⎤⎦2

(65)

Additionally, at iteration k, we obtain

zk(ω, t) =
k

∑
j=0

tj

j!

⎡⎣ ∞∫
0

ψ(ω, ξ)dξ

⎤⎦j

z(ω, 0) (66)
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Thus, z(ω, t) = lim
k→∞

k

∑
j=0

tj

j!

⎡⎣ ∞∫
0

ψ(ω, ξ)dξ

⎤⎦j

z(ω, 0), (67)

i.e., z(ω, t) =

⎡⎢⎣ ∞

∑
k=0

tk

k!

⎡⎣ ∞∫
0

ψ(ω, ξ)dξ

⎤⎦k
⎤⎥⎦z(ω, 0) (68)

Notice that, in the integer order case, dx(t)
dt = ax(t), so ψ(ω, ξ) ≡ a.

Then, x(t) =

[
∞

∑
k=0

ak tk

k!

]
x(0) = eatx(0). (69)

Thus, in the distributed case, we can define the distributed exponential function:

φ(t) = exp

⎛⎝t
∞∫

0

ψ(ω, ξ)dξ

⎞⎠ =
∞

∑
k=0

tk

k!

⎡⎣ ∞∫
0

ψ(ω, ξ)dξ

⎤⎦k

(70)

and

z(ω, t) = exp

⎛⎝t
∞∫

0

ψ(ω, ξ)dξ

⎞⎠z(ω, 0) = φ(t)z(ω, 0) ω ∈ [0, ∞), (71)

which is the distributed generalization of Equation (69).
Then, we can generalize the distributed exponential to the linear multidimensional

non-commensurate order case:

Dn(x(t)) = Ax(t) dim(x(t)) = N, (72)

where nT = [n1 . . . ni . . . nN ] 0 < ni ≤ 1.
Moreover, 0 < ni ≤ 1 means that the FDS system may include integer-order deriva-

tives, since, with real systems, the dynamics are caused either by integer-order or fractional-
order derivatives.

So, (72) corresponds to the integer-order frequency-distributed differential system:⎧⎪⎪⎨⎪⎪⎩
∂z(ω,t)

∂t = −ωz(ω, t) + A
∞∫
0
[μn(ξ)]z(ξ, t)dξ dim(z(t)) = N

x(t) =
∞∫
0
[μn(ξ)]z(ξ, t)dξ

(73)

with the initial condition z(ω, 0) ∀ω ∈ [0, ∞),

and [μn(ξ)] =

⎡⎣μn1(ξ) 0
μni (ξ)

0 μnN (ξ)

⎤⎦ (74)

Let us define the matrix

Ψ(ω, ξ) = −ωδ(ξ−ω)I + A
[
μn(ξ)

]
(75)

where I is the Identity matrix with appropriate dimension.
Then, the differential system (73) can be expressed as

∂z(ω, t)
∂t

=

∞∫
0

Ψ(ω, ξ)z(ξ, t). (76)
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Therefore, the distributed exponential exp

(
t

∞∫
0
ψ(ω, ξ)dξ

)
function is replaced by the

distributed exponential matrix:

Φ(t) = exp

⎛⎝t
∞∫

0

Ψ(ω, ξ)dξ

⎞⎠ =
∞

∑
k=0

tk

k!

⎡⎣ ∞∫
0

Ψ(ω, ξ)dξ

⎤⎦k

, (77)

and the solution of (76) is:

z(ω, t) = exp

⎛⎝t
∞∫

0

Ψ(ω, ξ)dξ

⎞⎠z(ω, 0) = Φ(t)z(ω, 0) ω ∈ [0, ∞). (78)

Notice that, contrary to the Mittag–Leffler matrix, the distributed exponential matrix
shares the same semi-group properties (see chapter 2 of [54]) as its integer order analog, i.e.,

Φ(t, t0) = Φ(t, τ)Φ(τ, t0) t0 < τ < t (79)

Finally, the solution of the linear multidimensional non-commensurate order FDS (72)
with the initial condition z(ω, 0) ∀ω ∈ [0, ∞) is similar to the integer-order case (5), i.e.,

z(ω, t) = Φ(t)z(ω, 0) +
t∫

0

Φ(t− τ)Bu(τ)dτ ω ∈ [0, ∞), (80)

where Φ(t) is the distributed exponential transition matrix.

6.4. Computation of the Distributed Exponential Function

The interest of the distributed exponential function, either in scalar or matrix form,
is essentially theoretical. Practically, in order to compute it, the distributed exponential
function requires frequency discretization, i.e., a discretization of the continuous distributed
integrator model: ⎧⎪⎨⎪⎩

∂z(ω,t)
∂t = −ωz(ω, t) + v(t) ω ∈ [0, ∞)

x(t) =
∞∫
0

μ(ω)z(ω, t)dω
(81)

Direct discretization is possible, but indirect discretization is more efficient [34,35]. It
is based on the approximation of the frequency response of 1

sn 0 < n < 1, on a frequency
interval [ωmin,ωmax] with J first-order cells, associated with an integer-order integrator at
=0. So, the global model is composed of J + 1 cells (or modes) such as:⎧⎪⎨⎪⎩

dzj(t)
dt = −ωjzj(t) + v(t) j = 0 to J

x(t) =
J

∑
j=0

cjzj(t)
(82)

and the elementary system Dn(x(t)) = ax(t) becomes:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dzj(t)

dt = −ωjzj(t) + a
J

∑
j=0

cjzj(t) j = 0 to J

x(t) =
J

∑
j=0

cjzj(t)
(83)

whereωj varies fromω0 = 0 toωJ .
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Let us define:

zT
I (t) =

[
z0(t) . . . zj(t) . . . zJ(t)

]
dim(zI) = J + 1

AI =

⎡⎣ −ω0
−ωj

−ωJ

⎤⎦ BT
I = [1 . . . 1 . . . 1] CI =

[
c0 . . . cj . . . cJ

] (84)

Then, the previous system (83) is transformed into the following one{
dzI(t)

dt = AIzI(t) + aBICIzI(t) = AsystzI(t)
x(t) = CIzI(t)

with Asyst = AI + aBICI (85)

Thus, the solution of system (85) with the initial condition zT
I (0) =

[
z0(0) . . . zj(0) . . . zJ(0)

]
is expressed as

Z(t) = eAsysttZ(0) = φd(t)Z(0), (86)

where φd(t) = eAsystt is the matrix exponential corresponding to the frequency discretiza-

tion of the distributed exponential function φ(t) = exp

(
t

∞∫
0
ψ(ω, ξ)dξ

)
.

Numerical examples of the distributed exponential function are available in chapter 9
volume 1 of [34].

7. Conclusions

In this paper, it has been proved, thanks to an elementary counter example, that
the solution of the FDE initial value problem cannot be provided by the well-known
Caputo derivative approach. The origin of this error relies on ignoring the dynamics of the
fractional integrator, which has caused confusion between pseudo initial conditions of the
Caputo derivative and the initialization function of the Riemann–Liouville integral.

Furthermore, it has been demonstrated that it is necessary to take into account two
complementary models of the fractional integrator: the classical model used to express
the pseudo state variable x(t) is an input/output model, whereas the distributed model
is an infinite-dimension state variable model, which is adapted to the formulation of free
responses thanks to the initial values of its distributed state variable z(ω, t), as proved by
the counter-example.

These two models of the fractional integrator generate two complementary approaches
to the modeling of FDE and FDS one being focused on the pseudo-state variable, whereas
the other permits to express internal transients linked to the distributed state variable.
Two expressions of their free responses have been formulated in the linear case, one with
the help of a convolution of the Mittag–Leffler function with the initialization function,
and the other thanks to the definition of a distributed exponential function, which is a
straightforward generalization of the integer-order case.

Beyond the misuse of fractional derivatives to solve the initial-value problem, the
main conclusion of this paper is that any fractional-order system or one characterized by
a long memory phenomenon is an infinite dimension system, whatever its input/output
representation, linear or nonlinear.

Consequently, the use of an internal distributed representation is not an option but is
necessary to correctly express initialization problems and dynamical transients.
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Abstract: In this paper, the synchronization of fractional-order uncertain delayed neural networks
with an event-triggered communication scheme is investigated. By establishing a suitable Lyapunov–
Krasovskii functional (LKF) and inequality techniques, sufficient conditions are obtained under which
the delayed neural networks are stable. The criteria are given in terms of linear matrix inequalities
(LMIs). Based on the drive–response concept, the LMI approach, and the Lyapunov stability theorem,
a controller is derived to achieve the synchronization. Finally, numerical examples are presented to
confirm the effectiveness of the main results.

Keywords: fractional order; synchronization; event triggered; uncertain

1. Introduction

Fractional calculus is a mathematical theory that has been studied and applied in
different fields for the past 300 years. Compared with traditional integer-order systems,
fractional-order (FO) derivatives provide an excellent tool for the description of memory
and inherent properties of various materials and processes, with applications in many areas,
such as heat conduction, electronics, and abnormal diffusion [1,2]. As a result, fractional
calculus has attracted increasing attention from physicists and engineers [3–7]. Moreover,
fractional calculus has been applied to numerous neural network models [8,9]. Hence,
the research on fractional neural networks (NNs) is important for practical applications,
and many important results on chaotic dynamics, stability analysis, stabilization, syn-
chronization, dissipativity, and passivity have been reported [10–16]. This popularity is
due to the fact that fractional calculus has the ability to include memory when describing
complex systems and gives a more precise characterization than the standard integer-order
approach. A key characteristic is that the FO derivatives require an infinite number of
terms, whereas the integer-order derivatives only indicate a finite series. Consequently, the
integer derivatives are local operators, whereas the FO derivative has the memory of all
past events.

In the real world, there are different types of uncertainty that can attenuate the perfor-
mance of the system and affect its stability. These uncertainties may result from parameter
variations and external disturbances. If a structural process is observed experimentally, it is
not possible to assign precise values to the observed events. This means data uncertainty
occurs, which may result from scale-dependent impacts that are not considered, which
create inaccuracies in the estimations and incomplete sets of observations. In this manner,
the estimated results are more or less described by the data uncertainty that begins with
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imprecision. In addition, the parameter uncertainties are unavoidable while displaying a
neural network, which creates unstable results. It is known that a precise physical model of
an engineering plant is difficult to build because of the uncertainties and noises. In actual
operation, due to the existence of some external or internal uncertain disturbances, system
states sometimes are not always fully accessible [17–26].

Generally speaking, an event-triggered control strategy is more appealing than the
traditional time-triggered one from an economic perspective, since the control input is
updated only when the predetermined triggering condition is reached. Since the event-
triggered control approach can reduce information exchange in systems, event-triggered
synchronization or consensus for fractional-order systems has received increasing attention
in recent years. Recently, there has been significant research on the event-triggered control
(ETC) strategy [27–29]. Compared to the time-driven consensus, the event-triggered con-
sensus is more realistic. The event-triggered controller introduced in the field of networked
control systems has the advantage of using limited communication network resources
efficiently. Recently, an event-triggered scheme (ETS) provided an effective way of de-
termining when the sampling action should be carried out and when the packet should
be transmitted. A number of researchers have recommended event-triggered control. To
deal with network congestion, the ETS has been proposed to improve data transmission
efficiency. In the past few years, event-triggered control has proved to be an efficient way to
reduce the transmitted data in the networks, which can relieve the burden of network band-
width. Thus event-triggered control strategies have been employed to study networked
systems [30–32].

In addition, in many practical applications, the system is expected to reach synchro-
nization as quickly as possible. Synchronization is an important phenomenon in the real
world, which exists widely in practical systems, as well as in nature. The problem of
achieving synchronization in a neural network is another research hotspot. Different kinds
of synchronization, such as pinning synchronization [33], local synchronization [34,35],
lag synchronization [36], and impulsive synchronization [37] have been considered in the
literature. Recently synchronization has also attracted attention in the field of complex
networks systems [38,39]. Synchronization techniques require communication among
nodes, which creates network congestion and wastes network resources. Moreover, the
treatment of the synchronization problem of fractional-order systems with input quantiza-
tion is quite limited in the literature. Numerous consequence have been described for the
synchronization-based event-triggered problem [40–42]. As collective behaviors, consensus
and synchronization are important in nature.

There is no doubt that the Lyapunov functional method provides an effective approach
to analyze the stability of integer-order nonlinear systems. The synchronization and stabi-
lization of fractional Caputo neural network (FCNNs) were proved by constructing a simple
quadratic Lyapunov function and calculating its fractional derivative. The contributions of
this article are listed below:

1. The synchronization of fractional-order uncertain delayed neural networks with an
event-triggered communication scheme is investigated.

2. A fractional integral, which is suitable for the considered fractional-order error
system, is proposed.

3. A Lyapunov–Krasovskii (L–K) functional is established, and the conditions corre-
sponding to asymptotic stability are derived for the design of an event-triggered controller
based on linear matrix inequalities (LMIs).

4. The derived conditions are expressed in terms of linear matrix inequalities (LMIs),
which can be checked numerically via the LMI toolbox very efficiently.

5. Numerical examples are provided to demonstrate the effectiveness and applicability
of the proposed stability results.

The following notations are used in this paper. R and Rn denote the set of real
numbers and the n-dimensional real spaces, respectively; Rn×n denotes the set of n× n

matrices. I denotes the identity matrix of appropriate dimension. The super script “T ”
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denotes the matrix transposition. “(−1)” represents the matrix inverse. X > 0 (X < 0)
means that X is positive definite (negative definite). I represents the identity matrix and
zero matrix with compatible dimensions. In symmetric block matrices or a long matrix
expression, we use an asterisk (*) to represent a term that is induced by symmetry. L2[0, ∞)
denotes the space of square-integrable vector functions over [0, ∞).

2. Preliminaries

In this section, we recall the basic definition and some properties concerning fractional-
order calculus. In addition, definition, remark, assumption and some lemmas are presented.

Definition 1 ([43]). The Caputo fractional derivative of order β for a function f(t) is defined as

Dβ f (t) =
1

Γ(m− β)

∫ t

0

f m(γ)

(t− γ)β−m+1 dγ,

where t ≥ 0, and m− 1 < β < m ∈ Z+. In particular, when β ∈ (0, 1),

Dβ f (t) =
1

Γ(1− β)

∫ t

0

f ′(γ)
(t− γ)β

dγ.

Lemma 1 ([44]). Let a vector-valued function �(t) ∈ Rn be differentiable. Then, for any t > 0,
one has

Dα(�T(t)S �(t)) ≤ 2�T(t)S Dα�(t), 0 < α < 1.

Lemma 2 ([45]). For the given positive scalar λ > 0, l, r ∈ Rm and matrix D ,

lTDr ≤ λ−1

2
lTDDTl+

λ

2
rTr.

Lemma 3 ([46]). If N > 0, and the given matrices are S , Q, N , then[
Q S T

S −N

]
< 0,

if and only if

Q +S TN −1S < 0.

Lemma 4 ([47]). For a vector function Ξ : [t1, t2]→ Rn and any positive definite matrix P , we
have ( ∫ t2

t1

Ξ(s)ds
)T

P
( ∫ t2

t1

Ξ(s)ds
)
≤ (t2 − t1)

∫ t2

t1

ΞT (s)PΞ(s)ds.

Assumption 1. Let gi(·) be continuous and bounded; X −
s and X +

s are constants,

X −
s ≤ gs(r1)− gs(r2)

r1 − r2
≤ X +

s , s = 1, 2, . . . , n,

where r1, r2 ∈ R and r1 �= r2.

Remark 1. From the literature survey, it is clear that most of the results on fractional order neural
networks (FONNs) are derived with fractional-order Lyapunov stability criteria having quadratic
terms. However, in this paper, we introduce the integral term D (−α+1)

∫ t
t−η e

T (s)R2e(s)ds in the
Lyapunov functional candidate, which is solved by utilizing the properties of Caputo fractional-order
derivatives and integrals. The Lyapunov functional is novel, as it contains the quadratic term. By
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applying fractional-order derivatives in the error system of the FCNNs under suitable adaptive
update laws, a new sufficient condition can be derived in terms of solvable LMIs.

3. Main Results

Consider the following uncertain delayed neural network described by

Dαwi(t) = −(ri + Δri(t))wi(t) +
n

∑
j=1

(cij + Δcij(t))hj(wj(t))

+
n

∑
j=1

(bij + Δbij(t))hj(wj(t− σj(t)))

+
n

∑
j=1

(aij + Δaij(t))
∫ t

t−η
wj(s)ds+ pi(t). (1)

Conveniently, we write the master system as

Dαw(t) = −(R + ΔR(t))w(t) + (C + ΔC (t))h(w(t)) + (B + ΔB(t))h(w(t− σ(t))

+ (A + ΔA (t))
∫ t

t−η
(w(s))ds+P(t), (2)

in which w(t) = (w1(t),w2(t), . . . ,wn(t))
T ∈ Rn, is the state vector associated with n

neurons, the diagonal matrix ri(t) = diag{r1(t), r2(t), . . . , rn(t)}, and C (t), B(t), and A (t)
are the known constant matrices of appropriate dimensions; the symbol Δ denotes the
uncertain term, and ΔC (t), ΔB(t), and ΔA (t) are known matrices that represent the
time-varying parameter uncertainties. h(w(t)) is the neuron activation function.

Next, we consider the corresponding slave system as follows:

Dαvi(t) = −(ri + Δri(t))vi(t) +
n

∑
j=1

(cij + Δcij(t))hj(vj(t))

+
n

∑
j=1

(bij + Δbij(t))hj(vj(t− σj(t)))

+
n

∑
j=1

(aij + Δaij(t))
∫ t

t−η
vj(s)ds+ pi(t) + hqi(t). (3)

The compact form of (3) is

Dαv(t) = −(R + ΔR(t))v(t) + (C + ΔC (t))h(v(t)) + (B + ΔB(t))h(v(t− σ(t))

+ (A + ΔA (t))
∫ t

t−η
v(s)ds+P(t) +H Q(t). (4)

Now, we introduce the e(t) = v(t)−w(t):

Dαe(t) = −(R + ΔR(t))e(t) + (C + ΔC (t))h(e(t)) + (B + ΔB(t))h(e(t− σ(t))

+ (A + ΔA (t))
∫ t

t−η
e(s)ds+H Q(t). (5)

The purpose of this paper is to design a controller Q(t) = K e(t), such that the slave
system (3) synchronizes with the master system (1), and K is the controller gain to be
determined.

Without distributed delays in the system (1), it is easy to obtain the error system

Dαe(t) = −(R + ΔR(t))e(t) + (C + ΔC (t))h(e(t)) + (B + ΔB(t))h(e(t− σ(t))

+H K e(t). (6)
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Theorem 1. The FNNs (1) and (3) are globally asymptotically synchronized under the event-
triggered control scheme, for the given scalars δ1, δ2, δ3, δ4, δ5, and μ1, and if there exist symmetric
positive definite matrices R1 > 0, R2 > 0, such that a feasible solution exists for the following
LMIs,

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 R1Jr R1Jc R1Jb R1C R1B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ Ω66.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (7)

where

Ω11 = −2R1R + δ1L
T

r Lr + δ2φT L T
c Lcφ + δ4φT φ +R2 +R1H K ,

Ω66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− μ)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (8)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.

By using Lemma 2, we have,

2eT (t)R1ΔR(t)e(t) ≤ 2eT (t)R1JdK (t)Lde(t),

≤ δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

r Lre(t), (9)

2eT (t)R1ΔC (t)h(e(t)) ≤ 2eT (t)R1JcK (t)Lch(e(t)),

≤ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t)

+ δ2e
T (t)φT L T

c Lcφe(t), (10)

2eT (t)R1ΔB(t)h(e(t− σ(t))) ≤ 2eT (t)R1JbK (t)Lbh(e(t− σ(t))),

≤ δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t)), (11)

2eT (t)R1C h(e(t))) ≤ δ−1
4 eT (t)R1C C TRT

1 e(t)

+ δ4e
T (t)φT φe(t),

2eT (t)R1Bh(e(t− σ(t)))) ≤ δ−1
5 eT (t)R1BBTRT

1 e(t)

+ δ5e
T (t− σ(t))φT φe(t− σ(t)). (12)

Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-
order derivative, the fractional derivative along the trajectories of the system state is
acquired as follows
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DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ΔR(t))e(t) + (C + ΔC (t))h(e(t))

+ (B + ΔB(t))h(e(t− σ(t)) +H K e(t)
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

d Lde(t) + 2eT (t)R1C h(e(t))

+ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))(1− μ). (13)

From (9)–(13), the following can be obtained.

DαV (t) ≤ ζT(t)Ωζ(t), (14)

where

ζ(t) = col[e(t), e(t− σ(t)))].

From the aforementioned part, we know that matrix inequality (7) guarantees Ω < 0.
Thereby, the master system (1) is synchronized with the slave system (3). The proof of

Theorem 1 is complete.

Theorem 2. The FNNs (1) and (3) are globally asymptotically synchronized, for given scalars
δ1, δ2, δ3, δ4, δ5, and σ, if there exist symmetric positive definite matrices R1 > 0, R2 > 0, such
that the following LMIs hold:

π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (15)

where

π11 = −2R1X1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1

+X1δ4φT φX1 +X1R2X1 +H Y1,

π66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− μ), (16)

and the other parameters are the same as in Theorem 1; among them, the gain matrix is defined with
R−1

1 = X1.

Proof. We pre- and post-multiply Ω by {R−1
1 , I , I , I , I , I , I } and R−1

1 = X1
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Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ Φ66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (17)

where

Φ11 = −2R1X1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1

+X1δ4φT φX1 +X1R2X1 +H K X1,

Φ66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− μ).

At the same time, the controller gain matrix K can be obtained as Y1 = K X1,

π =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ π66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (18)

Hence, (15) guarantees that

π < 0. (19)

Thereby, the master system (1) is synchronized with the slave system (3). The proof of
Theorem 2 is complete.

Remark 2. Specifically, when there are no uncertainties in the given system, the neural network
(6) reduces to

Dαe(t) = −Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+A
∫ t

t−η
e(s)ds+H K e(t). (20)

Corollary 1. The scalars are δ4, δ5, η, ε, and σ, and if there exist symmetric positive definite
matrices R1 > 0, R2 > 0, a feasible solution exists for the following LMIs:

β < 0. (21)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (22)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.

49



Fractal Fract. 2022, 6, 641

By using Lemma 2, we have

2eT (t)R1C h(e(t))) ≤ δ−1
4 eT (t)R1C C TRT

1 e(t)

+ δ4e
T (t)φT φe(t), (23)

2eT (t)R1Bh(e(t− σ(t)))) ≤ δ−1
5 eT (t)R1BBTRT

1 e(t)

+ δ5e
T (t− σ(t))φT φe(t− σ(t)). (24)

Further, the above term is computed in view of the procedure in [47], and by employing
Lemma 2.1 in [47] and the Cauchy matrix inequality, we have

2eT (t)R1A (t)
∫ t

t−η
e(s))ds ≤ ηeT (t)R1A R−1

1 A TR1e(t)

+
1
η

( ∫ t

t−η
e(s))ds

)T

R1

( ∫ t

t−η
e(s))ds

)
,

≤ ηeT (t)R1A R−1
1 A TR1e(t)

+
1
η

( ∫ t

t−η
eT(s))R1e(s))ds

)
,

≤ ηeT (t)R1A R−1
1 A TR1e(t)

+
1
η

( ∫ 0

−η
eT(t+ s))R1e(t+ s))ds

)
, (25)

since V (t+ s, x(t+ s)) ≤ εV (t, x(t))

2eT (t)R1A (t)
∫ t

t−η
e(s))ds ≤ ηeT (t)R1A R−1

1 A TR1e(t) + ηεeT (t)R1e(t). (26)

Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-order
derivative, the fractional derivative along the trajectories of the system state is acquired as
follows

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
−Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+ 2eT (t)R1A (t)
∫ t

t−η
e(s))ds+K e(t)

]
,

≤ −2eT (t)R1Re(t) + δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ ηeT (t)R1A R−1
1 A TR1e(t) + ηεeT (t)R1e(t)

+ eT(t)R2e(t)− eT(t− σ(t))R2e(t− σ(t))(1− μ). (27)

From (23)–(27) and applying Lemma 4, we obtain

Θ =

⎡⎢⎢⎢⎢⎣
Θ11 R1C R1B ηR1A 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ ηR1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

⎤⎥⎥⎥⎥⎦ < 0, (28)

Θ11 = −2R1R + ηεR1 +R2 +R1H K .

We pre- and post-multiply Θ by {R−1
1 , I , I , R−1

1 , I }
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Ξ =

⎡⎢⎢⎢⎢⎣
Ξ11 C B ηA X1 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ −ηX1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

⎤⎥⎥⎥⎥⎦, (29)

where Ξ11 = −2RX1 +X1δ4φTφX1 +X1ηε +X1R2X1 +H K X1

ς =

⎡⎢⎢⎢⎢⎣
ς11 C B ηA X1 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ −ηX1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

⎤⎥⎥⎥⎥⎦, (30)

where ς11 = −2RX1 +X1δ4φTφX1 +X1ηε +X1R2X1 +H Y .
Thereby, the master system (1) is synchronized with the slave system (3).

4. Event-Triggered Control Scheme

In this section, we introduce an event generator in the controller node by using the
following judgment algorithm

[e((k+ j)h)− e(kh)]TΦ[e((k+ j)h)− e(kh)] ≤ ΣeT((k+ j)h)Φe((k+ j)h), (31)

where Φ is a positive definite matrix to be determined, k, j ∈ Z+ and kh denotes the release
instant, e((k+ j)h) = v((k+ j)−w((k+ j)h) is the error information at the instant (k+ j)h,
and σ ∈ [0, 1) is a given constant. Cases A and B relate to the following delayed differential
equation

Dαe(t) = −(R + ΔR(t))e(t) + (C + ΔC (t))h(e(t)) + (B + ΔB(t))h(e(t− σ(t))

+ (A + ΔA (t))
∫ t

t−η
h(e(s))ds+H K e(tkh), t ∈ [tkh+ τk, tk+1h+ τk+1). (32)

Case A: if tkh+ h+ τ̄ ≥ tk+1h+ τk+1, we can define τ(t) as

τ(t) = t− tkh, t ∈ [tkh+ τk, tk+1h+ τk+1).

It can be seen that

τt ≤ τ(t) ≤ (tk+1 − tk)h+ tk+1 ≤ h+ τ̄.

Case B: if tkh + h + τ̄ < tk+1h + τk+1, since tk ≤ τ̄, we can easily demonstrate that a
positive constant m exists such that tkh+mh+ τ̄ < tk+1h+ τk+1 ≤ tkh+ (m+ 1)h+ τ̄. For
the time intervals [tkh+ τk, tk+1h+ τk+1), we divide them as F0 = [tkh+ τk, tkh+ h+ τ̄),
Fi = [tkh+ ih+ τ̄, tkh+ ih+ h+ τ̄), and Fm = [tkh+mh+ τ̄, tk+1h+ τk+1), and we define
τ(t) as

τ(t) = t− tk(t)− ih, it ∈ Fi, i = 0, 1, . . . ,m.

It is easy to prove that 0 ≤ τk ≤ τ((t)) ≤ h+ τ̄ = τM, t ∈ [tkh+ τk, tk+1h+ τk+1). Finally,
we define

ek(t) = e(tkh)− e(tkh+ ih), t ∈ Fi, i = 0, 1, . . . , m. (33)

For case A, m = 0, we have ek(t) = 0 from (33). Based on the analysis above, the event
generator (31) can be rewritten as

eT
k (t)Φek((t)) ≤ ΣeT(t− τ(t))ΦeT(t− τ(t), t ∈ [tkh+ τk, tk+1h+ τk+1).
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Then, the system is reduced to

Dαe(t) = −Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+A
∫ t

t−η
e(s)ds+H K e(t) +H K e(t− τ(t)). (34)

Theorem 3. For the given scalars δ1, δ2, δ3, δ4, δ5, μ1, and σ and the diagonal matrices L1, L2,
and L3, if there exist symmetric positive definite matrices R1 > 0, R2 > 0, then a feasible solution
exists for the following LMIs:

ξ < 0. (35)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (36)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.

Using Lemma 2, we have

2eT (t)R1ΔR(t)e(t) ≤ 2eT (t)R1JdK (t)Lde(t),

≤ δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

r Lre(t), (37)

2eT (t)R1ΔC (t)h(e(t)) ≤ 2eT (t)R1JcK (t)Lch(e(t)),

≤ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t)

+ δ2e
T (t)φT L T

c Lcφe(t), (38)

2eT (t)R1ΔB(t)h(e(t− σ(t))) ≤ 2eT (t)R1JbK (t)Lbh(e(t− σ(t))),

≤ δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t)). (39)

Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-
order derivative, the fractional derivative along the trajectories of the system state is
acquired as follows

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ΔR(t))e(t) + (C + ΔC (t))h(e(t))

+ (B + ΔB(t))h(e(t− σ(t)) +H K e(t) +H K e(t− τ(t))
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ T

d RT
1 e(t) + δ1e

T (t)L T
d Lde(t)

+ 2eT (t)R1C h(e(t)) + δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))(1− μ). (40)
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From Assumption 1, we have[
e(t)

h(e(t))

]T[ −L1Γ2 L1Γ1
∗ −L1

][
e(t)

h(e(t))

]
≤ 0 (41)[

e(t− σ(t))
h(e(t− σ(t)))

]T[ −L2Γ2 L2Γ1
∗ −L2

][
e(t− σ(t))

h(e(t− σ(t)))

]
≤ 0 (42)[

e(t− τ(t))
h(e(t− τ(t)))

]T[ −L3Γ2 L3Γ1
∗ −L3

][
e(t− τ(t))

h(e(t− τ(t)))

]
≤ 0. (43)

From (37)–(43), we obtain

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ΔR(t))e(t) + (C + ΔC (t))h(e(t))

+ (B + ΔB(t))h(e(t− σ(t)) +H K e(t) +H K e(t− τ(t))
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t) + δ1e
T (t)L T

d Lde(t)

+ 2eT (t)R1C h(e(t)) + δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))

+

[
e(t)

h(e(t))

]T[ −L1Γ2 L1Γ1
∗ −L1

][
e(t)

h(e(t))

]
+

[
e(t− σ(t))

h(e(t− σ(t)))

]T[ −L2Γ2 L2Γ1
∗ −L2

][
e(t− σ(t))

h(e(t− σ(t)))

]
+

[
e(t− τ(t))

h(e(t− τ(t)))

]T[ −L3Γ2 L3Γ1
∗ −L3

][
e(t− τ(t))

h(e(t− τ(t)))

]
.

Then,

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11 Λ12 0 Λ14 Λ15 0 Λ17 Λ18 Λ19
∗ Λ22 0 0 0 0 0 0 0
∗ ∗ Λ33 Λ34 0 0 0 0 0
∗ ∗ ∗ Λ44 0 0 0 0 0
∗ ∗ ∗ ∗ Λ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Λ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Λ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (44)

where

Λ11 = −2R1R + δ1L
T

r Lr + δ2φT L T
c Lcφ +R2 + 2R1H K

−L1Γ2 −Φ, Λ12 = R1C +L1Γ1, Λ14 = R1B, Λ15 = R1H K ,

Λ17 = R1Jr, Λ18 = R1Jc, Λ19 = R1Jb, Λ22 = −L1, Λ33 = δ3φTL T
b Lbφ

−R2(1− μ)−L2Γ2, Λ34 = L2Γ1, Λ44 = −L2, Λ55 = ΣΦ−L3Γ2,

Λ56 = L3Γ1, Λ66 = −L3, Λ77 = −δ1I , Λ88 = −δ2I , Λ99 = −δ3I .
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We pre- and post-multiply Λ with {R−1
1 , I , I , I , R−1

1 , I , I , I , I }

Υ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υ11 Υ12 0 Υ14 Υ15 0 Υ17 Υ18 Υ19
∗ Υ22 0 0 0 0 0 0 0
∗ ∗ Υ33 Υ34 0 0 0 0 0
∗ ∗ ∗ Υ44 0 0 0 0 0
∗ ∗ ∗ ∗ Υ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Υ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Υ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (45)

where

Υ11 = −2RX1 +X1δ1L
T
r LrX1 +X1δ2φT L T

c LcφX1 +X1R2X1

+ 2H K X1 −X1L1Γ2X1 −X1φX1, Υ12 = C +X1L1Γ1, Υ14 = B,

Υ15 = H K X1, Υ17 = Jr, Υ18 = Jc, Υ19 = Jb, Υ22 = −L1, Υ33 = δ3φTL T
b Lbφ

−R2(1− μ)−L2Γ2, Υ34 = L2Γ1, Υ44 = −L2, Υ55 = X1ΣΦX1 −X1L3Γ2X1,

Υ56 = L3Γ1, Υ66 = −L3, Υ77 = −δ1I , Υ88 = −δ2I , Υ99 = −δ3I .

At the same time, the controller gain matrix K can be obtained as Y1 = K X1

ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ11 ξ12 0 ξ14 ξ15 0 ξ17 ξ18 ξ19
∗ ξ22 0 0 0 0 0 0 0
∗ ∗ ξ33 ξ34 0 0 0 0 0
∗ ∗ ∗ ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ξ99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (46)

where

ξ11 = −2RX1 +X1δ1L
T
r LrX1 +X1δ2φT L T

c LcφX1 +X1R2X1 + 2H Y

−X1L1Γ2X1 −X1φX1, ξ12 = C +X1L1Γ1, ξ14 = B, ξ15 = H Y , ξ17 = Jr,

ξ18 = Jc, ξ19 = Jb, ξ22 = −L1, ξ33 = δ3φTL T
b Lbφ−R2(1− μ)−L2Γ2,

ξ34 = L2Γ1, ξ44 = −L2, ξ55 = X1ΣΦX1 −X1L3Γ2X1, ξ56 = L3Γ1, ξ66 = −L3,

ξ77 = −δ1I , ξ88 = −δ2I , ξ99 = −δ3I .

DαV (t) ≤ ϕT(t)ξϕ(t), (47)

where

ϕ(t) = col[e(t), h(e(t)), e(t− σ(t)), h(e(t− σ(t)), e(t− τ(t)),

h(e(t− τ(t)))].

By the Lypunov stability theory analysis, the event-triggered synchronization of the
fractional-order uncertain neural networks’ error system (34) is globally asymptotic stable
if LMI (35) holds. This completes the proof.
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5. Numerical Example

Example 1. Consider the following uncertain neural networks (5) with time-varying delays de-
scribed by

Dαe(t) = −(R + ΔR(t))e(t) + (C + ΔC (t))h(e(t)) + (B + ΔB(t))h(e(t− σ(t))

+H Q(t), (48)

with the following parameters

C =

⎡⎢⎢⎢⎢⎣
−1.5241 1.2489 1.6844 1.2946 1.8722
−1.2567 1.1247 1.4211 1.6522 1.2807
1.5427 1.1227 −1.4567 1.0425 1.1727
1.2514 −1.1077 1.2404 1.6507 1.2701
1.9472 −1.1174 −1.2567 1.9989 1.2486

⎤⎥⎥⎥⎥⎦,

B =

⎡⎢⎢⎢⎢⎣
−1.4932 1.5968 1.2567 1.0567 1.2674
1.2942 1.9942 −1.6911 1.2849 1.5677
1.0977 1.4217 −1.2415 1.5661 1.5717
1.2567 −1.0741 1.2961 1.2247 1.2702
1.0047 1.2742 1.4274 1.6611 1.4428

⎤⎥⎥⎥⎥⎦,

H =

⎡⎢⎢⎢⎢⎣
−1.5432 1.0968 1.2987 1.0097 1.9974
1.6542 1.5642 −1.3411 1.7649 1.5767
1.2377 1.3417 −1.9815 1.3461 1.5887
1.8767 −1.8741 1.6561 1.9847 1.2092
1.3247 1.2652 1.4094 1.6871 1.4488

⎤⎥⎥⎥⎥⎦,

R =

⎡⎢⎢⎢⎢⎣
0.7289 0 0 0 0

0 0.7289 0 0 0
0 0 0.7289 0 0
0 0 0 0.7289 0
0 0 0 0 0.7289

⎤⎥⎥⎥⎥⎦, I =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦.

Jr =

⎡⎢⎢⎢⎢⎣
0.4428 0 0 0 0

0 0.4428 0 0 0
0 0 0.4428 0 0
0 0 0 0.4428 0
0 0 0 0 0.4428

⎤⎥⎥⎥⎥⎦,

Ld =

⎡⎢⎢⎢⎢⎣
1.7782 0 0 0 0

0 1.7782 0 0 0
0 0 1.7782 0 0
0 0 0 1.7782 0
0 0 0 0 1.7782

⎤⎥⎥⎥⎥⎦,

Jc =

⎡⎢⎢⎢⎢⎣
0.5242 0 0 0 0

0 0.5242 0 0 0
0 0 0.5242 0 0
0 0 0 0.5242 0
0 0 0 0 0.5242

⎤⎥⎥⎥⎥⎦.
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Lc =

⎡⎢⎢⎢⎢⎣
2.8976 0 0 0 0

0 2.8976 0 0 0
0 0 2.8976 0 0
0 0 0 2.8976 0
0 0 0 0 2.8976

⎤⎥⎥⎥⎥⎦,

Lb =

⎡⎢⎢⎢⎢⎣
1.8974 0 0 0 0

0 1.8974 0 0 0
0 0 1.8974 0 0
0 0 0 1.8974 0
0 0 0 0 1.8974

⎤⎥⎥⎥⎥⎦,

Jb =

⎡⎢⎢⎢⎢⎣
0.2995 0 0 0 0

0 0.2995 0 0 0
0 0 0.2995 0 0
0 0 0 0.2995 0
0 0 0 0 0.2995

⎤⎥⎥⎥⎥⎦,

φ =

⎡⎢⎢⎢⎢⎣
0.2494 0 0 0 0

0 0.2494 0 0 0
0 0 0.2494 0 0
0 0 0 0.2494 0
0 0 0 0 0.2494

⎤⎥⎥⎥⎥⎦.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (7) based on the MATLAB toolbox returns the following

feasible solutions:

R1 =

⎡⎢⎢⎢⎢⎣
0.0284 0.0154 0.0180 −0.0127 −0.0074
0.0154 0.0244 0.0120 0.0070 −0.0260
0.0180 0.0120 0.0209 −0.0054 −0.0102
−0.0127 0.0070 −0.0054 0.0904 −0.0873
−0.0074 −0.0260 −0.0102 −0.0873 0.1118

⎤⎥⎥⎥⎥⎦,

R2 =

⎡⎢⎢⎢⎢⎣
36.6572 0.0000 0.0000 −0.0000 −0.0000
0.0000 36.6572 0.0000 0.0000 −0.0000
0.0000 0.0000 36.6572 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 36.6572 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 36.6572

⎤⎥⎥⎥⎥⎦.

The gain matrix of the designed controller can be obtained as:

K =

⎡⎢⎢⎢⎢⎣
−9.2914 0.0000 0.0000 −0.0000 −0.0000
0.0000 −9.2914 0.0000 0.0000 −0.0000
0.0000 0.0000 −9.2914 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 −9.2914 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 −9.2914

⎤⎥⎥⎥⎥⎦.

δ1 = 20.2099, δ2 = 20.2097, δ3 = 20.2099, δ4 = 20.2099, and δ5 = 20.2099, which preserves
system (48) as synchronous.

Example 2. Consider the following uncertain neural networks with time-varying delays described
by

Dαe(t) = −(R + ΔR(t))e(t) + (C + ΔC (t))h(e(t)) + (B + ΔB(t))h(e(t− σ(t))

+H QK (t) (49)
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C =

⎡⎢⎢⎢⎢⎣
−1.7841 1.2499 1.6876 1.9046 1.8092
−1.3367 1.3447 1.4541 1.6982 1.7807
1.2327 1.1447 −1.4897 1.0895 1.5627
1.8714 −1.7677 1.2094 1.9807 1.7801
1.3472 −1.8974 −1.6667 1.5689 1.2986

⎤⎥⎥⎥⎥⎦,

B =

⎡⎢⎢⎢⎢⎣
−1.9832 1.5878 1.6767 1.0567 1.2674
1.3442 1.9482 −1.9811 1.2899 1.5097
1.9877 1.4977 −1.6615 1.5687 1.5787
1.6767 −1.6741 1.2977 1.2277 1.2982
1.9847 1.2892 1.8774 1.6666 1.4499

⎤⎥⎥⎥⎥⎦,

H =

⎡⎢⎢⎢⎢⎣
−1.7632 1.0878 1.2897 1.7897 1.9674
1.9942 1.3342 −1.8711 1.7999 1.6767
1.9877 1.3817 −1.5615 1.7861 1.4587
1.6567 −1.6741 1.9561 1.8747 1.2702
1.6647 1.2652 1.4564 1.6771 1.6788

⎤⎥⎥⎥⎥⎦,

R =

⎡⎢⎢⎢⎢⎣
0.2389 0 0 0 0

0 0.2389 0 0 0
0 0 0.2389 0 0
0 0 0 0.2389 0
0 0 0 0 0.2389

⎤⎥⎥⎥⎥⎦,

Jr =

⎡⎢⎢⎢⎢⎣
0.7628 0 0 0 0

0 0.7628 0 0 0
0 0 0.7628 0 0
0 0 0 0.7628 0
0 0 0 0 0.7628

⎤⎥⎥⎥⎥⎦,

Ld =

⎡⎢⎢⎢⎢⎣
1.9882 0 0 0 0

0 1.9882 0 0 0
0 0 1.9882 0 0
0 0 0 1.9882 0
0 0 0 0 1.9882

⎤⎥⎥⎥⎥⎦,

Jc =

⎡⎢⎢⎢⎢⎣
0.9087 0 0 0 0

0 0.9087 0 0 0
0 0 0.9087 0 0
0 0 0 0.9087 0
0 0 0 0 0.9087

⎤⎥⎥⎥⎥⎦,

Lc =

⎡⎢⎢⎢⎢⎣
2.5676 0 0 0 0

0 2.5676 0 0 0
0 0 2.5676 0 0
0 0 0 2.5676 0
0 0 0 0 2.5676

⎤⎥⎥⎥⎥⎦,
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Lb =

⎡⎢⎢⎢⎢⎣
1.0987 0 0 0 0

0 1.0987 0 0 0
0 0 1.0987 0 0
0 0 0 1.0987 0
0 0 0 0 1.0987

⎤⎥⎥⎥⎥⎦,

Jb =

⎡⎢⎢⎢⎢⎣
0.8765 0 0 0 0

0 0.8765 0 0 0
0 0 0.8765 0 0
0 0 0 0.8765 0
0 0 0 0 0.8765

⎤⎥⎥⎥⎥⎦,

φ =

⎡⎢⎢⎢⎢⎣
0.2476 0 0 0 0

0 0.2476 0 0 0
0 0 0.2476 0 0
0 0 0 0.2476 0
0 0 0 0 0.2476

⎤⎥⎥⎥⎥⎦,

I =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (15) based on the MATLAB toolbox returns the following
feasible solutions:

X1 =

⎡⎢⎢⎢⎢⎣
0.0346 0.0132 0.0158 −0.0124 −0.0074
0.0132 0.0310 0.0070 0.0006 −0.0156
0.0158 0.0070 0.0301 −0.0123 −0.0014
−0.0124 0.0006 −0.0123 0.1428 −0.1226
−0.0074 −0.0156 −0.0014 −0.1226 0.1419

⎤⎥⎥⎥⎥⎦,

R2 =

⎡⎢⎢⎢⎢⎣
34.3231 0.0000 0.0000 −0.0000 −0.0000
0.0000 34.3231 0.0000 0.0000 −0.0000
0.0000 0.0000 34.3231 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 34.3231 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 34.3231

⎤⎥⎥⎥⎥⎦,

Y =

⎡⎢⎢⎢⎢⎣
−10.4053 0.0000 0.0000 −0.0000 −0.0000

0.0000 −10.4053 0.0000 0.0000 −0.0000
0.0000 0.0000 −10.4053 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 −10.4053 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 −10.4053

⎤⎥⎥⎥⎥⎦.

The gain matrix of the designed controller can be obtained as:

K =

⎡⎢⎢⎢⎢⎣
−5.0940 1.0518 1.7014 −1.6104 −1.5249
1.0518 −4.4548 0.0090 −1.0158 −1.3140
1.7014 0.0090 −4.7390 −0.8662 −0.7067
−1.6104 −1.0158 −0.8662 −4.3173 −3.9362
−1.5249 −1.3140 −0.7067 −3.9362 −4.3671

⎤⎥⎥⎥⎥⎦.

δ1 = 21.1589, δ2 = 21.1589, δ3 = 21.1567, δ4 = 21.1590, andδ5 = 21.1583, which preserves (49)
as synchronous.

Example 3. Consider the following neural networks (20), with the following parameters
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C =

⎡⎢⎢⎢⎢⎣
−1.5041 1.0489 1.0844 1.9946 1.8762
−1.7567 1.5247 1.7211 1.4522 1.2877
1.0427 1.8227 −1.5567 1.9425 1.1877
1.6514 −1.0077 1.2904 1.6507 1.7601
1.9872 −1.6174 −1.6567 1.9989 1.0986

⎤⎥⎥⎥⎥⎦,

A =

⎡⎢⎢⎢⎢⎣
−1.0941 1.9889 1.6544 1.2096 1.1722
−1.1567 1.6547 1.4871 1.6672 1.7807
1.5727 1.1347 −1.4987 1.0765 1.6727
1.2514 −1.8777 1.2094 1.6597 1.9701
1.9272 −1.8874 −1.6767 1.8089 1.9486

⎤⎥⎥⎥⎥⎦,

B =

⎡⎢⎢⎢⎢⎣
−1.4872 1.5878 1.8767 1.6667 1.9074
1.8742 1.9452 −1.9911 1.9049 1.8877
1.0877 1.4987 −1.2315 1.7761 1.0917
1.0567 −1.3441 1.9861 1.0947 1.8902
1.6047 1.2872 1.4874 1.0911 1.0928

⎤⎥⎥⎥⎥⎦,

R =

⎡⎢⎢⎢⎢⎣
0.1459 0 0 0 0

0 0.1459 0 0 0
0 0 0.1459 0 0
0 0 0 0.1459 0
0 0 0 0 0.1459

⎤⎥⎥⎥⎥⎦,

H =

⎡⎢⎢⎢⎢⎣
−1.5782 1.0068 1.7687 1.0097 1.0974
1.6942 1.8742 −1.0911 1.6749 1.8767
1.6377 1.9817 −1.4515 1.9861 1.7687
1.8097 −1.8651 1.0961 1.0947 1.0992
1.3677 1.2698 1.4874 1.8671 1.9888

⎤⎥⎥⎥⎥⎦,

I =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦, φ =

⎡⎢⎢⎢⎢⎣
0.0987 0 0 0 0

0 0.0987 0 0 0
0 0 0.0987 0 0
0 0 0 0.0987 0
0 0 0 0 0.0987

⎤⎥⎥⎥⎥⎦.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (21) based on the MATLAB toolbox returns the

following feasible solutions:

R1 =

⎡⎢⎢⎢⎢⎣
0.6253 0.2376 0.3124 −0.1046 −0.2094
0.2376 0.4979 0.1106 −0.1841 −0.0731
0.3124 0.1106 0.4894 0.1397 −0.3460
−0.1046 −0.1841 0.1397 1.4658 −1.2618
−0.2094 −0.0731 −0.3460 −1.2618 1.5839

⎤⎥⎥⎥⎥⎦,

R2 =

⎡⎢⎢⎢⎢⎣
29.0877 0.0002 0.0001 0.0005 −0.0009
0.0002 29.0933 −0.0006 0.0017 −0.0018
0.0001 −0.0006 29.0873 0.0002 −0.0008
0.0005 0.0017 0.0002 29.0905 −0.0026
−0.0009 −0.0018 −0.0008 −0.0026 29.0847

⎤⎥⎥⎥⎥⎦.

The gain matrix of the designed controller and trigger parameters can be obtained as follows:
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K =

⎡⎢⎢⎢⎢⎣
−6.6909 0.0173 0.0082 0.0374 −0.0673
0.0173 −6.4671 −0.0464 0.1301 −0.1326
0.0082 −0.0464 −6.7093 0.0127 −0.0577
0.0374 0.1301 0.0127 −6.5897 −0.1818
−0.0673 −0.1326 −0.0577 −0.1818 −6.8241

⎤⎥⎥⎥⎥⎦.

δ4 = 4.3607 and δ5 = 4.5189. Therefore, preserves system (20) is synchronous.

6. Conclusions

In this paper, the synchronization problem was investigated for neural networks. It
is well known that the Lyapunov direct method is the most effective method to analyze
the stability of neural networks; the authors gave an important inequality on the Caputo
derivative of quadratic functions, which plays an important role in analyzing the stability
of fractional-order systems. By using Lyapunov functionals and analytical techniques,
we obtained some sufficient conditions, and we derived event triggering to guarantee
the synchronization of the delayed neural networks. We appled the Lyapunov functional
method and the LMI approach to establish the synchronization criteria for the fractional-
order nerual network matrix. A linear matrix inequality approach was developed to solve
the problem. Numerical examples were given to demonstrate the effectiveness of the
proposed schemes. Future work will focus on event-triggered control for fractional-order
systems with time-delay and measurement noises. In addition, more effective event-
triggered schemes such as an adaptive one, a dynamic one, and a hybrid one will also be
considered for the stability analysis of fractional-order systems.
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Abstract: In this paper, an approximate method combining the finite difference and collocation
methods is studied to solve the generalized fractional diffusion equation (GFDE). The convergence
and stability analysis of the presented method are also established in detail. To ensure the effectiveness
and the accuracy of the proposed method, test examples with different scale and weight functions
are considered, and the obtained numerical results are compared with the existing methods in the
literature. It is observed that the proposed approach works very well with the generalized fractional
derivatives (GFDs), as the presence of scale and weight functions in a generalized fractional derivative
(GFD) cause difficulty for its discretization and further analysis.

Keywords: generalized Caputo derivate; fractional diffusion equation; finite difference method;
collocation method; error; stability and convergence analysis

1. Introduction

Fractional calculus (FC) is an important branch of applied mathematics, which deals
with the arbitrary order derivative and integration [1–5]. Its applications in different fields
are seen in biophysics [6], engineering [7], fluid mechanics and bioengineering [8,9] and
other areas including image processing [10–13]. Most of these studies are mainly based on
the traditional fractional derivatives, such as the Riemann–Liouville fractional derivative
and the Caputo fractional derivative, etc. Recently, in [14] Agrawal discussed a new GFD,
which generalized the traditional derivatives using weight and scale functions. The scale
functions were used to compress and enlarge the domain for the close observation of
physical phenomena, while the weight functions provide flexibility for the researchers to
assess physical events at different times. Due to such behaviors of the scale and weight
functions, the study of fractional partial differential equations (FPDE) using a GFD has
attracted researchers in recent years. Several authors have developed numerical schemes
for solving FPDEs involving GFDs. Here, we cite only few of them. In [15,16], Agrawal and
coauthors presented the numerical solutions to the Berger’s equation and the fractional
advection–diffusion equation (FADE) with a generalized time-fractional derivative for
the first time. The numerical solutions to these problems were obtained using the finite
difference method. Further, the authors of [17,18], studied the time-fractional telegraph
equations and fractional advection–diffusion equations in terms of GFDs and developed the
higher order schemes to solve such equations. Kumar et al. [19] presented two numerical
schemes to approximate the GFDs and obtained the convergence orders as (2− α) and
(3− α), respectively. Further, these schemes were applied to solve the fractional integro-
differential equations defined in terms of GFDs. In [20], Kumari and Pandey proposed
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an approximation method with a (4− α)th order of convergence to approximate GFDs
and applied it to solve the fractional advection–diffusion equations. Li and Wong [21]
discussed a numerical scheme to find the solution of the generalized subdiffusion equation.
Here, the authors used the generalized Grunwald–Letnikov approximation method to
solve the problem. Some other recently presented methods for solving different types of
fractional diffusion equations are summarized as follows: in [22], the authors discussed
the matrix method for the reaction–diffusion equation that involved the Mittag–Leffler
kernel. Duan et al. [23] solved the convection–diffusion equations using the Shannon–
Runge–Kutta–Gill method. In [24], the authors discussed the solution to the fractional
subdiffusion and the reaction–subdiffusion equations with a nonlinear source term using
the Legendre collocation method. Lin and Xu [25] solved the time-fractional diffusion
equation (TFDE) using the spectral method and finite difference method (FDM). In [26],
Murio solved the time-fractional advection–diffusion equation (TFADE) by using implicit
FDM. Sweilam et al. [27] developed the Crank–Nicolson FDM to solve a linear TFDE
defined with a Caputo fractional derivative. In [28], Luchko solved the initial value and
boundary value multi-term TFDE using the Fourier series method. Dubey et al. [29]
proposed a residual power series method to obtain the solution of homogeneous and
nonhomogeneous nonlinear fractional order partial differential equations.

In this paper, we study the generalized fractional diffusion equation (GFDE) obtained
from the standard diffusion equation by replacing the first-order time derivative term with
a fractional derivative of order γ, 0 < γ < 1, given as,

∗ Dγ
t v(x, t) =

∂2v(x, t)
∂x2 + g(x, t), x ∈ [0, 1], t ∈ [0, τ], (1)

with initial and boundary conditions,{
v(x, 0) = η1(x), 0 ≤ x ≤ 1,
v(0, t) = η2(t), v(1, t) = η3(t), 0 ≤ t ≤ τ,

(2)

where g(x, t) is the source/sink function.
The motive of this paper is to construct an efficient method to obtain the numerical

solution to the GFDE. The present method is based on the finite difference and collocation
methods with Jacobi polynomials as the basis function. The outline of the paper is as
follows: In Section 2, we discuss some basic facts about FC and Jacobi polynomials, which
are needed throughout this paper. In Section 3, first, the finite difference method is used to
discretize the time derivative. Second, on the space variable, we use the collocation method
for numerical approximation. Further, we estimate the error and convergence analysis
analytically, which ensures the numerical applicability of the proposed method. In Section 5,
we present two numerical examples to validate the proposed method. Furthermore, we
compare our results with a few other methods from the literature, which are presented in
Section 5. Finally, in Section 6, the conclusions are discussed.

2. Preliminaries of Fractional Calculus and Jacobi Polynomials

In this section, we discuss some preliminary facts and basic properties of generalized
fractional calculus and Jacobi polynomials [1,30].

2.1. Generalized Fractional Calculus

Definition 1 ([14]). The Caputo derivative of a function v(τ) of order γ is defined as

(Dγ
0+v)(τ) = (Iδ−γDδv)(τ) =

1
Γ(δ− γ)

∫ τ

0
(τ − s)δ−γ−1v(δ)(s)ds, τ > 0, (3)

where δ− 1 < γ ≤ δ and δ ∈ Z+.
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Definition 2 ([14]). A generalized fractional derivative of order γ > 0 of a function v(τ) with
respect to weight function ω(τ) and scale function z(τ) is defined as

(Dγ
[z;ω;L]v)(τ) = [ω(τ)]−1

[(
Dt

z′(τ)

)γ

(ω(τ)v(τ))

]
. (4)

Definition 3. A generalized fractional integral of a function v(τ) of fractional order γ > 0 is
defined as

(Iγ
[z;ω]

v)(τ) =
[ω(τ)]−1

Γ(γ)

∫ τ

0

ω(s)z
′
(s)v(s)

[z(τ)− z(s)]1−γ
ds. (5)

Definition 4 ([14]). The left/forward generalized Caputo fractional derivative of order γ > 0 of
function v(τ) with respect to weight function ω(τ) and scale function z(τ) is defined by

(∗Dγ
0+v)(τ) = Iδ−γ

0+;[z;ω]
Dδ

0+;[z;ω;L] =
[ω(τ)]−1

Γ(δ− γ)

∫ τ

0

(ω(s)v(s))(δ)

(z(τ)− z(s))γ+1−δ
ds, (6)

where δ− 1 < γ ≤ δ, δ ∈ Z+.

For a particular choice of the weight and scale functions (z(τ) = τ, ω(τ) = 1),
Equation (6) reduces to the Caputo derivative. We have considered the weight and scale
sufficiently good such that the integral exists in GFD.

2.2. Jacobi Polynomials

Definition 5. The Jacobi polynomials [31] J α,β
n (z) for indices α, β > −1 and degree n are the

solutions of the Sturm–Liouville problems. These are orthogonal polynomials with respect to the
Jacobi weight function ω(z) = (1− z)α(1 + z)β in interval [−1, 1], defined as follows:

J α,β
n (z) =

Γ(α + n + 1)
n!Γ(α + β + n + 1)

n

∑
m=0

( n
m

)Γ(α + β + n + m + 1)
Γ(α + m + 1)

(
z− 1

2

)m
. (7)

The kth derivative of Jacobi polynomials defined as

dk

dzkJ
α,β

n (z) =
Γ(α + β + n + 1 + k)
2kΓ(α + β + n + 1)

J (α+k,β+k)
n−k (z), k ∈ N, (8)

satisfy the recurrence relation

J α,β
n+1(z) = (Anz−Bn)J α,β

n (z)− ρnJ α,β
n−1(z), n ≥ 1, (9)

where
J α,β

0 (z) = 1, J α,β
1 (z) =

1
2
(α + β + z) +

1
2
(α− β),

An =
(2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
, Bn =

(2n + α + β + 1)(α2 − β2)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

and

ρn =
(2n + α + β + 2)(n + α)(n + α)

(n + 1)(n + α + β + 1)(2n + α + β)
.

For the transformation of the interval [−1, 1] to [0, 1], we use the relation, z = 2x− 1.
The recurrence relation (9) becomes

J α,β
n+1(x) = (ξnx−Kn)J α,β

n (x)− ρnJ α,β
n−1(x), n ≥ 1, (10)
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where

ξn =
(2n + α + β + 1)(2n + α + β + 2)

(n + 1)(n + α + β + 1)
,

Kn =
(2n + α + β + 1)(2n2 + (1 + β)(α + β) + 2n(α + β + 1))

(n + 1)(n + α + β)(2n + α + β)
.

It satisfies the orthogonality relation

∫ 1

0
J α,β

n (x)J α,β
m (x)wα,β

1 (x)dx = δn,mHα,β
n , α, β > −1, (11)

where δn,m is the Kronecker delta function, wα,β
1 (x) = xβ(1− x)α is the weight function, and

Hα,β
n =

Γ(n + 1 + β)Γ(n + α + 1)
(2n + 1 + α + β)n!Γ(n + 1 + α + β)

. (12)

The summation form of the Jacobi polynomials J α,β
n (x) is written as

J α,β
n (x) =

j

∑
k=0

(−1)k+j Γ(k + j + 1 + α + β)Γ(j + 1 + β)

k!Γ(j + 1 + α + β)Γ(k + 1 + β)
, (13)

and the pth derivative of Equation (13) in [0, 1], can be further rewritten in terms of x as

dp

dxpJ
α,β

n (x) =
Γ(α + β + n + 1 + p)

Γ(α + β + n + 1)
J (α+p,β+p)

n−p (x), p ∈ N. (14)

The value of the shifted Jacobi polynomials at the end points are given as

J α,β
n (0) = (−1)n Γ(1 + n + β)

Γ(1 + β)n!
, J α,β

n (1) =
Γ(1 + n + α)

Γ(1 + α)n!
. (15)

Let v(x) be a square integrable function defined on [0, 1], then

v(x) =
∞

∑
i=0

ciJ α,β
i (x), (16)

where ci are the unknown coefficients (ci, i = 0, 1, 2 . . . ) determined by the relation

ci =
1

Hα,β
i

∫ 1

0
v(x)wα,β(x)J α,β

i (x)dx, i = 0, 1, 2 . . . . (17)

Truncating the series in Equation (16) up to (m + 1) terms, the approximation of v(x)
is given as

vm(x) =
m

∑
i=0

ciJ α,β
i (x). (18)

3. Numerical Scheme and Stability Analysis

3.1. Discretization in the Time Direction

For the discretization of the GFD, we follow the discretization process as discussed in
Refs. [19,32]. We split the time interval [0, τ] into M equal parts having step size Δt = T

M ,
M ∈ Z+, and choose the node points as tr = r(Δt), r = 0, 1, 2, . . . ,M, with starting point
t0 = 0. Assuming w(t) > 0, γ ∈ (0, 1), and z(t) is a monotonic increasing function on
[0, T ], such that η = z(s); then, s = z−1(η). The discretization of the GFD of v(t) at node tr
is given as
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∗Dγ
t v(tr) =

[w(tr)]−1

Γ(1− γ)

r

∑
l=1

∫ tl

tl−1

[w(s)v(s)]
′

[z(tr)− z(s)]γ
ds,

=
[w(tr)]−1

Γ(1− γ)

r

∑
l=1

∫ z(tl)

z(tl−1)

1
[z(tr)− η]γ

.
d[w(z−1(η))v(z−1(η))]

dz−1(η)
dz−1(η),

=
[w(tr)]−1

Γ(1− γ)

r

∑
l=1

w(tl)v(tl)− w(tl−1)v(tl−1)

z(tl)− z(tl−1)

∫ z(tl)

z(tl−1)

1
[z(tr)− η]γ

dη +Rr,

=
[w(tr)]−1

Γ(2− γ)

r

∑
l=1

ql [w(tl)v(tl)− w(tl−1)v(tl−1)] +Rr, (19)

where

ql =
[z(tr)− z(tl−1)]

1−γ − [z(tr)− z(tl)]
1−γ

z(tl)− z(tl−1)
, l = 1, 2, . . . r, (20)

and Rr is the truncation error given by

Rr =
[w(tr)]−1

Γ(1− γ)

r

∑
l=1

∫ z(tl)

z(tl−1)

1
[z(tr)− η]γ

[
d[w(z−1(η))v(x, z−1(η))]

dη

−w(tl)v(tl)− w(tl−1)v(tl−1)

z(tl)− z(tl−1)

]
dη.

(21)

Lemma 1. The coefficient ql , l = 1, 2, . . . , r, given by Equation (20), satisfies qr > qr−1 > . . . >
q0 > 0.

Proof. For the proof of Lemma 1, see Ref [32].

3.2. Approximation in Space Direction

We apply the collocation method to approximate the spatial domain of Equation (1)
with Jacobi polynomials. We consider the approximate solution vN (x, t) of the form,

vN (x, t) =
N
∑

s1=0
cs1(t)J

α,β
s1 (x). (22)

From Equations (22) and (1), we obtain

∗ Dγ
t vN (x, t) =

∂2vN (x, t)
∂x2 + g(x, t), t ∈ [0, τ], (23)

with the initial and boundary conditions of Equation (1),

vN (x0, t) =
N
∑

s1=0
cs1(t)J

α,β
s1 (x0), (24)

vN (xN , t) =
N
∑

s1=0
cs1(t)J

α,β
s1 (xN ). (25)

From Equations (1), (19), and (22), we have the semi-discretized scheme as follows

N
∑

s1=0

[
[w(tr)]−1

Γ(2− γ)

r

∑
l=1

ql [w(tl)cs1(tl)− w(tl−1)cs1(tl−1)]

]
J α,β

s1 (x)

=
N
∑

s1=0
cs1(tr)

Γ(α + β + s1 + 3)
Γ(α + β + s1 + 1)

J (α+2,β+2)
s1−2 (x)

+Rr +Rs + g(x, tr), r = 1, 2, . . . ,M, (26)
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where Rs denotes the error term in the space direction arising due to replacing v(x, t) with
vN (x, t).

Neglecting the error part, we obtain the fully discretized scheme of Equation (1) by
the collocation method [32,33]. We choose the collocation points such that the stability is
unchanged. So, we choose the collocation point of the form xi, i = 1, 2, . . .N − 1, which
are the roots of the nth degree Jacobi polynomials, and x0, xN are the boundary conditions.
Thus, for (xi, tr) ∈ (0, 1)× [0, τ], i = 1, . . . ,N ; r = 1, . . .M, it holds that

N
∑

s1=0

[
[w(tr)]−1

Γ(2− γ)

r

∑
l=1

ql [w(tl)cs1(tl)J α,β
s1 (xi)− w(tl−1)cs1(tl−1)J α,β

s1 (xi)]

]

=
N
∑

s1=0
cs1(tr)

Γ(α + β + s1 + 3)
Γ(α + β + s1 + 1)

J (α+2,β+2)
s1−2 (xi) + g(xi, tr), r = 1, 2, . . . ,M,

(27)

and the initial and boundary conditions become⎧⎪⎨⎪⎩
vN (xi, 0) = ∑N

s=0 cs1(0)J
α,β

s1 (xi) = η1(xi),
vN (x0, tr) = ∑N

s1=0 cs1(tr)J α,β
s1 (x0) = η2(tr),

vN (xN , tr) = ∑N
s1=0 cs1(tr)J α,β

s1 (xN ) = η3(tr).

(28)

In this way, from Equations (27)–(28) we have a system of (N + 1) linear difference
equations in unknown coefficients cs1 , s1 = 0, 1, 2 . . .N . We can find the value of the
unknown coefficients by solving the system of linear equations using any standard method.
Hence, the approximate solution can be found from Equation (22).

4. Error and Convergence Analysis

In this section, we discuss the error and convergence analysis of the proposed numeri-
cal method for Equation (1). We prove the error and convergence analysis analytically with
the help of the following lemma and theorems.

Lemma 2 ([32]). The truncation error Rr defined by Equation (21) satisfies

Rr ≤
[

1
8wrΓ(1− γ)

+
γ

2wrΓ(3− γ)

]
max

t0≤η≤tr
|U ′′

(η)L|Δt2−γ, (29)

where U (η) is the approximating function, wr is the weight function at node tr for r = 1, 2 . . .M,
and L is the Lipschitz constant on the interval [tl−1, tl ].

Proof. For the detailed proof of this lemma, we refer to [32].

Theorem 1. The error in approximation of the function v(x) by the first m terms of the series in
Equation (16) is bounded by the sum of the absolute values of all the neglected coefficients in the
series, i.e.,

Eτ(N ) = |v(x)− vN (x)| ≤
∞

∑
i=m+1

|ci|, (30)

∀ v(x), ∀m, and x ∈ [0, 1].

Proof. The proof is trivial since |J α,β
i (x)| ≤ 1, ∀x ∈ [0, 1] and i ≥ 0.

Theorem 2. Let v(x) be the square integrable function defined on [0, 1] and |v(x)| ≤ M1, where
M1 is constant. Then, the v(x) can be expanded with an infinite sum of Jacobi polynomials, and
the infinite series converges to v(x) uniformly, i.e.,
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v(x) =
∞

∑
i=0

ciJ α,β
n (x), (31)

where

|ci| ≤
M1Γ(1 + β)

Γ(2 + α + β)

1
i3

, i > 1,

and Em → 0.

Proof. From Equations (16) and (18), we have

vm(x) =
m

∑
i=0

ciJ α,β
i (x), (32)

where ci are the unknown coefficients. Furthermore, from Equation (17), we obtain

ci =
1

Hα,β
i

∫ 1

0
(x)β(1− x)αv(x)J α,β

i (x)dx,

|ci| =
∣∣∣∣∣ 1

Hα,β
i

∫ 1

0
(x)β(1− x)αv(x)J α,β

i (x)

∣∣∣∣∣dx,

≤ M1

Hα,β
i

∫ 1

0

∣∣∣(x)β(1− x)αJ α,β
i (x)

∣∣∣dx, (33)

≤ M1

Hα,β
i

Γ(α + i + 1)
i!Γ(α + β + i + 1)

i

∑
m=0

(
i
m

)
Γ(α + β + i + m + 1)

Γ(α + m + 1)

∫ 1

0
|xβ(1− x)α(x− 1)m|dx,

≤ M1(2i + 1 + α + β)Γ(i + 1 + α + β)Γ(1 + β)

Γ(i + 1 + β)Γ(2 + α + β)

1
i4

,

≤ M1Γ(1 + β)

Γ(2 + α + β)

1
i3

.

Hence, the series vm(x) converges to v(x) uniformly.

Theorem 3. Let h(t) be N times differentiable function defined on interval [0, τ]. Let
vN (t) = ∑N

j1 cj1J
α,β
j1

(t) be the approximation of h(t), then

‖h(t)− vN (t)‖ ≤ MSn+1

((N + 1)!)

√
Bτ(1 + α, 1 + β), (34)

where M = maxt∈[0,τ] hN+1(t), S = max{τ − t0, t0} and Bτ(1 + α, 1 + β) denote the
incomplete Beta function. At τ = 1, it reduces to the standard Beta function.

Proof. By the Taylor series expansion, we have

h(t) = h(t0) + h
′
(t0)(t− t0) + . . . + hN (t0)

(t− t0)
N

N !
+ hN+1(t)

(t− t0)
N+1

(N + 1)!
, (35)

where t0 ∈ [0, τ] and ζ ∈ [t0, t]. Let

PN (t) = f (t0) + f
′
(t0)(t− t0) + . . . +

fN (t0)(t− t0)
N

N !
, (36)

then

|h(t)−PN (t)| =
∣∣∣∣hN+1(t)

(t− t0)
N+1

(N + 1)!

∣∣∣∣. (37)
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Since, we assume that vN (t) is the best square approximation of h(t), we have

‖h(t)− vN (t)‖2 ≤ ‖h(t)−PN (t)‖2,

=
∫ τ

0
w(t)[h(t)−PN (t)]2dt,

=
∫ τ

0

[
hN+1(t)

(t− t0)
N+1

(N + 1)!

]2

dt,

≤ M2

((N + 1)!)2

∫ τ

0
(t− t0)

2n+2w(t)dt,

≤ M2S2n+2

((N + 1)!)2

∫ τ

0
(t)β(1− t)αdt,

=
M2S2n+2

((N + 1)!)2Bτ(1 + α, 1 + β). (38)

Hence,

‖h(t)− vN (t)‖ ≤ MSn+1

((N + 1)!)

√
Bτ(1 + α, 1 + β). (39)

Theorem 4. Let v(x, t) be a continuous function satisfying the conditions (2) for any t, and g(x, t)
is continuous. Assuming vN (x, tr) = vr

N (x) = ∑N
s1=0 cs1(tr)J α,β

s1 (x) is the numerical approx-
imation of the scheme (27), then the scheme (27) is unconditionally stable, and for any r ≥ 0, it
holds that

‖vr
N (x)‖L2 ≤ w0

wr
‖v0
N (x)‖L2 +

r−1

∑
l=1

hl
wr
‖gl‖L2 +

ηr

qrwr
‖gr‖L2 , (40)

where g(x, tr) = gr(x), and hl =
(

1
ql
− 1

ql+1

)
ηl , l = 1, 2, . . . r− 1.

Proof. The proof of this theorem is similar to the Theorem 1 of [32]. In [32], the authors
proved the stability for the time-fractional KdV equation. Here, we extend the proof for the
time-fractional diffusion equation. To prove Theorem 4, we first rewrite Equation (26) over
the summation up to time step tr−1 in discrete form. Thus, we have

1
ηr

qrwrv(x, tr) =
1
ηr

[
r−1

∑
l=1

(ql+1 − ql)wlv(x, tl) + q1w0v(x, t0)

]
+ v

′′
(x, tr) + g(x, tr), (41)

where r = 1, 2, ..M, and ηl = wlΓ(2− γ).
Let wα,β(x) = xβ(1− x)α, and ur

N−2(x) = uN−2(x, tr) is the polynomial of N − 2
degree satisfying vr

N (x) = ur
N−2(x)wα,β(x). Multiplying both sides of Equation (41) by

uN−2(xi, tr)wα,β(xi), and taking the summation on i from 0 to N , we have

N

∑
i=0

[
1
ηr

qrwrv(xi, tr)

]
uN−2(xi, tr)wα,β(xi) =

N

∑
i=0

1
ηr

[
r−1

∑
l=1

(ql+1 − ql)wlv(xi, tl) + q1w0v(xi, t0)

]
(42)

+
1
ηr

[
v
′′
(xi, tr) + g(xi, tr)uN−2(xi, tr)wα,β(xi)

]
,

where wα,β(xi) is the corresponding weight function. Since the degree of vr
N (x) does not

exceed N + 1, then from Equation (11),

(vr
N , ur

N−2)wα,β(x) = (vr
N , vr

N ). (43)
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It can be easily shown that

∫ 1

0
v
′′
(x, tr)uN−2(x, tr)wα,β(x, tr) dx =

∫ 1

0
v
′′
(x, tr)v(x, tr)wα,β(x, tr) dx = 0. (44)

Now, the discrete form of the Equation (42) at the nodes xi can be rewritten as

qrwr‖vr
N (x)‖L2 ≤

r−1

∑
l=1

(ql+1 − ql)wl‖vl
N (x)‖L2 + q1w0‖v0

N (x)‖L2 + ηr‖gr(x)‖L2 , (45)

by using the Cauchy–Schwartz inequality and Lemma (1). The remaining part of the proof
can be completed following similar steps to those shown in Theorem 1 of [32].

5. Numerical Results

In this section, we provide two numerical examples to validate the presented finite
difference–collocation method. In the given examples, we calculate the maximum absolute
error (MAE), absolute error (AE), and the order of convergence (CO) for each example.
With the help of the MAE and CO, we analyze the error and convergence analysis numer-
ically. Furthermore, we have plotted the graphs of the numerical solutions by changing
the various parameters of γ, α, β, and scale function z(t). For the numerical simulations,
we take the weight function w(t) = 1. All numerical simulations were performed with
Mathematica software.

The MAE at time t is given by

En(t) = max
0≤x≤1

|v(x, t)− vN (x, t)|, (46)

and the order of convergence is defined by

CO =
log
( En1 (t)
En2 (t)

)
log
(

n2
n1

) , (47)

where v(x, t) and vN (x, t) are the exact and approximate solutions, respectively. En1(t) and
En2(t) are the MAEs for two consecutive values n1 and n2.

Example 1. Here, we consider the generalized version of the problem given in [34] as

∗ Dγ
t v(x, t)− x2

2
∂2v(x, t)

∂x2 = 0, t ∈ [0, τ], (48)

the initial and boundary conditions are given by{
v(x, 0) = x2, 0 ≤ x ≤ 1,
v(0, t) = 0, v(1, t) = et+γ, 0 ≤ t ≤ τ.

(49)

The exact solution of Example (1) is x2et+γ. This problem is solved for various values
of N , γ, z(t), and t. In Tables 1 and 2, we compare the results obtained by our technique
to the given methods in [35–37] at γ = 0. We observed that the results obtained by the
present method (PM) provided a better approximation for this problem. In Table 3, we
have discussed the MAE and CO for various values of γ and M. Further, in Figure 1, we
plotted the AE comparison graphs for different values of γ and observe that the numerical
approximation showed good agreement with the exact solution. Figure 2 shows the
behavior of the AEs for various values of N with a fixed γ = 0.2. We observe from Figure 2
that the numerical solution at N = 6, 8 showed good agreement with the exact solution at
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γ = 0.2. Finally, in Figure 3, we plotted the numerical solutions for the various values of
γ = 0.1, 0.3, 0.5, 0.7, 0.9 for a fixed value of N = 5.

Table 1. Comparison of MAE for Example 1 with γ = 0.75, z(t) = t.

t x Method of [35] Method of [36] Method of [37] Present Method

0.25 0.3 1.312× 10−1 1.346× 10−1 1.293× 10−1 8.009 ×10−2

. 0.6 4.957× 10−1 5.385× 10−1 5.175× 10−1 1.313 ×10−2

. 0.9 1.055× 10−1 1.211× 100 1.164× 100 6.041 ×10−2

0.5 0.3 1.685× 10−1 1.795× 10−1 1.695× 10−1 6.342 ×10−2

. 0.6 6.303× 10−1 7.183× 10−1 6.780× 10−1 9.543 ×10−2

. 0.9 1.352× 100 1.616× 10−1 1.525× 10−1 5.315×10−2

0.75 0.3 2.118× 10−1 2.313× 10−1 2.154× 10−1 5.242 ×10−2

. 0.6 7.962× 10−1 9.255× 10−1 8.618× 10−1 6.875 ×10−2

. 0.9 1.733× 100 2.082× 100 1.939× 100 4.891 ×10−2

1 0.3 2.645× 10−1 2.909× 10−1 2.687× 10−1 4.349 ×10−2

. 0.6 9.745× 10−1 1.163× 100 1.075× 100 4.802 ×10−2

. 0.9 2.014× 100 2.618× 100 2.419× 100 1.048 ×10−2

Table 2. Comparison of MAE for Example 1 with γ = 0.9, z(t) = t.

t x Method of [35] Method of [36] Method of [37] Present Method

0.25 0.3 1.122× 10−1 1.218× 10−1 1.210× 10−1 9.795 ×10−2

. 0.6 4.762× 10−1 4.872× 10−1 4.841× 10−1 1.543 ×10−1

. 0.9 1.046× 100 1.096× 100 1.089× 100 5.303 ×10−3

0.5 0.3 1.564× 10−1 1.588× 10−1 1.567× 10−1 7.852 ×10−2

. 0.6 6.086× 10−1 6.355× 10−1 6.268× 10−1 1.129 ×10−1

. 0.9 1.342× 100 1.429× 100 1.410× 100 9.122 ×10−2

0.75 0.3 1.9948× 10−1 2.041× 10−1 1.998× 10−1 6.677 ×10−2

. 0.6 7.761× 10−1 8.165× 10−1 7.992× 10−1 9.517 ×10−2

. 0.9 1.722× 100 1.837× 100 1.798× 100 5.475 ×10−2

1 0.3 2.529× 10−1 2.588× 10−1 2.517× 10−1 5.719 ×10−2

. 0.6 9.938× 10−1 1.035× 100 1.007× 100 6.471 ×10−2

. 0.9 2.144× 100 2.329× 100 2.265× 100 1.964 ×10−2

Table 3. The CO and MAE for Example 1 with various values of γ and z(t) = t2.

γ = 0.3 γ = 0.5 γ = 0.7

M MAE CO MAE of PM CO MAE of PM CO

50 2.637× 10−1 . . . 4.921× 10−1 . . . 7.994× 10−1 . . .
100 9.246× 10−2 1.617 1.839× 10−1 1.419 3.310× 10−1 1.263
200 2.919× 10−2 1.663 6.782× 10−2 1.439 1.380× 10−1 1.270
400 9.186× 10−3 1.667 2.464× 10−2 1.460 5.677× 10−2 1.282
800 2.850× 10−3 1.688 8.878× 10−3 1.473 2.344× 10−2 1.275
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Figure 1. Comparison of AE at t = 0.5, N = 5, z(t) = t, and different values of γ for Example 1.
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Figure 2. Plot of AE for different values of N at t = 0.1 and z(t) = t for Example 1.
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Figure 3. Comparison of the numerical solution for different values of γ at t = 1 and z(t) = t2 for
Example 1.

Example 2. Consider the following Example [34],

∗ Dγ
t v(x, t) =

∂2v(x, t)
∂x2 + g(x, t), t ∈ [0, τ], (50)

where

g(x, t) = 4π2t2 sin(2πx) +
2t2−γ sin(2πx)

(2− 3γ + γ2)Γ(1− γ)
,

with the initial and boundary conditions given by,{
v(x, 0) = 0,
v(0, t) = 0, v(1, t) = 0.

(51)

The exact solution for this Example (2) is t2 sin(2πx).
We shall apply the numerical scheme (26) to solve this problem (2) for different values

ofN with z(t) = t varying the fractional order γ = 0.1, 0.3, 0.5, 0.7. We obtain the AEs at the
grid points in the given domain, which are shown in Tables 4 and 5, respectively. The results
presented in Tables 4 and 5 establish the convergence of the proposed method for different
values of γ. In Table 6, we show the MAE by varying the different values of γ = 0.3, 0.5, 0.7
and M. Further, we show the CO for each value of γ, which proves the accuracy of the
present method. In Figure 4, we compared the numerical solutions for various choices of γ
with the exact solution known at γ = 0.2. In Figure 5, the solution graphs for different
values of N and plot of the exact solution (for γ = 0.2) are shown. From Figures 4 and 5,
we conclude that the numerical solution obtained by the proposed method converges
to the exact solution. Finally, we compared our results with the existing method [34] in
Table 7. We see that the proposed method gives better accuracy in approximating the
numerical solutions.
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Table 4. Comparison of AE for Example 2 at γ = 0.1, 0.3 and various values of N .

γ = 0.1 γ = 0.3

x N = 5 N = 7 N = 9 N = 5 N = 7 N = 9

0.1 5.899× 10−4 4.786× 10−5 2.407× 10−6 5.801× 10−4 4.707× 10−5 2.352× 10−6

0.2 3.927× 10−4 3.174× 10−5 1.694× 10−6 3.801× 10−4 3.074× 10−5 1.618× 10−4

0.3 2.403× 10−4 2.173× 10−5 1.126× 10−6 2.296× 10−4 2.087× 10−5 1.058× 10−6

0.4 1.376× 10−4 1.057× 10−5 5.571× 10−6 1.315× 10−4 1.008× 10−5 5.174× 10−7

0.5 1.051× 10−18 7.952× 10−20 3.281× 10−19 1.233× 10−4 1.067× 10−18 5.225× 10−19

0.6 1.436× 10−4 1.045× 10−5 5.560× 10−7 1.246× 10−4 1.000× 10−5 5.186× 10−7

0.7 2.313× 10−4 2.343× 10−5 1.344× 10−6 2.378× 10−4 2.066× 10−4 1.077× 10−6

0.8 3.567× 10−4 3.164× 10−5 1.678× 10−6 3.875× 10−4 3.099× 10−5 1.623× 10−6

0.9 5.679× 10−4 4.567× 10−5 2.457× 10−6 5.112× 10−4 4.888× 10−5 2.399× 10−6

Table 5. Comparison of AE for Example 2 at γ = 0.5, 0.7 and various values of N .

γ = 0.5 γ = 0.7

x N = 5 N = 7 N = 9 N = 5 N = 7 N = 9

0.1 3.386× 10−5 4.579× 10−5 2.194× 10−6 5.350× 10−4 4.407× 10−5 2.406× 10−6

0.2 6.886× 10−4 2.914× 10−5 1.387× 10−6 3.230× 10−4 2.717× 10−5 1.694× 10−6

0.3 8.617× 10−4 1.953× 10−5 8.399× 10−7 1.815× 10−4 1.800× 10−5 1.126× 10−6

0.4 5.455× 10−4 9.335× 10−6 3.863× 10−7 1.047× 10−4 8.528× 10−6 5.570× 10−7

0.5 1.191× 10−18 1.087× 10−18 5.186× 10−18 6.447× 10−19 3.683× 10−18 3.280× 10−19

0.6 5.575× 10−4 9.435× 10−6 3.789× 10−7 1.046× 10−4 8.546× 10−6 5.580× 10−7

0.7 8.637× 10−4 1.944× 10−6 8.457× 10−7 1.824× 10−4 1.890× 10−5 1.136× 10−6

0.8 6.745× 10−4 2.879× 10−5 1.478× 10−6 3.320× 10−4 2.654× 10−5 1.794× 10−6

0.9 3.378× 10−4 4.543× 10−5 2.148× 10−6 5.458× 10−4 4.568× 10−5 2.451× 10−6

Table 6. The MAE and CO for Example 2 for various values of γ and M.

γ = 0.3 γ = 0.5 γ = 0.7

M MAE CO MAE of PM CO MAE of PM CO

50 1.475× 10−6 . . . 1.718× 10−6 . . . 3.746× 10−6 . . .
100 4.636× 10−6 1.667 6.336× 10−6 1.439 1.553× 10−6 1.271
200 1.425× 10−6 1.701 2.300× 10−6 1.461 6.385× 10−7 1.282
400 4.459× 10−7 1.676 8.228× 10−7 1.483 2.613× 10−7 1.289
800 1.387× 10−7 1.685 2.938× 10−7 1.485 1.065× 10−7 1.296

Table 7. Comparison of the MAE of Example 2 with γ = 0.5.

M Present Method Method [34]

2 1.061× 10−4 1.627× 10−1

4 3.879× 10−5 3.101× 10−2

6 2.103× 10−5 1.140× 10−2

8 1.342× 10−5 5.378× 10−3

10 3.925× 10−6 2.726× 10−3

12 7.953× 10−7 1.461× 10−3

14 1.047× 10−6 8.187× 10−4

16 1.252× 10−6 4.755× 10−4
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Figure 4. Comparison of the numerical and the exact solution at t = 0.1 and different values of γ for
Example 2.
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Figure 5. Plot of the numerical solutions for different values of N at t = 0.1 for Example 2.

6. Conclusions

A numerical scheme for a new class of fractional diffusion equation was studied
in this paper in which the time derivative was considered as the generalized fractional
derivative. The scheme used the finite difference and collocation methods to find the
numerical solution. The theoretical error and convergence analysis were also validated
numerically. The numerical examples showed that the proposed method achieved high
accuracy in comparison to other methods [34,36–38] presented recently.
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Abstract: The definition of the discrete fractional Fourier transform (DFRFT) varies, and the multiweighted-
type fractional Fourier transform (M-WFRFT) is its extended definition. It is not easy to prove
its unitarity. We use the weighted-type fractional Fourier transform, fractional-order matrix and
eigendecomposition-type fractional Fourier transform as basic functions to prove and discuss the
unitarity. Thanks to the growing body of research, we found that the effective weighting term of the
M-WFRFT is only four terms, none of which are extended to M terms, as described in the definition.
Furthermore, the program code is analyzed, and the result shows that the previous work (Digit
Signal Process 2020: 104: 18) based on MATLAB for unitary verification is inaccurate.

Keywords: fractional fourier transform; weighted-type fractional Fourier transform; multiweighted-type
fractional fourier transform; unitarity

1. Introduction

The multiweighted-type fractional Fourier transform (M-WFRFT) is the extended
definition of the weighted-type fractional Fourier transform (WFRFT), and its application
has been described in detail in our previous research [1]. Here, we focus on summarizing
and analyzing the theory of the M-WFRFT. In [2], Zhu et al. proposed the definition of
the multifraction Fourier transform, i.e., the M-WFRFT. Researchers have applied this
definition to image encryption but have not discussed the properties of the definition itself.
Early research work [3–5] laid a solid foundation for the proposal of the M-WFRFT. In
1995, Shih proposed a new type of fractional-order Fourier transform (FRFT), which is
called WFRFT because it is a linear summation [3]. This definition has period 4, so it is
also called the 4-WFRFT. Subsequently, Liu et al. extended the definition of the WFRFT,
and the generalized definition has period M = 4l, where l = 1,2, ... [4,5]. Zhu’s M-WFRFT is
proposed on this basis, and its period is any integer M > 4 [2]. However, little is known
about the properties of these definitions. Ran et al. sought to present a unified framework
with the help of a generalized permutation matrix group and discussed its properties [6].
This research greatly promotes the theoretical development of WFRFTs. Unfortunately,
there is no proof of unitarity, and the focus of the previous studies has been the generality
of weighted coefficients. Recently, some new definitions based on the M-WFRFT have
been proposed [7–11]. For example, Tao et al. proposed multiple-parameter fractional
Fourier transforms (MPFRFTs) [8], Ran et al. proposed modified multiple-parameter
fractional Fourier transforms (m-MPFRFTs) [9], and Zhao et al. proposed vector power
multiple-parameter fractional Fourier transforms (VPMPFRFTs) [10,11]. Unfortunately, the
properties of these definitions have not been discussed.

First, Santhanam et al. demonstrated the properties of the WFRFT and proved its
unitarity using weighted coefficients [12]. However, this work ignores that the basis
function is also a part of the definition. For the M-WFRFT, its basis function is the fractional
power of the Fourier transform, so it is not easy to prove its properties. Some recent research
results have also failed to prove its properties [13–18]. We proposed a new reformulation
of the M-WFRFT to prove its periodicity, additivity and boundary [1]. Unfortunately,
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unitarity is only discussed by means of numerical simulation. This paper is a follow-up
of previous research work and mainly seeks to prove and discuss the unitarity of the
M-WFRFT. However, the most recent studies have also enlightened our research [19,20].

The remainder of this paper is organized as follows. Section 2 proposes a new reformu-
lation of the M-WFRFT. The unitarity of the M-WFRFT is proven in Section 3. The deviation
caused by the numerical simulation is discussed in Section 4. Finally, the conclusions are
presented in Section 5.

2. Reformulation of M-WFRFT

Shih proposed the WFRFT [3], and its definition can be expressed as

Fα[ f (t)] =
3

∑
l=0

Aα
l fl(t), (1)

with

Aα
l = cos

(
(α− l)π

4

)
cos
(

2(α− l)π
4

)
exp
(

3(α− l)iπ
4

)
, (2)

where fl(t) = Fl [ f (t)]; l = 0, 1, 2, 3, (F denotes Fourier transform). Shih’s WFRFT with
period 4 is also called the 4-weighted-type fractional Fourier transform (4-WFRFT).

We further improve the weighted coefficient Aα
l , as shown in Equation (3).
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Then, we can obtain Equation (4) as⎛⎜⎜⎝
Aα
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where Bα
k = exp

(
2πikα

4

)
, k = 0, 1, 2, 3. Equation (4) provides ideas for expanding the

definition in the future.
Liu et al., generalize Shih’s definition, and the generalized definition is shown to have

M-periodic eigenvalues with respect to the order of Hermite–Gaussian functions (M = 4l,
where l = 1,2,3, ...) [4,5].

Subsequently, Zhu et al. proposed a multifractional Fourier transform whose period can
be any integer (M > 4), so this definition is also called the M-WFRFT [2]. Zhu et al., extended
the weighting coefficient Aα

l , which is more general; the result is shown in Equation (5).

⎛⎜⎜⎜⎝
Aα

0
Aα

1
...

Aα
M−1

⎞⎟⎟⎟⎠ =
1
M

⎛⎜⎜⎜⎜⎝
u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Bα
0

Bα
1
...

Bα
M−1

⎞⎟⎟⎟⎠, (5)
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where u = exp(−2πi/M) and Bα
k = exp

(
2πikα

M

)
, k = 0, 1, · · · , M− 1. Then,

Aα
l = 1

M

M−1
∑

k=0
exp
[

2πik(α−l)
M

]
;

l = 0, 1, · · · , M− 1.
(6)

The M-WFRFT is defined as

Fα
M[ f (t)] =

M−1

∑
l=0

Aα
l fl(t), (7)

where the basic functions are fl(t) = F4l/M[ f (t)]; l = 0, 1, · · · , M − 1 (F denotes the
Fourier transform).

At present, the M-WFRFT is widely used in image encryption and signal process-
ing [7–11,21–25]. Unfortunately, few researchers have discussed its properties, and the
proponents of the definition have not explained the properties. We find that it is not easy
to prove the properties of the M-WFRFT (Equation (7)). Some researchers have discussed
the properties using the weighted coefficient Aα

l but ignore that the basis function is also a
part of the definition [6,12]. Therefore, we present a new reformulation of the M-WFRFT.
As such, Equation (7) can be expressed as

Fα
M[ f (t)] = Aα

0 f0(t) + Aα
1 f1(t) + · · ·+ Aα

M−1 fM−1(t)

= Aα
0 F

0
M [ f (t)] + Aα

1 F
4
M [ f (t)] + · · ·+ Aα

M−1F
4(M−1)

M [ f (t)]

=

(
Aα

0 I + Aα
1 F

4
M + · · ·+ Aα

M−1F
4(M−1)

M

)
f (t)

=

(
I, F

4
M , · · · , F

4(M−1)
M

)⎛⎜⎜⎜⎝
Aα

0
Aα

1
...

Aα
M−1

⎞⎟⎟⎟⎠ f (t).

(8)

By Equations (5) and (8), Equation (9) is obtained as

Fα
M[ f (t)] = 1

M

(
I, F

4
M , · · · , F

4(M−1)
M

)⎛⎜⎜⎜⎜⎝
u0×0 u0×1 · · · u0×(M−1)

u1×0 u1×1 · · · u1×(M−1)

...
...

. . .
...

u(M−1)×0 u(M−1)×1 · · · u(M−1)×(M−1)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Bα
0

Bα
1
...

Bα
M−1

⎞⎟⎟⎟⎠ f (t), (9)

where u = exp(−2πi/M), Bα
k = exp

(
2πikα

M

)
, k = 0, 1, . . . , M− 1 and F denotes the Fourier

transform. Here, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 = u0×0 I + u1×0F
4
M + · · ·+ u(M−1)×0F

4(M−1)
M ,

Y1 = u0×1 I + u1×1F
4
M + · · ·+ u(M−1)×1F

4(M−1)
M ,

Y2 = u0×2 I + u1×2F
4
M + · · ·+ u(M−1)×2F

4(M−1)
M ,

...

YM−1 = u0×(M−1) I + u1×(M−1)F
4
M + · · ·+ u(M−1)×(M−1)F

4(M−1)
M .

(10)
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Definition 1. A new reformulation of the M-WFRFT as

Tα
MW [ f (t)] = 1

M (Y0, Y1, · · · , YM−1)

⎛⎜⎜⎜⎝
Bα

0
Bα

1
...

Bα
M−1

⎞⎟⎟⎟⎠ f (t)

= 1
M

M−1
∑

k=0
YkBα

k f (t),

(11)

where Bα
k = exp

(
2πikα

M

)
; k = 0, 1, · · · , M− 1.

Remark 1. Our previous work [1] discussed that the new reformulation helps to prove the properties.
Unitarity is often used in signal processing. Unfortunately, previous research work only presents
simulation verification. This paper will seek to prove and discuss the unitarity.

3. Unitarity

A complex matrix U satisfies

UUH = UHU = I, (12)

where H denotes the conjugate transpose and I is the identity matrix. Then, U is called
a unitary matrix. The greatest difficulty in proving the unitarity of the M-WFRFT is
considering the basis function F4l/M, l = 0, 1, · · · , M− 1. The basis function is related to
the discrete fractional Fourier transform (DFRFT), and the definition of the DFRFT varies.
Therefore, we seek to use different types of DFRFT as the basis function to verify the
unitarity of M-WFRFT.

3.1. 4-WFRFT as the Basis Function

Proposition 1. 4-WFRFT is used as the basis function, so the M-WFRFT has unitarity.

Proof. The definition of the 4-WFRFT is shown in Equation (1), and Equation (13) can be
obtained as

Fα[ f (t)] =
(

Aα
0 · I + Aα

1 · F + Aα
2 · F2 + Aα

3 · F3) f (t)

=
(

I, F, F2, F3)
⎛⎜⎜⎝

Aα
0

Aα
1

Aα
2

Aα
3

⎞⎟⎟⎠ f (t).
(13)

From Equations (4) and (13), we obtain

Fα[ f (t)] =
1
4

(
I, F, F2, F3

)⎛⎜⎜⎝
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞⎟⎟⎠
⎛⎜⎜⎝

Bα
0

Bα
1

Bα
2

Bα
3

⎞⎟⎟⎠ f (t), (14)

where Bα
k = exp

(
2πikα

4

)
, k = 0, 1, 2, 3. Here, let

⎧⎪⎪⎨⎪⎪⎩
P0 = I + F + F2 + F3

P1 = I − F ∗ i− F2 + F3 ∗ i
P2 = I − F + F2 − F3

P3 = I + F ∗ i− F2 − F3 ∗ i.

(15)
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Then, the 4-WFRFT can be re-expressed as

Tα
4W [ f (t)] =

1
4
(P0, P1, P2, P3)

⎛⎜⎜⎝
Bα

0
Bα

1
Bα

2
Bα

3

⎞⎟⎟⎠ f (t). (16)

Thus, the discrete 4-WFRFT can be expressed as

Tα
4W =

1
4
(P0, P1, P2, P3)

⎛⎜⎜⎝
Bα

0
Bα

1
Bα

2
Bα

3

⎞⎟⎟⎠. (17)

From Equation (10), Yk can be expressed as

Yk = u0×k × I + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M ;

k = 0, 1, · · · , M− 1,
(18)

The 4-WFRFT as the basis function is

Yk = u0×k × T0
4M + u1×k × T

4
M

4M + · · ·+ u(M−1)×k × T
4(M−1)

M
4M . (19)

From Equations (17) and (19), we can obtain

Yk = 1
4 (P0, P1, P2, P3)

⎛⎜⎜⎜⎜⎜⎜⎝u0×k ×

⎛⎜⎜⎝
B0

0
B0

1
B0

2
B0

3

⎞⎟⎟⎠+ u1×k ×

⎛⎜⎜⎜⎜⎜⎝
B

4
M
0

B
4
M
1

B
4
M
2

B
4
M
3

⎞⎟⎟⎟⎟⎟⎠+ · · ·+ u(M−1)×k ×

⎛⎜⎜⎜⎜⎜⎜⎝
B

4(M−1)
M

0

B
4(M−1)

M
1

B
4(M−1)

M
2

B
4(M−1)

M
3

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

= 1
4 (P0, P1, P2, P3)

⎛⎜⎜⎜⎜⎜⎜⎝
u0×k × B0

0 + u1×k × B
4
M
0 + · · ·+ u(M−1)×k × B

4(M−1)
M

0

u0×k × B0
1 + u1×k × B

4
M
1 + · · ·+ u(M−1)×k × B

4(M−1)
M

1

u0×k × B0
2 + u1×k × B

4
M
2 + · · ·+ u(M−1)×k × B

4(M−1)
M

2

u0×k × B0
3 + u1×k × B

4
M
3 + · · ·+ u(M−1)×k × B

4(M−1)
M

3

⎞⎟⎟⎟⎟⎟⎟⎠,

(20)

where k = 0, 1, · · · , M− 1 and u = exp(−2πi/M). Therefore, we obtain

Yk = 1
4 (P0, P1, P2, P3)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + exp
(
−2πi1k

M

)
+ exp

(
−2πi2k

M

)
+ · · ·+ exp

(−2πi(M−1)k
M

)
1 + exp

(−2πi1(k−1)
M

)
+ exp

(−2πi2(k−1)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−1)
M

)
1 + exp

(−2πi1(k−2)
M

)
+ exp

(−2πi2(k−2)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−2)
M

)
1 + exp

(−2πi1(k−3)
M

)
+ exp

(−2πi2(k−3)
M

)
+ · · ·+ exp

(−2πi(M−1)(k−3)
M

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= 1
4 (P0, P1, P2, P3)

⎛⎜⎜⎝
S0(k)
S1(k)
S2(k)
S3(k)

⎞⎟⎟⎠.

(21)

For sequence S0(k), it can be expressed as

S0(k) =
a1
(
1− qM)
1− q

=
1− exp

(
−2πik

M

)M

1− exp
(
−2πik

M

) . (22)
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where a1 = 1. Then, we obtain

S0(k) =
{

M, k ≡ 0 mod M
0, k 0 mod M.

(23)

For sequence S1(k),

S1(k) =
1−
(

e−2πi(k−1)/M
)M

1− e−2πi(k−1)/M
, (24)

we obtain

S1(k) =
{

M, k ≡ 1 mod M
0, k mod M.

(25)

For sequence S2(k),

S2(k) =
1−
(

e−2πi(k−2)/M
)M

1− e−2πi(k−2)/M
, (26)

we obtain

S2(k) =
{

M, k ≡ 2 mod M
0, k 2 mod M.

(27)

For sequence S3(k),

S3(k) =
1−
(

e−2πi(k−3)/M
)M

1− e−2πi(k−3)/M
, (28)

we obtain

S3(k) =
{

M, k ≡ 3 mod M
0, k 3 mod M.

(29)

Then, Equation (21) can be expressed as

Yk =

{
M
4 Pk, k = 0, 1, 2, 3

0, k = 4, 5, · · · , M− 1.
(30)

Therefore, the M-WFRFT Equation (11) is written as

Tα
MW = 1

M (Y0, Y1, · · · , YM−1)

⎛⎜⎜⎜⎝
Bα

0
Bα

1
...

Bα
M−1

⎞⎟⎟⎟⎠

= 1
4 (P0, P1, P2, P3, 0, · · · , 0)

⎛⎜⎜⎜⎝
Bα

0
Bα

1
...

Bα
M−1

⎞⎟⎟⎟⎠

= 1
4 (P0, P1, P2, P3)

⎛⎜⎜⎝
Bα

0
Bα

1
Bα

2
Bα

3

⎞⎟⎟⎠.

(31)

From the expressions, we notice that Equations (17) and (31) are the same, but
in fact they are different. The difference is that for Equation (31), Bα

k = exp
(

2πikα
M

)
;

k = 0, 1, · · · , M− 1. However, this does not affect the proof of unitarity. �
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Remark 2. In our previous work [1], we proved the unitarity of Equation (17). When the 4-WFRFT
is selected as the basis function, the M-WFRFT has unitarity. From Equation (31), we notice that
the weighted sum of the M-WFRFT is only four terms.

3.2. Fractional-Order Matrix as the Basis Function

In our previous numerical simulation, a fractional-order matrix was used to verify
the unitarity of the M-WFRFT [1]. In this section, we present the theoretical analysis to
improve the previous work.

Proposition 2. Fractional-order matrix is used as the basis function, so the M-WFRFT has unitarity.

Proof. The calculation of the fractional power of the matrix is applied to the eigenvalues,
so eigenvalue decomposition of the matrix is required. Therefore, the eigendecomposition
of the matrix can be expressed as

F = VDVH , (32)

where F is the DFT matrix, V is the eigenvector, and D is the eigenvalue matrix.
In [26,27], the eigenvalues of the DFT can be expressed as λn = enπi/2. Then, the

possible values of the eigenvalue are λr = {1,−1, i,−i}; r = 1, 2, · · · , n. In this way, the
eigenvalue matrix D can be expressed as

D =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞⎟⎟⎟⎠. (33)

Then, the fractional power operation of matrix F can be expressed as

F4l/M = VD4l/MVH . (34)

where l = 0, 1, · · · , M− 1. For Equation (10), Yk can be expressed as

Yk = u0×k I + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= u0×kVD0VH + u1×kVD4/MVH + · · ·+ u(M−1)×kVD4(M−1)/MVH .
(35)

where k = 0, 1, · · · , M− 1.Therefore, we can obtain

Yk = V
(

u0×k × D0 + u1×k × D4/M + · · ·+ u(M−1)×k × D4(M−1)/M
)

VH

= V

⎛⎜⎜⎜⎜⎝
u0×kλ0

1 + u1×kλ4/M
1 + · · ·+ u(M−1)×kλ

4(M−1)/M
1 0 · · · 0

0 u0×kλ0
2 + u1×kλ4/M

2 + · · ·+ u(M−1)×kλ
4(M−1)/M
2 · · · 0

...
...

. . .
...

0 0 · · · u0×kλ0
n + u1×kλ4/M

n + · · ·+ u(M−1)×kλ
4(M−1)/M
n

⎞⎟⎟⎟⎟⎠VH

= V

⎛⎜⎜⎜⎝
Q1(k) 0 · · · 0

0 Q2(k) · · · 0
...

...
. . .

...
0 0 0 Qn(k)

⎞⎟⎟⎟⎠VH .

(36)

Here, let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q1(k) = u0×kλ0
1 + u1×kλ4/M

1 + · · ·+ u(M−1)×kλ
4(M−1)/M
1

Q2(k) = u0×kλ0
2 + u1×kλ4/M

2 + · · ·+ u(M−1)×kλ
4(M−1)/M
2

...
Qn(k) = u0×kλ0

n + u1×kλ4/M
n + · · ·+ u(M−1)×kλ

4(M−1)/M
n .

(37)
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The multiplicities of the DFT eigenvalues [26,27] are shown in Table 1. Therefore,
there is

λr = {1, i,−1,−i}
=
{

e4nπi/2, e(4n+1)πi/2, e(4n+2)πi/2, e(4n+3)πi/2
}

=
{

e2nπie0πi/2, e2nπieπi/2, e2nπie2πi/2, e2nπie3πi/2
}

=
{

e0πi/2, eπi/2, e2πi/2, e3πi/2
}

.

(38)

Table 1. Multiplicities of the DFT eigenvalues.

N 1 −1 −i i

4n n + 1 n n n − 1
4n + 1 n + 1 n n n
4n + 2 n + 1 n + 1 n n
4n + 3 n + 1 n + 1 n + 1 n

For Equation (37), Qr(k),r = 1, 2, · · · , n can be expressed as

Qr(k) = u0×kλ0
r + u1×kλ4/M

r + · · ·+ u(M−1)×kλ
4(M−1)/M
r . (39)

When the eigenvalues λr = e0πi/2 = 1 and u = e−2πi/M, Q(1)
r (k) can be expressed

using Equation (39), as

Q(1)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−0)/M + e−2πi2(k−0)/M + · · ·+ e−2πi(M−1)(k−0)/M

=
1−(e−2πi(k−0)/M)

M

1−e−2πi(k−0)/M .

(40)

Therefore, we obtain

Q(1)
r (k) =

{
0, k ≡ 0 mod M
M, k 0 mod M.

(41)

When the eigenvalue λr = eπi/2 = i, Q(i)
r (k) can be expressed using Equation (39), as

Q(i)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−1)/M + e−2πi2(k−1)/M + · · ·+ e−2πi(M−1)(k−1)/M

=
1−(e−2πi(k−1)/M)

M

1−e−2πi(k−1)/M .

(42)

Therefore, there is

Q(i)
r (k) =

{
0, k ≡ 1 mod M
M, k 1 mod M.

(43)

When the eigenvalue λr = e2πi/2 = −1, Q(−1)
r (k) can be expressed using Equation (39), as

Q(−1)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−2)/M + e−2πi2(k−2)/M + · · ·+ e−2πi(M−1)(k−2)/M

=
1−(e−2πi(k−2)/M)

M

1−e−2πi(k−2)/M .

(44)
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Then, we can obtain

Q(−1)
r (k) =

{
0, k ≡ 2 mod M
M, k 2 mod M.

(45)

When the eigenvalue λr = e3πi/2 = −i, Q(−i)
r (k) can be expressed using Equation (39), as

Q(−i)
r (k) = u0×kλ0

r + u1×kλ4/M
r + · · ·+ u(M−1)×kλ

4(M−1)/M
r

= 1 + e−2πi1(k−3)/M + e−2πi2(k−3)/M + · · ·+ e−2πi(M−1)(k−3)/M

=
1−(e−2πi(k−3)/M)

M

1−e−2πi(k−3)/M .

(46)

Therefore, there is

Q(−i)
r (k) =

{
0, k ≡ 3 mod M
M, k 3 mod M.

(47)

Using Equations (41), (43), (45) and (47), we can formulate Equation (36) as

Yk =

{
Yk, k = 0, 1, 2, 3
0, k = 4, 5, · · · , M− 1.

(48)

In this way, the M-WFRFT of Equation (11) can also be expressed as Equation (49).

Tα
MW = 1

M (Y0, Y1, · · · , YM−1)

⎛⎜⎜⎜⎝
Bα

0
Bα

1
...

Bα
M−1

⎞⎟⎟⎟⎠

= 1
M (Y0, Y1, Y2, Y3, 0, · · · , 0)

⎛⎜⎜⎜⎝
Bα

0
Bα

1
...

Bα
M−1

⎞⎟⎟⎟⎠

= 1
M (Y0, Y1, Y2, Y3)

⎛⎜⎜⎝
Bα

0
Bα

1
Bα

2
Bα

3

⎞⎟⎟⎠,

(49)

where Bα
k = exp

(
2πikα

M

)
; k = 0, 1, · · · , M− 1.

The effective weighted sum of the M-WFRFT based on the fractional-order matrix is
also four terms. In order to prove its unitarity, we denote

(Tα
MW)H =

1
M

(
YH

0 B−α
0 + YH

1 B−α
1 + YH

2 B−α
2 + YH

3 B−α
3

)
, (50)

Therefore, there is

Tα
MW(Tα

MW)H =
1

M2

(
3

∑
k=0

3

∑
l=0

YkYH
l Bα

k B−α
l

)
. (51)

From Equation (36), we can obtain

YkYH
l = V

⎛⎜⎜⎜⎝
Q1(k) 0 · · · 0

0 Q2(k) · · · 0
...

...
. . .

...
0 0 0 Qn(k)

⎞⎟⎟⎟⎠VH

⎡⎢⎢⎢⎣V

⎛⎜⎜⎜⎝
Q1(l) 0 · · · 0

0 Q2(l) · · · 0
...

...
. . .

...
0 0 0 Qn(l)

⎞⎟⎟⎟⎠VH

⎤⎥⎥⎥⎦
H

. (52)
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The eigenvector V of the DFT can be defined as a real symmetric matrix [27–29]; and
through Equations (41), (43), (45) and (47), we know that the value of Qr(k) is 0 or M (M is
an integer greater than 4). Therefore, YH

l = Yl . Then, Equation (52) can be expressed as

YkYH
l = YkYl = V

⎛⎜⎜⎜⎝
Q1(k)Q1(l) 0 · · · 0

0 Q2(k)Q2(l) · · · 0
...

...
. . .

...
0 0 0 Qn(k)Qn(l)

⎞⎟⎟⎟⎠VH , (53)

and

Qr(k)Qr(l) =
{

M2, k = l
0, k �= l.

(54)

Therefore, we can obtain

YkYH
l =

{
MYk, k = l
0, k �= l.

(55)

Then, the result of Equation (51) is

Tα
MW
(
Tα

MW
)H

= 1
M2

(
3
∑

k=0

3
∑

l=0
YkYH

l Bα
k B−α

l

)
= 1

M (Y0 + Y1 + Y2 + Y3)

= 1
M

⎛⎜⎜⎜⎝V

⎛⎜⎜⎜⎝
M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

⎞⎟⎟⎟⎠VH

⎞⎟⎟⎟⎠
= I.

(56)

�

Remark 3. With the help of theoretical analysis, we can confirm that the M-WFRFT based on the
fractional-order matrix has unitarity. However, we find that the theoretical analysis deviates from
the previous numerical simulation [1], which we will discuss further in Section 4.

3.3. Eigendecomposition-Type FRFT as the Basis Function

Proposition 3. Eigendecomposition-type FRFT is used as the basis function, so the M-WFRFT
has unitarity.

Proof. In [2], Zhu et al. proposed the M-WFRFT and stated that the basis function is the
FRFT, as shown in Equation (57).

Fα[ f (t)] =
∫ ∞

−∞
Kα(u, t) f (t)dt, (57)

where the transform kernel is given by

Kα(u, t) =

⎧⎪⎪⎨⎪⎪⎩
Aαei u2+t2

2 cot φ−iut csc φ α �= kπ
δ(u− t) α = 2kπ

δ(u + t) α = (2k + 1)π
, (58)

where φ = απ/2 is interpreted as a rotation angle in the phase plane and Aα =
√
(1− i cot α)/2π.
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As we know, Equation (57) is a continuous FRFT, and a discrete FRFT is used for
numerical simulation. At present, the discrete definition [29] closest to the continuous
FRFT is

Fα(m, n) =
N−1

∑
k=0

vk(m)e−i π
2 kαvk(n), (59)

where vk(n) is an arbitrary orthonormal eigenvector set of the N×N DFT matrix. Equation (59)
can be written as

Fα = VDαVH , (60)

where V = (v0, v1, · · · , vN−1), vk is the kth-order DFT Hermite eigenvector, and Dα is a
diagonal matrix, defined as

Dα = diag
(

1, e−i π
2 α, · · · , e−i π

2 (N−2)α, e−i π
2 (N−1)α

)
, when N is odd, (61)

and
Dα = diag

(
1, e−i π

2 α, · · · , e−i π
2 (N−2)α, e−i π

2 (N)α
)

, when N is even. (62)

We only prove that N is odd (when N is even, the proof process is the same). Therefore,
there is

Dα = diag
(
(1)α, (−i)α, (−1)α, (i)α, (1)α, (−i)α, (−1)α, (i)α, · · · · · · , (1 or− 1)α). (63)

Then, Equation (10) can be written as

Yk = u0×k × F0 + u1×k × F
4
M + · · ·+ u(M−1)×k × F

4(M−1)
M

= u0×kV

⎛⎜⎜⎜⎜⎝
1 0 · · · 0
0 (−i)0 · · · 0
...

...
. . .

...
0 0 · · · (1 or − 1)0

⎞⎟⎟⎟⎟⎠VH + u1×kV

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 (−i)
4
M · · · 0

...
...

. . .
...

0 0 · · · (1 or − 1)
4
M

⎞⎟⎟⎟⎟⎠VH + · · ·+ u(M−1)×kV

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0 (−i)
4(M−1)

M · · · 0
...

...
. . .

...

0 0 · · · (1 or − 1)
4(M−1)

M

⎞⎟⎟⎟⎟⎟⎠VH .
(64)

We can further obtain Equation (65) as

Yk = V

⎛⎜⎜⎜⎜⎝
Q(1)(k) 0 · · · 0

0 Q(−i)(k) · · · 0
...

...
. . .

...
0 0 · · · Q(1 or−1)(k)

⎞⎟⎟⎟⎟⎠VH . (65)

The diagonal matrix of Equation (65) can be expressed as

diag
(

Q(1)(k), Q(−i)(k), Q(−1)(k), Q(i)(k), Q(1)(k), Q(−i)(k), · · · · · · , Q(1 or−1)(k)
)

. (66)

Then, Q(1)(k) is the same as Equation (40), Q(−i)(k) is the same as Equation (46),
Q(−1)(k) is the same as Equation (44), and Q(i)(k) is the same as Equation (42). Thus, Yk
can be obtained as

Yk =

{
Yk, k = 0, 1, 2, 3
0, k = 4, 5, · · · , M− 1.

(67)

All the following proofs are the same as Section 3.2. In other words, the M-WFRFT
has unitarity. �

Remark 4. From Equation (67), it is not difficult to find that there are only four weighted terms of
the M-WFRFT based on the eigendecomposition-type FRFT.
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3.4. Other Types of FRFTs

There are three types of discrete definitions of the FRFT. In Section 3.1, the linear WFRFT
is used. The fractional-order matrix is used in Section 3.2. The discrete FRFT, which is called
the eigendecomposition type, is used in Section 3.3. Then, there is a sampling-type FRFT.

In [30], a sampling-type FRFT is proposed, and its process can be written as follows:

(a) Chirp multiplication

g(x0) = exp
[
−ipx2

0 tan( f /2)
]

f (x0); (68)

(b) Chirp convolution

g′(x) = Aφ

∫ ∞

−∞
exp[iπ csc(φ)(x− x0)

2]g(x0)dx0; (69)

(c) Chirp multiplication

fα(x) = exp
[
−iπx2 tan(φ/2)

]
g′(x). (70)

The definition of the sampling type is the numerical simulation of a continuous FRFT.
The discretization of the FRFT has been extensively studied [12], and the three main

types of DFRFTs are compared, as shown in Table 2. We noticed that the sampling-type
FRFT did not satisfy additivity and unitarity.

Table 2. Comparison of the three main types of DFRFT.

Linear Weighted Type Eigendecomposition Type Sampling Type

Unitarity
√ √ ×

Additivity
√ √ ×

Approximation × √ √
Closed-form

√ × √

Complexity O(NlogN) O(N2) O(NlogN)

Remark 5. The M-WFRFT is an extended definition, and its basis function can be expressed as
shown in Figure 1. The sampling type FRFT does not satisfy the additivity and unitarity, so it
cannot be used as a basis function.

Figure 1. Time-frequency denotation of the M-WFRFT operator.
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4. Discussion

Our previous research only verified the unitarity of the M-WFRFT via numerical
simulation [1], but the simulation results are different from the theoretical proof in Section 3.2.
Next, we will analyze and discuss this issue. Equation (10) can be verified using MATLAB,
and its program is shown in Code 1.

Code 1. The program of Equation (10).

1. function Yk = Yk(N,M)
2. % M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
3. % N is the length of the signal;
4. F = zeros(N);
5. for k = 1:N
6. for h = 1:N
7. F(h,k) = exp(2*pi*i*(h−1)*(k−1)/N)/sqrt(N); % IDFT
8. end
9. end
10. F = fftshift(F);
11. for k = 0:M−1
12. yy = Fˆ(4*k/M); % Fractional power of Fourier transform
13. y{k + 1} = yy;
14. end
15. % celldisp(y);
16. u = zeros(M);
17. for k = 1:M
18. for h = 1:M
19. u(h,k) = exp(−2*pi*i*(h−1)*(k−1)/M); %DFT
20. end
21. end
22. for k = 1:M
23. YY = zeros(N);
24. for h = 1:M
25. YY = YY + u(h,k)*y{h};
26. end
27. Y{k} = YY; % Yk in the paper is obtained
28. end
29. Celldisp(y)

We tested from 2 to 1000 dimension and found that Yk was a real matrix only when
the dimensions were

N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 28, 29, 32, 33, 44. (71)

Therefore, the unitarity of the M-WFRFT is only available in the aforementioned
cases.Yk has the following rules:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

5-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4
6-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5
7-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6
8-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

...
...

M-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 · · · YM−3 YM−2 YM−1

(72)

where the blue Yk indicates that the result is zero.
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For other dimensions, the M-WFRFT does not have unitarity, and Yk is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

5-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4
6-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5
7-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6
8-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

...
...

M-WFRFT ⇒ Y0 Y1 Y2 Y3 Y4 · · · YM−3 YM−2 YM−1

(73)

where the blue Yk indicates that the result is zero.
The numerical simulation results show that the M-WFRFT has unitarity only in certain

dimensions. Following the theory of Section 3.2, the program is shown in Code 2. Our
purpose is to compare the results of Code 2 with the results of Code 1.

Code 2. The program of Equation (36).

1. function Yk = Yk1(N.M)
2. % M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
3. % N is the length of the signal;
4. F = zeros(N);
5. for k = 1:N
6. for h = 1:N
7. F(h,k) = exp(2*pi*i*(h−1)*(k−1)/N)/sqrt(N); % IDFT
8. end
9. end
10. F = fftshift(F);
11. [V,D] = eig(F);
12. for k = 0:M−1
13. YY = zeros(N);
14. for l = 0:M−1
15. YY = YY + exp(−2*pi*i*k*l/M)*Dˆ(4*l/M);
16. end
17. YY = V*YY*inv(V);
18. Y{k + 1} = YY; % Yk in the paper is obtained
19. end
20. celldisp(Y)

After verification, we found that the results of Codes 1 and 2 are the same. Therefore,
the numerical simulation shows that the unitarity of the M-WFRFT is related to signal
length. However, our theoretical analysis shows that the unitarity of the M-WFRFT does not
depend on signal length. Therefore, there is a problem insofar as the simulation verification
is inconsistent with the theoretical analysis. In order to solve this problem, we will analyze
it with a specific numerical value. For Code 2, when M = 7 and N = 13, we can obtain the
eigenvalue of the DFT in line 11 of Code 2. Therefore, the eigenvalue matrix D is

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
i

i 0
−i

−i
−i

−1
−1

−1
1

0 1
1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
13×13

(74)
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Then, for Equation (36), the calculated values of Yk (k = 0, 1, · · · , 6) are

Y0 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

0
0

0
0

0
7

0 7
7

7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (75)

Y1 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
7

7 0
0

0
0

0
0

0
0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (76)

Y2 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

0
0

7
7

7
0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (77)

Y3 = V

⎛⎜⎜⎜⎝
0 0

0
. . .

0 0

⎞⎟⎟⎟⎠V−1; (78)

and Y4 = Y5 = Y3;

Y6 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
7

7
7

0
0

0
0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1. (79)

In the results obtained, the values of Y3, Y4 and Y5 are zero; Equation (72) is verified.
If M = 7 and N = 14, we can obtain the eigenvalue of the DFT in line 11 of Code 2.

Therefore, the eigenvalue matrix D is
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1 0
1

i
i
−i

i
−i

−i
−1

0 −1
−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
14×14

(80)

Then, using Equation (36), the calculated values of Yk (k = 0, 1, · · · , 6) are

Y0 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
7

7 0
7

0
0

0
0

0
0

0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (81)

Y1 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

7
7

0
7

0
0

0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (82)

Y2 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

0
0

0
0

0
0

7

0 0
7

7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (83)

Y3 = V

⎛⎜⎜⎜⎝
0 0

0
. . .

0 0

⎞⎟⎟⎟⎠V−1; (84)

and Y4 = Y3;
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Y5 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

0
0

0
0

0
0

0

0 7
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (85)

Y6 = V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

0 0
0

0
0

7
0

7
7

0

0 0
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V−1; (86)

In the results obtained, the values of Y3 and Y4 are zero, and Equation (73) is verified.
When N = 13, Equation (72) is obtained by means of Code 1. However, in the the-

oretical analysis, the nonzero terms of Yk are Y0, Y1, Y2 and Y3, which are different from
the simulation results presented by Equation (72). This problem is generated by fractional
power operation, based on MATLAB, mainly in line 15 of Code 2 (line 12 of Code 1), and its
operation D4l/M (F4l/M).

According to the deMoivre theorem, we know that

[r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ). (87)

where n is a positive integer. Therefore, for Equation (87),

xn = r(cos θ + i sin θ), (88)

the results have n roots

xk =
n
√

r(cos((θ + 2kπ)/n) + i sin((θ + 2kπ)/n)). (89)

where k = 0, 1, · · · , n− 1. However, in the numerical simulation, we only obtained one
of the roots. For example, −i = cos(3π/2) + i sin(3π/2). Using MATLAB to calculate
(−i)1/2, we obtain 0.7071 − 0.7071i. The actual results should be that the two roots are
0.7071 − 0.7071i and −0.7071 + 0.7071i, respectively. This leads to the deviation between
the simulation results (Equation (72)) and the theory (Section 3.2).

For N = 14, the simulation results (Equation (73)) show that the M-WFRFT does not
have unitarity. However, the theoretical (Section 3.2) explanation has unitarity. This prob-
lem is caused by fractional exponentiation operation based on MATLAB. In Equation (80),
we notice the position of the eigenvalue (−1), but after the fractional power operation based
on MATLAB, Equations (83) and (85) appear. Therefore, the final numerical simulation
results show that the M-WFRFT does not have unitarity. In fact, the correct result is the
sum of Equations (83) and (85).

Using the above analysis, we explain the error of the operation based on MATLAB,
which is also the clarification of our previous research work. The final conclusion is that
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the M-WFRFT has unitarity. The M-WFRFT code is shown in Appendix A, and interested
researchers can verify it.

5. Conclusions

In this paper, we present a new reformulation of the M-WFRFT to prove its unitarity.
The M-WFRFT uses the DFRFT as the basis function, and the diversity of the DFRFT leads
to different definitions of the M-WFRFT. We use the linear weighted-type, fractional-order
matrix and eigendecomposition-type FRFT as the basis functions and prove the unitarity
of the M-WFRFT. The results show that M-WFRFTs based on these three definitions have
unitarity. However, with greater research, the results also show that the effective weighted
sum of the M-WFRFT is only four terms. That is to say, as an extended definition of the
WFRFT, the M-WFRFT shows no increase in its weighting term. It has great reference
value for the application of the M-WFRFT. Furthermore, we note the deviation between
the numerical simulation and the theoretical analysis, which reveals that the unitary
verification based on MATLAB is inaccurate for the previous work. Finally, we analyze
two examples and establish the reasons for the deviation. In other words, the fractional
power operation directly based on MATLAB can only obtain one root at a time.
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Appendix A

M-WFRFT code is written; its basis function is the WFRFT. By calling “celldisp (Y)”,
Yk is verified in Section 3.1.

%% M-WFRFT (multi-weighted type fractional Fourier transform)
% The basis function Fˆ(4*l/M) is WFRFT
function F = mwfrft(alpha,M,N)
% This code is written by Tieyu Zhao, E-mail: zhaotieyu@neuq.edu.cn;
% alpha is the transform order;
% M is the resulting weighting term, for example: M = 4(4-WFRFT); M = 5(5-WFRFT)
% N is the length of the signal;
for l = 0:M−1

yy = wfrft(N,4*l/M); % WFRFT
y{l + 1} = yy;

end
% celldisp(y);
D = zeros(M);
for k = 1:M

for h = 1:M
D(h,k) = exp(−2*pi*i*(h−1)*(k−1)/M); % DFT

end
end
for k = 1:M

YY = zeros(N);
for h = 1:M

YY = YY + D(h,k)*y{h};
end
Y{k} = YY; % Yk is obtained in Section 3.1

end
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% celldisp(Y)
B = zeros(1,M);
for k = 0:M−1

B(k + 1) = B(k + 1) + exp(2*pi*i*k*alpha/M); % B_alpha
end
F = zeros(N);
for k = 0:M−1

F = F + B(k + 1)*Y{k + 1}/M; % M-WFRFT
end

function F = wfrft(N,beta) % WFRFT
Y = eye(N);
y1 = fftshift(fft(Y))/(sqrt(N));
y2 = y1*y1;
y3 = conj(y1);
pl = zeros(1,4);
for k = 0:3

pl(k + 1) = pl(k + 1) + exp(i*3*pi*(beta−k)/4)*cos(pi*(beta−k)/2)*cos(pi*(beta−k)/4);
end
F = pl(1)*Y + pl(2)*y1 + pl(3)*y2 + pl(4)*y3;
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Abstract: Autonomous underwater vehicles (AUVs) have broad applications owing to their ability
to undertake long voyages, strong concealment, high level of intelligence and ability to replace
humans in dangerous operations. AUV motion control systems can ensure stable operation in
the complex ocean environment and have attracted significant research attention. In this paper,
we propose a single-input fractional-order fuzzy logic controller (SIFOFLC) as an AUV motion
control system. First, a single-input fuzzy logic controller (SIFLC) was proposed based on the signed
distance method, whose control input is the linear combination of the error signal and its derivative.
The SIFLC offers a significant reduction in the controller design and calculation process. Then, a
SIFOFLC was obtained with the derivative of the error signal extending to a fractional order and
offering greater flexibility and adaptability. Finally, to verify the superiority of the proposed control
algorithm, comparative numerical simulations in terms of spiral dive motion control were conducted.
Meanwhile, the parameters of different controllers were optimized according to the hybrid particle
swarm optimization (HPSO) algorithm. The simulation results illustrate the superior stability and
transient performance of the proposed control algorithm.

Keywords: fractional calculus; autonomous underwater vehicle; fuzzy logic control; particle swarm
optimization algorithm

1. Introduction

Autonomous underwater vehicles (AUVs) are a crucial technical platform for ocean
information acquisition and autonomous operation. They have extensive application
prospects, such as marine environment observation, marine resources exploration and secu-
rity defense. Nevertheless, motion control systems for AUV have become very challenging
due to their high nonlinearity, strong coupling, model parameter uncertainties and external
disturbances. In addition, an AUV system is usually designed to be underactuated to save
cost and improve propulsion efficiency.

With regard to the motion control of underactuated AUV, a variety of control algo-
rithms are available, including proportional-integral-derivative (PID) control, backstepping
control, fuzzy logic control, and sliding mode control [1–7]. In [4], a single-input fuzzy
logic controller (SIFLC) was proposed for AUV depth control. Simulation results show that
the SIFLC gives an identical response as Mamdani and T-S type FLC to the same input sets,
while its execution time is more than two orders of magnitude faster than the conventional
FLC. In [6], a switching control algorithm based on active disturbance rejection control
(ADRC) and fuzzy logic control was applied to the depth control of a self-developed AUV.
Numerical simulations showed that the proposed method is more efficient in suppressing
external disturbances and inner signal transmission disturbance than PID controller.

Fractional calculus is an extension of traditional integral calculus, it describes the
fractal dimension of space. In recent years, its applications in the control field, such as
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fractional-order model [8,9], fractional-order control algorithm [10–12], fractional-order
optimization algorithm [13,14], have attracted significant research attention. Furthermore,
stability analysis for fractional-order control systems have been proposed in several stud-
ies [15–17]. A fractional-order, proportional–integral–derivative (FOPID) controller has
been proposed by Podlubny. Their proposed controller has two additional parameters:
integral order and differential order compared with a PID controller [18]. In [19], an op-
timized FOPID controller for improved transient control performance was applied to an
AUV yaw control system. In addition, a fractional-order Mamdani fuzzy logic controller
has been proposed for vehicle nonlinear active suspension, which effectively improves ride
comfort and handling stability [20]. However, there has been no report on the application
of fractional-order fuzzy logic control in AUV motion.

In this paper, a single-input fractional-order fuzzy logic controller (SIFOFLC) is pro-
posed and applied to an AUV motion control system. Its control input was simplified to a
single variable known as distance variable by applying the signed distance method [21],
which aims to reduce the computation burden and complex parameter tuning process.
Furthermore, a fractional calculus operator was applied to the enhanced FLC due to its
recognized ability to increase the controller’s flexibility and adaptability. With respect to
the controller parameters, we developed and applied a hybrid particle swarm optimization
(HPSO) algorithm to obtain optimal control performance. Unlike a conventional PSO
algorithm, this includes the local optimal particle term to avoid falling into local optimal
region, and the fitness value function includes both steady-state performance and transient
performance of an AUV motion control system. To verify the effectiveness of SIFOFLC, we
conducted comparative numerical simulations of spiral dive motion control. The object of
study, REMUS-100 AUV, was developed by Woods Hole Oceanographic Institution [22],
while the simulation was performed using the marine systems simulator (MSS) by Fossen
and Perez [23]. Simulation results show that, compared with a FOPID controller and con-
ventional T-S FLC, the SIFOFLC is more efficient in reducing angular velocity oscillations,
shortening settling time and improving control accuracy.

The remainder of this paper is organized as follows. Section 2 discusses the six degrees
of freedom nonlinear motion equations of AUV. The SIFOFLC design is introduced in
Section 3, along with its advantages compared with traditional T-S FLC. In Section 4, the
HPSO algorithm is described and is applied to various control systems to obtain optimal
parameters. To verify the effectiveness of the proposed method, simulations and numerical
comparisons are carried out in Section 5. Finally, some concluding remarks are presented
in Section 6.

2. Kinematic and Dynamic Modeling of AUV

Six degrees of freedom motion equations of AUV can be described using the earth-
fixed coordinate system and body-fixed coordinate system shown in Figure 1, both of which
are right-handed. The earth-fixed coordinate system O− xyz has its origin O fixed to the
earth, and the body-fixed coordinate system Ob − xbybzb is a moving reference frame with
its origin Ob fixed to AUV center of buoyancy.

The general motion of a vehicle in six degrees of freedom can be described with the
following vectors:

η1 = [ x y z ]
T

η2 = [ φ θ ψ ]
T

v1 = [ u v w ]
T v2 = [ p q r ]

T

τ1 = [ X Y Z ]
T

τ2 = [ K M N ]
T

where η describes the position and orientation of the vehicle with respect to the earth-fixed
reference frame, v denotes the linear and angular velocities with respect to the body-fixed
reference frame, and τ describes the total forces and moments acting on the vehicle in the
body-fixed reference frame.
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Figure 1. Coordinate systems of AUV.

The coordinate transformation of the translational velocity between earth-fixed and
body-fixed coordinate systems can be expressed as⎡⎣ .

x
.
y
.
z

⎤⎦ = J1

⎡⎣u
v
w

⎤⎦ (1)

where

J1 =

⎡⎢⎣cos ψ cos θ − sin ψ cos φ + cos ψ sin θ sin φ sin ψ sin φ + cos ψ sin θ cos φ

sin ψ cos θ cos ψ cos φ + sin ψ sin θ sin φ − cos ψ sin φ + sin ψ sin θ cos φ

− sin θ cos θ sin φ cos θ cos φ

⎤⎥⎦
The coordinate transformation relates rotational velocity between two coordinate systems
and can be described as ⎡⎢⎣

.
φ
.
θ
.
ψ

⎤⎥⎦ = J2

⎡⎣p
q
r

⎤⎦ (2)

where

J2 =

⎡⎣1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

⎤⎦
The locations of the AUV centers of gravity and buoyancy are defined in the body-fixed

coordinate system as follows:

rG = [xg yg zg]
T rB = [xb yb zb]

T

Based on the theory of rigid body dynamics and the analysis of total forces and
moments acting on AUV, the nonlinear motion equations for the REMUS vehicle in six
degrees of freedom can be expressed as follows [24]:
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m[
.
u− vr + wq− xg(q2 + r2) + yg(pq− .

r) + zg(pr +
.
q)] = XHS + Xu|u|u|u|+

X .
u

.
u + Xwqwq + Xqqqq + Xvrvr + Xrrrr + Xprop

m[
.
v− wp + ur− yg(r2 + p2) + zg(qr− .

p) + xg(pq +
.
r)] = YHS + Yv|v|v|v|+ Yr|r|r|r|+

Y .
v

.
v + Y.

r
.
r + Yurur + Ywpwp + Ypq pq + Yuvuv + Yuuδr u2δr

m[
.

w− uq + vp− zg(p2 + q2) + xg(rp− .
q) + yg(rq +

.
p)] = ZHS + Zw|w|w|w|+ Zq|q|q|q|+

Z .
w

.
w + Z .

q
.
q + Zuquq + Zvpvp + Zrprp + Zuwuw + Zuuδs u2δs

Ixx
.
p + (Izz − Iyy)qr + m[yg(

.
w− uq + vp)− zg(

.
v− wp + ur)] = KHS + Kp|p|p|p|+ K .

p
.
p + Kprop

Iyy
.
q + (Ixx − Izz)rp + m[zg(

.
u− vr + wq)− xg(

.
w− uq + vp)] = MHS + Mw|w|w|w|+ Mq|q|q|q|+

M .
w

.
w + M .

q
.
q + Muquq + Mvpvp + Mrprp + Muwuw + Muuδs u2δs

Izz
.
r + (Iyy − Ixx)pq + m[xg(

.
v− wp + ur)− yg(

.
u− vr + wq)] = NHS + Nv|v|v|v|+ Nr|r|r|r|+

N .
v

.
v + N.

r
.
r + Nurur + Nwpwp + Npq pq + Nuvuv + Nuuδr u2δr

(3)

where m is AUV’s mass, Ixx, Iyy, Izz are the moments of inertia of AUV to three coordinate axes,
XHS, YHS, ZHS, KHS, MHS, NHS are hydrostatics, Xu|u|, Yv|v|, Yr|r|, Zw|w|, Zq|q|, Kp|p|, Mw|w|,
Mq|q|, Nv|v|, Nr|r| are hydrodynamic drag coefficients, Yuv, Yuuδr , Zuw, Zuuδs , Muw, Muuδs ,Nuv,
Nuuδr are lift coefficients and lift moment coefficients of body and control fins, respectively,
Xprop, Kprop are propeller thrust and torque, respectively, and δr, δs are rudder angle and stern
plane angle, respectively. The remaining coefficients are added mass coefficients.

Separate the acceleration terms from the other terms in the equations of AUV motion
so that the equations can be summarized in matrix form as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.
u
.
v
.

w
.
p
.
q
.
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m− X .
u 0 0 0 mzg −myg

0 m−Y .
v 0 −mzg 0 mxg −Y.

r
0 0 m− Z .

w myg −mxg − Z .
q 0

0 −mzg myg Ixx − K .
p 0 0

mzg 0 −mxg − M .
w 0 Iyy − M .

q 0
−myg mxg − N .

v 0 0 0 Izz − N .
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ X
∑ Y
∑ Z
∑ K
∑ M
∑ N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where ∑ X · · ·∑ N refer to the sum of terms without acceleration. So far, six degrees of freedom nonlinear
motion equations of AUV can be obtained by combining (4) with (1) and (2).

3. Design of SIFOFLC

3.1. Fundamentals of Fractional Calculus

Fractional calculus, essentially the non-integer order calculus, has the same history
as integer order calculus. The three frequently used definitions of fractional calculus
are the Grunwald–Letnikov definition, the Riemann–Liouville definition and the Caputo
definition [25].

We consider the Caputo definition in this study because of its wide applications in engi-
neering problems, the fractional integral and derivative by Caputo definition are as follows:

t0
D−α

t f (t) =
1

Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ (5)

t0
Dα

t f (t) =
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)1+α−m dτ (6)

where t0
Dα

t represents the fractional calculus operator, f (t) is a continuous function and
t0 denotes the initial time. α represents the fractional-order, m = �α�. Γ(·) denotes the
Gamma function as in (7).

Γ(z) =
∫ ∞

0
e−ttz−1dt (7)

In the numerical simulations, we adopt the standard Oustaloup approximation method
to obtain the consistent frequency characteristics as fractional differential operator. A rational
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transfer function in the form of zero-pole type is described according to the Oustaloup method,
that N is the order of filter, [ωb, ωh] is the selected frequency bound. The zero and pole are
defined as ω′

k and ωk, which divide the frequency band into 2N + 1 intervals.
The Oustaloup rational approximation is described as

sα ≈ G(s) = K
N

∏
k=1

s + ω′
k

s + ωk
(8)

where ω′
k = ωbω

(2k−1−α)/N
u , ωu =

√
ωh/ωb, ωk = ωbω

(2k−1+α)/N
u , K = ωα

h .

3.2. Structure Design of SIFOFLC

A fuzzy logic controller has four components: knowledge base, inference engine,
fuzzification interface, and defuzzification interface [26]. The basic structure of a two-
dimensional fuzzy logic controller is described as in Figure 2, where the continuous input
signal, e and

.
e, convert to the membership degree vector of the fuzzy variables through a

fuzzification interface, the inference engine carries out rule inference and actual output signal
is obtained through defuzzification interface. The data base denotes membership functions of
the total input and output variables and the rule base is performed using a collection of fuzzy
if–then rules by expert experience, both of which make up the knowledge base.

 

Figure 2. Block diagram of two-dimensional FLC.

Compared with the linear controller, fuzzy logic control method is more robust and
suitable for complex control requirements, while its complex decision-making process
brings a challenge for real-time operation. Thus, we aim to adjust the controller structure
to reduce computation burden and achieve better performance.

Typically, a fuzzy logic controller has two control inputs, namely error (e) and its
derivative (

.
e). It is common for its rule table to have the same output membership in a

diagonal direction, something known as the Toeplitz structure, as shown in Table 1 [4]. In
addition, each position on a diagonal line has the same distance from the main diagonal line
of rule table. Thus, instead of using two-variable input sets (e,

.
e), the corresponding control

output can be obtained using the distance between input signal and the main diagonal
line. This finding was first proposed by Choi et al. and is known as the signed distance
method [21]. To derive the distance, d, a two-dimensional space of e and

.
e is established as

shown in Figure 3.

Table 1. Rule table with the Toeplitz structure.

.
e

e
PL PM PS Z NS NM NL

NL Z NS NM NL NL NL NL
NM PS Z NS NM NL NL NL
NS PM PS Z NS NM NL NL
Z PL PM PS Z NS NM NL
PS PL PL PM PS Z NS NM
PM PL PL PL PM PS Z NS
PL PL PL PL PL PM PS Z
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Figure 3. Distance variable.

The main diagonal line of the rule table is presented as a straight line crossing over
the origin, whose function is Lz :

.
e + λe = 0. In this case, the distance from point P(e1,

.
e1)

to Lz can be obtained as d =
.
e1+λe1√

1+λ2 .
Furthermore, in order to achieve better control performance, we extend the derivative

of error signal to fractional order, thus the distance variable is described as

d =
Dα

t e + λe√
1 + λ2

(9)

where α is the fractional order of error signal and it further increases degrees of freedom
and complexity of the controller.

Based on the above analysis, the overall structure of SIFLC can be depicted as in
Figure 4. The distance variable is obtained through linear combination of error signal and
its fractional derivative, the inner fuzzy logic controller is single input single output (SISO)
and the final output u is obtained by multiplying u0 with the scale factor, which is denoted
as r. We set λ to 1. Thus, in addition to the membership functions, there are two adjustable
parameters in the SIFOFLC, namely α and r.

 

Figure 4. The SIFLC control structure.

3.3. Characteristics of SIFOFLC

In this section, the SIFOFLC and T-S FLC used in the simulation research of Section 4
are proposed and the superiority of SIFOFLC is presented through comparison.

To the SIFOFLC, the fuzzy sets of d and u0 are both {NL, NM, NS, Z, PS, PM, PL}
and the membership functions are shown in Figure 5. The membership functions of d
include both S shape and triangular shape membership functions, with a singleton value
membership function for u0. In this case, the rule table is reduced to the one-dimensional
vector as shown in Table 2.
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Figure 5. (a) Input membership function. (b) Output membership function.

Table 2. Rule table for the above SIFOFLC.

d NL NM NS Z PS PM PL

u0 NL NM NS Z PS PM PL

Based on the work mentioned above, the proposed SIFOFLC has the following advan-
tages compared to conventional FLC:

(1) Simplified design process.

For the two-dimensional FLC, the membership functions for error input and its deriva-
tive are required simultaneously, which means a lengthy complex tuning process. With the
only input, d, the parameter tuning process for SIFOFLC is significantly reduced. Further,
in a two-dimensional FLC, the number of fuzzy rules to be inferred is the square of n, which
is the size of the fuzzy set. The distinguishing feature of SIFLC is that it requires only n
rules, which is an exponential decay. Typically, better performance can be obtained with
more a complicated control algorithm, such as the increase of fuzzy sets and rules, which
further reveals the superiority of SIFOFLC.

(2) Reduced computation burden.

The control surfaces for the SIFOFLC and conventional T-S FLC are respectively
shown in Figures 6 and 7. Compared with the complex curved surface of T-S FLC, the
control surface of SIFOFLC has been simplified to a linear with different slopes. Thus, the
computation burden of controller operation, which includes fuzzification, fuzzy inference
and defuzzification, has been significantly reduced.

Figure 6. T-S FLC control surface.
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Figure 7. SIFLC control surface.

4. Parameter Optimization for Three Controllers with HPSO Algorithm

In this section, the HPSO algorithm is developed and applied to optimize the controller
parameters. Except for the SIFOFLC, the T-S FLC and FOPID control systems are optimized
for further comparison in Section 5, as the SIFOFLC algorithm essentially originates from
the T-S FLC, and because the FOPID controller is the most extensively used fractional order
control algorithm.

It is necessary to mention that our optimization and research scenario is the spiral dive
motion control of REMUS-100 AUV. It is performed using Marine Systems Simulator (MSS),
which is a MATLAB toolbox and offers a set of tools for marine engineering researchers [23].
Some research details are as follows: The target depth of AUV motion linearly increases
from 0 m to 30 m and the target yaw angle from 0◦ to 720◦. The simulation time is 300 s
and the input constraint of fins is set to 13.8◦ in accordance with [24]. Furthermore, the
external disturbances are ignored.

Figure 8 illustrates the block diagram of an AUV motion control system. The propeller
speed is fixed at 1500 r/m so that the cruise speed maintains a constant value. In this case,
the target trajectory is obtained with heading controller and depth controller.

 

Figure 8. REMUS-100 AUV control system.

4.1. HPSO Algorithm

Because of the uncertainty and nonlinearity of the control system, adjusting parameters
of the controller by manual experience is usually hard, thus optimization algorithms are
applied to obtain the optimal or suboptimal solution. PSO is a typical swarm intelligence
algorithm developed in 1995, stemming from research on the foraging behavior of birds [27].
Studies in [28] have shown that it lacks the capability to achieve sustainable development
and the swarm becomes stagnant after a certain number of iterations. To improve this, the
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term of local optimal particle is introduced in the HPSO algorithm and the velocity and
position of particles are updated according to the following two equations:

VK+1
i = ω ·VK

i + c1rand(pK
i − XK

i ) + c2(q · rand(SK
i − XK

i ) + (1− q) · rand(pK
iL − XK

i )) (10)

XK+1
i = XK

i + VK+1
i · dt (11)

where K is the current number of evolution and at the K-th evolution, VK
i denotes the

velocity of the i-th particle; XK
i represents the position of the i-th particle; pK

i depicts the
best position of i-th particle; SK

i is the best position of the particle swarm; pK
iL is the position

of the local optimal particle for the i-th particle, and the introduction of pK
iL avoids falling

into the local optimal region. ω is inertia weight, which decreases as evolution unfolds and
aids in global search in the early stage and local optimization in the late stage. c1 and c2 are
learning factors, q represents social factor, and dt denotes time interval coefficient.

Instead of single-object optimization, we consider multiple objects in our study, in-
cluding the steady-state performance and transient performance of AUV motion control
system. And the objective function is defined as follows:

F = log(1 + p_vibration
p_vibration0 ) + log(1 + q_vibration

q_vibration0 ) + log(1 + r_vibration
r_vibration0 ) + log(1 + p_ts

p_ts0 )

+ log(1 + q_ts
q_ts0 ) + log(1 + r_ts

r_ts0 ) + log(1 + z_ITAE
z_ITAE0 ) + log(1 + ψ_ITAE

ψ_ITAE0 )
(12)

where (·)_vibration represents oscillation times of AUV angular velocity; (·)_ts is the
settling time in which the angular velocity is kept within a ±5% range of the steady state
value; (·)_ITAE describes the ITAE index of track error;p_(vibration0) which denotes the
expected value and is set artificially, all of the expected values are presented in Appendix A.

The flowchart of optimization is shown in Figure 9 and the implementation procedure
of the HPSO algorithm is summarized as follows:

Step 1: Specify the population size and the maximum number of evolutions, as well as
other coefficients that can be noted from Equations (10)–(12). Determine the value range of
controller parameters and initialize a population of particles with random positions.

Step 2: Evaluate the fitness value of all particles according to Equation (12), let pK
i of

each particle equal to its current position and let SK
i equal the position of the best initial

particle. After that, the local optimal position of each particle, pK
iL, is obtained in accordance

with Appendix A.
Step 3: Update the particles’ velocities and positions in terms of Equations (10) and

(11). Compare the fitness value of each particle with its own best fitness value, if the current
one is better, update the pK

i . Similarly, compare the best fitness value of the new generation
with the fitness value of the global best position SK

i and decide whether it has to be updated.
The local optimal position of each particle is also updated.

Step 4: The optimization is terminated when it reaches the maximum number of
evolutions. Then the global best position is output, which is the target parameters of the
controller. The convergence curve of optimal fitness value is also printed.
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Figure 9. Flowchart of HPSO algorithm.

4.2. Optimization Experiments and Result Analysis

Here we conduct optimization of three control systems by using the HPSO algorithm
mentioned above. To the SIFOFLC system, the particle dimension is four with the fractional
order of the error signal and the scale factor of the depth controller and heading controller.
We adopted the standard Oustaloup filter module deriving from FOTF toolbox [29] to
perform fractional derivative operator, the frequency band was set to [0.001,1000] and the
filter order was 4. As for the FOPID control system, the dimension of particle is 10, so that
each FOPID controller has five unknown parameters. For the T-S FLC control system, only two
scale factors are to be optimized. The membership functions and fuzzy rules of T-S FLC were
determined through empirical approach, and its control surface is shown in Figure 6.

The coefficients of the HPSO algorithm are set as follows: the particle size is 10 and the
maximum number of evolution is 20. The limit of the inertia weight, ω, is set to between 1
and 0.7. The learning factors c1 and c2 are set as value 2, the social factor q is set as value 0.7
and the time interval coefficient dt is set as value 0.5. The searching range for parameters
are presented in Appendix A. Furthermore, we implement multiple optimizations and
adopt the optimal result to solve randomness.

Figures 10–12 respectively show the convergence curve of optimal fitness of three
control systems and the obtained target controller parameters are illustrated in Table 3. It
can be observed that all the curves tend to decline through evolution, which illustrates
the effectiveness of optimization. Actually, the optimal fitness of three control systems
respectively decreases by 19.8%, 37.9% and 9.6%. The FOPID controller clearly outperforms
the other two controllers as it has the highest degrees of freedom. The optimization effect
of the SIFOFLC system is twice as good as the T-S FLC system and its ultimate fitness
is significantly less than the others. These results demonstrate that the introduction of a
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fractional differential operator not only increases degrees of freedom and the flexibility of
the controller but also improves the control performance, as is particularly demonstrated
in the next section.

Table 3. Controller parameters optimized by HPSO algorithm.

Control System Parameter Heading Controller Depth Controller

SIFOFLC
α 1.08 1.21
r 131.02 −102.50

FOPID

Kp 19.88 −15.50
Ki 18.69 0
Kd 2.96 −50
λ 0.10 1.5
μ 1.11 1.12

T-S FLC r 33.20 −140.43

Figure 10. Convergence curve of SIFOFLC system.

Figure 11. Convergence curve of FOPID control system.
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Figure 12. Convergence curve of T-S FLC system.

5. Simulation and Analysis

In this section, we conduct comparative simulations to verify the effectiveness of the
proposed SIFOFLC algorithm for AUV motion control. The optimized controllers expressed
in Table 3 are applied and the target trajectory of AUV does not change.

Figure 13 shows the trajectory of AUV under SIFOFLC and the state of the response is
depicted in Figure 14. Simulation results reveal that the trajectory tracking is accurate and
rapid with SIFOFLC. Actually, the steady state error of depth is within 0.01 m in 6.5 s and
gradually decreases to approximately 0.002 m in 7 s. Correspondingly, the maximum error
of yaw angle is 2.5◦ and it gradually decreases to 0.01◦ in 13 s. The cruise speed maintains
1.54 m/s and the peak overshoot of pitch angle is 10◦.

Figures 15 and 16 respectively illustrate the angular velocity of an AUV using FOPID
controller and T-S FLC. Furthermore, the oscillation and settling times of angular velocity,
the ITAE index of track error and the optimal fitness value are all presented in Table 4. The
responses with SIFOFLC algorithm have much shorter settling times and steady state errors.
Compared with the SIFOFLC, the control performance obtained via the FOPID controller
and T-S FLC requires a much longer settling time, and they also oscillate considerably
in the beginning, which may lead to an unstable performance of the controlled system.
Simulation results clearly reveal the superior stability and transient control performance of
the proposed SIFOFLC.

Figure 13. Comparison of desired trajectory and actual trajectory with SIFOFLC.
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Figure 14. State response of AUV with SIFOFLC.

Figure 15. Angular velocity curves with FOPID.

Figure 16. Angular velocity curves with T-S FLC.
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Table 4. Quantitative analysis of system performance.

Characteristic

Control System

SIFOFLC FOPID T-S FLC

p_vibration 9 12 12
q_vibration 5 5 9
r_vibration 1 3 1

p_ts 8.15 10.62 10.17
q_ts 14.71 18.44 13.53
r_ts 4.97 3.87 5.43

z_ITAE 2.69 7.70 2.90
ψ_ITAE 12.21 14.84 20.38

Fitness value 6.83 8.39 7.92

6. Conclusions

In this study, we proposed a SIFOFLC algorithm for an AUV motion control system.
Unlike a conventional FLC algorithm, this is reduced to a SISO controller by using the
signed distance method, which provides a significant reduction to parameter tuning and
computation burden. In addition, a fractional derivative operator was applied to increase
degrees of freedom of the controller, hence the proposed control algorithm is more flexible
and adaptive to the AUV motion control system. Furthermore, we developed an HPSO
algorithm and applied it to optimize the controller parameters. The simulation results
show that the proposed controller enhances the stability and transient performance of the
controlled AUV motion system, which manifests in less oscillations of angular velocity,
shorter dynamic settling time, and higher control accuracy. In future studies, we will
perform experiments using the proposed controller to verify its practicability.
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Appendix A

Table A1 shows the searching area of parameters, they are established through trial
and error. The target values of characteristics of AUV motion control system, which are
defined in Equation (12), are depicted in Table A2. The MATLAB function code for particle
distance is given as follows:

function DM = Distance_Matrix (X,xmin,xmax)
n = size (X,1);
DM = zeros (n,n);
Normal = xmax-xmin;
for t = 1:n
Dif = (X (t,:)-X)./Normal;
Dis = sum (Dif.ˆ2,2);

DM (t,:) = Dis;
end

where X represents the parameters of particle swarm, xmin and xmax denote the searching
bound of parameters. DM is a square matrix and DM (i,j) is the distance between the i-th
particle and j-th particle. By the way, if the distance is less than 1, we consider them as
local particles.

Table A1. Searching range of parameters for three control systems.

Control System Parameter Heading Controller Depth Controller

SIFOFLC
α [0.1, 1.5] [0.1, 1.5]
r [5, 150] [−150, −5]

FOPID

Kp [0, 20] [−20, 0]
Ki [0, 20] [−20, 0]
Kd [0, 10] [−50, 0]
λ [0.1, 1.5] [0.1, 1.5]
μ [0.1, 1.5] [0.1, 1.5]

T-S FLC r [0, 150] [−150, 0]

Table A2. Target performance of control system.

Characteristics of Control System Target Value

p_vibration0 6
q_vibration0 4
r_vibration0 2

p_ts0 5
q_ts0 5
r_ts0 5

z_ITAE0 5
ψ_ITAE0 5
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Abstract: The scientific community has recently seen a fast-growing number of publications tackling
the topic of fractional-order controllers in general, with a focus on the fractional order PID. Several
versions of this controller have been proposed, including different tuning methods and implementa-
tion possibilities. Quite a few recent papers discuss the practical use of such controllers. However, the
industrial acceptance of these controllers is still far from being reached. Autotuning methods for such
fractional order PIDs could possibly make them more appealing to industrial applications, as well. In
this paper, the current autotuning methods for fractional order PIDs are reviewed. The focus is on
the most recent findings. A comparison between several autotuning approaches is considered for
various types of processes. Numerical examples are given to highlight the practicality of the methods
that could be extended to simple industrial processes.

Keywords: direct autotuning methods; indirect autotuning methods; fractional-order controllers;
simulation results

1. Introduction

Despite the abundance of research in advanced control strategies, the PID (proportional-
integrative-derivative) controller remains the preferred control algorithm in industrial
applications [1,2]. To produce the desired effects, PIDs need to be adequately tuned. A
mathematical model is usually needed in order to properly tune the controller. However,
large industrial plants are characterized by numerous sub-systems and obtaining an ac-
curate process model is not cost effective as it can be difficult and/or time consuming. To
overcome this issue, two different approaches for autotuning PIDs were developed, as
indicated in Figure 1.

Both approaches use step or sinusoidal input data and collect the process output
response. For a direct autotuner the PID parameters are determined directly from process
input/output data, while for the indirect PID autotuner, simple process models are first
determined and then the PID parameters are computed according to some tuning rules
based on the model parameters. The majority of indirect methods use either first-order
plus dead time (FOPDT) or second-order plus dead time (SOPDT) models.

Two of the most popular autotuning methods have been developed by Ziegler and
Nichols [3]. One of these methods is a direct approach, based on the relay experiment,
as indicated in Figure 2. Once the relay test is performed on a process, it will lead to a
sinusoidal output signal which is used to estimate the process critical frequency and the cor-
responding critical gain. Tuning rules based on the process critical frequency and gain are
employed to compute the PID controller parameters. The Ziegler-Nichols direct autotuning
method is highly popular because of its simplicity and good performance results.
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Figure 1. Autotuning approaches.

Figure 2. Relay experiment.

Several extensions of this approach and alternative solutions have been developed over
the years. One of these uses the describing function analysis and a simple relay feedback
test to estimate the process critical gain and corresponding frequency [4]. A solution for
noisy signals was proposed based on a relay with hysteresis [5]. An artificial time delay is
added within the relay closed-loop system in order to determine the process gain and phase
at a random oscillation frequency. Then, a PI (proportional-integrative) controller is tuned
according to this process data. A modified Ziegler-Nichols method [6]—where the ratio
between the integral and derivative time constants is r = 4—was also developed. Other
research papers discuss the impact the ratio value has upon the control performance [7].
Solutions to improve the robustness of the control system have been addressed [2]. Åström
and Hägglund [1] use the relay test to design controllers based on robust loop shaping,
with a clear tradeoff between robustness and performance.

The second method developed by Ziegler and Nichols [3] consists in applying a step
signal on the process input and collecting the output data. The method is suitable for
processes that have FOPDT dynamics or exhibit an S-shaped response, as indicated in
Figure 3. The approach goes through an indirect step, where the parameters of the FOPDT
model are estimated. Finally, the PID controller parameters are computed using a set of
tuning rules that depend on the FOPDT model parameters.

Figure 3. S-shaped response.
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The demand for better control performance and increased robustness has led to
several modifications of the standard PID controller, including a generalization to fractional
order [8]. Research on fractional order PID (FO-PID) controllers has demonstrated that
this generalization allows for more flexibility in the design, due to the two supplementary
tuning parameters involved, the fractional orders of integration and differentiation [9–13].
This flexibility comes with important advantages, such as better closed-loop performance,
disturbance rejection capabilities, improved control of time-delay systems and increased
robustness [9–14]. The fractional order PID transfer function is given as:

CFO−PID(s) = kp

(
1 +

1
Tisλ

+ Tdsμ

)
(1)

where 0 < λ < 2 and 0 < μ < 1 are the fractional orders of integration and differentiation,
respectively, and kp is the proportional gain, and Ti and Td are the integral and derivative
time constants. The “classical” tuning rules used to determine the five controller parameters
are derived from the following performance specifications [9,12,15–17]:

1. A gain crossover frequency ωc. This leads to the magnitude condition:

|Hol(jωc)| = 1 (2)

with Hol(s) the open-loop transfer function is defined as: Hol(s) = P(s). CFO-PID(s),
where P(s) is the process transfer function;

2. A phase margin PM. This leads to the phase condition:

∠Hol(jωc) = −π + PM (3)

3. Iso-damping property (or robustness to gain variations). This is specified through:

d(∠Hol(jω))

dω

∣∣∣∣
ω=ωc

= 0 (4)

where ω denotes the frequency. This last condition ensures that the overshoot of the
closed-loop system remains approximately constant in the case of gain variations;

4. Good output disturbance rejection. This leads to a constraint on the sensitivity
function S: ∣∣∣∣S(jω) =

1
1 + P(jω)HFO−PID(jω)

∣∣∣∣ ≤ B dB (5)

for frequencies ω ≤ ωs, with B a scalar;
5. High frequency noise rejection. This leads to a constraint on the complementary

sensitivity function T as:∣∣∣∣T(jω) =
P(jω)HFO−PID(jω)

1 + P(jω)HFO−PID(jω)

∣∣∣∣ ≤ A dB (6)

for frequencies ω ≥ ωT , with A a scalar.

Further information regarding the tuning, implementation and related topics to frac-
tional order PIDs can be found in some excellent review papers [15,16,18–24]. The phase
shaper [25] is among the first automatic controller designs that uses fractional calculus
tools. The autotuning method is based on the iso-damping property, but the final controller
is an integer order PID. Throughout the past two decades, a couple of FO-PID autotuning
methods have emerged. Some of these provide direct and indirect tuning rules for FO-PIDs
in general or for fractional order PI (FO-PI) controllers. The purpose of this manuscript
is to offer a comprehensive review of these autotuning methods, to compare them and to
discuss which method is ranked best for controlling a specific type of process.

The paper is structured as follows. Sections 2 and 3 provide for a review of the
most widely known indirect and direct autotuning methods for FO-PIDs, while Section 4
provides for some numerical examples. Possible applications of autotuning methods
are reviewed in Section 5, along with a survey on self-tuning FO-PIDs. The last section
concludes the paper.
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2. Indirect Fractional Order Autotuning Methods

A popular indirect autotuning method, suitable only for FO-PIs, was developed by
extending the Ms constrained integral (MIGO)-based controller design approach [26]. F-
MIGO tuning determines the optimum parameters of the FO-PI controller such that the load
disturbance rejection is optimized, with a constraint on the maximum or peak sensitivity.
The F-MIGO method provides the tuning rules for the FO-PI controller provided that
the process step response has an S-shaped form, as indicated in Figure 3, that could be
approximated by the following transfer function:

P(s) =
k

Ts + 1
e−Ls (7)

where k is the process gain, L is the delay and T is the time constant of the process. The
relative dead time can be computed as:

τ =
L

T + L
(8)

Systems where L >> T are delay dominant, whereas systems in which T >> L are lag
dominant. Research studies performed in [26] revealed that the FO-PI fractional order
is almost independent of L, but depends on the relative dead time. For some particular
situations, where 0.4 ≤ τ < 0.6, an integer order PI controller was determined to be more
suitable for controlling the process. A summary of the results is indicated below:

λ =

⎧⎪⎪⎨⎪⎪⎩
1.1, τ ≥ 0.6
1, 0.4 ≤ τ < 0.6
0.9, 0.1 ≤ τ < 0.4
0.7, τ < 0.1

(9)

The proportional and integrative gains of the FO-PI controller were also determined
as a function of the relative dead time:

kp =
1
k

0.2978
τ + 0.00037

and Ti = T
0.8578

τ2 − 3.402τ + 2.405
(10)

An indirect autotuning method that applies to the S-shaped step response process was
developed in [27]. The tuning is unnecessarily complicated as the parameters of (7) are
firstly estimated and then used to determine the process critical frequency ωcr and critical
gain kcr, according to:

ωcrT = − tan(ωcrL) and kcr = − 1 + ωcrT2

k(cos(ωcrL)−ωcrT sin(ωcrL))
(11)

Then, the parameters of an integer order PID are determined using the previously
computed process critical frequency and gain, as well as three additional design parameters
referring to the ratio of the integral and derivative time constants, loop phase and gain:

kp = kcrrb cos∅b, Ti = −Tcr

π

π cos∅b
sin∅b + 1

and Td = αTi (12)

where α, rb and ∅b are design parameters [28]. Once the PID controller parameters are
computed, a possible range for the fractional orders in the FO-PID is selected and an
optimization routine is performed. The algorithm attempts to minimize the integral time
absolute error with the open loop gain and phase margin imposed as design specifications.

Another indirect tuning method is proposed in [29] for processes that produce an
S-shaped step response. The method is based on determining first the process dead time L
and time constant T, as well as the value at which the system reaches steady state k. The
standard Ziegler-Nichols equations are used then to estimate the kp, Ti and Td parameters
of an integer order PID. Then, the fractional orders of differentiation and integration are
determined by the Nelder-Mead optimization algorithm in order to meet certain phase
and gain margins. A second approach based on the standard Cohen-Coon method is also
used in [29], for processes that exhibit first order plus dead time dynamics. Based on the
process parameters, the integer order PID parameters are first computed. The Nelder-Mead
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optimization algorithm is used afterwards to estimate the fractional orders of differentiation
and integration based on certain phase and gain margin requirements. The Cohen-Coon
tuning method is proposed as an alternative to the Ziegler-Nichols approach in order to
improve the slow, steady state response of the latter.

An indirect autotuning method for designing only FO-PI controllers using the Ziegler-
Nichols open-loop approach is described in [30]. The parameters of the integer order PI
controller are firstly determined using the standard Ziegler-Nichols approach. In order to
improve the overall closed-loop response, the research suggests that the PI performance
can be improved a lot with a fractional order of integration. An error filter as proposed
in [31] is used for steady state error compensation:

Ge(s) =
s + n

s
(13)

where n is chosen to be small enough so that high frequency specifications are maintained
and the system gain will not be altered drastically. The research in [30] proposed a modifi-
cation of (13) such that the value of n is adjustable with respect to the fractional order of
integration. The tuning of the fractional order and of the filter is performed by trial and
error for a specific type of process. The method is evaluated experimentally on a steam
temperature process and compared to the F-MIGO method [26] in terms of robustness
for set point changes and disturbance rejection. The proposed controller shows better
performance compared to the F-MIGO autotuning method, but it also requires higher
control effort.

In [32], two existing analytical methods for tuning the parameters of fractional PIDs
are reviewed. Then, for two specific sets of performance criteria similar to (2)–(6), the
corresponding sets of tuning rules are developed based on an optimization method applied
to the FO-PID control of an S-shaped process dynamics similar to (7). The newly developed
tuning rules for fractional order PIDs use the time delay L value and the estimated process
time constant, T, much like the standard S-shaped Ziegler-Nichols approach, to produce
the controller parameters. The method works provided the step response of the process
is S-shaped. These two methods were initially presented in [33]. The first set of rules
developed works if 0.1 ≤ T ≤ 50 and L ≤ 2, while the second set of rules can be applied
for processes with 0.1 ≤ T ≤ 50 and L ≤ 0.5. Both sets of rules are determined in a
similar manner. For a batch of process described as FOPDT systems, a set of performance
specifications is imposed. The set included values for the gain crossover frequency, for the
phase margin, a high-frequency value for the improved high-frequency noise cancellation
and the corresponding maximum magnitude limit, as well as a low frequency value for
improved output disturbance and the corresponding maximum magnitude. Tuning by
minimization is then applied using the fmincon Matlab® (Natick, Massachusetts, USA)
function, where the magnitude equation in (2) is used as the main function to minimize,
whereas the remaining conditions in (3)–(6) are used as constraints. Using least squares fit,
polynomials are determined to compute the controller parameters based on the process time
constant T and time delay L: P = −0.0048 + 0.2664L + 0.4982T + 0.0232L2 − 0.0720T2 −
0.0348LT. Using Figures 4 and 5, for the first set of rules and for the second one, the FO-PID
controller parameters, as indicated in (1), can be finally computed:

kp = P, Ti =
kp

I
and Td =

D
kp

(14)

Figure 4. Parameters for the first set of tuning rules for S-shaped response processes (P = kp, I = kp/Ti,
D = kpTd) [32].
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Figure 5. Parameters for the second set of tuning rules for S-shaped response processes (P = kp, I =
kp/Ti, D = kpTd) [32].

3. Direct Fractional Order Autotuning Methods

Most of the direct autotuning methods are based on using the relay test to determine
the process critical gain and critical period of oscillations, but other methods have been
developed [34].

Several generalizations of the Ziegler-Nichols ultimate gain method have been pro-
posed over the years for the tuning of FO-PIDs. A new tuning method for such a controller
that combines both the Ziegler-Nichols as well as the Astrom and Hagglund methods has
been proposed in [35]. The idea is based on obtaining the process critical frequency and crit-
ical gain and then computing the kp and Ti parameters using the classical Ziegler-Nichols
method. For a specified phase margin, the Td parameter is computed using the Astrom and
Hagglund method. Two equations referring to the controller’s real and imaginary parts
are obtained. Fine tuning of Td is employed to achieve the best numerical solution of the
equations, for each specified phase margin. Matlab®’s built in functions, such as fsolve,
are used to solve the two equations to obtain numerical values of λ and μ by considering
the new value of Td for each specified phase margin. An optimization Simulink model is
used to obtain a better step response. The least squares method is used in the optimization
model and the optimized FO-PID parameters are obtained. The approach is tedious and
involves three controller designs before the final optimized FO-PID is obtained. However,
the design allows for a direct specification of the loop phase margin.

In [36], an extension of the modified Ziegler-Nichols tuning rules for fractional-order
controllers is presented. The proposed design approach is only suitable for tuning fractional
order PI controllers. The tuning rules are derived without any knowledge of the process
model, but they require the critical frequency ωcr, as well as the corresponding critical gain
kcr. Based on this process information, the FO-PI autotuning objective is to determine the
controller parameters such that the loop frequency response is moved to a point in the
Nyquist plane where a performance criterion is minimized, according to a constraint. The
performance criterion is mathematically expressed as a measure of the system ability to
handle low-frequency load disturbances, subjected to a robustness constraint referring to
the maximum sensitivity function of the closed-loop system. The tuning rules are given by:

λ =
1.11k180 + 0.084

k180 + 0.07
, kp = kcrrb cos β + kcrrb cot λ sin β and Ti =

kp

ki
(15)

where k180 = 1
kcrk , rb = 0.34k180+0.03

k180+0.52 , β = −0.92k180−0.012
k180+0.6 , ki =

−kcrrbωλ
cr

sin γ sin β and γ = π
2 λ,

with k the process gain as indicated in (7).
The method is compared with several other direct and indirect autotuning methods for

integer order PIDs and it provides good performance results. The method is also compared
to some similar autotuning approaches developed in [37,38] and the results demonstrate
the superiority of the current approach.

A similar idea as the one used in [31] is employed in [39], where an error filter is
cascaded with a FO-PI controller. Unlike the autotuning approach taken in [31], the
research in [39] is focused on estimating the parameters of an integer order PI controller
using the relay method. An estimation of the process critical gain and period of oscillation is
firstly determined, which in turn leads to the computation of an integer order PI controller
parameters according to the standard Ziegler-Nichols approach. The same error filter
is used in [39] as in [31] with the same advantage. Various values for the fractional
order integration are used and the results evaluated on a steam temperature process.
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Experimental results show that the FO-PI controller leads to better performance during the
set-point change and load disturbance test in terms of output and control effort. However,
poor closed-loop performance is obtained if λ is set too low. Even though both the direct [39]
and the indirect [31] autotuning methods are simple enough for designing the FO-PI
controllers, there is no clear advice on the selection of the fractional order of integration.

A modification of the Ziegler-Nichols closed-loop method is proposed in [40]. The
method provides for an improvement of the standard Ziegler-Nichols results. The idea is
based on the fact that a fractional order can help shape the “direction” of the loop frequency
response in a fixed point in the Nyquist plot and thus keep the loop frequency response
further away from the −1 point. The process critical frequency of oscillation, as well as the
critical gain are obtained based on the relay test. To simplify the tuning method, the same
fractional order of integration and differentiation is used in the FO-PID, similarly to [41]:

CFO−PID(s) = kp

(
1 +

1

(τis)
λ
+ (τds)λ

)
(16)

where Ti = τi
λ and Td = τd

λ. The ratio r = τi
τd

between the integral and derivative time
constants is considered to be a design parameter. The final tuning rules are exemplified for
a ratio r = 4, similarly to [6,41]. Unlike the standard Ziegler-Nichols approach, the tuning
rules depend not only on the process critical gain Kcr and critical period of oscillation Pcr,
but also on the fractional order. The parameters of the FO-PID controller can thus be easily
computed, without any complex optimization procedure [40], as indicated in Table 1.

Table 1. FO-PID parameters according to the modified Ziegler-Nichols method and for different
values of the fractional order λ [40].

λ kp Ti Td

0.4 0.16 kcr 2.27Tcr
0.4 0.57 Ti

0.5 0.23 kcr 1.55Tcr
0.5 0.50 Ti

0.6 0.29 kcr 1.12Tcr
0.6 0.44 Ti

0.7 0.36 kcr 0.87Tcr
0.7 0.38 Ti

0.8 0.42 kcr 0.71Tcr
0.8 0.33 Ti

0.9 0.50 kcr 0.59Tcr
0.9 0.29 Ti

1 0.6 kcr 0.5Tcr
1.0 0.25 Ti

The critical process gain and period of oscillation are used in [42] to determine the
parameters of a FO-PID controller. Three sets of tuning rules are developed. Processes
described as FOPDT systems are used for two of the sets, whereas for the third one,
integrative processes are considered. The first set of tuning rules applies when the critical
period of oscillations Pcr ≤ 8 and PcrKcr ≤ 640. For the case when Pcr ≤ 2, a second set of
tuning rules is developed. Both of these are quite restrictive and do not often work properly
for plants with a pole at the origin [42]. The third set of rules is designed specifically for
integrative processes (without time delay), but can be used only when 0.2 ≤ Pcr ≤ 5 and
1 ≤ Kcr ≤ 200. The research in [42] concludes that the closed-loop performance can be poor
near the borders of the mentioned range. All of these rules were developed in order to
meet certain performance specifications regarding the loop gain crossover frequency, phase
margin, iso-damping, rejection of high-frequency noise and output disturbance. All tuning
rules are developed similarly to those in [32], by minimizing the magnitude equation in
(2) and using the remaining conditions in (3)–(6) as design constraints. The controller
parameters are obtained by polynomial fitting using least squares. The coefficients of the
polynomials for the three sets of tuning rules are indicated in Figures 6–8.
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Figure 6. Parameters for the first set of tuning rules for processes with critical gain and period (P = kp,
I = kp/Ti, D = kpTd) [42].

Figure 7. Parameters for the second set of tuning rules for processes with critical gain and period
(P = kp, I = kp/Ti, D = kpTd) [42].

 
Figure 8. Parameters for the third set of tuning rules for processes with critical gain and period
(P = kp, I = kp/Ti, D = kpTd) [42].

The relay test is also used in [43], but with a variation that includes also a time delay,
as indicated in Figure 9. The process frequency response at any frequency can be identified
using this scheme. The main issue is to determine the correct value of the time delay that
corresponds to a specific frequency. An iterative method is used [44] and two initial values
for the time delay and their corresponding frequencies are needed to start the iteration.

Figure 9. Relay autotuning scheme with delay [43].

The autotuning method is based on specifying an iso-damping property, a gain
crossover frequency and a phase margin. A fractional order PI controller is designed
first, followed by a fractional order PD controller with a filter. The fractional order PI
controller will be used to ensure the iso-damping property around the gain crossover
frequency wcg. The slope of the phase of the plant is computed using the gain crossover
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frequency and the corresponding phase and a supplementary frequency and its correspond-
ing process phase as resulting from the relay experiment. Once the slope is cancelled using
the FO-PI controller, the FO-PD controller is designed to fulfill the design specifications
of gain crossover frequency and phase margin. To ensure a maximum robustness to plant
gain variations, a robustness criterion based on the flatness of the phase curve of the FO-PD
controller is used such that the resulting phase of the open-loop system will be the flattest
possible. The procedure is rather lengthy. A mechanical unit consisting mainly of a servo
motor is used to experimentally validate the proposed method. The experimental results
illustrate the effectiveness of this method.

The same method is described in [45], where experimental results with the FO-PID on
a similar servo motor are used to validate the efficiency of the approach. A refinement of
the relay feedback test in [43,45] is introduced in [46]. The improvement is based on adding
a moving average filter. Simulation results for the control of a position servo with time
delay are presented and validate the autotuning algorithm. The same autotuning method
for determining a FO-PID controller for the servo system in [46] is presented in [47]. A
similar approach is detailed in [48] for the design of FO-PID controllers. Two numerical
case studies are provided for a double-integrator process and a fractional order integrative
process. The simulation results validate the autotuning method.

Instead of using the relay test to determine the process magnitude, phase and phase
slope, a single sine test at the gain crossover frequency is used in [34]. Novel filtering
techniques are used to determine the process phase slope, as indicated in Figure 10. To
determine the parameters of either a FO-PI or a FO-PD controller, performance specifica-
tions regarding the phase margin, gain crossover frequency and iso-damping property are
used. The process magnitude, phase and phase slope previously determined are used in
the resulting nonlinear equations. Optimization techniques or graphical methods are then
employed to determine the controller parameters. Numerical examples are used to validate
the approach. A different approach is presented in [49], where a forbidden region circle is
defined based on the iso-damping property and phase margin specifications. The same sine
test used in [34] is required here as well, in order to estimate the process phase, magnitude
and phase slope. Instead of using optimization routines, the parameters of the optimal
fractional order PID controller are determined by minimizing the slope difference between
the circle border and the loop-frequency response. Numerical results are presented to
validate the approach.

Figure 10. Experimental scheme used to compute the phase slope of the process at the gain crossover
frequency (refer to [34] for details).

4. Numerical Examples

Some of the previously presented autotuning methods are used to determine the
parameters of various types of fractional-order controllers for a series of processes that
exhibit time delays, integrative effects, overdamped and poorly damped responses, higher
orders. For simplicity, only the most recent and widely used autotuning methods are con-
sidered. All resulting fractional-order controllers are implemented using the same method
and the same approximation parameters [50]. For the numerical examples considered in
this manuscript, all fractional-order controllers are implemented with the proportional,
fractional integration and differentiation actions on the error signal. The peaks in some
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FO-PID controller output signals are not the result of the tuning; they are simply the result
of using derivative action on a setpoint step. These can be removed by implementing the
FO-PI action on the error signal and FO-D action on the output signal.

4.1. The FOPDT Lag-Dominant Process

The following FOPDT lag-dominant process taken from [26] is considered:

P(s) =
2.4351

12.5688s + 1
e−1.0787s (17)

In this case, k = 2.4315, L = 1.0787, T = 12.5688. Based on the relay test, the critical
gain is Kcr = 7.78 and Pcr = 4.175. The parameters of the fractional-order controllers used
for comparative purposes are indicated in Table 2. Indirect [26,27,32] and direct tuning
methods [36,40,42,49] are used. The direct autotuning method in [34] produces the same
result as in [49] and, therefore, was omitted from the comparison. Only the first set of
tuning rules in [32] is used, as the second set of tuning rules cannot be applied. The same is
valid for the direct autotuning method in [42], where only the first set of tuning rules is
used, since the other two sets of tuning rules cannot be applied to this particular process.

Table 2. FO-PID parameters computed for the lag-dominant process.

Controller Type kp Ti λ Td μ

FO-PID Tepljakov [27] 1.9255 0.8653 0.8 0.4010 0.6935
FO-PI F-MIGO [26] 1.5413 5.0326 0.7 - -

FO-PI Gude [36] 0.6641 6.6277 1.1613 - -
FO-PID ZN-FOC [40] 2.8008 2.3658 0.7 0.8990 0.7

FO-PID [42] critical first set 1.1112 1.5809 1.2298 0.5944 0.8976
FO-PID [32] S-shaped first set −5.2747 0.8678 0.1903 1.7823 −1.5272

FO-PI FO KC [49] 1.0922 13.7410 1.15 - -

The FO-PID [42] leads to a highly oscillating closed-loop response, while the FO-
PID [32] is an unstable controller, which suggests that the proposed tuning rules work
poorly for the lag-dominant system in (17). In fact, in both cases the expected phase
margin is 38◦ [32,42], which explains the highly oscillating character. The FO-PI [49] was
tuned to meet the iso-damping property, as well as a gain crossover frequency of 0.2 rad/s
and a phase margin of 70◦. These performance specifications were selected in order to
obtain a small overshoot, as well as the fastest possible settling time. The closed-loop
results considering step reference tracking and disturbance rejection are given in Figure 11,
while the numerical values of the overshoot, settling time and disturbance rejection time
are given in Table 3. The results show that the smallest overshoot is obtained using the
FO-PI in [49], at the expense of a large settling time and the time required to reject the
load disturbance. Small overshoot is obtained also using the FO-PID of Tepljakov in [27]
or using the F-MIGO method [26], while the settling time is slightly larger in the latter
case. However, the required control effort for Tepljakov’s FO-PID [27] is extremely large
compared to the other methods, as indicated in Figure 11b). A larger control effort is also
observed in the case of the FO-PI controller in [40], which achieves the fastest settling time
and the smallest disturbance rejection time. A decent control effort is necessary when using
FO-PI controllers tuned according to [26,36,49]. Among these, the fastest settling time is
obtained with the FO-PI controller [26], while the smallest overshoot is achieved by the
FO-PI controller [49]. Improved settling time might be possible in this last case, if a FO-PD
controller is designed and implemented in series with the FO-PI.
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(a) (b) 

Figure 11. (a) Output signals for FO-PID control of lag-dominant process (b) Input signals for FO-PID
control of lag-dominant process. Controllers tuned according to [26,27,36,40,49].

Table 3. Closed-loop results obtained with the FO-PID controller for the lag-dominant process.

Controller Overshoot Settling Time
Disturbance

Rejection Time

FO-PID Tepljakov [27] 12% 11.5 13.5
FO-PI F-MIGO [26] 13% 15.7 17

FO-PI Gude [36] 28% 51 41.5
FO-PID ZN-FOC [40] 27% 7.2 10

FO-PI FO KC [49] 9% 41 23.5

4.2. The Higher Order Process

The following higher order process taken from [36] is considered:

P(s) =
1

(s + 1)4 (18)

In this case, k = 1, L = 1.42, T = 2.92 and the critical gain is Kcr = 4 and Pcr = 6.28 [36]. The
parameters of the fractional-order controllers used for comparative purposes are indicated
in Table 4. Indirect [26,32] and direct tuning methods [36,40,42,49] are used. The direct
autotuning method in [34] produces the same result as in [49] and therefore was omitted
from the comparison. Only the first set of tuning rules in [32] is used, as the second set of
tuning rules cannot be applied. The same is valid for the direct autotuning method in [42],
where only the first set of tuning rules is used, since the other two sets of tuning rules
cannot be applied to this particular processes.

Table 4. FO-PID parameters computed for the higher order process.

Controller Type kp Ti λ Td μ

FO-PI F-MIGO [26] 0.9093 1.7905 0.9 - -
FO-PI Gude [36] 0.6080 3.5486 1.13 - -

FO-PID ZN-FOC [40] 2 3.0847 0.9 0.5861 0.9
FO-PID [42] critical first set 1.3439 2.1448 1.2366 0.5501 0.9311

FO-PID [32] S-shaped first set 1.1168 1.1449 1.1 1.2152 1.0373
FO-PI FO KC [49] 0.8162 4.5733 1.18 - -

Figure 12 shows the closed-loop results obtained with the first three controllers in
Table 4, while Figure 13 presents the closed-loop simulations obtained with the last three
controllers. Note that the FO-PI [49] controller was first tuned for a gain crossover fre-
quency of 0.5 rad/s and a phase margin of 38◦. This is in agreement to the performance
specifications used in [32,42] for the first set of tuning rules. The results in Figure 13 show
that indeed similar overshoot and settling times are obtained with the fractional-order
controllers tuned according to [32,42,49].
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(a) (b) 

Figure 12. (a) Output signals for FO-PID control of higher order process (b) Input signals for FO-PID
control of higher order process (controllers tuned according to [26,36,40]).

  
(a) (b) 

Figure 13. (a) Output signals for FO-PID control of higher order process (b) Input signals for FO-PID
control of higher order process (controllers tuned according to [32,42,49]).

Table 5 contains the performance evaluation of the fractional-order controllers from
Figure 12. The remaining three controllers in Figure 13 are not evaluated due to the large
overshoot and settling time. The direct autotuning method from [49] can be used to tune
a better FO-PI controller. Table 4 shows the resulting parameters of this improved FO-PI
controller, which was tuned to meet a gain crossover frequency of 0.2 rad/s and a phase
margin of 75◦. The performance of this better FO-PI controller is compared to that of
the FO-PI controller in [36], which achieves the best overshoot and settling time. The
comparative simulation results are given in Figure 14 and in Table 5.

Table 5. Closed-loop results obtained with the FO-PID controller for the higher order process.

Controller Overshoot Settling Time
Disturbance

Rejection Time

FO-PI F-MIGO [26] 31% 33.5 17.5
FO-PI Gude [36] 6.5% 34.3 13.1

FO-PID ZN-FOC [40] 27% 23.3 12.7
FO-PI FO KC [49] 6.5% 42.8 13.5
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(a) (b) 

Figure 14. (a) Comparative results for the output signals for FO-PID control of higher order process.
(b) Input signals for FO-PID control of higher order process (controllers tuned according to [36,49]).

To estimate the quantitative results given in Table 5 for the FO-PI and FO-PID con-
trollers designed according to [26,40], the closed-loop simulation results from Figure 12
were considered. The quantitative results in Table 5 show that the smallest overshoot is
possible using the FO-PI controller tuned using the methods in [36,49], which are also
suitable to achieve a quick disturbance rejection. Similarly to the lag-dominant case study,
in this case as well, the FO-PID controller [40] achieves the smallest settling time and the
fastest disturbance rejection time, at the expense of an increased control effort similar to
that of the FO-PID [42] and larger compared to the other controllers.

4.3. The Integrating Time-Delay Process

An integrating time-delay process [46] is considered here. The transfer function is:

P(s) =
0.55

s(0.6s + 1)
e−0.05s (19)

The classical Ziegler-Nichols autotuning method has a major disadvantage: poor
results are obtained regarding setpoint tracking, especially when used with integrating
systems [1]. Several extensions and improvements have been developed over the years to
deal with such systems. The autotuning methods based on an S-shaped response of the
process cannot be used in this particular situation.

In [47], an iterative experiment of a relay with delay is applied to the process in order
to determine the process magnitude, phase and phase slope at a specific gain crossover
frequency 2.3 rad/s. Then, a FO-PI in series with a FO-PD controller are designed to meet
the iso-damping property, a gain crossover frequency of 2.3 rad/s for the open-loop system
and a phase margin of 72◦. The resulting fractional-order controller is given by [47]:

CMONJE(s) =
(

0.4348s + 1
s

)1.1803(3.7282s + 1
0.0037s + 1

)1.1580
(20)

Four other direct autotuning methods are used for comparison purposes. First, based
on the relay test, the critical gain is Kcr = 36.88 and Pcr = 1.1043. The parameters of the
fractional-order controllers used for comparative purposes are indicated in Table 6, where
the fractional-order controllers have been determined using [40,42,49]. The first and the
third set of tuning rules in [42] are used to estimate the FO-PID controller parameters, as the
second set cannot be applied for the process in (19). The tuning rules in [42] were developed
for integrative processes without time delays (third set) and for FOPDT processes (first and
second set). For the process in (19), the third set of tuning rules [42] leads to an unstable
controller. Figure 15 shows the simulation results. The quantitative performance results
are indicated in Table 7. Similar overshoot is obtained for the fractional-order controller
in (20) designed using [47] and for the FO-PI controller [49], despite the latter having a
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large settling time. The fastest FO-PID controller is yet again the one designed according
to [40]. The poorest overshoot along with a significant settling time is obtained with the
FO-PID [42]. A comparison of the required control effort based on Figure 15b,c shows the
increased amplitudes of the input signals are necessary for the FO-PIDs designed based
on [40,42,47]. The smallest control effort is required by the FO-PI controller tuned according
to [49], which also exhibits the largest settling time and a significant disturbance rejection
time. However, this controller is also the simplest one, without any derivative effect.

Table 6. FO-PID parameters computed for the integrative time-delay process.

Controller Type kp Ti λ Td μ

FO-PID ZN-FOC [40] 5.9002 2.6760 0.4 1.5242 0.4
FO-PID [42] critical first set 1.0342 1.0606 1.0827 0.8148 0.7855
FO-PID [42] critical third set 0.4616 0.0919 0.5929 −2.7379 0.9360

FO-PI FO KC [49] 0.3812 2.7988 0.71 - -

 
(a) 

  
(b) (c) 

Figure 15. (a) Output signals for FO-PID control of integrative time-delay process. (b) Input signals
for FO-PID control of integrative time-delay process required for setpoint tracking. (c) Input signals
for FO-PID control of integrative time-delay process required for disturbance rejection. Controllers
tuned according to [40,42,47,49].

Table 7. Closed-loop results obtained with the FO-PID controller for the integrative time-delay process.

Controller Overshoot Settling Time
Disturbance

Rejection Time

FO-PID ZN-FOC [40] 40% 2.3 4.5
FO-PID [42] critical first set 48.5% 30.7 19.1

FO-PI FO KC [49] 13% 42 >70
FO-PID Monje [47] 13.5% 5.3 3.8
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4.4. The FOPDT Delay-Dominant Process

A FOPDT delay-dominant process is considered in the comparison, with the transfer
function given by:

P(s) =
1

0.2s + 1
e−0.4s (21)

In this case, k = 1, L = 0.4, T = 0.2 and the critical gain is Kcr = 1.5202 and Pcr = 1.0985.
Three indirect autotuning methods are used in the comparisons with the FO-PID controllers
computed according to [32] using the first and the second set of rules for S-shaped process
response. The third method is the F-MIGO method described in [26]. The resulting
controller parameters are indicated in Table 8. Five direct autotuning methods are also
used for the comparison, namely: FO-PID tuned according to the first and second set of
rules in [42], FO-PID computed based on the method in [40] and two FO-PI controllers
determined using [36,49]. The controller parameters for these cases are also given in
Table 8. The FO-PI [49] is tuned to meet the iso-damping property, a gain crossover
frequency 1.2 rad/s and a 70◦ phase margin. The closed-loop results are indicated in
Figures 16 and 17, while the performance is evaluated using quantitative measures as
indicated in Table 9. The FO-PID controller obtained using the second set of tuning rules
in [42] is not included in the comparison, due to its highly oscillating nature.

Table 8. FO-PID parameters computed for the integrative time-delay process.

Controller Type kp Ti λ Td μ

FO-PI F-MIGO [26] 0.4465 0.2951 1.1 - -
FO-PI Gude [36] 0.3179 0.2878 1.1187 - -

FO-PID ZN-FOC [40] 0.7601 0.6420 0.9 0.1220 0.9
FO-PID [42] critical first set 0.2437 0.5649 1.4574 −0.1349 1.0028

FO-PID [42] critical second set −0.0293 −0.4905 1.2668 23.7347 −0.0293
FO-PI FO KC [49] 0.6573 0.3471 1.186 - -

FO-PID [32] S-shaped first set 0.1994 0.4622 1.4788 0.0845 0.9847
FO-PID [32] S-shaped second set 1.3281 1.7653 1.3168 −0.4142 −0.1793

  
(a) (b) 

Figure 16. (a) Output signals for FO-PID control of delay-dominant process. (b) Input signals for
FO-PID control of the delay-dominant process (controllers tuned according to [26,32,36] second set
and [49]).

A small overshoot is obtained with the FO-PI controllers [26,36,49], combined with
small settling times and fast disturbance rejection. The control effort in all these cases is sim-
ilar, according to Figure 16b. FO-PID tuned using [40] manages to achieve a small settling
time for this case study, as well. Good results are also obtained for disturbance rejection,
at the expense of a larger control effort, compared to the other controllers (Figure 17b).
FO-PIDs determined according to [32,42] lead to larger overshoots and increased settling
times, as well as a poorer disturbance rejection, as indicated in Figure 17a. The required
control effort for these controllers is small (Figure 17b), comparable to the input amplitudes
given in Figure 16b.
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(a) (b) 

Figure 17. (a) Output signals for FO-PID control of delay-dominant process. (b) Input signals for
FO-PID control of the delay-dominant process (controllers tuned according to [40,42] first set and [32]
first set).

Table 9. Closed-loop results obtained with the FO-PID controller for the delay-dominant process.

Controller Overshoot Settling Time
Disturbance

Rejection Time

FO-PI F-MIGO [26] 8% 4 1.5
FO-PI Gude [36] 8.2% 5.8 2.2

FO-PID ZN-FOC [40] 18% 5.5 2.9
FO-PID [42] critical first set 32% 17 9.9

FO-PI FO KC [49] 7.5% 6.7 1.8
FO-PID [32] S-shaped first set 37.8% 18.5 14.6

FO-PID [32] S-shaped second set 14.5% 10.1 8.4

4.5. The Poorly Damped Process

A final case study is considered in this section, with the process described by the
following transfer function:

P(s) =
22.24

s2 + 0.6934s + 5.244
e−0.8s (22)

The indirect autotuning methods based on an S-shaped response cannot be applied
for (21). An FO-PI controller tuned according to [36] is compared with a FO-PID obtained
using the method in [40] and a FO-PI controller determined using [49]. First, the relay
method is used to estimate the critical gain as Kcr = 0.0709 and Pcr = 2.8. These critical
gain and period of oscillations allow the design of a FO-PID controller according to the
first set of tuning rules in [42]. However, the proportional gain obtained in this way is
negative and destabilizes the closed-loop system. Thus, the design is not included in
this comparison. To tune the FO-PI controller [49], a sine test is firstly applied to the
process to determine its phase, magnitude and phase slope. Then, the parameters of the
FO-PI controller are determined such that the open-loop system achieves a gain crossover
frequency of 0.09 rad/s and a phase margin of 75◦, along with the iso-damping property.
The parameters of the fractional-order controllers are given in Table 10. Figure 18 shows the
closed-loop results, as well as the required input signals. The performance measures are
indicated in Table 11. The simulation results in Figure 18 and Table 11 show that the fastest
settling time is achieved by the FO-PID controller [40], with a zero overshoot. However, in
this case, the required control effort is the largest. The two FO-PI controllers determined
using [36,49] have a similar overshoot, as well as control effort. For the latter, the settling
and the disturbance rejection times are larger.
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Table 10. FO-PID parameters computed for the poorly damped process.

Controller Type kp Ti λ Td μ

FO-PI Gude [36] 0.0147 0.8348 1.1190 - -
FO-PID ZN-FOC [40] 0.0355 1.4904 0.9 0.2832 0.9

FO-PI FO KC [49] 0.6573 0.3471 1.186 - -

  
(a) (b) 

Figure 18. (a) Output signals for FO-PID control of the poorly damped process. (b) Input signals for
FO-PID control of poorly damped process. Controllers tuned according to [36,40,49].

Table 11. Closed-loop results obtained with the FO-PID controller for the poorly damped process.

Controller Overshoot Settling Time
Disturbance

Rejection Time

FO-PI Gude [36] 4% 68 74
FO-PID ZN-FOC [40] 0% 33.5 85

FO-PI FO KC [49] 4% 79.5 113.5

For second-order poorly damped processes, most fractional order autotuning methods
cannot be applied, except for [47,49]. The direct autotuning method in [47] leads to a FO-PI
in series with a FO-PD controller, of the form given in (20), whereas the method in [49]
produces a simpler FO-PI controller. Similarly to the results in Table 7, a faster settling time
and better disturbance rejection are achieved using the fractional-order controller in [47],
due to the FO-PD component.

4.6. Remarks on Comparative Simulation Results

The simulations results and closed-loop performance analysis shows that some of
these autotuning methods allow for greater flexibility in the design, such as [34,47,49].
A faster settling time is obtained in all case studies using the autotuning method in [40].
The drawback consists in a larger control effort. The simple tuning rules from [32,42]
are generally outperformed by the other autotuning methods reviewed, except for delay
dominant systems, where the performance is close to the best one. For higher order systems
and poorly damped ones, the best closed-loop results are obtained using the autotuning
methods in [36,49] for both reference tracking and disturbance rejection. For FOPDT
delay-dominant processes, the results show that the parameters of the fractional-order
controllers should be estimated using the autotuning methods in [26,36,49]. In this case,
improved reference tracking and disturbance rejection are obtained. For integrating time-
delay processes, the best results in terms of overshoot are obtained using either a FO-PID
determined based on the autotuning method in [47] or in [49]. The best settling time is
obtained using either the autotuning method in [40,47]. However, the FO-PID controller
autotuned according to [47] requires a significant control effort, larger than those in [40,49].
For FOPDT lag-dominant processes, the autotuning methods from [26,27,49] ensure a small
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overshoot, whereas fast settling and disturbance rejection times are achieved using FO-PIDs
determined according to [26,27,40]. However, the control effort required when using the
FO-PIDs tuned based on [27,40] is larger compared to the FO-PID tuned using the approach
in [26].

5. Applications and Self-Tuned FO-PIDs

Autotuning methods have been used to produce fractional-order controllers for dif-
ferent processes. The purpose of this section is to provide some applicative examples
of autotuning methods for fractional-order controllers designed mostly according to the
methods presented in Sections 2 and 3. The autotuning method in [34] is applied to a
multivariable time-delay process to tune the FO-PI controllers for each loop [51]. The
method in [49] is applied for designing fractional-order controller for a multivariable refrig-
eration system using vapor compression [52], a heterogeneous dynamic system [53] and to
a highly coupled multivariable system [54]. A robust autotuning method is described and
implemented for controlling an aerodynamic system in [55]. An experimental validation of
the direct autotuning method in [49] is provided in [55] for controlling an UR10 robot. The
autotuning method in [34] is applied to tune a FO-PD controller for vibration suppression in
a smart beam [56]. An autotuning method designed for poorly damped systems that shapes
the closed-loop system in order to achieve better damping is proposed in [57]. The design
is performed in the frequency domain and requires information regarding the process
magnitude and phase for five frequencies. Experimental results are given to validate the
efficiency of the method.

A “plug and play” solution for a multivariable FO-PI controller is developed in [58]
for controlling a multivariable twin-rotor aerodynamical system. A decentralized approach
is considered and three performance specifications, as in (2)–(4), are used to compute
the parameters of the two FO-PI controllers, one for azimuth and one for pitch angle
control. The design is based on a novel, simplified algorithm using vector theory, where
the proportional z1 =

∣∣kp
∣∣ and integral z2 =

∣∣∣ 1
Ti
(jω)−λ

∣∣∣ terms are defined as vectors.
The vectorial representation of the FO-PI controller as the sum of z1 and z2 is indicated in
Figure 19.

Figure 19. Vector form of a FO-PI controller.

Then, using classical trigonometric equations based on Figure 1, the proportional
gain and integral time constant of the FO-PI controller are determined as a function of the
fractional order λ, using the gain crossover equation (2) and the phase margin equation in
(3). The procedure is iterative and computes the kp and Ti parameters for small increments
of 0 < λ < 1. Then, the iso-damping property in (4) is evaluated and λ is selected to be
the value that minimizes (4). Finally, kp and Ti are computed using the selected value of
λ. The fractional-order controller is implemented in a self-tuning structure as indicated
in Figure 20, where the “Controller designer” block includes the iterative procedure. The
“System identifier” block is used to estimate the process parameters online which are then
used in the iterative procedure to determine the new values for the FO-PI controller. A
recursive simple least squares algorithm is implemented in the “System identifier” block.
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Figure 20. The self-tuning FO-PI controller.

Experimental results are provided to demonstrate the efficiency of the autotuning
method. A step reference change of −1 rad for the azimuth angle and a step change of
0.2 rad for the pitch angle is considered, with the experimental results provided in Figure 21,
demonstrating that reference tracking can be achieved successfully using the proposed
multivariable self-tuned FO-PI control strategy.

Figure 21. Experimental results of self-tuned FO-PI controllers for a twin-rotor system.

An autotuning approach for FO-PIDs is used to control the air-conditioning fan coil
unit [59]. A basic differential evolution algorithm is modified by varying the mutation
factor and crossover rate and used to tune the five parameters of indoor temperature
FO- PID controller. Numerical simulations are presented that show that the approach is
reliable and the related control performance indexes meet the requirements of comfortable
air-conditioning design and control criteria.

Improvements in FO-PID controller design have been considered in order to determine
algorithms that perform a better tuning in real time. One solution to this issue is the self-
tuned FO-PID controller. The purpose of this last part of the manuscript is to present
some ideas regarding additional solutions to autotuning methods that could facilitate
the industrial acceptance of FO-PID controllers. In what follows, the manuscript covers
an important part of adaptive control algorithms, namely, self-tuning methods, applied
to fractional-order controllers. Only the most recent findings in this area of research
are reviewed.

Fuzzy logic is usually used to achieve the self-tuning property, such a FO-PI self-
tuned controller is presented in [60], in a differential mobile robot. Three different types
of controllers are evaluated and compared to a classical controller, with its parameters
being acquired through traditional methods. A similar self-tuned fuzzy FO-PI controller
for a steam distillation process is evaluated in [61]. The numerical results show that this
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controller leads to better closed-loop performance in comparison to the integer order PI,
the FO-PI and self-tuning fuzzy PI. The control of the horizontal motion of a dual-axis
photo voltaic sun-tracker is presented in [62]. A new technique for online self-tuning of a
FO-PID controller based on both a type-1 fuzzy and a Takaji-Sugeno Fuzzy is developed.
Satisfactory results were obtained in numerical simulations. Takagi-Sugeno (TS) fuzzy
technique combined with interval type-2 fuzzy sets is used in [63] to design a new adaptive
self-tuning FO-PID controller. A modified FO-PID controller is obtained using TS, while the
interval type-2 fuzzy sets are used as a tuner to update the gains of the FO-PID. Three types
of interval type-2 fuzzy sets tuning methods are used and applied to load-frequency control
as a case study of a power system comprising a single area. Comparative studies with type-
1 fuzzy sets are carried. The simulation results show that the proposed approach works
well considering disturbance changes and parameter uncertainties. A fuzzy FO-PID is used
in [64] to control the position of a robotic manipulator. A fuzzy system combined with
the particle swarm optimization method is used to determine the parameters of a FO-PID
controller. Numerical simulations and comparisons with a fuzzy PID are performed. The
simulation results show that the FO-PID is able to reduce the overshoot and the oscillatory
dynamics, compared to the fuzzy PID. Three self-tuned fuzzy controllers are implemented
in [65], namely, a FO-PD, a FO-PI and a FO-PID. The controllers are then evaluated in a
servo-regulatory mechanism. The simulation results show that the self-tuned fuzzy FO-PID
leads to the best closed-loop performance. The control of a mover position of a direct drive
linear voice coil motor (VCM) is performed in [66] using a self-tuning FO-PID. The five
FO-PID control parameters are optimized dynamically and concurrently using an adaptive
differential evolution algorithm. Experimental results are provided and demonstrate that
the proposed self-tuning FO-PID achieves better performance compared to PID and FOPID
controllers, under both nominal and payload conditions.

The control of an inverted pendulum system is described in [67], where two self-
tuned FO-PD controllers are designed to vertically balance the pendulum and for accurate
positioning. The proportional and derivative gains of the two controllers are dynamically
adjusted using particle swarm optimization after each sampling interval using piecewise
nonlinear functions of their respective state-variations. Hardware-in-the-loop experiments
are performed and the proposed approach is compared to fixed gain dual-PD and dual-FO-
PD control schemes.

A direct autotuning method for a FO-PI controller is used in [68] to control the speed
of a permanent magnet synchronous motor. Only the measured input-output data of the
closed-loop servo system is required to tune the FO-PI controller. The FO-PI parameters
are determined using a virtual reference feedback tuning with an incorporated Bode ideal
transfer function, which allows the properties of the resulting system to be approximated
to the desired fractional-order reference model. Optimal performance constraints, such as
sensitivity criteria, frequency-domain and time-domain characteristics are considered in the
autotuning. Experimental results are provided to illustrate the efficiency of the proposed
model-free FO-PI control method for the servo system. The extremum seeking approach is
used as a non-model-based method that searches online for the FO-PID parameters that
minimizes a cost function related to the performance of the controller [69]. Simulation
examples are provided to demonstrate the effectiveness of the proposed algorithm.

A novel self-tuning FO-PID controller using the optimal model reference adaptive
control (MRAC) is applied to power system load-frequency control [70]. The requirements
for the control systems are embedded in the model reference, mathematically described as a
first- or second-order system. A harmony search optimization method is used to determine
the parameters of MRAC. Three methods for self-tuning FO-PID control are presented.
The first two methods assume some of the FO-PID parameters to be fixed and adjust the
remaining ones, while the third method was developed to adjust all five parameters of the
FO-PID controller, at the same time. The simulation results show that the latter method
achieves better disturbance rejection, as well as improved handling of system uncertainty.
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The control of coupled and non-linear 2-link rigid robot is tackled in [71] using a
novel non-linear FO-PID that includes a non-linear hyperbolic function cascaded with a
FO-PID. The fractional orders allow for greater flexibility in the controller design, while
the adaptive feature is incorporated in the non-linear function. The parameters of the
FO-PID are determined according to the multi-objective non-dominated sorting genetic
algorithm II (NSGA-II) for small variations in control and error signal. Comparisons with a
non-linear PID, FO-PID, non-linear hyperbolic function cascaded with an integer order PID
or traditional PID are performed. The simulation results demonstrate that the proposed
method provides robust and efficient control of the robotic arm.

A fractional fuzzy controller is designed in [72], without using an actual model of
the robot and only well-known structural properties of mechanical systems. The entire
implementation is model-free and tackles the control of robotic manipulators. To ensure
improved disturbance rejection, a fuzzy logic formulation is used with an online adaptation
of the outputs to achieve a better closed-loop response. To demonstrate the efficiency of
the approach, simulations and experimental results are presented. An innovative design
method, suitable for many industrial applications is presented in [73]. A self-tuning
fractional-order controller is designed using fractional order pole placement and indirect
adaptation profiles. Simulation results are provided for an air-lubricated capstan drive
for precision positioning. The results show that, indeed, better closed-loop performance
is possible using the proposed method instead of a similar one based on integer order
pole placement.

A fractional-order self-tuned fuzzy PID controller is designed for a three-link rigid
robotic manipulator system in [74]. The controller is tuned using a cuckoo search algorithm
to minimize the weighted sum of the integral of absolute error and the integral of absolute
change in controller output. The same tuning procedure is used to tune a fractional-
order fuzzy PID and an integer-order self-tuning fuzzy PID. Comparative simulation
results are provided and demonstrate better trajectory tracking, disturbance rejection, noise
suppression and robustness to model uncertainty in the case of the proposed fractional-
order self-tuned fuzzy PID controller.

In [75], an online identification of the parameters of a fractional order process is
performed based on a particle swarm optimization algorithm. Then, a fractional order
self-tuning regulator is designed using differential evolution algorithms. Simulation results
show that the proposed method is robust and leads to good closed-loop results.

A self-tuning controller is designed in [76] using fuzzy logic for the control of micro-
grid systems. A fractional-order controller is developed in combination with a fuzzy logic
algorithm for load-frequency control of the off-grid microgrid. An optimal way to estimate
the input and output scale coefficients of the fuzzy controller and fractional orders of the
fractional-order controller is developed based on a novel meta-heuristic whale algorithm. The
case study consists in a microgrid containing a diesel generator, wind turbine, photovoltaic
systems and energy storage devices. Simulation results show that the proposed optimized
fractional-order self-tuning fuzzy controller manages to outperform the classical PID controller
in terms of operation characteristics, settling time and load-disturbance attenuation.

The active suspension system of a quarter car is considered as the case study in [77],
where a self-tuned robust fractional-order fuzzy proportional-derivative controller is devel-
oped. The design of the controller attempts to minimize the root mean square of vertical
vibration acceleration of car body. Tracking force, ratio between tire dynamics and static
loads and suspension travel are considered as design constraints. Genetic algorithms are
used to optimize the parameters online for a sinusoidal road surface. However, simulations
were performed for random road surfaces and bumps. The proposed self-tuned fractional-
order fuzzy proportional-derivative controller achieved better results compared to passive
solutions, as well as to its integer order counterpart.

The cuckoo search algorithm is also proposed in [78] in the design of a self-tuned
fractional-order fuzzy PID controller. The optimization algorithm is based on the minimiza-
tion of an objective function defined as the sum of integral of squared error and integral of
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the squared deviation of controller output. The final controller consists in a Takagi-Sugeno
model-based fuzzy adaptive controller containing non-integer-order differ-integral oper-
ators. For comparative purposes, the integer order counterpart of this controller is also
designed. Simulation results indicate the increased robustness of the self-tuned fractional-
order fuzzy PID controller when applied to the control of an integrated power system.

6. Conclusions

Fractional-order controllers have emerged as a generalization of the standard PID,
allowing for greater flexibility and improved performance and robustness. The tuning
of these FO-PIDs is not an easy task, since the complexity of the design increases along
with the number of tuning parameters. Several tuning methods have been developed,
but the majority of them require a process transfer function. In some cases, obtaining an
accurate mathematical model of the process is time consuming and tedious, especially
in the industrial sector. To cope with this issue, autotuning methods for FO-PIDs have
emerged. In this paper, a survey of the existing autotuning methods for FO-PIDs is
presented. Several autotuning approaches are compared for lag-dominant and delay-
dominant FOPDT processes, for higher order systems, for integrative time-delay processes
or poorly damped ones.

For each type of process, the autotuning methods are compared in terms of closed-loop
performance regarding reference tracking and disturbance rejection. Robustness was not
considered as a means for comparison, since some of the reviewed methods do not address
directly this issue, while others do. This aspect would have led to unfair comparisons and
possibly different remarks on the opportunity of using one autotuning method, instead
of another.

Some of these autotuning methods have also been validated experimentally. Research
in this area is still under way and the current autotuning methods stand as the premises for
further innovation in this area. Further research regarding the robustness of the autotuning
methods will be considered.
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Abstract: Fractional-order differential equations are powerful tools for the representation of dynamic
systems that exhibit long-term memory effects. The verified simulation of such system models
with the help of interval tools allows for the computation of guaranteed enclosures of the domains
of reachable pseudo states over a certain finite time horizon. In the previous work of the author,
an iteration scheme—derived on the basis of the Picard iteration—was published that makes use
of Mittag-Leffler functions to determine guaranteed pseudo-state enclosures. In this paper, the
corresponding iteration is generalized toward the use of exponential functions during the evaluation
of the iteration scheme. Such exponential functions are well-known from a verified solution of
integer-order sets of differential equations. The aim of this work is to demonstrate that the use of
exponential functions instead of pure box-type interval enclosures for Mittag-Leffler functions does
not only improve the tightness of the computed pseudo-state enclosures but also reduces the required
computational effort. These statements are demonstrated with the help of a close-to-life simulation
model for the charging/discharging dynamics of Lithium-ion batteries.

Keywords: fractional-order differential equations; interval analysis; verification of pseudo-state
enclosures; Mittag-Leffler-type enclosures; exponential enclosures

1. Introduction

Fractional differential equations have the property of an infinite-horizon memory of
the previous evolution of the system dynamics [1–4]. As opposed to integer-order models,
where only initial conditions for the state variables at a certain point of time and the external
system inputs after that time instant are necessary for determining a unique solution for
the evaluation of the system states, fractional-order models need to be initialized with the
complete past behavior as the initialization function [5].

Due to this reason, the system state at a specific point in time is typically referred to
as a pseudo state for fractional system models as the complete history of its evolution is
required for a unique solution [5]. To solve this difficulty when initializing a simulation
at a specific point in time, additive (interval-valued) correction terms of the right-hand
sides of explicit fractional-order models have been employed in [6] to account for the past
pseudo-state evolution. Simulation methods, which make use of further extensions on the
basis of a (pseudo) state observer concept for tightening these additive corrections after the
reset of fractional integrators, were developed in [7]. These extensions exploit a formula
derived by Podlubny in [1] for shifting the reference point in time, associated with the
definition of a fractional differentiation operator.

On the one hand, the infinite-horizon memory property of fractional differential
equations allows to efficiently model dynamic systems with long-term memory effects. On
the other hand, however, interval-based simulations, allowing for enclosing the domains
of reachable (pseudo) states in a guaranteed way, are significantly complicated because
classical Taylor series-based simulation approaches, such as those employed in tools such
as AWA [8], VNODE-LP [9–11], or VSPODE [12], for systems of integer-order ordinary
differential equations, can no longer be employed without modifications.
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Therefore, the author has developed an iterative pseudo-state enclosure approach
in [6,13] which is based on the Picard iteration [14]. Under the assumption that the pseudo
state at the point of time t = 0 corresponds also to the complete previous, temporally
constant state evolution for t < 0, corresponding to Caputo’s definition of fractional
derivatives, the iterative solution makes use of Mittag-Leffler functions [15–19] to represent
pseudo-state enclosures in a guaranteed manner. This kind of function represents the true
pseudo-state trajectories of linear fractional differential equations with the aforementioned
Caputo-type initialization [20,21]. For nonlinear models, the iteration procedure developed
in [6,13] yields outer bounds for the actually reachable pseudo states.

It has to be noted that this iteration scheme is a natural generalization of a counterpart
making use of classical exponential functions in the integer-order case, cf. [6]. However,
the drawback is an increased complexity of the numerical evaluation because the typically
arising quotients of Mittag-Leffler functions with different arguments cannot be simplified
further in an analytic manner to reduce the overestimation that is well-known in the domain
of interval methods [22,23]. This issue is further discussed in the current paper and resolved
by outer exponential enclosures of Mittag-Leffler functions.

In this paper, Section 2 summarizes the Mittag-Leffler function representation of
guaranteed solution enclosures for fractional-order system models as presented in [6,13]. It
is extended in Section 3 toward exponential functions for the computation of guaranteed
pseudo-state enclosures. The representative simulation results, focusing on the tightness of
the resulting pseudo-state enclosures and the required computational effort, are presented
in Section 4 for a close-to-life quasi-linear fractional model of the charging/discharging
behavior of Lithium-ion batteries before conclusions and an outlook on future work are
given in Section 5.

2. Fundamentals of Verified Mittag-Leffler-Type Pseudo-State Enclosures for
Fractional Differential Equations

2.1. System Models under Consideration

Throughout this article, we analyze and derive set-valued simulation approaches for
commensurate fractional-order differential equations of the form

x(ν)(t) = f
(
x(t)
)

, f : Rn �→ R
n , (1)

with the order 0 < ν ≤ 1, where the right-hand side f
(
x(t)
)

is assumed to be given by a
continuous function. Moreover, we assume that the system model (1) is initialized by the
pseudo state x(0) at the time instant t = 0, where x(t) = x(0) holds for all t < 0. This case
corresponds to the Caputo definition of fractional derivatives as described, for example, in [1,2].

To account for uncertainty in the pseudo-state initialization, we use the
interval representation

x(0) ∈ [x](0) :=
[
x(0) ; x(0)

]
, (2)

for which xi(0) ≤ xi(0) holds for each vector component i ∈ {1, . . . , n}. Note that the
property of temporally constant initializations for t < 0 is still assumed to hold.

2.2. Linear Scalar System Models

For the special case of scalar fractional differential equations

x(ν)(t) = λ · x(t) with x(0) = x0 (3)

which are linear in the pseudo state x(t) with the parameter λ ∈ R and which are initialized
according to the previous subsection in the Caputo-type sense, it is well-known according
to [20,21] that the exact solution is given in the form

x(t) = Eν,1
(
λtν
)
· x(0) . (4)
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In (4), Eν,β(ζ) is the two-parameter Mittag-Leffler function. It is defined by the
infinite series

Eν,β(ζ) =
∞

∑
i=0

ζ i

Γ
(
νi + β

) (5)

for the general argument ζ ∈ C. In (4), Γ
(
νi + β

)
denotes the gamma function of the

respective argument and ν is the derivative order as introduced in (1). To obtain the
solution in (4), the parameter β is set to the value β = 1.

Remark 1. The classical exponential function eζ is obtained as a special case of the Mittag-Leffler
function (5) when setting ν = 1 and β = 1.

Remark 2. For an interval extension of the Mittag-Leffler function on the basis of the accurate
floating-point MATLAB implementation by R. Garrappa [18,24], see [13].

2.3. Mittag-Leffler Functions as Pseudo-State Enclosures for Fractional-Order Differential Equations

For nonlinear scalar and vector-valued system models (1), the Mittag-Leffler functions
introduced in the previous subsection can be used to define guaranteed pseudo-state
enclosures according to Definition 1.

Definition 1 (Mittag-Leffler-type pseudo-state enclosure). A verified Mittag-Leffler-type
pseudo-state enclosure for the system model (1) with (2) is defined by the time-dependent en-
closure function

x∗(t) ∈ [xe](t) = Eν,1
(
[Λ] · tν

)
· [xe](0) , [xe](0) = [x0] (6)

with the diagonal parameter matrix [Λ] := diag
{
[λi]
}

, i ∈ {1, . . . , n}, if it is determined according
to Theorem 1. In (6), the generalization of the scalar Mittag-Leffler function Eν,1 to the matrix case
Eν,1 is given by the following diagonal matrix

Eν,1
(
[Λ] · tν

)
= diag

{[
Eν,1
(
[λ1] · tν

)
. . . Eν,1

(
[λn] · tν

)]}
. (7)

Theorem 1 ([6,13,25] Iteration for Mittag-Leffler-type enclosures). All reachable pseudo states
x∗(T) are enclosed in accordance with Theorem 1 by the Mittag-Leffler-type pseudo-state enclosure

x∗(T) ∈ [xe](T) = Eν,1
(
[Λ] · Tν

)
· [xe](0) (8)

at the point of time t = T > 0 if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉 :=

fi

(
Eν,1

(
[Λ]〈κ〉 · [t]ν

)
· [xe](0)

)
Eν,1

(
[λi]

〈κ〉 · [t]ν
)
·
[
xe,i
]
(0)

, (9)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T]. To ensure convergence, the value x∗i = 0
must not belong to the solution for any vector component i ∈ {1, . . . , n}.

Remark 3. Typically, the iteration according to Theorem 1 is initialized with intervals centered
around the eigenvalues of the Jacobian of the right-hand side of (1), evaluated for the midpoint of the
interval vector (2).

As a preparation for the derivation of the exponential enclosure approach presented
for the first time in this paper, the following proof of Theorem 1, according to [6,13,25],
is summarized.
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Proof. Formulate a Picard iteration (iteration index κ) for computing pseudo-state enclo-
sures in the differential form

[x(ν)]〈κ〉
(
[0 ; T]

)
⊃ [x(ν)]〈κ+1〉([0 ; T]

)
= f
(
[x(ν)]〈κ〉

(
[0 ; T]

))
, (10)

where [x(ν)]〈κ〉
(
[0 ; T]

)
is an interval extension of the temporal derivative of order ν of

the inclusion function [x]〈κ〉(t) over the time interval t ∈ [t] = [0 ; T]. Substituting the
pseudo-state enclosure given in Definition 1 into (10) yields the expression

x(ν)(t) ∈
(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0)

= f

(
Eν,1

(
[Λ]〈κ〉 · tν

)
· [xe](0)

)
for all t ∈ [t] .

(11)

A converging iteration implies the set-valued relation

[xe]
〈κ+1〉([t]) ⊂ [xe]

〈κ〉([t]) , (12)

which corresponds to the relation

[λi]
〈κ+1〉 ⊂ [λi]

〈κ〉 (13)

for the unknown intervals of the solution parameters λi.
Overapproximating the interval evaluation of the Mittag-Leffler-type enclosure

[x]〈κ+1〉(t) = Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0) (14)

in the iteration step κ + 1 on the first line of (11) by the enclosure [xe]
〈κ〉([t]) in the case of

convergence, i.e., using the relation(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0) ⊂

(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ〉 · tν

)
· [xe](0) , (15)

leads to the new iteration formula

diag
{
[λ̃i]

〈κ+1〉
}
· [xe]

〈κ〉([t]) = f
(
[xe]

〈κ〉([t])
)

, (16)

where
diag

{
[λ̃i]

〈κ+1〉
}
⊇ diag

{
[λi]

〈κ+1〉
}

. (17)

Solving expression (16) for [λ̃i]
〈κ+1〉 with subsequent renaming of this parameter into

[λi]
〈κ+1〉 completes the proof of Theorem 1. For further details, the reader is referred to the

references [6,13,25].

Corollary 1. In the case that the fractional-order differential equations given in Equation (1) with
the initial conditions (2) can be rewritten into the quasi-linear form

x(ν)(t) = A
(
x(t)
)
· x(t) with 0 < ν ≤ 1 , (18)

with an equilibrium at x = 0 and the state-dependent matrix A
(
x(t)
)
, Theorem 1 simplifies to the

iteration scheme

[λi]
〈κ+1〉 := aii

(
[xe]

〈κ〉([t]))+ n

∑
j=1
j �=i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aij

(
[xe]

〈κ〉([t])) · Eν,1

([
λj

]〈κ〉
· [t]ν

)
Eν,1

(
[λi]

〈κ〉 · [t]ν
) ·

[
xe,j

]
(0)[

xe,i
]
(0)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (19)
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Remark 4. In (19), the quotient of two Mittag-Leffler functions can usually only be simplified
further for ν = 1. In all other cases, where ν �= 1, overestimation due to the so-called dependency
effect [23] (which arises due to multiple dependencies on common interval parameters) can be
reduced by exploiting the monotonicity properties of the Mittag-Leffler function that were analyzed
in detail in [13].

3. Exponential Enclosures for Fractional-Order System Models

Exponential functions can be introduced in general at two different stages of the
solution procedure presented in the previous section. These are:

1. The replacement of the solution representation [xe](t) given so far by Mittag-Leffler
functions by exponential functions; or

2. The introduction of exponential enclosures for the interval evaluation of the Mittag-
Leffler function instead of the currently employed box-type representations.

These two alternative options are further discussed in the current section.

3.1. Exponential Pseudo-State Enclosures

To directly replace the Mittag-Leffler functions by exponential ones in the enclosure
technique according to Theorem 1 and Corollary 1, it is necessary to determine the Caputo
fractional derivative of order ν (initialized at t = 0) of a classical exponential function.

According to [26,27], the derivative of eλt is given by the closed-form representation

dνeλt

dtν
= λ ·

(
t1−ν · E1,2−ν(λt)

)
(20)

with t ≥ 0 and λ ∈ R. In (20), the right-hand side again depends on the two-parameter
Mittag-Leffler function (5). Note that this two-parameter Mittag-Leffler function, if substi-
tuted into the first line of Equation (11), leads to the same difficulty already observed in
Equation (19) of Corollary 1 that the arising quotients of functions cannot be simplified,
even in the case of (quasi-)linear system models in which aij

(
[xe]

〈κ〉([t])) �= 0 holds for at
least one i �= j.

Moreover, it has to be pointed out that an interval evaluation of this fractional deriva-
tive of the exponential function on the time interval t ∈ [0 ; T] always contains the value 0
at the left end point of this time interval, so that the division of the differential formulation
of the Picard iteration according to (11) by the term in parentheses in (20) is undefined.
Therefore, solution representations in the form eλt are not useful to generalize the iteration
scheme according to Theorem 1.

At least theoretically, one could try to resolve this second problem by changing the solu-
tion template from eλt to eλtν

with a non-integer power of the time variable t. Unfortunately,
however, its Caputo derivative of order ν does not have a closed-form, exponential-type
solution in the general case so the problem persists that the solution presented in (19) can
still not be simplified further. For this reason, we are switching to the idea of the following
subsection in which the interval box enclosures of Mittag-Leffler functions employed in (9)
as well as in (19) are replaced by tubes parameterized in terms of exponential functions.

3.2. Exponential Enclosures of the Mittag-Leffler Function

For the computation of exponential tube enclosures of time-dependent Mittag-Leffler
functions, the following monotonicity theorem is employed. It is a simplified version of
Theorem 4 published in [13], where also the fractional derivative order ν was considered as
a (temporally constant) interval parameter.

Theorem 2 (Box-type interval bounds for the Mittag-Leffler function). The range of function
values for the Mittag-Leffler function in (4) with the uncertain real-valued parameter λ ∈

[
λ ; λ

]
,
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λ < 0 and the non-negative time argument t ∈
[
t ; t
]
, t ≥ 0, with 0 < ν ≤ 1, is bounded by the

box-type interval enclosure

Eν,1
(
λtν
)
∈
[

E∗ν,1

](
[X]
)
=

[
E∗ν,1

(
inf
(
[X]
))

; E∗ν,1

(
sup
(
[X]
))]

(21)

with [X] := [λ] · [t][ν], where sup
(
[X]
)
≤ 0 holds and

[
E∗ν,1

]
is obtained by the outward rounded

interval extension of a floating-point evaluation of the two-parameter Mittag-Leffler function
according to Equation (31) of [13]. Due to λ < 0, Equation (21) simplifies to

Eν,1
(
λtν
)
∈
[

E∗ν,1

(
λ · tν

)
; E∗ν,1

(
λ · tν

)]
. (22)

Proof. For a detailed proof of this theorem, the reader is referred to the proof of Theorem 4
published in [13]. It is a direct consequence of the fact that the two-parameter Mittag-Leffler
function is strictly monotonically decreasing for a growing time argument t with λ < 0.
This property is also reflected by the so-called complete monotonicity of the Mittag-Leffler
function that is reported, for example, in [16,17].

Furthermore, monotonicity with respect to the parameter λ is verified by differentiat-
ing Eν,1(λtν) with respect to λ together with the change of variables τ := λ

1
ν · t < 0. This

leads to

∂Eν,1(λtν)

∂λ
=

∂Eν,1(τ
ν)

∂τ
· ∂τ

∂λ
=

∂Eν,1(τ
ν)

∂τ
· t · λ

(
1
ν−1

)
ν

. (23)

In (23), the first factor is non-positive due to the complete monotonicity of the Mittag-
Leffer function as shown in [16,17]; for any t ≥ 0 and λ ≤ 0, the second factor is also
non-positive, leading to ∂Eν,1(λtν)

∂λ ≥ 0, which completes the proof.

Theorem 3 (Exponential enclosures for the Mittag-Leffler function). The range of function
values for the Mittag-Leffler function in (4) with the uncertain real-valued parameter λ ∈

[
λ ; λ

]
,

λ < 0 and the non-negative time argument t ∈
[
t ; t
]
, t ≥ 0, t > t, with 0 < ν ≤ 1, is bounded

by the exponential enclosure

Eν,1
(
λtν
)
∈ e

[
η ; η

]
·[t ; t] , (24)

where

η =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
inf

(
1
tν · ln

([
E∗ν,1

](
λ · tν

)))
for t > 0

λ

Γ(ν + 1)
for t = 0

(25)

and

η = sup

(
1
tν · ln

([
E∗ν,1

](
λ · tν

)))
(26)

with
[

E∗ν,1

]
being the outward rounded interval extension of a floating-point evaluation of the

two-parameter Mittag-Leffler function according to Equation (31) of [13].

Proof. Consider the Mittag-Leffler function

f (t̃) = Eν,1(−t̃) . (27)

Its derivative with respect to t̃ satisfies the following properties:

1.
d f
dt̃

(0) = − 1
Γ(ν + 1)

;
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2. lim
t̃→∞

d f
dt̃

(t̃) = 0;

3.
d f
dt̃

(t̃) < 0 for t̃ > 0; and

4.
d2 f
dt̃2 (t̃) > 0 for t̃ > 0.

Property 1 is a consequence of the series definition (5) of the Mittag-Leffler function,
while the properties 2–4 result from its complete monotonicity according to [16,17].

Case 1: For a fixed positive point t̃ = t̃∗ > 0, determine the intersection of an exponential
function eη t̃ and the Mittag-Leffler function f (t̃) according to

Eν,1(−t̃∗) = eη∗·t̃∗ > 0 ⇐⇒ η∗ =
1
t̃∗
· ln
(
Eν,1(−t̃∗)

)
< 0 , (28)

where Eν,1(0) = e0 = 1 obviously holds according to (5) and 0 < Eν,1(−t̃∗) < 1 due to the
property of complete monotonicity.

Case 2: In the case t̃ → 0, t̃ ∈ R
+
0 , the limit value

η∗ = lim
t̃∗→0

(
1
t̃∗
· ln
(
Eν,1(−t̃∗)

))
= lim

t̃∗→0

(
1

Eν,1(−t̃∗)
· d
(
Eν,1(−t̃∗)

)
dt̃∗

)
= − 1

Γ(ν + 1)

(29)

is obtained, where the second line results from the application of L’Hôpital’s rule.
Moreover, the property η < η, necessary for the interval definition in (24), is obvious

due to the fact that η∗ in (28) is defined as the quotient of a strictly monotonically decreasing
numerator and a strictly monotonically increasing denominator.

Thus, the substitution t̃ := −λtν together with the monotonicity of the Mittag-Leffler
function with respect to the parameter λ, as already also exploited in Theorem 2, cf. (23),
concludes the proof.

The Figure 1a,b give a comparison of the box-type interval enclosures of Mittag-Leffler
functions according to Theorem 2 with the exponential enclosures according to Theorem 3.
According to the Figure 1c,d, it becomes obvious that for identical subdivisions of the time
interval t ∈ [0 ; 1], the box-type enclosure is much more pessimistic at the beginning of the
time horizon than at its end. Therefore, to obtain an identical degree of overestimation for
both types of enclosures, a significantly larger number of subintervals would be required in
the box-type case at the beginning of the considered time span. Moreover, the lower bound
for the range of the Mittag-Leffler function is exactly represented at the beginning of each
temporal subslice by the exponential enclosure, while the lower bound at the endpoint
is represented exactly by the box-type enclosure, cf. Figure 1c. For the upper bound of
the range, this property is reversed between both representations for the enclosure of the
Mittag-Leffler function, cf. Figure 1d.
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(a) (b)

(c) (d)

Figure 1. Comparison between box-type and exponential enclosures of the Mittag-Leffler function
Eν,1(λtν) with ν = 0.5 for t ∈ [0 ; 1], t = k · 0.1, t = (k + 1) · 0.1, k ∈ {0, 1, . . . , 9}, and λ ∈ [−2 ; −1]:
(a) Box-type enclosure of the Mittag-Leffler function; (b) Exponential enclosure of the Mittag-Leffler
function; (c) Overestimation of the lower enclosure bound; (d) Overestimation of the upper enclo-
sure bound.

Furthermore, Figure 2 illustrates the property stated in the proof above that η∗ is
a strictly monotonically increasing function for increasing values of the time argument
t̃∗. To show that this property holds for all 0 < ν < 1, several values of this fractional
differentiation order are depicted. Moreover, the limit case for t̃ → 0 according to (29) is
also depicted in this graph by using a logarithmic time scale.

Figure 2. Evolution of the parameter η∗ as a function of t̃∗ for different values of the fractional
differentiation order ν.
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3.3. Iterative Pseudo-State Enclosures for Box-Type and Exponential Representations of
Mittag-Leffler Functions

Both box-type and exponential enclosures are used in this subsection to evaluate the
iteration Formula (19) of Corollary 1. In this subsection, an interval subdivision scheme
with respect to the time interval [t] is employed to reduce the effect of overestimation.

For that purpose, we assume that [t] = [0 ; T] is subdivided into Ξ not necessarily
equally wide subintervals

[t] =
Ξ⋃

ξ=1

[
tξ−1 ; tξ

]
=

Ξ⋃
ξ=1

[t]ξ , (30)

where t0 := 0, tΞ := T, and t0 < t1 < . . . < tΞ.
Then, a subinterval-based evaluation of the iteration Formula (19) of Corollary 1 is

given by

[λi]
〈κ+1〉 :=

Ξ⊔
ξ=1

⎛⎜⎜⎜⎜⎜⎝aii

(
[xe]

〈κ〉
(
[t]ξ
))

+

n

∑
j=1
j �=i

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aij

(
[xe]

〈κ〉
(
[t]ξ
))

·
Eν,1

([
λj

]〈κ〉
· [t]νξ

)
Eν,1

(
[λi]

〈κ〉 · [t]νξ
) ·

[
xe,j

]
(0)[

xe,i
]
(0)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(31)

where the symbol
⊔

denotes the convex interval hull around all arguments of this operator.
Moreover, the expression

[xe]
〈κ〉
(
[t]ξ
)
= Eν,1

(
[Λ]〈κ〉 · [t]νξ

)
· [xe](0) , [xe](0) = [x0] (32)

in (31) represents the evaluation of the Mittag-Leffler-type pseudo-state enclosure for each
temporal subinterval [t]ξ .

To replace the evaluation of the iteration Formula (31) by a counterpart that exploits the
novel exponential enclosures of the Mittag-Leffler function for each temporal subinterval,
define the enclosure

Eν,1
(
λ · tν

)
∈ e

[
η
〈κ〉
i,ξ ; η

〈κ〉
i,ξ

]
·[tξ−1 ; tξ ]

ν

(33)

for λ ∈ [λ]
〈κ〉
i and t ∈ [t]ξ . The interval bounds η

〈κ〉
i,ξ and η

〈κ〉
i,ξ on the right-hand side

of (33) are obtained by replacing λ with λ
〈κ〉
i , λ with λ

〈κ〉
i , t with tξ−1, and t with tξ in the

Equations (25) and (26) that are defined in Theorem 3.
Then, the iteration Formula (19) of Corollary 1 is replaced with the expression
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[λi]
〈κ+1〉 :=

Ξ⊔
ξ=1

⎛⎜⎜⎜⎜⎜⎝aii

(
[xe]

〈κ〉
(
[t]ξ
))

+

n

∑
j=1
j �=i

⎧⎪⎪⎨⎪⎪⎩aij

(
[xe]

〈κ〉
(
[t]ξ
))

· e

([
η
〈κ〉
j,ξ ; η

〈κ〉
j,ξ

]
−
[

η
〈κ〉
i,ξ ; η

〈κ〉
i,ξ

])
·[t]νξ

·

[
xe,j

]
(0)[

xe,i
]
(0)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎠ ,

(34)

where

[xe]
〈κ〉
(
[t]ξ
)
= exp

⎛⎝diag

{[[
η
〈κ〉
1,ξ ; η

〈κ〉
1,ξ

]
. . .

[
η
〈κ〉
1,ξ ; η

〈κ〉
1,ξ

]]}
· [t]νξ

⎞⎠ (35)

is a direct substitute for (32) that was included before in (31).
As a preparation for the evaluation of Formulas (31) and (34) in the following section,

the true range as well as both the box-type and exponential enclosures of the quotient

Eν,1(λ1tν)

Eν,1(λ2tν)
(36)

are illustrated in Figure 3 for the mutually independent interval parameters λ1 ∈ [−2 ; −1]
and λ2 ∈ [−1.9 ; −1]. It becomes obvious that the box-type enclosure (as already discussed
in Figure 1) is much more pessimistic for small points in time than for larger ones. Therefore,
it can be expected that an intersection of both enclosure approaches leads to less pessimism
during the evaluation of the iteration Formula (34). Note that this comes with practically
no additional computational effort because the box-type range bounds form the basis for
the application of Theorem 3.

(a) (b)

Figure 3. Illustration of the two considered guaranteed enclosure methods for the quotient of two
Mittag-Leffler functions with uncertain parameters λ1 ∈ [λ1] and λ2 ∈ [λ2] for ν = 0.5: (a) Box-type
enclosures vs. exact range for the quotient (36); (b) Exponential enclosures vs. exact range for the
quotient (36).

In the following section, both subdivision-based Formulas (31) and (34) are compared
for the computation of guaranteed pseudo-state enclosures for a quasi-linear model of
the charging/discharging dynamics of a Lithium-ion battery. The comparison is based
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on a quantification of the tightness of the obtained solution enclosures and a count of the
numbers of iterations κ for identical numbers Ξ of temporal subintervals.

4. Simulation Results

The benchmark application considered in this section for the comparison of both
iteration Formulas (31) and (34) is the simplified model of a Lithium-ion battery origi-
nally investigated in [25]. For the sake of completeness, this model is summarized in the
following subsection before the respective simulation results are presented.

4.1. Simplified Fractional-Order Battery Model

Figure 4 illustrates a fractional-order equivalent circuit model of the charging/dis-
charging behavior of a Lithium-ion battery, where the state of charge σ(t), its fractional
derivative 0D

0.5
t σ(t) of order ν = 0.5, and the voltage drop v1(t) across the fractional-order

constant phase element Q (as a generalization of an ideal capacitor [28–30]) are employed
as pseudo-state variables.

vOC(σ(t))
+
−

i(t) R0

R v(t)

+

−

Q

v1(t)

Figure 4. Basic fractional-order equivalent circuit model of batteries according to [25].

These pseudo-state variables are summarized in the vector

x(t) =
[
σ(t) 0D

0.5
t σ(t) v1(t)

]T
∈ R

3 . (37)

Using the modeling steps described in [28] and generalizing the charging/discharging
dynamics to

0D
1
t σ(t) = −η0 · i(t) + η1 · σ(t) · sign

(
i(t)
)

3600CN
(38)

as described in [25] with the terminal current i(t) as the system input, the commensurate
fractional-order quasi-linear state equations

0D
0.5
t x(t) = A · x(t) + b · i(t) (39)

with the system and input matrices

A =

⎡⎢⎢⎣
0 1 0

η1·sign(i(t))
3600CN

0 0
0 0 − 1

RQ

⎤⎥⎥⎦ and b =

⎡⎢⎣ 0
− η0

3600CN
1
Q

⎤⎥⎦ (40)

are obtained.
The simulations discussed in the following two subsections consider the parameters

listed in Table 1 which are a subset of those used in [25]. To make the evaluation based on
the novel exponential enclosures for the Mittag-Leffler function according to Theorem 3
comparable with the previous work reported in [25], we employ the same linear state
feedback controller for the discharging phase (i(t) > 0) that was designed in terms of an
assignment of the asymptotically stable eigenvalues λ ∈ {−0.0001;−0.0002;−0.4832} to
the closed-loop dynamics. This leads to the closed-loop dynamic model

D0.5
t x(t) =

(
A− bkT

)
· x(t) =: AC · x(t) , (41)
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where the matrix entries AC,2,1, AC,2,2, AC,2,3 are inflated to interval parameters by symmet-
ric bounds of a 1% radius of the respective nominal quantity and AC,3,3 to 10%, respectively.

Table 1. Parameters of the Lithium-ion battery model.

R0 [Ω] Q [F/s0.5] R [Ω] η0 [−] η1 [−] CN [Ah]

+1.7·10−5 +20.591 +0.1005 +1.0000 +0.1000 +3.1000

To investigate the effect of the novel exponential enclosure approach for Mittag-Leffler
functions, the following simulations also make use of the intersection of the solution to
the system model (41) with an alternative representation resulting from a time-invariant
similarity transformation of the system matrix AC into an interval-valued diagonally
dominant representation. This transformation, as detailed in [25], employs the matrix of
eigenvectors for a matrix containing the elementwise-defined interval midpoints of AC.
As discussed in [25], this transformation reduces the overestimation due to the wrapping
effect of interval analysis [23,31] when evaluating both iteration Formulas (31) and (34).

For the rest of this paper, consider the two sets of initial pseudo-state vectors

x(0) ∈ [x]1(0) =

⎡⎢⎣[ 0.9000 ; 1.1000]
[−0.0011 ; −0.0009]
[ 0.0900 ; 0.1100]

⎤⎥⎦ (42)

and

x(0) ∈ [x]2(0) =

⎡⎢⎣[ 0.99000 ; 1.01000]
[−0.00101 ; −0.00099]
[ 0.09900 ; 0.10100]

⎤⎥⎦ (43)

in the sense of a Caputo-type initialization of the controlled battery model (41), i.e., with
x(0) corresponding to x(t) for all t < 0.

In all simulations summarized in the following two subsections, the final points in
time T for the evaluation of the iteration Formulas (31) and (34) are chosen as either of the
ten values

T ∈
{

0.5, 0.5 +
10− 0.5

9
, 0.5 + 2 · 10− 0.5

9
, . . . , 10

}
(44)

with tξ − tξ−1 = 0.005. Note that this latter choice for the interval subdivision is not
identical to the one used in [25], where for all the different values T the considered time
ranges were always subdivided into 100 equally spaced slices.

4.2. Simulation with the Help of Box-Type Enclosures

In Figure 5, the iteration Formula (31) has been used to compute guaranteed enclosures
for the pseudo states of the controlled Lithium-ion battery for the two differently wide
enclosures of initial values.

Due to the fact that the solution parameters λi are determined in such a way that
they are valid for the complete time interval [0 ; T], longer simulation horizons lead to
inflating interval bounds as long as the integrator reset approach derived in [25] and its
extended version published in [7] are not employed. The simulations show clearly that the
overestimation of the range enclosures for the pseudo states is larger for those variables that
change faster. In this scenario, the faster changing variable is the voltage v1(t) as compared to
the state of charge σ(t). However, it can also be seen that the blow-up of the solution bounds
can be reduced by tighter bounds for the pseudo-state initialization which gives rise to the
option to repeat the simulations after paving the possible initial pseudo-state domain.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Use of box-type enclosures for the evaluation of the iteration Formula (31) for the compu-
tation of guaranteed pseudo-state enclosures: (a) State of charge σ(t) for x(0) ∈ [x]1(0); (b) State of
charge σ(t) for x(0) ∈ [x]2(0); (c) Voltage v1(t) for x(0) ∈ [x]1(0); (d) Voltage v1(t) for x(0) ∈ [x]2(0);
(e) Interval diameter for the enclosure of σ(t); (f) Interval diameter for the enclosure of v1(t).

4.3. Simulation with the Help of Exponential Enclosures

Figure 6 shows that the pseudo-state enclosures are significantly tightened by using
the intersection of the novel exponential enclosures of Mittag-Leffler functions with the
box-type ones that were solely used in Figure 5. This advantage cannot only be observed for
the case of the wide initialization x(0) ∈ [x]1(0) but also for the tighter one x(0) ∈ [x]2(0).

The second advantage of this new enclosure approach is illustrated in Figure 7, where
the required maximum numbers of evaluations of both (31) and (34) are illustrated for
the ten different choices of the simulation horizon T. There, it can be seen clearly that the
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novel exponential enclosure approach allows to reduce the number of required iterations
significantly for longer simulation horizons T. To make this comparison fair, the iterations
have been stopped in all cases if the diameters of all [λi]

〈κ+1〉 and [λi]
〈κ〉 deviate from each

other by less than the value 10−4.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Use of exponential enclosures, intersected with the box-type ones, for the evaluation of the
iteration Formula (34) for the computation of guaranteed pseudo-state enclosures: (a) State of charge
σ(t) for x(0) ∈ [x]1(0); (b) State of charge σ(t) for x(0) ∈ [x]2(0); (c) Voltage v1(t) for x(0) ∈ [x]1(0);
(d) Voltage v1(t) for x(0) ∈ [x]2(0); (e) Interval diameter for the enclosure of σ(t); (f) Interval diameter
for the enclosure of v1(t).

As a summary, the new enclosure approach does not only allow to significantly reduce
the overestimation in the computation of guaranteed bounds for the pseudo states but—at
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least for the application scenario at hand—also reduces the computational effort by up to
80% due to significantly less required iterations.

(a) (b)

(c) (d)

Figure 7. Comparison of the required number of iterations for both box-type and exponential enclosures:
(a) Required iterations for the initialization x(0) ∈ [x]1(0) (box-type enclosure); (b) Required iterations
for the initialization x(0) ∈ [x]2(0) (box-type enclosure); (c) Required iterations for the initialization
x(0) ∈ [x]1(0) (exponential enclosure); (d) Required iterations for the initialization x(0) ∈ [x]2(0)
(exponential enclosure).

5. Conclusions and Outlook on Future Work

In this paper, a novel enclosure approach for the pseudo states of fractional-order
differential equations has been presented. It is based on enclosing Mittag-Leffler functions
by exponential enclosures instead of box-type enclosures employed so far in previous work.
By using a close-to-life model for the charging/discharging dynamics of a Lithium-ion
battery, it has been shown that this new enclosure technique leads not only to significantly
tighter enclosures, yet preserving the guaranteed enclosure property, but also leads to a
noticeable reduction in the computational effort by significantly less iterations required to
obtain an identical enclosure quality.

Future work will aim at extending the presented approach to system models with
non-commensurate orders. In addition, the approach will be included into the observer-
based technique presented in [7] for the quantification of truncation errors which allows for
resetting fractional integrators in a guaranteed way. In such a way, it is planned to make
the proposed simulation approach applicable to tasks such as the parameter identification
of fractional-order differential equations and to the identification of their initialization
functions for t < 0. Moreover, the application to more complex dynamic models from the
domains of electrochemical energy storage and energy conversion will be investigated.
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Abstract: A framework of distributed interval observers is introduced for fractional-order multiagent
systems in the presence of nonlinearity. First, a frame was designed to construct the upper and
lower bounds of the system state. By using monotone system theory, the positivity of the error
dynamics could be ensured, which implies that the bounds could trap the original state. Second,
a sufficient condition was applied to guarantee the boundedness of distributed interval observers.
Then, an extension of Lyapunov function in the fractional calculus field was the basis of the sufficient
condition. An algorithm associated with the procedure of the observer design is also provided. Lastly,
a numerical simulation is used to demonstrate the effectiveness of the distributed interval observer.

Keywords: distributed interval observer; fractional-order multiagent systems; monotone system theory

1. Introduction

Fractional calculus is the definition of the differential and integral of arbitrary order
systems. During the last 20 years, fractional calculus grew into a hot topic and attracted
increasing interest [1,2]. It plays an important role when people are faced with natural
dynamics problems. It works well when it is applied in describing the memory and
hereditary properties of manifold materials. In addition, the applications of fractional
calculus are rapidly expanding, such as non-Fickian dynamics [3], fractional boundary
value problems [4], and variable-order thermostat models [5].

Due to the inaccessibility of the system state in many physical backgrounds and the
availability of output information, research on observation problems is very significant.
With the indepth study of observation problems, interval observers are widely accepted
as an efficient tool in reconstructing the system state with nonlinearity or bounded uncer-
tainty [6,7]. The concept of interval observers was first proposed by Gouzé, and it was
successfully applied to uncertain biological systems [8]. After that, research on interval
observers can be divided into two parts. The first is based on monotone system theory,
and the second was developed from set-membership estimation. The monotone-system-
theory-based method requires researchers to design suitable observer gains in order to
ensure that the error dynamics is positive and bounded. In this case, the bounds from the
interval observer converge to the original system. Inspired by this idea, there are many
new techniques for various systems emerging. For linear time-invariant systems, the time-
varying coordinate transformation technique was used in interval observer design [9].
Efimov et al. also extended the interval estimation technique to nonlinear time-varying
systems [10]. An interval observer for switched systems was also introduced in [11]. On the
other hand, a set-membership estimation-based method combined robust observer design
with reachability analysis [12]. Interval observers in this framework obviously improved
estimation accuracy. Additionally, scholars presented a new integrated version of interval
observers that achieved an expected tradeoff between robust estimation conservatism and
computational complexity [13]. In general, research on interval observers for integer-order
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systems is fruitful, which is instructive for us to design interval observers of fractional-order
systems.

A tremendous expansion for multiagent systems (MASs) has been witnessed, which
mainly regards output regulation [14], observer design [15] and consensus control [16]. It
started from simple two-order systems and attracted more attention on various complex
MASs, such as switched [17], nonlinear [18], and time-delaying [19] systems. The observers
designed for MASs are called distributed observers if the communication topology is
taken into account. A distributed observer was designed for leader-following MASs, and
an actual vehicle model was used to verify the function of the distributed observer [20].
In [21], the existence condition of the distributed observer was established to recover
the state of nonlinear MASs. There are some works for fractional-order MASs in [22]
and [23]. The consensus control problem for fractional-order MASs under a fixed topology
was studied by stability theory and the Lyapunov method [22]. For unknown nonlinear
dynamics, an adaptive control protocol was introduced that was used in a trajectory
tracking problem [23]. There were also some interesting results about the observation
problem in [24–27]. Traditional observers and distributed controllers were both used in
fractional-order MASs [24]. Compared with [24], the time-varying formation control was
investigated, and the consensus protocol was designed to match a switching topology [25].
For the fractional-order heterogeneous nonlinear MASs, the consensus control problem
was converted into the stabilisation problem using the distributed control technique [26].
In [27], the object was the fractional-order system with unknown orders, and a robust
observer-based controller was formulated to solve the consensus problem.

For these works [24–27], the introduced observers were all Luenberger-like. When
the original system suffers from uncertain disturbance or nonlinearity, Luenberger-like
observers are unable to recover the system state. It is challenging to recover the system
state when the general fractional-order system has a complex communication with its
neighborhood. Therefore, a distributed interval observer is a better choice for fractional-
order MASs. In many physical problems such as trajectory tracking or output regulation,
distributed interval observers provide a more accurate state information, which is a great
step forward for the consensus control protocol design. However, there is not any paper fo-
cusing on distributed interval observers for fractional-order MASs. In the field of fractional
calculus, there are some interesting works about fractional-order systems, including state
reconstruction and algorithm programming [28–30]. Motivated by the interval observer
mentioned above, we developed a framework of distributed interval observers for the
general fractional-order MASs. The specific contributions are outlined as follows:

1. By investigating the fractional differential problem, a novel fractional-order Lyapunov
function is proposed for the boundedness problem in the observer deign, which is an
approach to prove that a matrix is Hurwitz.

2. Different from linear MASs, nonlinear MASs are considered, and the solution for
Lipschitz functions is combined with the distributed interval observer design.

3. For fractional-order MASs, the communication topology is applied to the observer
design. Each observer of the corresponding agent could accept the information from
its adjacent observers. A novel distributed interval observer was first designed for the
fractional-order MASs.

The rest of the paper is structured as follows. Section 2 mainly presents some prepara-
tion work, including the fractional differential, graph theory and fractional-order systems.
Section 3 proposes the distributed interval observer design method for fractional-order
MASs. An illustrative example is given in Section 4 to verify the validity of the designed
observer. Lastly, conclusions and future work are drawn in Section 5.

Notations: For two vectors x ∈ Rn and y ∈ Rn, x < (≤)y are understood with
xi < (≤)yi, i ∈ {1, . . . , n}. For A ≺ 0 and A � 0, symbol ≺ (�) means that matrix A is
positive(negative) definite. For a matrix B, there exist three properties: B+ = max(B, 0),
B− = B+ − B and |B| = B+ + B−. Matrix BT denotes the transpose of B, and He(B) is
defined as He(B) = B + BT . λmin(A) represents the minimal nonzero eigenvalue of A. ⊗ is
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the Kronecker product used in MASs. 1N means a N-order column vector, and all elements
are 1.

2. Preliminaries

2.1. Fractional Calculus

There are several definitions used to regard the fractional differentiation operator, such
as the Grünwald–Letnikov, Riemann–Liouville and Caputo definitions introduced in [31].
Among them, the Caputo definition is the most frequently used and has many applications
in the engineering field. In the Caputo definition, the initial value of the differentiation
is considered.

The Caputo fractional derivative for a function f (t) is

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α−n+1 dτ, (1)

where C
t0

Dα
t is the fractional integration differentiation operator, t0 represents the initial time,

and α ∈ [n− 1, n] is the order of the system. Γ(·) is a gamma function that is introduced
in Definition 1. f (t) is a differentiable function with the nth derivative. In this paper, we
mainly focus on the fractional-order system with n = 1 and t0 = 0, then we have 0 < α < 1.
When n = 1, f (t) is only required to have the first derivative. For the sake of simplicity,
the differentiation operator C

t0
Dα

t is replaced by Dα
t .

The Grünwald-Letnikov fractional derivative for a function f (t) is

GL
t0

Dα
t f (t) = lim

N→∞
[
t− t0

N
]−α∑N−1

j=0 (−1)j f (t− j[
t− t0

N
]). (2)

The Riemann-Liouville fractional derivative for a function f (t) is

RL
t0

Dα
t f (t) =

⎧⎪⎨⎪⎩
1

Γ(−α)

∫ t
t0
(t− τ)−α−1 f (τ)dτ, α < 0

f (t), α = 0
Dn

t [
RL
t0

Dα−n
t f (t)], α > 0

(3)

with n− 1 ≤ α < n.
For a wide class of functions, the Grünwald–Letnikov and Riemann–Liouville defini-

tions are equivalent [32]. However, it is difficult for the Grünwald-Letnikov definition to
have a Laplace transform. The Laplace transform of the Riemann–Liouville definition is

L[RL
0 Dα

t f (t)] =

{
sαF(s), q ≤ 0

sαF(s)−∑n−1
k=0 skRL

0 Dα−k−1
t f (0), n− 1 ≤ q < n

(4)

where F(s) is the Laplace transform of f (t).
The Laplace transform of the Caputo definition is

L[C0 Dα
t ] = sαF(s)−∑n−1

k=0 sα−1−k f (k)(0). (5)

Comparing (4) and (5), it is obvious that the Riemann–Liouville fractional derivative
is unsuitable for the Laplace transform technique because it requires the knowledge of
noninteger-order derivatives of the function at t = 0, while the Caputo fractional derivative
only requires the knowledge of integer-order derivatives of the function. This is why
Caputo fractional derivative was chosen.
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Definition 1 ([33]). Gamma function is an important element for the Caputo fractional differentia-
tion operator, which is defined by

Γ(a) =
∫ ∞

0
e−tta−1dt, (6)

where value Γ(a) is in the convergence of the right-hand side of the complex plane.

2.2. Graph Theory

A communication topology G(N , ξ,A) contains three elements: N ∈ {1, . . . , N} is the
node set of MASs, ξ ⊂ N ×N represents an edge set for nodes in MASs, and A ∈ RN×N

is an adjacent matrix of the graph. For A = [aij] ∈ RN×N , aji is the weight from node i to
node j. In this paper, the graph has no self loops, i.e., aii = 0, i ∈ N . aji �= 0 if and only if
(i, j) ∈ ξ. For node i, its neighborhood is denoted as Ni = {j|j ∈ N , aji �= 0, j �= i}. For G , it
is defined as a strongly connected graph if and only if any node in it is mutually reachable.
For adjacent matrix A, the corresponding Laplacian matrix is defined as L = [lij]N×N ,
where lii = ΣN

j=1aij and lij = −aij, i �= j. If a topology is call as a balanced topology,
the edges of it must be balanced, which means that edge (i, j) belongs to set ξ if edge (j, i)
belongs to set ξ.

Lemma 1 ([34]). for a Laplacian matrix L, zero is one of the eigenvalues and it has a fixed right
eigenvector 1N. The other nonzero eigenvalues are all positive. If there exists a directed spanning
tree in G, zero is a simple eigenvalue of L.

Lemma 2 ([35]). considering G as a strongly connected graph, suppose that r = [r1, . . . , rN ] is
the left eigenvector connected with the eigenvalue zero. Then, we have RL+ LT R ≥ 0, where
R = diag{r1, . . . , rN}. For a balanced graph, we have r1 = · · · = rN.

Lemma 3 ([35]). If G is a strongly connected graph; its generalized algebraic connectivity is

define as a(L) = min
rT x=0,x �=0

xT(RL+LT R)x
2xT Rx . Due to the topology in this paper being defined as

balanced, matrix R can be converted into R = r1 IN. The generalized algebraic connectivity is equal
to a(L) = λmin(

He(L)
2 ).

2.3. Fractional-Order Systems

Consider the following fractional-order system for the i-th agent.{
Dα

t xi(t) = Axi(t) + f (xi(t)),

yi(t) = Cxi(t),
(7)

where xi ∈ Rn is the system state, yi ∈ Rm is the output, and f (xi) ∈ Rn is the Lipschitz
function. A ∈ Rn×n and C ∈ Rm×n are matrices with suitable dimensions. Communication
topology G for (7) is a strongly connected balanced graph.

Property 1. Given a matrix M ∈ Rn×n, M is a Metzler matrix if all its elements outside the main
diagonal are non-negative. For example, the following matrix is Metzler:

M =

[−1 1
2 0.5

]
.
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Property 2. Given a matrix N ∈ Rn×n, M is a Hurwitz matrix if its all real parts of the eigenvalues
are negative. For example, the following matrix is Hurwitz:

N =

[−3 −2
−2 −3

]
.

For nonlinearity f (xi), we began the analysis with the following properties.

Property 3 ([36]). the differentiable global Lipschitz function f (xi) can be divided into two in-
creasing functions a(xi) and b(xi); their relationship is

f (xi) = a(xi)− b(xi). (8)

Property 4 ([36]). for a Lipschitz function f (xi), there exists a differentiable global Lipschitz
function f̃ (xk1

i , xk2
i ), such that

• f̃ (xk1
i , xk2

i ) = a(xk1
i )− b(xk2

i ),
• f̃ (xi, xi) = f (xi),

• ∂ f̃
∂a(xi)

≥ 0 and ∂ f̃
∂b(xi)

≤ 0.

Remark 1. In Property 3, a Lipschitz function is transformed into two increasing functions,
which is just for us to introduce the function f̃ (·, ·). Because a(xi) and b(xi) are both increasing

functions, one can deduce that ∂ f̃
∂a(xi)

≥ 0 and ∂ f̃
∂b(xi)

≤ 0 easily. For x ≤ x ≤ x, we have

f̃ (x, x) ≤ f̃ (x, x) ≤ f̃ (x, x), which are the upper and lower bounds of the Lipschitz function f (x)
in the structure of distributed interval observers.

Assuming that the bounds of the system state satisfy xi ≤ xi ≤ xi, on the basis of
Properties 3 and 4, one can deduce that

f̃ (xi, xi) ≤ f̃ (xi, xi) = f (xi) ≤ f̃ (xi, xi). (9)

By using the generalized Taylor formula, f̃ (xi, xi)− f̃ (xi, xi) is written as

f̃ (xi, xi)− f̃ (xi, xi) =
∫ 1

0

∂ f̃
∂δ1

(τδ1 + (1− τ)δ2)dτ(δ1 − δ2), (10)

where δ1 =

[
x
x

]
and δ2 =

[
x
x

]
. It follows from Property 4 that

f̃ (xi, xi)− f̃ (xi, xi) = [
∫ 1

0

∂a
∂x

(τx + (1− τ)x)dτ

−
∫ 1

0

∂b
∂x

(τx + (1− τ)x)dτ](δ1 − δ2)

= [F1(x, x)−F2(x, x)](δ1 − δ2).

(11)

Similarly, we have

f̃ (xi, xi)− f̃ (xi, xi) = [F3(x, x)−F4(x, x)](δ1 − δ2), (12)

where matrices Fi, i ∈ {1, . . . , 4} are non-negative and can be derived from (11). On the
basis of the above discussion, the following property is presented.

163



Fractal Fract. 2022, 6, 355

Property 5 ([36]). for f (xi) and f̃ (·, ·) defined in Property 4, if Jacobian matrix ∂ f̃
∂δ1

is bounded,
there exist matrices Fi, i ∈ {1, . . . , 4} such that{

f̃ (xi, xi)− f̃ (xi, xi) ≤ F1ei + F2ei,

f̃ (xi, xi)− f̃ (xi, xi) ≤ F3ei + F4ei,
(13)

where ei = xi − xi and ei = xi − xi.

Example 1. For nonlinear function f (x) = sinx, corresponding functions f̃ (x, x) and f̃ (x, x) are
defined as {

f̃ (x, x) = sin(x) + x− x,

f̃ (x, x) = sin(x) + x− x,

where f (x), f̃ (x, x) and f̃ (x, x) satisfy Properties 3 and 4.
The functions mentioned in Property 3 are defined as a(x) = sin(x) + x and b(x) = x. a(x)

and b(x) are both obviously increasing functions. Then, f̃ (x, x)− f̃ (x, x) can be transformed into

f̃ (x, x)− f̃ (x, x)

= sin(x) + x− x− sin(x)

= (sin(x)− sin(x)) + (x− x) + (x− x)

≤ 2(x− x) + (x− x).

(14)

From Property 5, we have f̃ (x, x)− f̃ (x, x) ≤ F1e + F2e. Combining (14) with Property 5,
we chose F1 = 2I and F2 = I. Similarly, we have F3 = I and F4 = 2I.

From Example 1, Property 5 is feasible, and the result from Formulas (9)–(12) stands.

For System (7), nonlinear function f (xi(t)) was assumed to satisfy Properties 3–5;
then, the interval observer for (7) was designed with{

Dα
t xi(t) = Axi(t) + L(yi(t)− Cxi(t)) + γM∑N

i=1 aij(xj(t)− xi(t)) + f̃ (xi, xi),

Dα
t xi(t) = Axi(t) + L(yi(t)− Cxi(t)) + γM∑N

i=1 aij(xj(t)− xi(t)) + f̃ (xi, xi),
(15)

where M and L are interval observer gains.
The error dynamics of the interval observer is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dα
t ei(t) = Dα

t xi(t)− Dα
t xi(t)

= (A− LC− γM∑N
j=1 Lij)ei(t) + f̃ (xi, xi)− f̃ (xi, xi),

Dα
t ei(t) = Dα

t xi(t)− Dα
t xi(t)

= (A− LC− γM∑N
j=1 Lij)ei(t) + f̃ (xi, xi)− f̃ (xi, xi).

(16)

Then, e(t), f̃ (x, x), f̃ (x, x) and f̃ (x, x) are defined as

e(t) =

⎡⎢⎣ e1
...

eN

⎤⎥⎦, f̃ (x, x) =

⎡⎢⎣ f̃ (x1, x1)
...

f̃ (xN , xN)

⎤⎥⎦, f̃ (x, x) =

⎡⎢⎣ f̃ (x1, x1)
...

f̃ (xN , xN)

⎤⎥⎦, f̃ (x, x) =

⎡⎢⎣ f̃ (x1, x1)
...

f̃ (xN , xN)

⎤⎥⎦.

System (16) can be written in the following form:{
Dα

t e(t) = (IN ⊗ (A− LC)− γ(L⊗ M)e(t) + f̃ (x, x)− f̃ (x, x),

Dα
t e(t) = (IN ⊗ (A− LC)− γ(L⊗ M))e(t) + f̃ (x, x)− f̃ (x, x).

(17)
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3. Main Results

Proving the boundedness of the distributed interval observer is equal to proving the
convergence of the error dynamics. The Lyapunov function is a great choice for it. For error
dynamics ė(t) = Aee(t), the following Lyapunov function is constructed:

V(t) = eT(t)Pe(t), (18)

where P is a positive symmetric matrix with suitable dimensions.
In the integer-order system, V̇(t) < 0 is the sufficient condition to prove the conver-

gence of error dynamics. V̇(t) < 0 is equivalent to

AT
e P + PAe ≺ 0. (19)

Equation (19) is the strict LMI that can be computed with MATLAB. Formula (19) can
yield that Ae is a Hurwitz matrix. By configuring matrix Ae, the convergence of the system
can be reached.

However, the above details are mainly about the integer-order system. There are no
corresponding lemmas about the fractional-order system. Therefore, the fractional-order
extension of a Lyapunov candidate function is introduced to demonstrate the convergence
of the error dynamics by referring [37].

Lemma 4. Consider error dynamics e(t) ∈ Rn to be a continuous and derivable function. Then,
for any time t ≥ 0, the fractional derivative of the Lyapunov function is

Dα
t V(t) ≤ (Dα

t eT(t))Pe(t) + eT(t)P(Dα
t e(t)), (20)

where V(t) = eT(t)Pe(t) is the Lyapunov function connected with e(t).

Proof. Denote that J = (Dα
t eT)Pe + eT P(Dα

t e)− Dα
t V.

According to the definition of fractional calculus, Dα
t V(t) is equivalent to

Dα
t V(t) =

1
Γ(1− α)

∫ t

0

V̇(τ)

(t− τ)α
dτ

=
1

Γ(1− α)

∫ t

0

eT(τ)Pė(τ) + ėT(τ)Pe(τ)
(t− τ)α

dτ.
(21)

Considering (21), J is rewritten as

J =
1

Γ(1− α)

∫ t

0

eT(t)Pė(τ) + ėT(τ)Pe(t)− eT(τ)Pė(τ)− ėT(τ)Pe(τ)
(t− τ)α

dτ

=
1

Γ(1− α)

∫ t

0

(eT(t)− eT(τ))Pė(τ) + ėT(τ)P(e(t)− e(τ))
(t− τ)α

dτ

= − 1
Γ(1− α)

∫ t

0

żT(τ)Pz(τ) + zT(τ)Pż(τ)
(t− τ)α

dτ,

(22)

where z(τ) = e(t)− e(τ).
Then, the proof for Lemma 1 is equivalent to proving that

1
Γ(1− α)

∫ t

0

(żT(τ))Pz(τ) + zT(τ)Pż(τ)
(t− τ)α

dτ ≤ 0. (23)

For u = zT(t)Pz(t), one can deduce that

du
dt

= żT Pz(t) + zT(t)Pż(t). (24)
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Then, v(τ) = (t−τ)−α

Γ(1−α)
is denoted, which yields

dv(τ) =
α(t− τ)−α−1

Γ(1− α)
dτ. (25)

On the basis of (24) and (25), (23) is equal to

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

|t0 −
α

Γ(1− α)

∫ t

0

zT(τ)Pz(τ)
(t− τ)α

dτ ≤ 0, (26)

with
zT(τ)Pz(τ)

Γ(1− α)(t− τ)α
|t0 =

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

|τ=t −
zT(0)Pz(0)

Γ(1− α)(t)α
. (27)

When τ = t, the first term of (27), has nondeterminacy, and the analysis of its limitation
is necessary:

lim
τ→t

zT(τ)Pz(τ)
Γ(1− α)(t− τ)α

=
−ėT(τ)Pe(t) + ėT(τ)Pe(τ)− eT(t)Pė(τ) + eT(τ)Pė(τ)

−Γ(1− α)α(t− τ)α−1

=
−ėT(τ)Pe(t) + ėT(τ)Pe(τ)− eT(t)Pė(τ) + eT(τ)Pė(τ)

−Γ(1− α)α
(t− τ)1−α.

(28)

Due to α ∈ (0, 1), it is obvious that zT(τ)Pz(τ)
Γ(1−α)(t−τ)α → 0 when τ = t.

Expression (26) can be simplified to

− zT(0)Pz(0)
Γ(1− α)tα

− α

Γ(1− α)

∫ t

0

zT(τ)Pz(τ)
(t− τ)α

dτ ≤ 0. (29)

For P � 0 and Γ(·) > 0, it is certain to stand.

Theorem 1. For System (15), there exist bounds x and x, such that x(t) ≤ x(t) ≤ x(t) if the
following conditions are satisfied:

1. Ω = IN ⊗ (A− LC)− γ(L⊗ M) is Metzler;
2. The initial condition of (7) satisfies x(0) ≤ x(0) ≤ x(0);
3. Nonlinear function f (xi(t)) possesses the features introduced in Properties 3–5.

Proof. From Properties 3 and 4, the upper bound of the nonlinear function is equal to

f̃ (xi, xi) = a(xi)− b(xi). (30)

Then, it follows from (30) that

f̃ (xi, xi)− f̃ (xi, xi) = (a(xi)− a(xi))− (b(xi)− b(xi)). (31)

Functions a(·) and b(·) are all increasing, which yields

f̃ (xi, xi)− f̃ (xi, xi) ≥ 0. (32)

Similarly, one can deduce that

f̃ (xi, xi)− f̃ (xi, xi) ≥ 0. (33)

From x(0) ≤ x(0) ≤ x(0), the initial value of the error dynamics satisfies e(0) ≥ 0
and e(0) ≥ 0. If matrix Ω is Metzler, and (32) and (33) are true, it follows that e(t) ≥ 0 and
e(t) ≥ 0, i.e., x(t) ≤ x(t) ≤ x(t), for any t ≥ 0.
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Remark 2. For Theorem 1, we constructed a frame for (7). The positivity of the error dynamics is
guaranteed, which implies x(t) ≤ x(t) ≤ x(t). However, an interval observer not only requires the
error dynamics be positive, but also that the upper and lower errors are in a convergence of zero.
Then, we give the following theorem.

Theorem 2. On the basis of the result in Theorem 1, given constant τ > 0 and positive matrix
P = PT, if there exists a solution such that

Π̂ =

[
He(PA−UC + PN1)− 2τ I PN2 + NT

3 P
PN3 + NT

2 P He(PA−UC + PN4)− 2τ I

]
≺ 0,

γ >
τ

a(L) ,

where γ is the coupling strength, L = P−1U and M = P−1 are the observer gains, then System (15)
is a distributed interval observer.

Proof. The Lyapunov function is chosen as follows:

V(t) =
N

∑
i=1

rieT
i (t)Pei(t) +

N

∑
i=1

rieT
i (t)Pei(t). (34)

From Lemma 1, the fractional derivative of V(t) is

Dα
t V(t) ≤

N

∑
i=1

ri(Dα
t eT

i )(t)Pei(t) +
N

∑
i=1

rieT
i (t)P(Dα

t ei(t))

+
N

∑
i=1

ri(Dα
t eT

i )(t)Pei(t) +
N

∑
i=1

rieT
i (t)P(Dα

t ei(t)).

(35)

Substituting the error dynamics into (35)

Dα
t V(t) =

N

∑
i=1

ri(Ωiei + Δ f (xi))
T Pei +

N

∑
i=1

rieT
i P(Ωiei + Δ f (xi))

+
N

∑
i=1

ri(Ωiei + Δ f (xi))
T Pei +

N

∑
i=1

rieT
i P(Ωiei + Δ f (xi))

≤
N

∑
i=1

ri(Ωiei + F1ei + F2ei)
T Pei +

N

∑
i=1

rieT
i P(Ωiei + F1ei + F2ei)

+
N

∑
i=1

rieT
i P(Ωiei + F3ei + NFei) +

N

∑
i=1

ri(Ωiei + F3ei + F4ei)
T Pei

= ((R⊗ (A− LC)− γRL⊗ M)e + R⊗ F1e + R⊗ F2e)T(I ⊗ P)e

+ eT(I ⊗ P)((R⊗ (A− LC)− γRL⊗ M)e + R⊗ F1e + R⊗ F2e

+ ((R⊗ (A− LC)− γRL⊗ M)e + R⊗ N3e + R⊗ F4e)T(I ⊗ P)e

+ eT(I ⊗ P)((R⊗ (A− LC)− γRL⊗ M)e + R⊗ F3e + R⊗ N4e)

= eT(R⊗ (He(PA− PLC + PF1))− γ(RL+ LT R)⊗ PM)e

+ eT(R⊗ (He(PA− PLC + PF4))− γ(RL+ LT R)⊗ PM)e

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e,

(36)

where Ωi = A− LC− γM∑N
j=1 Lij, Δ f (xi) = f̃ (xi, xi)− f̃ (xi, xi) and Δ f (xi) = f̃ (xi, xi)−

f̃ (xi, xi).
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According to Lemma 3, RL+ LT R could be simplified as

2a(L)eT Re ≤ eT(RL+ LT R)e, (37)

2a(L)eT Re ≤ eT(RL+ LT R)e. (38)

Taking M = P−1, (37) and (38) into account, it follows from (36) that

Dα
t V(t) ≤ eT(R⊗ (He(PA− PLC + PF1))− 2γa(L)R⊗ In)e

+ eT(R⊗ (He(PA− PLC + PF4))− 2γa(L)R⊗ Ine

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e.

(39)

Considering γ > τ
a(L) , we have

Dα
t V(t) ≤ eT(R⊗ (He(PA− PLC + PF1))− 2τR⊗ Ine

+ eT(R⊗ (He(PA− PLC + PF4))− 2τR⊗ Ine

+ eT(PF2 + FT
3 P)e + eT(PF3 + FT

2 P)e

= εT(t)R⊗Πε(t),

where ε(t) = [eT(t), eT(t)]T and

Π =

[
He(PA− PLC + PF1)− 2τ In PF2 + FT

3 P
PF3 + FT

2 P He(PA− PLC + PF4)− 2τ In

]
.

To satisfy the LMI toolbox, U = PL is applied in Π, which leads to

Π̂ =

[
He(PA−UC + PF1)− 2τ In PF2 + FT

3 P
PF3 + FT

2 P He(PA−UC + PF4)− 2τ In

]
.

Then, matrix Π̂ ≺ 0 is equal to Dα
t V(t) < 0, which implies that limt→∞ e(t) = 0 and

limt→∞ e(t) = 0. The boundedness of the error dynamics could be guaranteed.

Remark 3. Constant τ is simple without an actual effect. However, it is a parameter connected
with γ. If we just compute γ, the LMI toolbox just gives one feasible solution. Nevertheless, if we
compute τ, γ > τ

a(L) would have more regions to select.

On the basis of Theorem 2, an algorithm was constructed to design distributed interval
observers for fractional-order MASs.

4. Simulation

Considering a fractional-order MAS with nonlinearity, the state-space model is similar
to (7), where

A =

[−0.5 2
0 −1

]
, C =

[
0 1

]
, f (xi) = sin(xi).

For nonlinear function f (xi), corresponding function f̃ (xi, xi) is defined as

f̃ (xi, xi) = sin(xi) + xi − xi.
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For functions a(xi) = sin(xi) + xi and b(xi) = xi, it is obvious that a(xi) and b(xi) are
increasing functions. a(xi) = sin(xi) + xi and b(xi) = xi are substituted into (13); then,

sin(xi) + xi − xi − sin(xi)

= (sin(xi)− sin(xi)) + (xi − xi) + (xi − xi)

≤ 2(xi − xi) + (xi − xi)

= F1ei + F2ei.

We chose F1 = 2I and F2 = I. Similarly, we have F3 = I and F4 = 2I.
Laplacian matrix L is

L =

⎡⎢⎢⎣
3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1

⎤⎥⎥⎦.

By using Lemma 3, we obtained generalized algebraic connectivity a(L) = 1. By solv-
ing the LMI in Theorem 2, the observer gains can be computed:

L =

[−1.1771
−0.2282

]
, M =

[
0.1906 0.0757
0.0757 0.1470

]
, τ = 2.9151.

Then we chose γ = 3. The initial value of the original system state is defined as
x(0) = [1 2 3 5 2 − 1 − 1 4]T . The initial value of the distributed interval observer is
defined as x(0) = [6 7 8 10 7 4 4 9]T and x(0) = [−4 − 3 − 2 0 − 4 − 6 − 6 − 1]T .

By performing Steps 5–8 in Algorithm 1, we can obtain Figures 1–6. Then, Figures 1 and 2
show the original system state of the four agents. Figures 3 and 4 display the bounds from
a distributed interval observer. vij means the upper bound of the jth state of the ith agent,
while uij means the lower bound of the jth state of the ith agent. From Figures 3 and 4,
the bounds of the distributed observer trap the state of the original system. Define that
e+ij = xij − xij and e+ij = xij − xij. For Figures 5 and 6, the error between the observer and
the original system could be reduced to a bounded value, which implies that the distributed
interval observer is feasible.

Algorithm 1 Distributed interval estimation for fractional-order MASs.

Step 1: Given the constant matrix L, compute the generalized algebraic connectivity a(L);
Step 2: For given matrices A ∈ Rn×n, C ∈ Rm×n, compute the observer gains L and M and

the constant τ from Theorem 2;
Step 3: Select appropriate constant γ > τ

a(L) ;

Step 4: Ensure that the matrix Ω is a Metzler matrix;
Step 5: For the total time t = 10, choosing the step size h = 0.001, the step N = T/h can

be calculated.
Step 6: Based on Step 5, construct two loops. The first loop is for the original fractional-

order system and the other loop is for the distributed interval observer.
Step 7: Construct an array with N + 1 volumes to store the output of the original system in

step 6.
Step 8: Establish a distributed interval observer based on the output in Step 7 and the other

loop proposed in Step 6.
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Figure 1. The first state of the four-agents.

0 1 2 3 4 5 6 7 8 9 10
t/second

-1

0

1

2

3

4

5

T
he

 s
ec

on
d 

st
at

es
 o

f t
he

 fo
ur

 a
ge

nt
s

x
12

x
22

x
32

x
42

Figure 2. The second state of the four-agents.
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Figure 3. The bounds of the first state for the four-agents.
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Figure 4. The bounds of the second state for the four-agents.
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Figure 5. The error of the first state for the four-agents.
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Figure 6. The error of the second state for the four-agents.
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5. Conclusions

In this paper, a distributed interval observer design methodology for linear fractional-
order MASs with nonlinearity was proposed. A Lyapunov method that is useful for
observer and controller design was first introduced for general fractional-order systems.
For MASs, graph theory was applied to fractional-order systems, and the strict LMI and
an effective algorithm were presented for observer design. Lastly, an example was given
to demonstrate the effectiveness of the proposed method. In the future, by using the H∞
technique, we aim to focus on research regarding the consensus control or formation control
of fractional-order MASs.
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Abstract: This paper designs an interval estimator for a fourth-order nonlinear susceptible-exposed-
infected-recovered (SEIR) model with disturbances using noisy counts of susceptible people provided
by Public Health Services (PHS). Infectious diseases are considered the main cause of deaths among
the top ten worldwide, as per the World Health Organization (WHO). Therefore, tracking and es-
timating the evolution of these diseases are important to make intervention strategies. We study a
real case in which some uncertain variables such as model disturbances, uncertain input and output
measurement noise are not exactly available but belong to an interval. Moreover, the uncertain trans-
mission bound rate from the susceptible towards the exposed stage is not available for measurement.
We designed an interval estimator using an observability matrix that generates a tight interval vector
for the actual states of the SEIR model in a guaranteed way without computing the observer gain.
As the developed approach is not dependent on observer gain, our method provides more freedom.
The convergence of the width to a known value in finite time is investigated for the estimated
state vector to prove the stability of the estimation error, significantly improving the accuracy for
the proposed approach. Finally, simulation results demonstrate the satisfying performance of the
proposed algorithm.

Keywords: interval analysis; interval estimator; finite-time convergence; bounded uncertainties;
infectious diseases; SEIR epidemic model

1. Introduction

There were around 30.2–45.1 million people living with HIV with 680,000 casualties
in 2020, whereas an epidemic like seasonal influenza causes 3–5 million serious illness
cases with 250,000–500,000 casualties each year worldwide according to the WHO [1,2].
The surveillance of infectious diseases plays a vital role in analyzing these epidemics, for
instance, origin, spread and dynamics. PHS relies upon surveillance statistics collected
by agencies such as the Chinese Center for Disease Control and Prevention (China CDC)
for infected people to estimate the activity level of such diseases, intervention strategy
preparation, and recommendations of design policies.

Mathematical modeling of epidemics plays a major role in organizing public health
responses and developing early outbreak detection systems [3–7]. The first modern math-
ematical epidemic model, i.e., susceptible-infectious-recovered (SIR), was proposed by
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Kermack et al. in 1927 for cholera (London 1865) and plague epidemics (Bombay 1906,
London 1665–1666) [8]. According to the SIR model, a fixed number of the population can
be divided into three compartments at any time: susceptible individuals (not yet infected
but can be infected in future), infectious individuals (those who have an infection and
can infect others), and recovered individuals (who are recovered from the infection and
are immune now). The number of people for each compartment represents the states of
a SIR epidemic model. The total number of individuals who are assumed to be mixed
homogenously remains the same, which means the probability of each individual coming
in contact with others is equal [3].

However, the generic SIR epidemic model must be expanded to include a fourth
compartment in case of many infectious diseases, for instance, influenza-like illness, tuber-
culosis, and HIV/AIDS [3,9,10]. The state of the fourth compartment corresponds to the
latency period of disease, i.e., someone who is infected but still unable to infect others. This
modified model is called the SEIR epidemic model [11]. Several estimation techniques have
been developed to track and estimate the states of these models [3,12,13]. To design these
estimators to converge to actual states, one needs to know the exact values of the uncertain
quantities. However, designing such estimators for SEIR models in a real scenario is chal-
lenging, especially when the uncertain parameters are not exactly known but are defined
by an interval or polytope. Interval estimator techniques can solve such issues [14–22].
Based on the monotone system theory (MST), interval estimators are designed to estimate
the real states at any time instant and generate a set of acceptable values known as the
interval in [20,23–28]. The ability to deal with large and unknown uncertainties in the
system is one of the key advantages of interval state estimator design [29–31]. However,
getting cooperative/nonnegative systems are not always possible, and solving this issue
for interval estimator design is still an open area of research.

This article proposes an interval estimation-based method to track and estimate the four
states of the SEIR epidemic model subject to uncertain parameters. Diaby et al., 2015 [32]
proposed the first interval estimator for the continuous-time epidemic model. The results
obtained by Diaby et al. were adequate but not ideal because the observer gain was
manually set. Instead, we consider the discrete-time SEIR model and use an efficient method
based on the observability matrix to design the interval estimator without observer gain.
Finite-time convergence for the interval vectors’ width is derived to verify the boundedness
of the estimation error that significantly improves the accuracy of the designed method.

It is worth mentioning that the observer gain used in the conventional interval ob-
servers’ design determines the magnitude of the upper bound of the interval estimation
errors (for instance, see [27,28]). As a result, interval observers that converge faster may
result in a state enclosure that is too conservative at steady state. The noted issue is solved
in this study since we do not require an observer gain to run the proposed state estimator.
In contrast, set-membership state estimators address the optimization problem at each
iteration, and the problem of finite convergence time is ignored. Therefore, the proposed
result on finite time convergence is intriguing. However, it is a little more demanding in
terms of computation time. Furthermore, compared with the Kalman filter-type estimators,
the proposed interval state estimator requires less information on state disturbances and
measurement noise to generate guaranteed enclosures of the real state vector. This knowl-
edge is advantageous when dealing with real-world situations when state disturbances
and measurement noise are poorly known. More specifically, compared with the existing
results in the literature, the contributions are fourfold:

1. We solve the interval estimation problem for the fourth-order SEIR epidemic model
subject to disturbances and uncertainties. The estimation procedure is designed based
on the observability matrix to relax the strong cooperativity assumption for designing
traditional interval observers. Finite-time convergence and tight initialization prob-
lems are analyzed separately to improve the performance of the developed method;

2. In contrast to the existing interval observer design methods [19,33], we considered a
nonlinear model with unknown input affecting the output with a highly uncertain
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state matrix A. The bounds on the uncertain input are constructed before designing
the interval estimator;

3. We introduce a novel interval state estimation method using an observability matrix
and past input-output values without designing an observer gain that can alleviate
some limitations of traditional interval observer design. For example, the system
being cooperative/non-negative [20,34–39] and the probable inflation existence of the
estimation error at the steady-state are avoided.

4. We consider the fourth compartment of the SEIR model by following the incubation
stage compared with the interval estimator designed for the SIR model in [40]. More-
over, ref. [40] considered continuous-time dynamics, whereas we concentrate on the
discrete time, which has grown in prominence through past years [41,42]. In addition,
ref. [40] assumed that exact values of ℘SI (new infectives per day) and the upper and
lower bound of ℘ (transmission rate) are available. In our case, only noisy values of
susceptible people S and probable bounds on uncertain ℘SI are available, while the
bounds on ℘ are not given by PHS. Hence, our method is more applicable in reality as
℘ is highly uncertain and cannot be obtained directly from biological consideration
compared with [43,44]. Furthermore, its bounds are usually unavailable for such
models [14].

The remainder of this work continues with notations and interval analysis in Section 2.
The problem statement is described in Section 3, and the key findings are shown in Section 4.
Two numerical examples are given in Section 5, where a comparison with previous results
in [27,28] is demonstrated. Finally, concluding remarks are presented in Section 6.

2. Preliminaries Results

First, we reviewed some basic notations on interval estimation necessary to design the
proposed state estimator.

2.1. Notations

A set of real numbers is symbolized by R with R+ = {ι ∈ R : ι ≥ 0}, whereas
Z denotes a set of integers with Z+ = Z ∩ R+. The identity matrix of dimension n is
denoted by In. λmax(Δ) is the largest and λmin(Δ) is the smallest eigenvalue for a square
matrix Δ ∈ Rn×n. Let the L2-induced matrix norm be ‖Δ‖2 =

√
λmax(ΔTΔ), where the

infinity norm is ‖Δ‖∞ = max
1≤i≤n

Σn
j=1

∣∣aij
∣∣. Δ is non-negative (Δ > 0) if aij ≥ 0, whereas it

is Schur stable if |λi| < 1 for all i, j = 1, . . . , n. The relations Δ1 ≤ Δ2 and ∇1 ≤ ∇2 are
understood elementwise for two matrices Δ1, Δ2 ∈ Rn×n or vectors ∇1, ∇2 ∈ Rn. For
known A ∈ Rm×n, we define A+ = {0, A} and A− = {0,−A} with |A| = A+ + A−.

2.2. Interval Analysis

Uncertain parameters are defined by intervals that contain real values of unknown
variables in a guaranteed way.

Definition 1. An interval vector [x] is determined by [45]

[x] = [x, x] = {a|x ≤ a ≤ x, x, x ∈ R
n}.

Lemma 1. Let x ∈ Rn be an interval vector for some x, x ∈ Rn and A ∈ Rm×n. Then [29]

A+x− A−x ≤ Ax ≤ A+x− A−x.

Definition 2. The theory of monotone systems states that the solutions to the below system for
given x(0) ≥ 0 constructed by a matrix A ∈ Rn

+ are non-negative,

x(k + 1) = Ax(k) + w(k),

x ∈ R
n, w : Z+ → R

n
+, k ∈ Z+, k ≥ 0
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and the system is referred to as cooperative or non-negative [46].

3. Problem Statement

The SEIR discrete-time model demonstrated by Figure 1 and obtained using Euler
discretization of the classical continuous-time model is given as follows [42,46]:

Figure 1. Block diagram for SEIR model.

S(k + 1) = (1− a(k))S(k) + b(k)R(k)− ℘(k)S(k)I(k) + a(k),

E(k + 1) = (1− a(k)− c(k))E(k) + ℘(k)S(k)I(k),

I(k + 1) = c(k)E(k) + (1− a(k)− d(k))I(k),

R(k + 1) = d(k)I(k) + (1− a(k)− b(k))R(k),

(1)

where S(k), E(k), I(k), andR(k) represent state variables corresponding to the portion of
population in each compartment of the model. The time-varying non-negative parameters
a stands for the natural birth-death rate, whereas b, c, d denote the uncertain transition
rates from one disease state to the other. The exact values of non-negative parameters
a, b, c, d are unknown. We only know the lower bound and upper bound values, i.e.,
a ∈ [a, a], b ∈ [b, b], c ∈ [c, c] and d ∈ [d, d] with given a, a, b, b, c, c, d, d ∈ R+. The
time-varying parameter ℘(k) is extremely uncertain, and no bounds on ℘(k) are available
for measurements. The initial values for x(k) ∈ R4 are unknown but bounded with known
bounds x(0), x(0) ∈ R4 such that x(0) ≤ x(0) ≤ x(0). At at any given time instant k, the
death rate is exactly equal to birth rate a(k) in all the compartments. In fact, by summing
up (1), one gets directly that the total population is constant, thus satisfying

N(k + 1) = N(k) = N0 ∀k ∈ Z0+,

for
N(k) = S(k) + E(k) + I(k) + R(k), ∀k ∈ Z0+.

This results in

S(k + 1) + E(k + 1) + I(k + 1) + R(k + 1) = (1− a(k))N0 + a(k), ∀k ∈ Z0+.

Hence, if the total population is initially in unity, then (1) remains as a normalized
model for all samples with the total population remaining in unity through time; therefore

S(k + 1) + E(k + 1) + I(k + 1) + R(k + 1) = 1− a(k) + a(k) = 1, ∀k ∈ Z0+. (2)

The transmission of disease arises because of the interactions among susceptible and
infectious individuals as described by (1). The disease is transferred to ℘(k) individuals
through infectious individuals at each time instant. However, a new case only arises with
probability S(k) when contact is directly made with the susceptible individual. Therefore,
in compartment S, a fraction ℘(k)I(k) of people shift to exposed but non-infectious com-
partment E at time k. Similarly, a fraction c and d of individuals in compartments E and I
migrate to the infectious I and recovered R compartments, respectively. It should be noted
that the recovered compartment is composed of people not yet immune.
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The output measured data consists of noisy counts of susceptible individuals obtained
from different government sources such as census bureaus by PHS and are represented by
the following output system model [3]:

y(k) = S(k) + v(k) (3)

where v(k) ∈ L∞ stands for unknown measurement noise with known bounds v(k), v(k) ∈
L∞ such that v(k) ≤ v(k) ≤ v(k), ∀k ≥ 0. The unknown measurement noise consists of the
uncertain number of susceptible people who did not visit the health care unit for diagnosis.
Therefore, Equations (1) and (3) are rewritten as follows:

x(k + 1) = A(k)x(k) + E (k) + w(k),
y(k) = Cx(k) + v(k),

(4)

where x(k) = [S(k) E(k) I(k) R(k)]T and  (k) = ℘(k)S(k)I(k) represent the unknown
state vector to be determined and uncertain input, i.e., the newly confirmed infected people
from the susceptible individuals at each time instant in the known population, respectively.
The time-varying unknown matrix A(k) and constant matrices E and C in (4) are given by

A(k) =

⎡⎢⎢⎣
1− a 0 0 b

0 1− a− c 0 0
0 c 1− a− d 0
0 0 d 1− a− b

⎤⎥⎥⎦,

E =

⎡⎢⎢⎣
−1
1
0
0

⎤⎥⎥⎦, w(k) =

⎡⎢⎢⎣
a(k)

0
0
0

⎤⎥⎥⎦, C =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦
T

.

The uncertain unknown bounded matrix w(k) for w, w ∈ L∞ is defined as

w =

⎡⎢⎢⎣
a(k)

0
0
0

⎤⎥⎥⎦, w =

⎡⎢⎢⎣
a(k)

0
0
0

⎤⎥⎥⎦,

such that w ≤ w ≤ w.

4. Interval Estimator Design for SEIR Model

We will design the interval state estimator in this section for the SEIR model (4). In the
presence of uncertain parameters, the primary goal of this research is to construct an
interval estimator for the SEIR model such that the unknown state signals always satisfy
the following inequality:

x(k) ≤ x(k) ≤ x(k), ∀k ≥ 0, (5)

where x(k), x(k) represent the highest and lowest values for the interval state bounds
provided that x(0) ∈ [x(0), x(0)]. The proposed interval estimator can help to make a
deciding rule for pandemic detection. The following definition and assumption are required
to design the proposed interval state estimator for the given SEIR model.

Proposition 1. As the state x(k0) = x(0) is determined uniquely for all u(τ) and y(τ), τ ∈
[k0, k1], the SEIR epidemic model described by (4) is observable over [k0, k1].

Assumption 1. There are known bounds w, w ∈ R4, v, v ∈ R such thatw(k) ∈ [w, w], v(k) ∈ [v, v].
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The given proposition and assumption are necessary for designing the proposed
interval estimator. The bounds given by Assumption 1 determine the uncertainty of initial
values, input disturbance and noise.

4.1. Interval State Estimator Design

The observability matrix © ∈ R4×4 for (4) is given by

© =

⎡⎢⎢⎣
C

CA(k)
CA(k + 1)A(k)

CA(k + 2)A(k + 1)A(k)

⎤⎥⎥⎦
Then, the SEIR model (4) can be written in the input/output form in the absence of

uncertain quantities and exogenous signals as follows:

x(k + 4) = A(k + 3)A(k + 2)A(k + 1)A(k)x(k),⎡⎢⎢⎣
y(k)

y(k + 1)
y(k + 2)
y(k + 3)

⎤⎥⎥⎦ = Ψ(k : k + 3) = © x(k).
(6)

As a result, using available input-output values, (6) can be written as follows:

x(k) =©−1Ψ(k : k + 3) (7)

Hence, the states of the SEIR model (4) can be obtained using the available in-
put/output values for k− 3 ≥ 0 by

x̂(k) = Δy(k)Ψ(k− 3 : k), (8)

with
Δy(k) = A(k− 1)A(k− 2)A(k− 3)©−1.

Then, the equation of our interval state estimator for the SEIR model (4) that generates
certain bounds on the real states for k − 3 ≥ 0 subject to exogenous signals takes the
following form:

x(k) = x̂(k) + D + Λ(k) + V,
x(k) = x̂(k) + D + Λ(k) + V,

(9)

where D, D ∈ R4×1, Λ(k), Λ(k) ∈ R4×1 and V, V ∈ R4×1 denote the upper and lower limits
on uncertain birth and death rate, uncertain input, and measurement noise, respectively.
We will define these terms one by one using Lemma 1 as follows.

4.1.1. Bounds on the Uncertain Birth and Death Rate

The bounds of the unknown birth and death rate are given by

D = φ+(k)wn−1 + φ−(k)wn−1
D = φ+(k)wn−1 + φ−(k)wn−1

, (10)

where wn−1 ∈ R12×1 and wn−1 ∈ R12×1 denote n− 1 bound concatenation on the uncertain
birth and death rate defined by

wn−1 =
[

w w w
]T , wn−1 =

[
w w w

]T ,

with
w =

[
a(k) 0 0 0

]T , w =
[

a(k) 0 0 0
]T .
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Furthermore,

φ+(k) = max{0, φ(k)}, φ+(k) = max{0, −φ(k)}, φ(k) = ΣA − Δy(k)ΣCA,

where

ΣA =

⎡⎢⎢⎣
ξ11 0 ξ13 ξ14 ξ15 0 0 ξ18
0 ξ22 0 0 0 ξ26 0 0
0 ξ32 ξ33 0 0 ξ36 ξ37 0
0 ξ42 ξ43 ξ44 0 0 ξ47 ξ48

I4

⎤⎥⎥⎦, (11a)

and

ξ11 = (1− a(k1))(1− a(k2)),
ξ13 = b(k1)d(k2),
ξ14 = b(k2)(1− a(k1)) + b(k1)(1− a(k2)− b(k2)),
ξ15 = (1− a(k2)),
ξ18 = b(k2),
ξ22 = (1− a(k1)− c(k1))(1− a(k2)− c(k2)),
ξ26 = (1− a(k2)− c(k2)),
ξ32 = c(k2)(1− a(k1)− c(k1)) + c(k1)(1− a(k2)− c(k2)),
ξ33 = (1− a(k1)− d(k1))(1− a(k2)− d(k2)),
ξ36 = c(k2),
ξ37 = (1− a(k2)− d(k2)),
ξ42 = d(k1)c(k2),
ξ43 = d(k2)(1− a(k1)− d(k1)) + d(k1)(1− a(k2)− d(k2)),
ξ44 = ((1− a(k1)− b(k1))((1− a(k2)− b(k2)),
ξ47 = d(k2),
ξ48 = (1− a(k2)− b(k2)),

ΣCA =

⎡⎢⎢⎣
04×1 04×1 04×1

C 04×1 04×1
CA(k1) C 04×1

CA(k1)A(k2) CA(k1) C

⎤⎥⎥⎦,

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 0

1− a(k1) 0 0 b(k1)

{1− a(k1)}
{1− a(k2)}

0
b(k1)
d(k1)

−b(k1)b(k2)+
b(k1){1− a(k1)}+
b(k2){1− a(k1)}

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1− a(k1) 0 0 b(k1) 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦,

(11b)

with k1 = k− 1, k2 = k− 2.

4.1.2. Bounds on Uncertain Input

The bounds on the uncertain input are represented as

Λ(k) = (φEn−1)
+ (k)− (φEn−1)

− (k),
Λ(k) = (φEn−1)

+ (k)− (φEn−1)
− (k). (12)
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Using (3) and (4), one can write

y(k + 1) = Cx(k + 1) + v(k + 1),

= CA(k)x(k) + CE (k) + Cw(k) + v(k + 1),

−CE (k) = CA(k)x(k) + Cw(k)− y(k + 1) + v(k + 1).

Moreover, from (1), (3) and (4), we derive that

CE = −1, Cw(k) = a(k).

This results in

 (k) = CA(k)x(k) + a(k)− y(k + 1) + v(k + 1),

with
 (k) = (CA)+x(k)− (CA)−x(k) + |−y(k + 1)|+ v + a
 (k) = (CA)+x(k)− (CA)−x(k) + |−y(k + 1)| − v + a

,

such that [ (k)] = [ (k),  (k)] and En−1 = [E E E]T .

4.1.3. Bounds on Measurement Noise Vector

The bounds for the measurement noise vector are described by

V = ϕ+
v (k)vn + ϕ−v (k)vn,

V = ϕ+
v (k)vn + ϕ−v (k)vn,

(13)

where vn, vn ∈ R4×1, respectively, denote the n concatenation of v ∈ R and v ∈ R, given by

vn =

⎡⎢⎢⎣
v
v
v
v

⎤⎥⎥⎦, vn =

⎡⎢⎢⎣
v
v
v
v

⎤⎥⎥⎦,

and
ϕ+

v (k) = max{0 , ϕv(k)}, φ−v (k) = max{0 , −ϕv(k)}
with

ϕv(k) = −Δy(k).

Theorem 1. When Assumption 1 is satisfied for the given SEIR model (4), the interval state
estimator given by (9) yields the following relations:

x(k) ≤ x(k) ≤ x(k), ∀k ≥ 3, (14)

provided that x(0) ≤ x(0) ≤ x(0).

Proof of Theorem 1. The solution to the SEIR model (4) at any time instant k for x(0) ∈
[x(0), x(0)] and w(k) ∈ [w, w] can be obtained as

x(k) =
k

∏
�=1

A(k− �)x(0) + E (k− 1) + w(k− 1) +
k−2

∑
m=0

{
k−m−1

∏
�=1

A(k− �)

}
{E (m) + w(m)}. (15)

The given SEIR model is a 4th order system i.e., n = 4. Therefore, the states x(k) can
be determined at any time k using previous state values at k− 3 as follows:

x(k) = A(k− 1)A(k− 2)A(k− 3)x(k− 3) + A(k− 1)A(k− 2){E (k− 3) + w(k− 3)}
+A(k− 1){E (k− 2) + w(k− 2)}+ E (k− 1) + w(k− 1).

(16)
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Now using theory of interval analysis [39] for all x(k− 3) ∈ [x(k− 3)],  (ϑ) ∈ [ (ϑ)]
and w(ϑ) ∈ [w(ϑ)] with ϑ ∈ {k− 3, k− 2, k− 1}, the state vector x(k) ∈ [x(k)] is given by

[x(k)] = A(k− 1)A(k− 2)A(k− 3)[x(k− 3)] + ΣA{En−1[ (k)] + [wn−1]}, (17)

As a result, utilizing the past input/output values and the observability matrix, the
following set inversion formula is obtained to get the state enclosure [x(k− 3)]:

[x(k− 3)] =©−1{[Ψ(k− 3 : k)]− ΣCAEn−1[ (k)]}+©−1ΣCA[wn−1], (18)

where

[Ψ(k− 3 : k)] =

⎡⎢⎢⎣
y(k− 3)
y(k− 2)
y(k− 1)

y(k)

⎤⎥⎥⎦− [vn].

Consequently, by combing (17) and (18), one gets

[x(k)] = A(k− 1)A(k− 2)A(k− 3)©−1([Ψ(k− 3 : k)]− ΣCA{En−1[ (k)] + [wn−1]})
+ΣA{En−1[ (k)] + [wn−1]},

(19)

[x(k)] = Δy(k){[Ψ(k− 3 : k)]− [vn]} − Δy(k)ΣCA{En−1[ (k)] + [wn−1]}
+ΣA{En−1[ (k)] + [wn−1]},

(20)

[x(k)] = Δy(k)[Ψ(k− 3 : k)]− Δy(k)[vn] + (ΣA − Δy(k)ΣCA){En−1[ (k)] + [wn−1]}, (21)

[x(k)] = Δy(k)[Ψ(k− 3 : k)] + φ(k)En−1[ (k)] + φ(k)[wn−1] + ϕv(k)[vn], (22)

[x(k)] = x̂(k) + [Λ] + [D] + [V], (23)

where [x(k)] = [x, x], [Λ] = [Λ, Λ], [D] = [D, D] and [V] = [V, V]. This completes the
proof of Theorem 1.

4.2. Interval Prediction for k < 3

It is worth mentioning that to use the developed interval state estimator (9) for the
given SEIR model (4), the initial n− 1 = 3 values of input-output should be accessible.
However, in many real life scenarios, these values are not always available for measure-
ments, such as in the given case, where only the initial values are given with some known
bounds. Therefore, we proposed the following recursive system as an interval predictor
that provides a bound on the system’s states for k = 0, 1, 2.

Proposition 2. The following interval predictor generates [x(k)] such that for k = 0, 1, 2, we have
x(k) ∈ [x(k)] as

[x(k)] = ∏k
�=1 A(k− �)[x(0)] + [∂(k− 1)],

[∂(k)] = A(k)[∂(k− 1)] + E[ ] + [w],
[∂(0)] = E[ ] + [w].

(24)

Proof. To prove Proposition 2, we use mathematical induction. As for the initial case k = 0,
the input and output are available. Therefore, we consider the case k = 1. Hence, the first
cycle of the SEIR model produces the following equations:

x(1) = A(0)x(0) + E (0) + w(0),
[x(1)] ∈ A(0)[x(0)] + E[ ] + [w],
[x(1)] ∈ A(0)[x(0)] + [∂(0)],

(25)

which implies the correctness of (24) for k = 1. Next, we demonstrate that (24) is true for
k = 2. Once again, considering (4) for k = 2, we get
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x(2) = ∏2
�=1 A(2− �)x(0) + E (1) + w(1) + ∑1

m=0

{
∏2

�=1 A(2− �)
}
{E (m) + w(m)},

[x(2)] ∈ ∏2
�=1 A(2− �)[x(0)] + A(1)[∂(0)] + E[ ] + [w],

(26)

[x(2)] ∈
2

∏
�=1

A(2− �)[x(0)] + [∂(1)]. (27)

Thus, by simple mathematical induction, one can easily show that (27) is true for k = 2
as well. This completes the proof of Proposition 2.

4.3. Finite-Time Convergence

The finite-time convergence of the interval width � [x(k)] is one of the primary issues
concerning the tight initialization and stability of the interval estimator. Therefore, this
section proves that � [x(k)] converges to a known upper-bounded value in finite time
provided by the uncertain quantities. Hence, we introduce the following Lemma to compute
the upper bound on � [x(k)].

Lemma 2. The following inequality determines the upper bound on the width of the interval vector
provided by (9) and (24):

� [x(k)] ≤ ‖φ(k)En−1‖∞� [ ] + ‖φ(k)‖∞� [w] + ‖ϕv(k)‖∞� [vn], ∀k ≥ 3. (28)

Proof. Firstly, the recursive system (24) is employed as an interval predictor during the
initialization phase for k = 0, 1, 2 to provide tight bounds on the interval vector of the SEIR
model (4). As a result, the upper limit on the width of interval vector provided by (24) is
given by

� [x(k)] ≤
∥∥∥∥∥ k

∏
�=1

A(k− �)

∥∥∥∥∥
∞

� [x(0)] +� [∂(k− 1)]. (29)

Secondly, the proposed interval state estimator (9) is used for k ≥ 3. Then, Equation (23)
implies

� [x(k)] ≤ ‖φ(k)En−1‖∞� [ ] + ‖φ(k)‖∞� [wn−1] + ‖ϕv(k)‖∞� [vn], (30)

whereas
‖φ(k)En−1‖∞� [ ] + ‖φ(k)‖∞� [wn−1] + ‖ϕv(k)‖∞� [vn]

≤ ‖φ(k)En−1‖∞� [ ] + ‖φ(k)‖∞� [w] + ‖ϕv(k)‖∞� [vn].
(31)

Based on (30) and (31), one can easily determine that

� [x(k)] ≤ ‖φ(k)En−1‖∞� [ ] + ‖φ(k)‖∞� [w] + ‖ϕv(k)‖∞� [vn]. (32)

This completes the proof of Lemma 2.

Remark 1. It is worth noting that we do not need observer gain to design the interval estimator.
Therefore, the impact of gain that leads to pessimistic state enclosures for the traditional-type interval
observer design method [27,28] is avoided. However, it is more demanding in term of computation
time. In addition, unlike Kalman filter-type state estimators, the exact values of exogenous signals are
not necessarily known and hence represent an advantage while dealing with practical applications.

5. Simulation Results

In this section, two simulated examples are used to demonstrate the efficiency of the
designed interval state estimator compared with the traditional interval observer design
methods [27,28]. Example 1 is a general numerical type, whereas Example 2 is based on the
2014 West African Ebola virus outbreak [47].
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5.1. Example 1

Consider the SEIR epidemic model (4) with the following parameters defining the
time-varying matrix A(k) as

a(k) = a(0) + 0.05 sin(0.5πk)

b(k) = b(0) + 0.02 sin(0.5πk)

c(k) = c(0) + 0.1sin2(0.25πk)

d(k) = d(0) + 0.1 sin(0.25πk)

with a(0) = 0.4/month, b(0) = 0.124/month, c(0) = 0.2/month, d(0) = 0.45/month and
degree of seasonality η = 0.4.

The uncertain input parameter is ℘(k) = 0.5(1 + η cos(0.25k)), while the bounded dis-
turbance and output measurement noise are: w(k) ∈ [w(k) w(k)] for w(k) = [0.35 0 0 0]T ,
w(k) = [0.45 0 0 0]T and v(k) = V cos(0.25πk) with V = −0.00001.

The two matrices ΣA and ΣCA are, respectively, obtained using (12a) and (12b), and
bounds on the uncertain quantities are calculated by (10), (11) and (13). The observability
matrix for κj = (k + j); j = 0, 1, 2 is computed as follows:

©−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1− aκ0 0 0

(1− aκ1)
(1− aκ0)

0 bκ1 dκ0

(1− aκ2)
(1− aκ1)
(1− aκ0)

bκ1 cκ0 dκ2

bκ1 dκ2(1− aκ0 − dκ0)
+dκ0{bκ1(1− aκ2)
+bκ2(1− aκ1 − bκ1)

0
b(κ0)

(1− a(κ1)
)b(κ0)

+b(κ1)
(1− a(κ0)

− b(κ0)
)

bκ0(1− aκ2)(1− aκ1)
+(1− aκ0 − bκ0)

{bκ1(1− aκ2) + bκ2(1− aκ1 − bκ1)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It should be noted that our model is of order four, i.e., n = 4. Therefore, we need

to know the first two state intervals to implement the given interval estimator (9) for
k ≥ 3. Hence, the interval predictor (24) is used for k = 1, 2 provided that the initial values
x(0) ≤ x(0) ≤ x(0) are satisfied. It is worth mentioning that the given model does not
have to be non-negative for the proposed interval estimator to operate.

Simulation experiments of the proposed method and the one in [28] are conducted
to show the efficiency of the given approach. As perceived, the actual states are confined
inside the two boundaries generated by (24) and (9). Figure 2 depicts the evolution of the
actual states xs, s = 1, 2, 3, 4, the estimated bounds by the proposed method (solid pink
lines), and the estimated bounds by MST (blue dashed line) [28]. The figure shows that
the developed approach estimates tighter bounds than those calculated using the method
described in [28]. Furthermore, in regards to the design perspective, the observer gain
matrix in [28] needs to be Schur and non-negative, while we do not need an observer gain
to design the interval estimator.
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Figure 2. Interval estimations by proposed method vs. given in [28] for each state variable x1, x2, x3, x4

corresponding to S, E, I, R.

Secondly, the comparison of the interval state estimation errors eS, eE, eI and eR
reflected in Figures 3 and 4 further clarify that the estimated bounds generated by the
proposed method are more accurate and precise compared with [28]. Finally, Figure 5
shows the convergence of the interval widths given by (28). After three steps, the interval
widths converge to their final values, proving the finite-time convergence performance
of the proposed technique. Thus, it is concluded that the proposed method has a better
performance.
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Figure 4. Lower-bound error: (a) proposed method; (b) method given in [28].

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (weeks)

W
id

th
 o

f 
in

te
rv

al
 e

st
im

at
io

n
s

 

 
Max witdth bound
Interval width of S
Interval width of E
Interval width of I
Interval width of R

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Figure 5. Finite-time convergence of S, E, I and R after 3rd iteration.

187



Fractal Fract. 2022, 6, 213

5.2. Example 2: Ebola Outbreak in West Africa

The 2014 West Africa Ebola outbreak [47] is considered using the following parameters
to demonstrate the efficiency of the suggested technique having a period of one day as

a = 0.0099/day, b = 0.00128/day, c = 0.1887/day,
d = 0.1/day, ℘ = 0.4/day.

Using these parameters, we get matrix A, as follows:

A =

⎡⎢⎢⎣
0.9901 0 0 0.00128

0 0.8014 0 0
0 0.1887 0.8901 0
0 0 0.1 0.9888

⎤⎥⎥⎦.

The output measurement noise v(k) is uniformly distributed with given bounds
−V ≤ v(k) ≤ V; V = 0.001.

We assumed that  (k) = ℘S(y − v) is unknown but bounded with the following
constraints:

 (k)− τ =  (k) ≤  (k) ≤  (k) =  (k) + τ; τ = 0.0001.

The observability matrix is obtained using A and C as

© =

⎡⎢⎢⎣
1 0 1 0

0.9991 0.1887 0.8991 0.0013
0.9982 0.3226 0.8085 0.0026
0.9973 0.4140 0.7272 0.0038

⎤⎥⎥⎦.

The disturbance matrix to obtain bounds on the uncertain input, and uncertain birth
and death rate is computed as
φ(k) = ΣA − Δy(k)ΣCA with Δy(k) = A3©−1 and

ΣA =

⎡⎢⎢⎣
0.9696 0 0.0001 0.0024 0.96 0

0 0.5016 0 0 0 0.66
0 0.4348 0.7638 0 0 0.3
0 0.0332 0.2057 0.9672 0 0

0 0 1 0 0 0
0.66 0 0 1 0 0

0.8493 0 0 0 1 0
0.1107 0.9588 0 0 0 1

⎤⎥⎥⎦,

ΣCA =

⎡⎢⎢⎣
0 0 0 0 0 0 0
1 0 0 0 0 0 0

1.01 0 0 0.0012 1 0 0
0.9696 0 0.0001 0.0024 1.01 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.0012 1 0 1 0

⎤⎥⎥⎦.

Similarly, the measurement noise matrix is calculated as ϕv(k) = −Δy(k). The initial un-
known bounded states are part of the interval x(0) ≤ x(0) ≤ x(0)with x(0) = [0.88 0.06 0.049 0]
and x(0) = [0.93 0.08 0.052 0.05].

The bounds on the uncertain input, uncertain birth-death rate and measurement noise
are obtained using (10), (11) and (13), respectively. For the proposed SEIR model (4), we
have n = 4; therefore, interval predictor (24) is used for k = 1, 2 whereas (9) is used for
k > 2 to obtain guaranteed bounds on x(k) provided that x(0) ≤ x(0) ≤ x(0).

The simulation results of the proposed method and the one in [27] are depicted in
Figure 6 to compare the observers’ dynamics. As shown in Figure 6, the bounds generated
by the developed method are tighter than those resulting from the work of Degue et al. [27].
In addition, the proposed method is easy to implement compared with [27] as it does not
need observer gain and nonnegativity of the system dynamics to design the interval
estimator. Moreover, Figures 7 and 8 show that the interval estimation errors e−i = xr − xr,
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e+i = xr − xr for r = 1, 2, 3, 4; i = S, E, I, R, respectively, provided by our work are much
smaller compared with [27].

Figure 6. Interval estimations by proposed method vs. the method given in [27] for each state variable
x1, x2, x3, x4 corresponding to S, E, I, R.
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Figure 7. Upper-bound error: (a) proposed method; (b) method given in [27].
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Figure 8. Lower-bound error: (a) proposed method; (b) method given in [27].

6. Conclusions

We developed a new strategy to design an interval state estimator for a fourth-order
nonlinear discrete-time SEIR epidemic model subject to uncertain input, disturbances and
measurement noise. The proposed method only requires the bounded values instead
of exact values for state disturbance, unknown input, and parameters. In addition, no
bounds on the time-varying transmission rate (susceptible to the infected stage) are re-
quired. The MST is widely used to design such an observer, but obtaining a non-negative
model is not always feasible. Therefore, the proposed interval state estimator relaxes
such restrictions by estimating the four compartment states using the observability matrix
instead of point-wise estimation. The finite-time convergence of the interval width for
the proposed approach is investigated to demonstrate its stability and performance. In
addition, the interval widths’ upper bound is estimated a priori. Finally, two numerical
simulations are conducted to test the performance of the designed method. It is concluded
that the proposed interval estimator generates more accurate boundaries and performs
better. However, the proposed technique can currently be applied in linear and nonlinear
discrete-time models. The interval estimator design approach for continuous-time systems
will be investigated in the future.
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