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(Fractional) differential equations have seen increasing use in physics, signal process-
ing, fluid mechanics, viscoelasticity, mathematical biology, electrochemistry, and many
other fields over the last two decades, providing a new and more realistic way to capture
memory-dependent phenomena and irregularities inside systems using more sophisticated
mathematical analysis (see, for example, [1] and the references therein).

The study of the stability of (fractional) differential equations has attracted a lot of
attention as a result of its growing applications. Furthermore, fractional- and integer-order
controllers have received increased attention in recent years. Among these are optimal
control, CRONE controllers, fractional PID controllers, lead-lag compensators, and sliding
mode control.

The purpose of this Special Issue is to carry out studies on fractional /integer-order con-
trol theory and its applications to practical systems modeled using fractional/integer-order
differential equations such as design, implementation, and application of fractional /integer-
order control to electrical circuits and systems, mechanical systems, chemical systems,
biological systems, finance systems, etc.

Ten high-quality papers were accepted for publication in this Special Issue. The
papers were written by different authors (note that no author published more than one
paper, which proves the wide scope of the Special Issue). The published papers are briefly
summarized as follows.

According to [2], the discrete fractional Fourier transform (DFRFT) has several def-
initions, the most common of which is the multiweighted fractional Fourier transform
(M-WEFREFT). It is difficult to demonstrate its unitarity. The weighted-type fractional Fourier
transform, fractional-order matrix, and eigendecomposition-type fractional Fourier trans-
form are used as basic functions to demonstrate and describe unitarity. They observed that
the M-WERFT has just four effective weighting terms, none of which are extended to M
terms, as stated by the definition. Furthermore, the program code is examined, and the
results demonstrate that the prior work (Digit Signal Process 2020: 104: 18) for unitary
verification based on MATLAB is incorrect.

According to [3], there has been a recent surge in the number of papers addressing
the overall issue of fractional-order controllers, with a concentration on fractional-order
PID. This controller has been offered in several versions, each with its own set of tweaking
techniques and implementation possibilities. A number of recent studies have discussed
the practical application of such controllers. However, industrial acceptance of these
controllers is still a long way off. Auto-tuning approaches for fractional-order PIDs may
increase their desirability in relation to industrial applications. The existing auto-tuning
approaches for fractional-order PIDs are reviewed in this work. The emphasis is on the most
recent discoveries. For various processes, a comparison of many auto-tuning algorithms
is addressed. Numerical examples are provided to demonstrate the applicability of the
methodologies, which might be applied to simple industrial operations.

Fractal Fract. 2023, 7, 48. https:/ /doi.org/10.3390/fractalfract7010048 1 https:/ /www.mdpi.com/journal/fractalfract
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The study [4] proposes an interval estimator for a fourth-order nonlinear susceptible—
exposed—infected-recovered (SEIR) model with disturbances using noisy counts of sus-
ceptible patients given by Public Health Services (PHS). According to the World Health
Organization, infectious diseases are the leading cause of mortality among the top 10 causes
of death worldwide (WHO). As a result, tracking and assessing the progression of these dis-
eases is critical for developing intervention methods. The authors investigate a real-world
situation in which some uncertain variables, such as model disturbances and uncertain
input and output measurement noise, are not precisely available but fall within an interval.
Furthermore, the unclear transmission bound rate from the susceptible to the exposed stage
cannot be measured. They created an interval estimator based on an observability matrix
that yields a tight interval vector for the SEIR model’s actual states in a guaranteed man-
ner without computing the observer gain. The developed approach provides additional
freedom because it is not dependent on observer gain. For the estimated state vector, the
convergence of the width to a known value in a finite period is explored to demonstrate
the stability of the estimation error. Finally, simulation results show that the suggested
approach performs well.

Ref. [5] discusses a novel finite time stability (FTS) of neutral fractional-order systems
with a time delay (NFOTSs). In light of this, the Gronwall inequality is used to demonstrate
the FTSs of NFOTSs in the literature. The application of fixed-point theory to show the FTS
of NFOTSs is a novel component of our proposed study. Finally, two instances are used to
validate and substantiate the theoretical contributions.

The authors of [6] introduce a framework of distributed interval observers for fractional-
order multiagent systems with nonlinearity. First, a frame was created to construct the
system’s upper and lower boundaries. The positivity of the error dynamics might be
ensured by applying monotone system theory, implying that the constraints could trap
the initial state. Second, a sufficient condition was used to ensure that distributed inter-
val observers are bounded. The adequate condition was then based on an expansion of
the Lyapunov function in the realm of fractional calculus. An algorithm related to the
observer design technique was also provided. Finally, a numerical simulation was utilized
to demonstrate the distributed interval observer’s usefulness.

The paper [7] investigates an approximate method for solving the generalized frac-
tional diffusion equation that combines the finite difference and collocation methods
(GFDE). The presented method’s convergence and stability analyses are also thoroughly
established. To ensure the proposed method’s effectiveness and accuracy, test examples
with different scale and weight functions are taken into account, and the numerical results
obtained are compared to the existing methods in the literature. The suggested method
works particularly well with generalized fractional derivatives (GFDs), as the existence of
scale and weight functions in a GFD makes discretization and further analysis problematic.

According to [8], autonomous underwater vehicles (AUVs) have a wide range of
uses due to their capacity to travel great distances, their ability conceal themselves well,
their high level of intelligence, and their ability to replace humans in dangerous missions.
AUV motion control systems, which can assure steady operation in the complicated ocean
environment, have piqued the interest of researchers. The authors suggest a single-input
fractional-order fuzzy logic controller (SIFOFLC) as an AUV motion-control system in
this research. First, a single-input fuzzy logic controller (SIFLC) based on the signed
distance approach was presented, with its control input being a linear combination of the
error signal and its derivative. The SIFLC reduces the controller design and calculation
procedure significantly. Then, a SIFOFLC with the error signal’s derivative extending to a
fractional order was produced, providing additional flexibility and adaptability. Finally,
comparative numerical simulations of spiral dive motion control were performed to validate
the superiority of the suggested control algorithm. Meanwhile, the hybrid particle swarm
optimization (HPSO) technique was used to optimize the parameters of several controllers.
The simulation results demonstrate the suggested control algorithm’s enhanced stability
and transient performance.
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The traditional approach to the integration of fractional-order starting value issues, ac-
cording to [9], is based on the Caputo derivative, whose beginning conditions are employed
to build the classical integral equation. The authors show, using a simple counter example,
that this technique results in incorrect free-response transients. The frequency-distributed
model of the fractional integrator and its distributed beginning conditions are used to
solve this fundamental problem. They answer the preceding counter-example using this
model and provide a methodology that is a generalization of the integer-order approach.
Finally, in the linear situation, this technique is used to model Fractional Differential Sys-
tems (FDS) and for the formulation of their transients. Two expressions are constructed,
one based on the Mittag—Leffler function and the other on the notion of a distributed
exponential function.

According to [10], fractional-order differential equations are effective tools for mod-
eling dynamic systems with long-term memory effects. The verified simulation of such
system models using interval tools enables the computation of assured enclosures of attain-
able pseudo-state regions over a finite time horizon. In prior work, the author published an
iteration method based on Picard iteration that uses Mittag-Leffler functions to determine
guaranteed pseudo-state enclosures. In this study, the corresponding iteration is gener-
alized to use exponential functions during the iteration scheme evaluation. A validated
solution of integer-order sets of differential equations yields such exponential functions.
The goal of this work is to show that using exponential functions for Mittag-Leffler func-
tions instead of pure box-type interval enclosures not only improves the tightness of the
calculated pseudo-state enclosures, but also minimizes the required computational cost.
These claims are supported by a realistic simulation model of the charging/discharging
kinetics of Lithium-ion batteries.

Finally, Ref. [11] investigates the synchronization of fractional-order uncertain delayed
neural networks with an event-triggered communication strategy. By developing an
appropriate Lyapunov-Krasovskii functional (LKF) and inequality approaches, sufficient
criteria for the stability of delayed neural networks are obtained. The criteria are expressed
as linear matrix inequalities (LMIs). To accomplish synchronization, a controller is derived
using the drive-response idea, the LMI technique, and the Lyapunov stability theorem.
Finally, numerical examples are provided to validate the effectiveness of the major findings.

Acknowledgments: The Guest Editors of this Special Issue would like to thank the anonymous
reviewers and the editorial office for their hard work during the review and publication process.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This work deals with a new finite time stability (FTS) of neutral fractional order systems
with time delay (NFOTSs). In light of this, FTSs of NFOTSs are demonstrated in the literature using
the Gronwall inequality. The innovative aspect of our proposed study is the application of fixed point
theory to show the FTS of NFOTSs. Finally, using two examples, the theoretical contributions are
confirmed and substantiated.

Keywords: fractional calculus; neutral systems; fixed-point theory

1. Introduction

The Fractional Order System (FOS) is a nonlinear system presented with a non-integer
derivative. It is well established that mathematical models can be used to describe physical
systems. These mathematical models are used to operate such systems in a variety of ways,
including controlling, observing, and detecting. The faults and errors of modelization
may affect the system quality and performance. Therefore, the use of Fractional deriva-
tives can approach such a mathematical model to physical reality. This fact is proved in
many real physical systems, see for example [1]. Recently, the fractional calculus has at-
tracted the attention of many researchers and numerous works have been published in this
context [2-11]. In fact, by using quantum calculus, the work in [6] deals with the extension
of a hybrid fractional differential operator. Utilizing the local fractional Laplace variational
iteration methods and the local fractional reduced differential transform, authors in [7]
have obtained an approximation of the solutions for coupled Korteweg De Vries Equations.
The application of these FOSs is numerous in different domain applications, whether in
electricity [10], thermal [5], chemistry [11], signal processing [12], biology [13,14] or control
theory, such as fault estimation [15], stabilization [16], observer design [16,17], optimal
control [18], and asymptotic stability [19,20].

The study of FIS for the Fractional Order Time Delay Systems (FOTDSs) has been largely
studied in the literature in the case of continuous and discrete time [21-30]. In [30], H. Ye et al.,
have shown a Generalized Gronwall Inequality (GGI). After that, authors in [25] have used
the GGI to study the FTS for FOTDSs. The stability of neutral fractional order time delay
systems with Lipschitz nonlinearities in finite time has been investigated by F. Du et al.
in [23]. The finite-time stability of a class of fractional delayed neural networks with
commensurate order between 0 and 1 was studied by the authors in [28]. Additionally,
the authors in [26] have provided an analytical method based on the Laplace transform
and the ‘inf-sup” approach for evaluating the finite-time stability of singular fractional-
order switching systems with delay. The authors have proposed a constructive geometric
design for switching laws based on the partitioning of the stability state regions in convex
cones. The suggested technique allows for the development of novel delay-dependent

Fractal Fract. 2022, 6, 289. https:/ /doi.org/10.3390/ fractalfract6060289 5
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adequate conditions for the system’s regularity, impulse-free, and finite-time stability in
terms of tractable matrix inequalities and Mittag—Leffler functions. A case study is offered
to demonstrate the proposed method’s efficacy. Using the Lyapunov method, Thanh et al.
in [27] have investigated a novel FTS analysis of FOTDSs. By using Banach fixed point
method, author in [21] has studied the FTS for FOTDSs. In the discrete case, one has the
following references [22,24,29]. Indeed, authors in [24] have proposed a sufficient condition
for ensuring the FTS for Nabla uncertain FOS. Furthermore, authors in [22] have established
a new Gronwall Inequality and they have used it to study the FTS of a class of nonlinear
fractional delay difference systems. Furthermore, in [29], the FTS of Caputo delta fractional
difference equations is investigated. On a finite time domain, a generalized Gronwall
inequality is given. For fractional differential equations, a finite-time stability condition is
suggested. The concept is then generalized to discrete fractional cases. There are finite-time
stable conditions for a linear fractional difference equation with constant delays. To support
the theoretical result, one example is numerically shown.

Motivated by the above study, this article treats the FTS for FOS of neutral type by
using a version of the Banach fixed point theorem and some properties of the Mittag-Leffler
Function (MLF). The contribution of this work is summarized as follows:

*  Knowing that, FTS of NFOTSs are proved in the literature based on the Gronwall
inequality, see [23]. The novelty of our suggested work comes from the use of the
fixed point theory to demonstrate the FTS of NFOTSs;

*  Anovel FTS result of FOS of neutral type is given;

e The theoretical contributions are confirmed and validated by two examples.

The rest of the paper is organized as follows. The second section deals with some
preliminaries. Some basic results related to fractional calculus, fixed point theory, as well
as finite time stability are shown. In regards to the third section, the stability analysis
of the suggested system (2), in the case of (A; < A;) and (A1 = Ay), is investigated and
described. Note that the fixed point approach is used to demonstrate the main results.
The fourth section is concentrated to show the validity of the proposed results. Two
examples are suggested to demonstrate the efficiency of the main results. Finally, to end
the work, a conclusion is presented in the fifth section showing the principle fundamentals
of the work.

2. Basic Results

Definition 1 ([31]). Given 0 < x < 1. The CFD is given by,

“Dlgts) = ﬁ e [ 6= @) (g(w) - gla)de. M

Definition 2 ([31]). The MLF is defined by :

qx+1

with x > 0,s € C.

Lemma 1 ([21]). We have for s > 0

sk - I'(x+1)
E(w) S 2

’

where 0 < x < land A > 0.

Remark 1. The function d(t) = Ey (b(t — T)X) satisfies “D¥d(t) = bd(t), where b € R*.
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Definition 3. A mapping p : B x B — [0, 0] is called a generalized metric on a nonempty set
B if

S1 B(wy, wy) = 0if, and only if, wy = wy;

S2 B(w1,wr) = B(wa, wr) forall wy,wy € B;

S3 ﬁ(wl,OJ3) < ‘B(wl,LUz) + ‘B(LUZ, LU3)f0T all w1, Wy, w3 € B.

Theorem 1. Let (B, B) be a generalized complete metric space. Suppose that K : B — B is

contractive with k < 1. If there is an integer ko > 0, such that B(K¥o+1bg, Kkobg) < oo for some
by € B, so:
@ lim K"by = by with K(by) = by;
n—->—+00
(b) by is the unique fixed point of K in B* := {by € B : p(Kkoby, by) < oo};
(c) Ifby € B*, then B(by, by) < 11B(Kba, by).

We consider the following system:
CDy2x(t) = CEDY'x(t—g(t) = Box(t) + Bix(t — g(t))
+Byu(t) + F(t, x(t), x(t —¢(t)),v(t), t >0, (2)

with the initial condition x(s) = {(s) for —¢ < s < 0, with0 < A} < Ay < 1, ¢(t) is
continuous, 0 < ¢(t) < ¢, v(t) € R is the disturbance, { € C!([—¢,0],R7), C € R7¥,
By € R7%7 By € R1*1, B, € RI*P.

The function F is continuous and satisfies:

[F(t,01,02,03) = F(T, 91, 92, ¢3)|| < f(T) (lor = ¥1ll + lloz = w2l + [z — ws3])),  (B)

and F(7,0,0,0) =0, for all (7,031, 02,03, 1, P2, 13) € Ry x RT x R7 x RP x RT x RT x R?
where f is a continuous function.
The function v is continuous and satisfies:

Jo>0: vT(Hu(t) < % (4)
Definition 4. The FOS (2) possesses FTS w.r.t. {71,72,0, T}, 71 < 72 if

2l < m,
implies:
Hx(t)H <7, VtE [0/ T]/
for all v satisfying (4), where ||| = sup ||Z(7)].

T€[—¢,0]

3. Stability Analysis

This section is used to show our main results.
First, let us denote b; = m[ax] (f(r) + HB,H) fori=0,1,2and c = ||C|.
rel0,T

In the next subsections, we study the FTS of (2) when A1 < A; and when Ay = A,.
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3.1. The Case Ay < Ay

From Theorem 1 in [23], we have the solution of the FOS (2) is the solution of the
following system

tha—M 1 ot
x(t) = 20) = =60 e =71y + T o () I Cx(s —(s))ds
o =9 [Bux(o) + Buxs —<(5)
+  Byu(s) + F(s,x(s), x(s — g(s)),v(s))}ds, 0<t<T,
x(H) = {(t), ~¢ <t < 0.

Theorem 2. The FOS (2) is FTS w.r.t. {y1,72,0, T}, 11 < 72 if there exist 171,172 > 0, such that

G(71,0) < 72, ()

where

_ A=A Ao

G(ne) = (5+01EA2—A1((C+'71)T )JEx, ((bo + b1 +1m2)T ))71
+ Ey-n ((c+m) T M)Eq, ((bo + by + 112) T2 o, (6)
o TA2—M o 1 C&M] bo&Mz b]&Mz
0= 1H e 4= gy (r()\z oA D Tt TOwt 1))'
oM o)
P+ D T 20 B, (e ) )
™ bo+b

My = sup ( )”ndﬂ:(cferbofbtinz)'

refo,r] NEy (Do + b1 +172)7T42)

Proof. Let { € C!([—,0],RY), such that ||| < 7.
Let F = C([—¢, T],R7) and consider the metric  on F by

B(y1,y2) = inf {r € (0,00 : [ly1(t) —y2(D)ll <rg(t), Yt € [—¢, T }

where g is given by g(t) = Ej,_x, ((c +71)T2 M) Ey, ((bo + by + 112)T2) for T € [0, T]
and g(t) =1, for T € [—¢,0].
We consider the operator: D : F — F, such that

wh—M

(PX)(w) = 0) - =5, — 77T
1

+m /Ow(w —5)MMTICX (s — ¢(s))ds

gy [ = [BoX(6) + BiX(s — c(e)

+Byu(s) +F(s,X(s),X(s—g(s)),v(s))}ds, (7)
forw € [0, T] and (DX)(w) = {(w), forw € [—¢,0].

Note that, D is well defined, (F, B) is a generalized complete metric space, (DX, Xg) <
o0, and {X; € F: ‘B(X(),X]) < oo} =F,VXy € F.
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Let X1, X € F, forw € [—¢,0], we get (DX7)(w) — (DX3)(w) = 0.
For w € [0, T], we have

| @x1)(@) - (DX2) (w)|

Y P i |
S/o %c\\xl(r—g(r))—Xz(r—G(r))Hd"

[ O [0+ 1) 1)~ a0
+(ftr)+ ||Bl||)||xl<rfg<r>> = Xa(r = ¢(r)ll]ar

w o\ A—A -1
<c %HXW*W»sz<rfg<r>)||dr

+ho /Ow(w et HX1(712(;25)<2(7)|| ir

B R e e

Then,

|(DX1)(w) - (DX2) (w)

v (= MM Ky (r = g(r) = Xalr— g()]

<l “T-w) ooy S
b O e 10X

T | w=n e

b X — () — Xa(r — ()]

g Jy @0 30— <) Y

W (w—7 Ap—A1—1
< Cﬁ(XerZ)/O ﬁg(” —¢g(r))dr

+HBE) [ e gt et

—g(r))dr

Therefore,

[ox)@ - x| < e [ BT e

+ (b0+bﬁgf§;<1,X2) ./()w(ZU*T)/\271 g(T)dT
< cB(Xy, X2)En, ((bo + by + m2)w’?)

w (w_T))\z—/\l—l B
Ty B e i

+ (b +b1)B(Xa, XZ)E/\Z A ((e+m)wa)

/ (W7T E/\z b0+b1+172)r/\2)d1'.

X

Using Remark 1, we get
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¢ b
H(DX1)(w) - (DXz)(ZU)H < mﬁ(XLXZ)g(w) + mﬁ(xerZ)g(W)
by
" PO s
c b0+b1
= (c+171 bo+b1+,]2)/3(X1,Xz)g(w). ©)
Then,
|@x)@) - Px)@)| -
g(w) = c+m bo+b1-:;72)ﬁ(X1'X2)~
Thus,
B(DX1, DX) < ( ‘ b + by ),B(XLXZ).

c+m bo+b1+172

Therefore, D is contractive.
Let xg be the function given by xo(t) = {(7), for T € [—¢,0] and xo(7) = (0) —

(- g(O))iAH) fort € [0, T
Then, we have

l[xo(T) < (HCHHHCIIm)

forall T € [—¢, TJ.
For T € [—¢,0], we get (Dxp) (1) — x0(7) = 0.
For w € [0, T], we have

— syl

[@x)e) — )] = [ (s ) s

oy o @ == ollxo(®)] + b (s = ¢(5)) | + bac]ds

A=A wh—M
A +1))r(;\272\1+1)

)) +b1(‘|€”

< c(ligl+eligliz (

+ (bo(lc] +CHCHF(A —/\1 +1

M Ao
ol A+1))+bZQ>F(A2+1)

w2—M
C||C||5m

IN

+ (bollZllo + balIZ]|6 + b2e) (10)

w2
TF(A2+1)"
Then

oo -nwl g,
g(w) T T —A+1)

+ (BollZllo + b1IZ]16 + b20) 11)

_ M
T(A,+1)

forallw € [0, T].

10
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Therefore,
c[[Zllom,
< - s
Fxox) < £, T30
M
b S+0b 6+ b)) =~ 12
4 (olE1+ b6 + ) 77 12
It follows from Theorem 1 that there is a unique solution x of (2) with initial conditions
of , such that
1 cllZllom
<
Plrox) = = 7 {F()\z —A+1)
+ (tllgo+ b g6 + bag) =]
I(A2+1)
< am+ e (13)
Therefore,

l[x0(t) = x(£)]| < (c171 + €2) Exy—a, ((c +71) T*2 M) Ep, ((bo + by +172) T™2),

forevery t € [0, T).
Then,

(O < flxo(®I + [1x(t) — x0(t)]
(JJrClE,\Z,A]((C+7]1)T)‘27)‘1)E;\2((bo+bl +1’]2)T/\2))'Yl
c2Ep,—, (¢ + ) T2 ) Ep, (b0 + by +12) T2 )0, (14)

IN N

+

forevery t € [0, T1.
Thus, ||x(t)|| < 72, forall t € [0, T], if (5) is satisfied. O

Remark 2. Using Lemma 1, we get

o < 1 ( cd byd 121 )
"S- \ctm  botbitm  bo+ b+
and 1 "
2
<l —
2= A=) bo+bi+m
Let 1 o bod b0
L c 0 1
Cli(1—'7)<C+771+b0+bl+ﬂz+bo+b1+7]z>
and

; biz
(T=n)bo+br+12°
Therefore, the condition (5) can be relaxed by:

Cy) =

G(11,0) <72, (15)

where

C('yl, Q) = ((5 + EIE/\Z*/\l ((C + 7]1)T/\27A1)E/\2 ((bo + b+ WZ)TA2)>')/1
+ &Ep_a, ((c+m) T2 M)E), ((bo+ by +12) T 0. (16)

11
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3.2. The Case Ay = Ay
The solution of the FOS (2) is the solution of

©(0) = 20)+C(x(t =) ~ (=60 + Fy [ (=" [Box(s) + Baxls ()

+ Byu(s) + F(s,x(s), x(s — g(s)),v(s))]ds, 0<t<T,
x(t) =¢(t), —¢ <t <0.

Theorem 3. The FOS (2) is FTS w.r.t. {7y1,772,0, T}, 71 < 2 if there exist 6 > 0, such that

n<1,
and
K('Yl/Q) <7 (17)
where -
= _0T
n=(e+ b0+b1+9)'
K(11,0) = (1+C1E,\z((b0+bl+9)T/\2)),yl
+ CZE}Lz((b0+bl +0)TAZ))Q, (18)
1 bOM blM sz
= 2 SO Y S
LS SO T+ 1) % = T+ ™
T2
M = su )
TE[OI,)T] <EA2 ((b() + b1+ 9)’[)‘2) )

Proof. Let { € C!([—,0],RY), such that ||| < 7.
Let F = C([—¢, T],R7) and consider the metric  on F by

By1,v2) = inf{r € [0,00] : HmU)g(;l)yz(l)H <rVlel-g, T]},

where g is given by g(I) = 1, for | € [—¢,0] and g(I) = Ey, ((bo + by + 0)1"?) for I € [0, T].
We consider the operator: D : F — F, such that

(DX)(w)

2(0) + C(X(w = g(w) - £(~¢(0)))
1 w

T'(A2) Jo

+ Byu(s) + F(s, X(s), X(s — g(s)),v(s))}ds, (19)

+ (w =) [BoX(s) + B1X(s — ¢(5))

forw € [0,T] and (DX)(w) = {(w), for w € [—¢,0].

Note that, D is well defined, (F, ) is a generalized complete metric space, (D Xy, Xg) < oo,
and {X] e F: ﬁ(Xo,Xl) < 00} =F,VXp e F.

Let Xy, Xp € F, forw € [—¢,0], we get (DX;)(w) — (DXz)(w) = 0.

12
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For w € [0, T], we have

|(DX1) (@) — (DXo) ()|
< o] (w = ¢(w)) = Xa(w = ¢(w))

w _ \A-1
[ [0+ 1) 1) - a0

+( )+ IBL ) X4 (r =€) = Xa(r = 6(r)) | dr
- I gg(z(:)})_f;(c;gz)u @Dl gy ()
+b0/()’” (w;(;@’)‘rl \|X1(M‘)g(—u)xz(u)||g(u)du

"W — )21 _ _
+b1/ (wr(;g) X4 (u Qg(t(li)i g)(if

< ep(1, Xa)g (w —g(w)) + XU [0y et g(uya

+% /O'w(w — w2 g(u)du, ¢

Using Remark 1, we get

bo

IN

cB(Xy, X2)g(w) B(X1, X2)g(w)

+b0+b1+9
by

mﬁ(xllxz)g(w)

(C by + by
b0+b1+0

|(PX1)(w) — (DX2) (w)|

IN

)B(X1, X2)g(w). (1)

Then,

[Px0@ - Px@] s,

g(w) - C+b0+bl+9)lg(X1/X2)/

Thus,
bo + by

DX4,D <
'B( X1, Xz) - (C+bo+bl+9

)B(X1, Xa).

Therefore, D is contractive.

Let xg be the function given by xo(7) = {(7), for T € [—¢,0] and x¢(7) = {(0) for
Te[0,T].

Then, we have

(D) < lIZ1l,

forallt € [—¢, T].

For T € [—¢,0], we get (Dxo) (1) — xo(t) = 0.

For w € [0, T], we have

|(Pxo) (@) = xo(w)| < 2l

g @9 Bl + b (s — 6(5)) |+ baclds

IN

Ao
2021+ g, gy (Bl + Bl + o). @)

Ay +1

13
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Then,
[P0 @ —x0@] .
C
g(w) -
M
+ (bo\\§\|+b1||§|\+bzg)m/ (23)
forallw € [0, T].
Therefore,
B(Dxo,x0) < 2¢||C]|
M
+ (bo\\5\|+bl||§|\+b29)m~ (24)

Theorem 1 implies that (2) has a unique solution x with initial conditions of {, such that
1
< =
plox) < g [2lel
M
(BoliZll + il + bzg)m]

< am+oe (25)

Therefore,
l[x0(t) = x(#)[| < (c171 + c20) En, ((bo + by + 6)T*2),

forallt € [0, T].
Then,

IN

[l (x — x0) ()| + [[xo0(t)
(1 + c1Ep, ((bo + by + 9)TA2)>71
+ 2, ((bo + by +6)T")0. (26)

<@

IN

Thus, ||x(t)|| < 72, forall t € [0, T], if (17) is satisfied. [

Remark 3. Using Lemma 1, we get

1 by by
<
as (1—;7)<2C+b0+b1+9+9+b1+b0>

and . 5
2
<— =
2= A=) bo+b 10
Let us consider

bo bl )

a= (2C+0+bl+bo+ho+b1+9

)

and
1 by
2=

(1—n)8+bi+by
Therefore, the condition (17) can be relaxed by:

R(11,0) <72, @7)

14
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where

R(r,0) = (1+&Ey((bo+b+0)T2))m
+ EZE/\z((bO"Fbl"FG)T/\Z)Q. (28)

Remark 4. In the Theorem 3, ¢ < 1 it is a necessary condition.
Remark 5. In the case when C = 0, we get the results in [21].

4. Examples
Two examples are studied to prove the applicability of Theorems 2 and 3.

Example 1. Consider the NFOTDSs (2), with A, = 0.7, A = 0.2, ¢(s) = 0.1,

(1) = (05,0)", ¢(r) = (0.05,0)", for T € [-0.1,0],

F(s,x(s),x(s — ¢(s)),v(s)) = 0.01 ( sin (x2(s — ¢(s))), sin (x; (s)))T,

0 04 —-0.6 0 03 0 02 0
Bo= ( 01 0 )'Bl* ( —-02 0 >'Bz* ( 04 0 >'C* < 01 0 )
We get by = 0.41, by = 0.64, by = 0.51 and ¢ = 0.2236.
Form =1, =1,0=1, 71 = 03 and vy, = 60. Moreover, if we calculate 5, ¢, and ¢, then

G(711,0) =59 < 9, for T = 0.61. Based on theorem 2 it is clear that the NFOTDSs is FTS w.r.t
0.3,60,1,0.61).

and

Example 2. Consider the NFOTDSs (2), with A, = A1 = 0.6, g(s) = 0.1,

(1) = (0,05,0)", () = (0.04,0,0.02)", for T € [~0.1,0],

F(s,x(s),x(s — ¢(s)),v(s)) = 0.01(sin (x2(s —¢(s))),sin (x3(s — g(s)), sin (x; (s))))T,

and
0.01 —-0.2 025 0.01 —-0.15 0.31
By = -002 005 01 |,Bi=| 025 012 -0.14 |,

02 —-0.01 0.15 0.13 -0.12 0.22

0.08  0.07 0.2 0.1 02 0.03
By = 0.08 —0.07 —-0.06 |, C= 012 022 005 |.
—-0.12 —-0.03 —-0.14 -0.17 005 -0.21

We get by = 0.37, by = 0.47, by = 0.30, and ¢ = 0.35.
Foro=1,0=1,7 =04, v =100, and T = 1.05, we get K(7y1,0) ~ 97 < 72.
Theorem 3 implies that the NFOTDSs is FTS w.r.t (0.4, 100, 1, 1.05),

5. Conclusions

In this paper, a new robust FTS for NFOTDSs was described. By suggesting an
approach based on the fixed point theory, novel sufficient conditions for the robust FTS of
such systems are obtained. Finally, two examples were described to show the validity and
the useless of the suggested result.
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Abstract: The usual approach to the integration of fractional order initial value problems is based on
the Caputo derivative, whose initial conditions are used to formulate the classical integral equation.
Thanks to an elementary counter example, we demonstrate that this technique leads to wrong free-
response transients. The solution of this fundamental problem is to use the frequency-distributed
model of the fractional integrator and its distributed initial conditions. Using this model, we solve
the previous counter example and propose a methodology which is the generalization of the in-
teger order approach. Finally, this technique is applied to the modeling of Fractional Differential
Systems (FDS) and the formulation of their transients in the linear case. Two expressions are de-
rived, one using the Mittag-Leffler function and a new one based on the definition of a distributed
exponential function.

Keywords: initial value problem; fractional differential systems; fractional integral equation; infinite-
state approach; Riemann-Liouville integral; frequency distributed exponential function

1. Introduction

The integration of Fractional Differential Equations (FDE) and Systems (FDS) is con-
sidered to be a well-founded and approved topic for most fractional calculus researchers.
Therefore, the title of the paper appears as an ingenuous and unrealistic objective to revisit
an established mathematical result. Nevertheless, our purpose is to provide an objective
analysis of this fundamental problem and to formulate a satisfactory solution to fractional-
order initial-value problems.

In fact, the initial-value problem, or Cauchy problem, is obviously trivial in the
integer order case [1,2]. On the other hand, the solution of the fractional-order case
appears as a generalization of the integer-order one. However, due to the multiplicity of
fractional-order derivative definitions, researchers have considered it necessary to adapt
the classical approach by referring to a particular derivative and its corresponding initial
conditions [3-5]. Practically, most of the time, the Caputo derivative [3,6] is used because
its “initial conditions” can be physically interpreted. Many critics have already addressed
this choice, based on initialization considerations [7-15]. In those papers, the authors
emphasize the inability of the Caputo derivative technique to solve the initialization
problem, but, contrary to the history function technique [9,10,16-21] and the infinite-state
approach [13,22-24], they do not provide a solution to this problem. Recently, some
solutions based on new fractional derivatives (see, for example, [25-28]), which are in
fact local derivatives [29,30], have been proposed. Practically, the direct consequence of
these multiple choices is that different theoretical free responses are possible for the same
FDE/FDS problem, which is of course physically inconsistent.

Our objective in this paper is to prove (in fact to recall) theoretically, using an elemen-
tary initial value problem, that the solution predicted by the Caputo derivative approach
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leads to a false free response. Then, we treat the same example with the frequency-
distributed model of the fractional integrator [31-34]. We demonstrate that using a dis-
tributed initial condition, in fact that of the fractional integrator, provides the good solution
to the considered problem. The conclusion of this analysis is that any fractional-order
initial-value problem has to be treated such as in the integer-order case, using essentially
the fractional integrator and its distributed initial state or its initialization function. Then,
this technique is applied to the modeling of FDE/FDS and the formulation of their tran-
sients in the linear case. Two expressions are derived, one using the classic Mittag—Leffler
function and a new one based on the definition of a distributed exponential function.

The theory developed in the paper is not a new one, since the first paper [35] related to
the fractional integrator was published in 1999. Since that original publication, this research
has been applied to the modeling and identification of real-world diffusive processes:
electrochemical [36], thermal [37], and rotor skin effect, see chapter 5, volume 1 of [34]. The
modeling of fractional systems based on the fractional integrator, known as the infinite-
state approach, has been presented in several articles, see, for example, [22,33,38], with a
particular focus on system initialization [23,24]. Moreover, it has been applied to the stability
analysis of linear and nonlinear systems with a distributed formulation of the Lyapunov
function [39]. The theory of the infinite state approach and its applications to various
domains of control theory are presented in a two-volume monograph [34]. However,
in spite of its contributions to initialization and Lyapunov system stability, this theory
is ignored or considered as an exotic contribution to fractional calculus, although it has
been adopted by researchers for initialization purposes [21,40-42] and Lyapunov stability
analysis [43-48]. Moreover, although the pseudo initial conditions of the Caputo derivative
are frequently criticized [8,9,16,20], mainly for their use in system initialization [7,14,15,21],
they are still used because they provide apparently simple solutions. Consequently, there is
an important challenge to provide a general and satisfactory solution to the initialization
problem, using the same approach as in the integer-order case, where the initial conditions
are those of the fractional integrator.

Thus, this paper intends to treat the FDE initial-value problem with a new and theo-
retical presentation of the infinite state approach, demonstrating that we do not have to
refer to any fractional derivative and, on the contrary, can focus on the Riemann-Liouville
integral and its distributed initial conditions. It is important to note that the authors have
privileged a theoretical formalism contrary to their previous publications, where numerical
simulations were abundantly used. So, the reader can refer to these previous papers to
find numerical illustrations related to initialization. A restricted version of the paper has
already been published in a recent conference [49].

The paper is composed of six sections and a conclusion. Section 1 is the introduction.
Sections 2—4 present the materials and methods related to initial-value problems and the
infinite state approach. In Section 5, an elementary counter-example permits us to invalidate
the usual Caputo derivative initial value approach. In Section 6, the frequency-distributed
integrator model is used to solve the previous counter-example and to formulate a new
approach to the FDE initial-value problem. This methodology is used in Section 6 to express
the dynamics of the general FDS initial-value problem.

2. Materials and Methods
2.1. The ODE Initial-Value Problem (or Cauchy Problem [1])

Let us consider the following Ordinary Differential System:

P — fxtoy it <1)

where x(t) = x(0) at t = 0 is the initial value.
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The Picard-Lindelof theorem [50] guarantees the existence of a unique solution to
(1). The principle of this theorem consists in reformulating the problem as an equivalent
integral equation:

) = [ 242 0) = [ Fxmnumyir +x0) @
0

and to construct a sequence of functions

P (t) = [ F@u(),u()dr +x(0) with p1(£) = x(0), ©
0

which converges to the solution of (1) and thus to the solution of the initial-value problem.
Such a construction is called Picard’s method [51] or the method of successive approximations.
In the linear and multidimensional case, Equation (1) can be expressed as:

dx(t)
dt

= Ax(t) + Bu(t) x(t) = x(0) att =0, (4)

where x(t) € RN, and A and B are matrices of appropriate dimensions.
It is well known that its solution, based on the exponential matrix function or transition matrix

O(t) = e with d(t) € RN*N
is given by [52]:

x(t) = ®()x(0) + /<I>(t — 7)Bu(t)dr. ®)

2.2. The FDE/FDS Initial Value Problem

Let us consider the elementary FDE
DY (x(5)) = f(x(),u(t)) 0 <n <1, 6)

where n is the fractional order and x(t) = x(0) at t = 0.

Contrary to the integer-order case, several approaches are derived from the frac-
tional derivative definitions of D} (x(¢)). The main popular ones are the Caputo and
Riemann-Liouville derivatives [3].

Practically, Equation (6) is integrated with the Caputo derivative definition, since its
initial condition is considered equal to x(0).

Then, in order to prove the existence and the uniqueness of the solution x(t) of (6),
Picard’s method [3-5] is frequently used.

In the linear multidimensional commensurate order case, Equation (6) becomes:

{ s (t))

0<n<l, (7)
where x(f) e RN, and A and B are matrices of appropriate dimensions.
The general solution of (7), expressed in terms of the Mittag-Leffler matrix function [53]
O(t) = E, 1 (At"), d(t) € RN*N
is
t

x(t) = ®(t)x(0) + /<I>(t —1)Bii(t)dt with (1) = D" (u(7)). 8)
0
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As mentioned in the introduction, the main objective of this paper is to revisit the
integration of the FDE/FDS initial-value problem, using the infinite-state approach, which
is directly related to the integer order ODE case and does not need any derivative definition,
as it is exhibited in Section 4.

3. Integration of FDE/FDS Based on Derivative Definitions
3.1. Riemann—Liouville Integral

The fractional integral of a function v(t), also called the Riemann-Liouville integral is
defined by

£ n—1
x(t) = oI (f(t) = /%v(r)d'r 0<n<l, ©9)
0

where (1) is the gamma function.
The fractional integral is in fact a convolution integral, characterized by the impulse
response or Kernel, h,(t), such that:

tnfl

hu(t) = —— and x(t) = hu(t) xo(t). (10)

Using the Laplace transform, we obtain

1
L{m ()} = 5, an
where b% corresponds to the fractional order integration operator.

3.2. Fractional Derivatives Definitions

Contrary to the fractional integral, the fractional derivative is not uniquely defined.
Usually, two main derivatives are considered; since they are used for the integration of
FDE/FDS, we focus on the case 0 <n <1 [34].

3.2.1. Caputo Derivative Definition

This definition corresponds to first differentiate x(t) and then calculates a fractional
integral with order (1—n). Since0 <n <1, then0<1-n<1.

p(x(t) = 1" (5 ) = o)+ 5 12)

Definition (12) clearly shows that the Caputo derivative corresponds to the Riemann-—
Liouville integral of the derivative of x(f).
In the Laplace domain, the Caputo derivative definition leads to

L{(or)} = {2} = L Exe - o) 1)
So, X(s) = S%L{CD?(x)} + %0), (14)

Or in the time domain,
x(t) = 17 (°DF(x) ) + x(0). (15)
Thus, the solution of FDE/FDS (6) according to the Caputo approach is

() = o IP (F(x(t),u(t)) + x(0) fort>0 0<n<1, (16)

22



Fractal Fract. 2022, 6, 550

where x(0) is interpreted as the initial condition of the FDE/FDS and also as the initial
value of the Riemann-Liouville integral.

This simple integral Equation (16), apparently equivalent to the integer order case (2),
has made the success of the Caputo derivative approach.

3.2.2. Riemann-Liouville Derivative Definition

This definition shows that the Riemann-Liouville derivative corresponds to the integer-
order derivative of the Riemann-Liouville integral of x(t).

RLDJ(x(1)) = 4 [ ()] = () % x(0)] 7)

Using the Laplace transform, we obtain

L{FEDI(x)} = ({17 (x)}) = 8(0) = 5 (X (5)) —£(0) = 5"X(5) — g(0)
with g(0) :{,mztl*"(x)} '

t=0

Since g(0) does not have a physical and direct interpretation, the Riemann-Liouville
derivative is generally not used to integrate system (6) or (7).

It is important to note that the two derivative definitions only require integer-order dif-
ferentiation (%) and fractional-order integration (I' ). So, contrary to a common belief,
the basic operation of fractional calculus is not fractional differentiation but
fractional integration.

3.2.3. The Griinwald-Letnikov Derivative
Instead of the two previous fractional derivatives, it is possible to use the Griinwald-
Letnikov (G.L.) derivative, with appropriate initial conditions. In fact, it is preferable to consider
the G.L. integrator that corresponds to the discretization of the Riemann-Liouville integral.
The Nth integer order Euler derivative of x(t) is defined as

1—g YN
<DN(x(t)))t:kTg :Tlfiino( TqN ) ks (18)

where T, is the sample time, x; = x(kT,), and g~ is the delay operator.
The generalization to the fractional order case provides the Griinwald-Letnikov derivative

-1 n
GLyyn T (1-97Y)
( D (x(t)))t:m = Jim S 0<n <1, (19)

Since L{g7!} = e~ T, we obtain

—T,s\ 1
GLyn T & .
L{ D (x(t))} _leg‘o o7 L{x(t)} = s"X(s). 20)
Notice that .
1-q- 1 o B
% Tt 1+§)“'3G”7 l]' @1)
with o = (—1)' 4551052 n(itl),
1+ ,ZO aicLq
cLp” =0
so (CLD"(x(1))),_,p = %0 -

which is the Moving Average formulation of the Griinwald-Letnikov derivative.
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Reciprocally, we can define the Griinwald-Letnikov integral operator [34] as
Ten q—l

Ifi) = e
1+ 'Zo a;GLq !
i=

Jir (23)

which is the Auto-Regressive formulation of the Griinwald-Letnikov integrator.
Notice that

enechs 1

L{CLI(£(1) } = lim sL{f(0)} = FGs), (24)

T,—0 (1 — e~ Tes)

which means that the Griinwald-Letnikov integrator is the time discretization of the
Riemann-Liouville integral.
Consider now the elementary FDE initial value problem (6):

DI (x(t)) = f(x(t),u(t)) 0<n<1.
Using the Griinwald-Letnikov integrator, we can express {x(k)} as:
{x(k+1)} = CFI"(F({xk}, {uk})) + g {xinic}, (25)

where {x;,;:} = {x(0),x(=1),...... ,x(=1),. ... ,x(—00)}.

This means that the initial conditions are composed of all the past values of x(—i),
since k = —oco.

Practically, this technique is used for the numerical simulation of the FDE/FDS problem.

The interested reader can refer to chapter 3 volume 1 of [34], where different initializa-
tions of the G.L. integral and the short memory principle [3] are analyzed.

4. The Infinite State Approach
4.1. Introduction

The infinite-state approach (do not confuse it with diffusive representation, see chapter
7 of [34]) is a modeling technique based on the fractional-integration operator, which is at
the heart of any modeling and simulation system, either integer or fractional order, linear
or non-linear [22,52].

4.2. The Frequency-Distributed Model of the Fractional Integrator

As shown in Section 3, the Riemann-Liouville integral of a function v(t) is defined as
the convolution of v(t) with the impulse response hy, () of the fractional integrator.
Another expression of 1, (t) can be derived from the inverse Laplace transform of

513132341 for 0 <m<1,ie, hn(t) = L7H{ & }.

Using a Bromwich contour, we can write (see [34] and the references therein):

1 T 1
hn(t) = va—fjw we’ds fort>0
0 fort <0
Thus, we obtain
= f”"(w)e_wdw — 0 for0<n<1 (26)
with p,(w) = Sin(;ln) n
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Note that, in the particular case where v(t) = (t) is an impulse function, the output x(f)
corresponds to the impulse response 1, (t) and is provided by the following distributed
integer-order differential system

%) — _z(w, t) +5(t) w € [0, +0)
° 27
a(t) = [ ()2, Do @7
0
Thus z(w, t) = e~“!, which leads to &y, fy e “dw.

More generally, for any input v(f), the correspondmg output x(t) of the fractional
integrator is provided by the following distributed frequency system:

% = fwz(o(:),t) +o(t) wel0,00)
x(t) = Ofﬂn( w)z(w, t)dw (28)
with p, (w) = Mw’”

It is fundamental to notice that the original model of the fractional integrator has
been transformed into an infinite-dimension integer-order differential system (28), where
integer-order differentiation % has been substituted to fractional-order differentiation, and
where the fractional order n appears in the weighting function 1, (w). This means that the
fractional integrator J; is an infinite-dimension linear system [54]. These models are the
two “faces” of the fract1onal integrator.

In fact, according to linear system theory [52], the fractional integrator has two types
of models, as does any other linear system:

- the Equation X(s) = ZV(s) is the input/output representation of the fractional

Sll
integrator, characterized by its impulse response h,(t) and its frequency response
1
()"
- the distributed differential system (28) is the infinite-dimension state-space model of
the integrator, where the internal state z(w, t) permits a complete representation of
system dynamics and particularly its free response from an initial condition z(w, 0).

Remark 1: let us consider the Laplace transform of (27):

L{h,(t)} =L ‘7y(a))e"*”dw /yn JL{e “"}dw = /yn
0

S+(U

The previous equality and Equation (11) lead to

1
s

w, (w )b+wdw 0<n<l (29)

This relation exhibits that the fractional integrator is composed of an infinity of modes
w, ranging from 0 to +oco, whereas the integer-order integrator corresponds to only one
mode situated at w = 0. Figure 1 displays the graphic representation of Equation (28).
Note that the distributed differential Equations of (28) correspond to the first-order systems
displayed in Figure 1. Due to the distributed nature of the differential system, the graph of
Figure 1 is composed of an infinity of first-order systems.
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v

Figure 1. The frequency-distributed model of the fractional integrator.

Remark 2: The classical Laplace transform of the integer order derivative is known as
L{ %} = sX(s) — x(0), which corresponds in fact to the relation X(s) = 1 L{ d’;—(tt)} +20

By s
L dx(o)

i.e., in the time domain, to x(t) = [ =3¢

dt + x(0), which means that x(0) is not the initial

condition of the derivative but is, in fact, the initial condition of the integrator which has
memorizing capability.

4.3. Transients of the Fractional Integrator

Consider the Laplace transform of (28):

sZ(w,s) —z(w,0) = —wZ(w,s) + V(s) w € [0, 00)
¢ 30
X(s) = [ pn(w)Z(w, s)dw (30)
0
where z(w, 0) is the initial value of z(w, t) at t = 0.
This means that Z(w,s) = Zﬁi’ﬁ) + Zﬁg
T 2(w,0) T V(s)
and X(s) = /yn(a})mder/yn( )s+wdw (31)
0 0
Since & = [ pn(w)Fgdw 0<n<1
0
we can write in the time domain:
x(t) = [ m(@)z(w,0)e dw + ol} (o(t)) 32)
0
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where:
oo
- x(t) = [ u(w)z(w,0)e"“ dw is the free response of the fractional integrator initial-

0
ized by the distributed initial conditions z(w,0) Vw € [0,00).
- I/'(v(t)) is the forced response of the fractional integrator caused by the input v(t).
Previously, using the definition of the Caputo derivative “initial condition”, we wrote
(20) x(t) = II'(v(t)) + x(0).
The conclusion is that this expression of the free response is wrong, since

fee]
J rp(w)z(w,0)e™“'dw is the initialization function of the integrator.  In fact,
0

x(0) = [ p,(w)z(w,0)dw, and Equation (15) is correct only at t = 0 and is wrong for
0

t>0.

The conclusion is that the fractional-integrator transients require to refer to its dis-
tributed model.

Basically, the initial condition of the differential system D} (x(t)) = f(x(t),u(t)) is
related to the initial condition of the fractional integrator J; used for the integration of the
FDE/FDS, not to the pseudo-initial condition of any fractional derivative. Notice that if
this FDE/FDS is related to a real system, its dynamics must not depend on the fractional
derivative definition choice of the user.

5. A Counter Example

In previous papers related to the infinite-state representation, we have already demon-
strated that the so-called initial conditions of the Caputo derivative are unable to correctly
express the dynamics of FDE/FDS free responses. However, attracted by the apparent
simplicity of the Caputo initial conditions, most fractional calculus researchers ignore the
more complex (in fact not too complex) infinite-state approach.

Consequently, this paper intends to prove the fundamental errors of the usual Caputo
derivative approach using an elementary theoretical counter example. Then, with the
frequency-distributed integrator allowing the theoretical computation of the true free
response, we prove the necessity to use frequency-distributed initial conditions to solve
any FDE/FDS initial-condition problem.

5.1. Problem Formulation

Consider the simplest FDE initial value problem

{D"(x(t)) =u(t) 0<n<l1 33)

x(t) =x(0) att=0

Consider the special function u(t), composed of two delayed Heaviside functions,
UH(t) and —UH(t — T), with u(t) = UH(t) — UH(t — T).
Consequently, see Figure 2

_Ju foro<t<T
u(t) = {O fort>T (34)

Moreover, assume that the system is at restat t = 0, i.e., x(0) = 0.
Remark 3: The interest of this example is to create a realistic initial condition at t = T, where
the free response can be calculated with two approaches, the first one from t = 0 with no

ambiguity using usual fractional calculus theory and the second one from f = T, using
Equation (15) at tg = T.
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1.4

Caputo free response

7/
true free response

0.2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

Figure 2. True free response and Caputo derivative initialization for n = 0.5.

5.2. The Exact Solution
Since x(0) = 0, we obtain x(t) = I}(UH(t) — UH(t —T)) = x*(t) + x~ (t).

So xt(t) = hu(t) * UH(t) = of UH(t)dt = (n+1)UH() and

nl

x(8) = —hu(t) * UH(t = T) = t(nﬂ UH(t — T)

Consequently, see Figure 2 (for n = 0.5):

{ t;:+1 foro<t<T
F( 1)

*(t) = [t” —(t=T)"] fort>T @5

where x(t) for t > T represents the free response of (33) at to = T.

5.3. Solution Derived from the Caputo Derivative Definition

This free response can also be expressed using Equation (15) at tp = T with
x(to) = x(T), i.e, x(t) = I['(u(t)) + x(T) for t > T.
Thus (see Figure 2),
x(t) =x(T) fort > T (36)

This result is obviously in complete contradiction with Equation (35), i.e
X(t) = iy [ — (1= T)") fort > T.

Notice that, for n = 1, we obtain:

x(T) =UT fort=Tand x(t) = U[t — (t — T)] = UT fort >T.

Thus, we verify that x(t) = x(T) for t > T, i.e., Equation (36) is only correct in the
integer-order case.

With this very simple example, we have demonstrated that Equation (15) is wrong in
the fractional-order case. So, what is the reason of this basic error?
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5.4. Solution Derived from the Distributed Frequency Model of the Fractional Integrator
Consider again the elementary example (33):

D"(x(t))=u(t) 0<n<1

This system is supposed at restat t = 0, i.e., z(w,0) Yw € [0, 0).
So, using (30) we obtain

+ = =
ZH(w,s) = Gt w) foru(t) = UH(t)
Thus, according to (29), X(s) = [ p,(w) (s_&w) Ygw = s"%
0

{ x* (1) = el H ()

an _ u(t—T1)"

x (1) =~ H(E-T)
Obviously, we recover the same result as (35) using the distributed model. Moreover,

this model allows us to express z(w, t), i.e.,

2w, ) = %(1 e Y H()

w

xH(t) = UH(t)f (@) (1 _ gty dq
0

So o (37)
() = —UH(t=T) [ 2188 (1 - em(t-D) ) dw
0
Consequently, the free response is expressed as:
x(t) = U/ h(w) (e*“’(t*T) — e*wt)dw fort>T, (38)
y w

which is the distributed equivalent of Equation (35).

Moreover, we can verify that it is now possible to calculate the response of the integra-
tor for t > T using the expression (32).

So, consider the response initialized at t = T with u(t) = 0fort > T.

Since z(w, T) is the initial condition at t = T, with

2w, T) = 2+ (w, T) = %(1 —eer), (39)

and since I}'(0) = 0, we obtain

[}

x(t) = U/ w(w)z(w, e Ndw  fort > T
0
So -
x(t) = LI/ u"((uw) (1 - e’“’T)e’“’(t’T)dw fort>T
0

And we obtain the same result as previously (38), i.e.,

x(t) = U/ n(@) (e""(t’T) - e*‘"t)dw fort>T
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We can conclude that the distributed state-space model provides the exact expression
of the free response using the usual tools of linear system theory. Consequently, this
distributed model is the necessary tool to express transients of the fractional integrator.

Notice that numerical simulations corresponding to this counter example are
available in [33].

5.5. Conclusions
Two main conclusions can be stated from this counter example:

- The integration of FDE/FDS based on the Caputo derivative definition (or on the
Riemann-Liouville derivative) are wrong approaches leading to erroneous free responses.

- The frequency-distributed state-space model provides the exact expression of the free
response using the usual tools of linear system theory. Consequently, this distributed
model is the necessary tool to express transients of the fractional integrator and thus
those of FDE/FDS.

Notice that the Griinwald-Letnikov approach based on relation (25) provides a correct
solution to the integration of FDE/FDS. However, its initial conditions, composed of past
values of x(—7) since k = —oo, are not easy to use, particularly for an initialization objective.

5.6. The Caputo Derivative Definition Revisited

We have demonstrated with the previous elementary counter example that the inte-
gration technique based on the Caputo derivative definition is unable to provide a correct
expression of the free response of an elementary initial-value problem. Of course, we have
pointed out the reason of this failure, i.e., x(0) does not represent the initial condition of
the fractional integrator. Basically, what is the origin of this error?

In order to understand why so many researchers have been misled by the so-called “ini-
tial condition” x(0), we have to once again consider the definition (12) of the

Caputo derivative:
o dx(t
CDf(x(t)) = Itl "( d(t )>

This derivative relies on a fractional integrator -1, so we have to take into account
its internal state variables z¢(w, t) at t = 0 (notice that z¢c(w, t) # z(w, t)) [34].
Thus, the distributed-frequency model of the Caputo derivative corresponds to that of

the fractional integrator I! 7" (.), where, in this case, the input and the output are d'fi(tt) and
CDI(x(t)), respectively:

zc(w,t)

Lt — —wzw( ) + dt) w]0, o)
DY (x(t)) = [ p1-n(w)zc(w, t)dw (40)
0
ptl,,,(w):M “0=mand0<n<1

with the initial condition z¢(w, 0) and w € [0, o).
By using the Laplace transform, we can write

L)
Ze(w,s) = <@ 4 {5} w € [0,00)

stw stw

with L{dg—ﬁ’)} = sX(s) — x(0)

Thus, we obtain

L{CD”( /;41 w(W)Ze(w,8)dw = s"X(s) — ch(—?ng' %&U)zc(w,o)dw (41)
0

30



Fractal Fract. 2022, 6, 550

We can conclude that the usual initial condition of the Caputo derivative is wrong
because it does not take into account the transients of its associated integrator 5117,, ,l.e., its
distributed initial conditions z¢ (w, 0).

Notice that the same conclusions apply to the Riemann-Liouville derivative [34].

Consequently, the Caputo derivative approach to the integration of FDE/FDS must
be rejected because it provides wrong solutions to fractional initial-value problems. This
approach is wrong for two main reasons:

- The exact initial conditions of the Caputo derivative are x(0) and the distributed state
variable initial condition z¢(w, 0).

- The technique based on the Caputo derivative is not natural because the true and
physical initial conditions are those of the fractional integrator 517 of Equation (30), i.e.,
z(w,0), such as in the integer order case.

Numerical simulations of the Caputo and Riemann-Liouville derivatives exhibiting

the role of their initial conditions are available in [38] and in Volume 1 of [34].

6. Fractional Differential Systems Transients
6.1. Integration of a FDE

We demonstrated in the previous section that it is necessary to use the frequency-
distributed model of the fractional integrator to take into account the transients of the free
response. Thus, we have to apply the same approach for the integration of any FDE/FDS
initial value problem (6,7). As we have shown, the solution is provided by the fractional
integral equation, which is equivalent to the integer order case (2):

x(t) = I (f(x(8),u(t))) + xo(t), (42)

where x((#) is the initialization function of the Riemann-Liouville integral
xo(t) = / tn(w)z(w,0)e”“dw. (43)
0

Notice that (42) is a Volterra integral equation.

Fundamentally, Figure 3 displays the graphical representation of the integral Equation (42),
which underlines the closed-loop behavior of the FDE/FDS based on the fractional integra-
tor 2 with the initialization function x(t).

X0 (t)

x (t)
1/s® >

Y

f(x(t), u(t)) <=

)

u(t)

Figure 3. Closed-loop model of the FDE/FDS.

a
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However, we can also use the frequency-distributed model of the fractional integra-
tor, where its input is v(t) = D"(x(t)) = f(x(t),u(t)), which leads to the distributed
representation of the FDE:

G0 = —wa(w,t) + f(x(8),u(t))
x(t) = [ pn(w)z(w, t)dw (44)
0
u(w) smgﬂ)w*” 0<n<l1

In this case, the solution z(w,t) is provided by the distributed integer-order
integral equation:

z(w, 1) ]t ) + f(x(7), u(t))]dt +z(w,0) Yw € [0,0c0)

[~w
I (—w ( B+ f(x(t),u(t)) +2(w,0)

where z(w, 0) is the initial condition of the integer order integral.

We can represent (see Figure 4) this frequency distributed system graphically, where
frequency varies from w = 0 to w = +o0, according to its Laplace transform. This graph
corresponds to Figure 3, where the fractional integrator is replaced by its distributed graph
of Figure 1.

(45)

=(®,0)
v x(t)

_— Y s+o)

Z(@',O)

Figure 4. Closed-loop model of the FDE/FDS based on the fractional integrator distributed-frequency model.

Equations (42) and (43) and the graph of Figure 3 focus on the pseudo-state variable
x(t), whereas Equation (44) and the graph of Figure 4 focus on the internal state variables
z(w, t) of the integrator, which are in fact those of the FDE/FDS.

Notice that, for the isolated integrator (Figure 1), with input v(t) and output x(t),
the state variables are decoupled and evolve independently. On the other hand, in sys-
tem (44), i.e., in the graph of Figure 4, the state variables are coupled by the relation
v(t) = f(x(t),u(t)). This means that the evolution of the state variable z(w, t) (for the
particular value) depends on all the other state variables z(¢, t) ¢ € [0, c0). Namely, the
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original FDE/FDS (6) has been transformed into an infinite-dimension system of first-order

differential Equations (44).
These are the two “faces” of the same problem:

- Equation (42) and Figure 3 correspond to the pseudo-state variable x(t), directly taking

into account the fractional order n.

- Equation (44) and F