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Abstract

In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sam-
pling zone, which implies that the region of interest is associated to high risk levels. This work provides
tools to include directional notions into the MEVT, giving the opportunity to characterize the recently in-
troduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method
for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in
this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the
proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a
real-life application to a financial case is also performed.

1 Introduction

The estimation of extreme level curves is important for identifying extreme events and for characterizing the
joint tails of multidimensional distributions. They are usually considered as quantiles at high levels; that is,
they are linked with a probability α of occurrence of certain event, where α is a very small number. This
proposal considers a non-parametric approach for values of α lower or equal than 1/n, where n denotes the
sample size. This implies that the number of data points that fall beyond the quantile curve is small and
can even be zero, thus we are outside of the observable sample zone, or in other words, in the out-sample
estimation framework. This lack of relevant data points makes the estimation difficult, making it necessary
to introduce tools from the multivariate extreme value theory (MEVT).

The main purpose of this paper is to provide an extension of the MEV T by introducing the directional
approach and also to give an out-sample estimation method for the directional multivariate quantiles (DMQ)
introduced in [Torres et al.(2015)] and [Torres et al.(2016)]. In these papers, the directional setting refers to
the inclusion of a parameter of direction u that allows analysis of data by looking at the cloud of observations
from different perspectives. Accurate assessments of these quantiles are sought in a diversity of applications
from financial risk management (e.g. [Torres et al.(2015)]) to environmental impact assessment (e.g. [Torres
et al.(2016)]). A non-parametric estimation method was developed in [Torres et al.(2015)] to estimate the
directional quantile based on the empirical probability distribution, which is valid just for the in-sample
scenario; that is α > 1/n.
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Both scenarios, in-sample and out-sample, have been widely studied in the univariate setting and recently
the literature has focused on the extension to the multivariate context. Some relevant references in this
area can be grouped into three categories as follows. Firstly, estimation under optimization processes,
for instance, based on optimization over linear quantile regression (see, e.g., [Chaudhuri (1996), Hallin
et al.(2010), Mukhopadhyay and Chatterjee (2011), Kong and Mizera (2012), Girard and Stupfler (2015)]).
In this case, an example of the in-sample framework is given by [Chaudhuri (1996)] for geometric quantiles.
[Girard and Stupfler (2015)] also proposed an out-sample estimation method for geometric quantiles.

A second category contains methods determining level curves of joint density functions in such a way that
the set of points outside those contours has a probability equal to a given level α. These methods easily
describe inner and outer regions at the given level and inherently cover the infinite set of directions through
those contours (e.g., [Cai et al.(2011), Einmahl et al.(2013)]). The estimators proposed in this category have
been developed mainly for the out-sample framework. For instance, [Cai et al.(2011)] provided estimation
of bivariate contour levels for some joint densities with elliptical and non-elliptical distributions, considering
cases with asymptotic dependence and asymptotic independence. Other methodologies in this category are
based on the trimming through depth functions. [Serfling (2002)] described in-sample methods considering
different depth functions and [He and Einmahl (2017)] presented an out-sample contour estimation based on
the Tukey depth.

Last category considers level curve estimations using either joint distribution or survival functions (e.g. [De
Haan and Huang (1995), Fernández-Ponce and Suárez-Llorens (2002), Belzunce et al.(2007), Chebana and
Ouarda (2009), Di Bernardino et al.(2011)]). Works based on copulas are also classified in this group (e.g.
[Chebana and Ouarda (2011), Durante and Salvadori (2010), Salvadori et al.(2011), Binois et al.(2015)]).
These works have introduced the estimation procedures in both contexts, in-sample and out-sample, but most
of them present the theory and related applications only in the bivariate case. Since the proposal developed
in this work is somehow based on distributions, it belongs to this third category.

As we have mentioned before, the methodology developed in this work includes a directional notion and
we want to highlight its importance in our contribution. One can find in the literature a few references
dealing with this notion. [Chaudhuri (1996)] is one of the first works that includes directions. However, this
multivariate aspect starts to take importance just in the past decade, where an accurate assessment of risk
regions arises in a diversity of applications. For instance, [Embrechts and Puccetti (2006)] studied bounds
for multivariate financial risks, highlighting the usefulness of analysis considering two particular directions.
[Belzunce et al.(2007)] presented a bivariate quantile application to air quality where the directions are
related to the four classical orthants.

Other examples describing the importance of directions are [Hallin et al.(2010)], where it was proposed direc-
tional projections to show a relationship between their quantile trimming and the trimming obtained through
the Tukey depth. [Kong and Mizera (2012)] used a similar idea to build multivariate growth chart applica-
tions. [Fraiman and Pateiro-López (2012)] provided a directional projection-based definition for infinite-
dimensional multivariate quantiles in Hilbert spaces. In financial risk management [Torres et al.(2015)]
showed the advantage of using the portfolio weights of investment as the direction of analysis to provide
an upper bound for the maximum loss. [Torres et al.(2016)] performed an application to environmental im-
pact assessment, where it can be seen the improvement of identifying extremes by using the first principal
component as a direction of analysis.

Therefore, inspired by [De Haan and Huang (1995)] where an out-sample estimator for bivariate level curves
of a distribution function F was established, the contribution in this paper is threefold: 1) to include the
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directional framework given in [Torres et al.(2015), Torres et al.(2016)] in the MEVT analysis, 2) to establish
an estimator those directional high level quantiles in a general dimension d and 3) to provide a non-parametric
estimation method for these high level directional quantiles and some asymptotic results.

The paper is organized as follows. In Section 2 we summarize the main definitions and results related to
the directional framework used in the paper. Section 3 introduces definitions from the multivariate extreme
theory to fix conditions over the random vector X that allow to ensure the results under the directional
framework. In Section 3.1, we describe the characterization of the elements of the DMQ at high levels,
based on the heuristic ideas in [De Haan and Huang (1995)]. Section 4 develops statistical tools to perform
an out-sample estimation of the DMQ. The high level estimator is introduced in Section 4.1. Asymptotic
normality of this estimator is presented in Section 4.2. Later on, we adapt a bootstrap-based method to deal
with the tuning parameter. Section 5 illustrates the performance of our multivariate estimation procedure (in
dimensions d = 2 and d = 3) in a multivariate t−distribution case. Section 6 presents a directional analysis
over daily filtered returns of three different international indices. Finally, in Section 7 some conclusions and
perspectives are provided. Proofs and auxiliary results are postponed to Appendix A.

2 Directional multivariate quantiles

This section introduces the preliminary definitions and notation necessary to understand the contributions
of the paper. Our directional multivariate setting is based on the work developed in [Laniado et al.(2012)].
Firstly, we recall the notion of oriented orthant.

Definition 2.1 (Oriented orthant). An oriented orthant in Rd with vertex x in direction u is defined by,

CRu
x = {z ∈ Rd : Ru(z− x) ≥ 0},

where u ∈ {z ∈ Rd : ||z|| = 1} andRu is an orthogonal matrix such thatRuu = e, with e = 1√
d
(1, . . . , 1)′.

Note that an oriented orthant is a translation by x and rotation by Ru of the non-negative Euclidean orthant.
[Torres et al.(2015)] pointed out that Ru is not unique for d ≥ 3. Hence, in order to guarantee uniqueness,
they stated the following. Let u be a unit vector with non-null components and let Mu and Me be matrices
defined as,

Mu = [u, sgn(u2)e2, · · · , sgn(ud)ed] and Me = [e, e2, · · · , ed],

where ui, i = 1, . . . , d is the i−th component of u, sgn(·) is the scalar sign function and ei is the i−th
column of the d× d identity matrix. Then Mu and Me have full rank and unique QR decomposition,

Mu = QuTu and Me = QeTe,

such that Tu, Te are triangular matrices with positive diagonal elements and Qu, Qe are the correspon-
dent orthogonal matrices (see [Horn and Johnson (2013)][Theorem 2.1.14, p.g. 89]). Therefore, [Torres
et al.(2015)] defined the QR oriented orthant as follows.

Definition 2.2 (QR oriented orthant). The QR oriented orthant with vertex x in direction u, denoted as Cu
x,

is the oriented orthant satisfying Ru = QeQ
′
u.
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Figure 1 illustrates the QR oriented orthant in Definition 2.2 for different vertexes and directions. One can
observe that the mass accumulated inside a QR oriented orthant with vertex x and direction u corresponds
to the probability of such orthant and moreover, it is equivalent to evaluate the vertex x in the survival
function of the rotated random vector RuX. We remark that directions with non-null components is not a
restrictive assumption, because if there exists a direction u with zero in one or more components, this implies
independence of the corresponding marginals from the joint extreme behavior of interest.

Figure 1: Examples of QR oriented orthants for different vertexes {O,A,B,C,D, x} and different direction
{e,−e,u1,u2,u}.

Also, quantiles at certain level α in direction u have been defined in [Torres et al.(2015)] as follows.

Definition 2.3 (Directional multivariate quantile (DMQ)). Let X be a random vector with associated prob-
ability distribution P. Then the directional multivariate quantile at level α in direction u is defined as

QX(α,u) := ∂{x ∈ Rd : P(C−ux ) ≥ 1− α}, (2.1)

where ∂ denotes the boundary of the considered set and 0 ≤ α ≤ 1.

Examples of the previous definition applied on a multivariate t−distribution are given for high levels of α
in different directions in Figure 2 (dimension d = 2) and Figure 9 (dimension d = 3). In the univariate
setting, extremes are analyzed considering the two possibilities of exceeding from either distributions or
survival functions and most of the extensions of these analyses to the multivariate setting have also been
concentrated on these two types of exceeding. The interested reader is referred to [Shiau (2003), Salvadori
(2004), Embrechts and Puccetti (2006)] for extensions on the bivariate case and also to [Gupta and Manohar
(2005), Cousin and Di Bernardino (2013), Di Bernardino et al.(2015)] for some generalized multivariate
versions.

However, the multivariate setting offers infinite possibilities of exceeding to be considered and our directional
framework explores these alternatives. First, note that Definition 2.3 provides a multivariate quantile based
on two free parameters: traditional α−level and a unit vector of direction u. Given the out-sample framework
of this paper, the α−level will be considered lower or equal than 1/n for a sample size n, but more important
is to highlight that the parameter of direction is completely free and each choice implies different hyper-
curves, each of those focusing on the extreme behavior of X in particular areas of its support. Note that the
possibilities based on the distributions and the survival functions of a random vector X are provided through
the directions e, −e respectively. Hereafter we will call these directions: classical directions.

Second, we point out that there are other interesting directions to be taken into consideration. For instance
in portfolio optimization, the direction given by the portfolio weights of investments is of particular interest
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because it takes into account the losses due to the composition of the investment in a portfolio (see [Laniado
et al.(2012), Torres et al.(2015)]). In environmental phenomena, the directional approach has also been
applied to detect extreme events by considering the direction of maximum variability of the data (see [Torres
et al.(2016)]). In summary, different contexts or phenomena could suggest different particular directions
either by external information or other causes, so the direction is a parameter to be chosen by a practitioner
helping to capture the overall behavior of the data and to improve the visualization of results.

3 Directional MEVT: A probabilistic approach

In this section, we introduce conditions over X in order to extend classic MEVT by using the directional
framework in Section 2. This allows us to provide a general theory that includes a free parameter of direction
u. Those conditions involve notions of multivariate regular variation. The interested reader is referred to
[Resnick (1987), De Haan and Ferreira (2006), Resnick (2007)].

Assumption A1. The support of X is all Rd.

This assumption is introduced to guarantee that, independently of the chosen direction u, Ru X possesses a
part of its support on the positive orthant. Indeed if X has a bounded support, one should be aware of the fact
that many directions become uninformative in terms of maximums. Then, if Assumption A1 is not satisfied,
it is advisable to fix first the desired direction u and then to make the corresponding analysis in terms of
classical MEVT for the vector Ru X.

We now characterize the right tail behavior of X (see Assumption A2) and later we show that this character-
ization is inherited for any rotation Ru of the random vector (see Proposition 3.2).

Definition 3.1 (First order multivariate regular variation). A random vector X has first order multivariate
regular variation with tail index γ, if there exists a real-value function φ(t) > 0 that is regularly vary-
ing at infinity1 with exponent 1/γ, denoted by RV1/γ , and a non-zero measure µ(·) on the Borel σ−field
[−∞, ∞]d\{0}, such that, if t→∞,

tP
[

X

φ(t)
∈ ·
]

v→ µ(·), (3.1)

where v→ means vague convergence (see, e.g., [Jessen and Mikosh (2006), Resnick (1987)]).

If X verifies Definition 3.1 with γ > 0, then it is called a heavy tailed random vector and the measure of
convergence µ(·) in (3.1) has the homogeneity property of order γ, i.e., µ(cB) = c−γµ(B), for all c > 0
and every Borel set B.

Assumption A2. X has first order multivariate regular variation with tail index γ > 0.

Note that Assumption A2 is a stronger condition than X belonging to a multivariate max-domain of attraction
(see [De Haan and Ferreira (2006)]). Indeed, as it is mentioned in [Resnick (1987)][Remark 6.1], A2 implies
tail equivalence among marginal distributions, reducing all marginal tail indexes to γ. In practice, tails could
be different and in this case, there are some techniques to overcome this flaw. (see for instance [Resnick
(1987)][Section 6.5.6]). We refer to Remark 1 below for further comments on this point.

1A function φ(·) ∈ RV1/γ , if it holds that limx→∞
φ(tx)
φ(x)

= t
1
γ , for all t > 0.
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Proposition 3.2. If X satisfies Assumption A2 with tail index γ, then the random vector QX has first order
multivariate regular variation with tail index γ, for any orthogonal transformation Q.

Proposition 3.2 is a special case of Proposition A.1 in [Basrak et al.(2002)] for a deterministic matrix Q. An
alternative proof of Proposition 3.2 is given in Appendix A.

Definition 3.3 (Second order multivariate regular variation). A random vector X has second order multi-
variate regular variation with indexes (γ, π), if there exist functions φ(·) ∈ RV1/γ and Λ(t)→ 0, such that
|Λ| ∈ RVπ, π ≤ 0; satisfying,

tP
[

X
φ(t) ∈ B

]
− µ(B)

Λ(φ(t))
→ ψ(B) <∞,

locally uniformly for all relatively compact rectangles B ∈ [−∞, ∞]d\{0}, where ψ(·) is not identically
zero. (see [Resnick (2002)]).

Assumption A3. X has second order multivariate regular variation with indexes (γ, π).

Proposition 3.4. If X satisfies Assumption A3 with indexes (γ, π), then the random vector QX has second
order regular variation with indexes (γ, π), for any orthogonal transformation Q.

Proof of Proposition 3.4 is given in Appendix A. Assumption A3 will be crucial in Section 4.2 to prove
asymptotic normality for the proposed estimator of the DMQ. From now on, we consider that a random
vector X satisfies Assumptions A1-A3.

3.1 Characterization of the DMQ at high levels

The aim of this paragraph is to characterize the points belonging to QX(α,u) in Definition 2.3 for small
values of the α level, (α ≤ 1/n). Our proposal is based in two main aspects. The first one is the quasi-
orthogonal invariace property given in [Torres et al.(2015)][Property 3.8], i.e.,

QX(α,u) = R′uQRuX(α, e), (3.2)

and the second one is referred to the heuristic ideas of the bivariate quantile parameterization given in [De
Haan and Huang (1995)] extended to a general directional multivariate context.

Let Fu be the distribution function of the random vector RuX . Note that QRuX(α, e) is the set of points
such that,

1− α = Fu(x),

(see Definition 2.3 and Equation (3.2))

Furthermore, Proposition 3.2 implies that Fu belongs to the max-domain of attraction of a non-degenerate
multivariate extreme value distribution Gu with the same Frechét marginals (the latter given the tail equiva-
lence among marginal distributions see [Resnick (1987)][Chapter 5]). Moreover, there exist two sequences
au(t), bu(t) such that,

lim
t→∞

t (1− Fu (au,j(t)xj + bu,j(t); j = 1, . . . , d)) = − ln (Gu(x)) . (3.3)
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In addition, a direct consequence of (3.3) is that each marginal ofGu has the form exp(−(1+γxj)
−1/γ), j =

1 . . . , d, for γ > 0 (see also [De Haan and Ferreira (2006)][Chapter 6]). Hence, it is possible to write,

lim
t→∞

t (1− Fu,j (au,j(t)xj + bu,j(t))) = (1 + γxj)
−1/γ , (3.4)

where Fu,j is the j−marginal of Fu. Thus, (3.4) implies that for small values of α, the (1 − α)−quantile
related to Fu,j verifies the following relationship,

xu,j(α) ≈ au,j(t)
(1/tα)γ − 1

γ
+ bu,j(t), for all j = 1, . . . , d. (3.5)

Now, to obtain the joint behavior characterizing the elements belonging to QRuX(α, e), we introduce the
bivariate heuristic ideas in [De Haan and Huang (1995)] based on a parameterizable scalar function ρu(·) that
approximates such joint quantile structure by a deformation of the marginal quantiles. Then, we first recall
that any point x ∈ Rd can be written alternatively in polar coordinates as x = ||x|| (x/||x||) = ρ(θ)θ,
where ρ(θ) ∈ R+ and θ belonging to the unit d−dimensional ball (for a further discussion see [Driver
(2003)][pg. 217]). Note also that Assumption A1 expressed in terms of the polar parameterization becomes
in the analysis of upper-end points when θ = (θ1, . . . , θd) is such that 0 ≤ θi ≤ 1, for all i = 1, . . . , d.

Now, any point of QRuX(α, e) under polar parameterization will be denoted by xu(α,θ), where θ ∈ Θ =
{(θ1, . . . , θd) such that ||θ|| = 1 and 0 ≤ θi ≤ 1, for all i = 1, . . . , d}. Finally, we can write the following
heuristic for the elements of QRuX(α, e),

xu,j(α,θ) = au,j(t)
(ρu(θ)θj/tα)γ − 1

γ
+ bu,j(t), for all j = 1, . . . , d. (3.6)

It is crucial to remark the difference between xu,j(α) given in (3.5) and xu,j(α,θ) in (3.6). The former is
related to the univariate quantile of the marginal (RuX)j and the latter is the j−component of an element in
QRuX(α, e). Therefore, except for ρu(θ), all the elements in (3.6) are known or can be estimated. Then, the
problem of estimating xu,j(α,θ) turns into the problem of finding a mathematical expression for the scalar
function ρu(θ). From (3.3) and (3.6), we obtain

α = 1− Fu(xu(α,θ)) ≈ t−1

{
− ln

(
Gu

(
xu,j(α,θ)− bu,j(t)

au,j(t)
; j = 1, . . . , d

))}
= t−1

{
− ln

(
Gu

(
(ρu(θ)θj/tα)γ − 1

γ
; j = 1, . . . , d

))}
= − α

ρu(θ)
ln

(
Gu

(
θγj − 1

γ
; j = 1, . . . , d

))
.

(3.7)

Last equality in (3.7) is due to the homogeneity property ofGu (see [De Haan and Ferreira (2006)] [Theorem
6.1.9]).

Hence, from (3.7), we achieve a expression of ρu(θ) by approximation. This expression will be denoted as

ρ̃u(θ) := − ln

(
Gu

(
θγj − 1

γ
; j = 1, . . . , d

))
, (3.8)
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which implies the approximation of xu,j(α,θ) given by

x̃u,j(α,θ) := au,j(t)
(ρ̃u(θ) θj/tα)γ − 1

γ
+ bu,j(t), for all j = 1, . . . , d. (3.9)

Thus, QX(α,u) is approximated at high levels by the parameterization,

Q̃X(α,u,θ) := R′uQ̃RuX(α, e,θ), (3.10)

where Q̃RuX(α, e,θ) := {x̃u(α,θ), θ ∈ Θ}. Thus, by using previous characterizations one can get an
out-sample estimator for QX(α,u), which is the objective of next section.

Remark 1. Note that the analysis provided in this section by using Assumptions A1-A3 makes the char-
acterization feasible independently of the chosen direction u. However, if A2 does not hold, but for some
direction u, RuX belongs to a multivariate max-domain of attraction, then the results of [De Haan and
Huang (1995)] for a general dimension d, can be directly applied for the transformed vector.

Conversely, our aim here is to develop a general directional theory where under the considered Assumptions
A1-A3, practitioners have: (1) to test the regular variation only once for the original random vector X and
(2) the capacity to look at the data with different perspectives of analysis or even to apply an overall analysis,
similar to those provided by density function or depth function approaches, by moving u in all its domain.

4 Inference for DMQ at high-levels

For any direction u, letRuX1, . . . , RuXn be independent and identically distributed (i.i.d.) random vectors,
distributed asRuX and denote by {[(RuX)j ]i:n}dj=1 , i = 1, . . . , n, the collection of the corresponding n−th
order statistics for each marginal.

Marginal order statistics are important since they allow Equation (3.3) to be written in terms of a subsample
that provides significant information about the tail behavior of the joint distribution Fu (see [De Haan and
Ferreira (2006)][Section 7.2]). This subsample is related to a tuning intermediate sequence k := k(n)→∞,
k(n)/n → 0 as n → ∞. This crucial sequence leads to the break point from which the information of an
ordered sample starts to be considered in the tail of the distribution. Then, we obtain,

lim
n→∞

n

k
(1− Fu (au,j(n/k)xj + bu,j(n/k); j = 1, . . . , d)) = − ln (Gu(x)) .

We now introduce an estimator of QX(α,u) (see Section 4.1) and we provide its asymptotic normality (see
Section 4.2). Furthermore, we describe a bootstrap based methodology to find an optimal solution of the
tuning parameter k in our multivariate approach (see Section 4.3).

Notice that due to Proposition 3.2, Proposition 3.4 and the quasi-orthogonal property in Equation (3.2), all the
results in the present section are fulfilled independently from the choice of u. However, as we mentioned in
Remark 1, if we allow to lose the generality of the directional approach and we fix the direction u beforehand.
Then, we could ask for the random vector RuX to belong to a multivariate max-domain of attraction and we
fall on the extension of the work in [De Haan and Huang (1995)] removing the tail equivalence for marginal
distributions.
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4.1 Directional multivariate quantile estimator Q̂X(α,u)

Note that if one has estimators for all the elements in (3.9), an estimator of (3.10) can be provided. For
the estimation of the tail index γ, one can consider a 2−steps procedure. Firstly, the multivariate regular
variation condition in Assumption A2 can be tested using the procedure described in [Einmahl and Krajina
(2016)]. This ensure the statistical equality of all the marginal tail indexes.

Secondly, each marginal estimation can be done through the moments estimators given in [Dekkers et al.(1989)],
i.e.,

γ̂j := M
(1)
k,j + 1− 1

2

{
1−

(
M

(1)
k,j

)2
/M

(2)
k,j

}−1

, (4.1)

where M
(r)
k,j := 1

k

∑k−1
i=0 {ln([(RuX)j ]n−i:n)− ln([(RuX)j ]n−k:n)}r , r = 1, 2.

Notice that each γ̂j depends on the sample size n and the tuning parameter k. In Section 4.3, we discuss how
to find an optimal selection of k based on a joint estimation of the marginal tail indexes.

The estimators for the components of the sequences au(n/k), bu(n/k) can be defined as in [De Haan and
Huang (1995)] by

âu,j(n/k) := [(RuX)j ]n−k:nM
(1)
k,j max(1, 1− γ̂j), (4.2)

b̂u,j(n/k) := [(RuX)j ]n−k:n. (4.3)

The estimator of the scalar function ρ̃u can be defined by

ρ̂u(θ) := − ln

(
Ĝu

(
θ
γ̂j
j − 1

γ̂j
; j = 1, . . . , d

))
,

where − ln
(
Ĝu(x)

)
=

1

k

n∑
i=1

1{
d⋃
j=1

[(RuXi)j > âu,j(n/k)xu,j+b̂u,j(n/k)]

}.
(4.4)

Hence, by using (3.9) and Equations (4.1)-(4.4) one can get an estimator for elements of Q̃RuX(α, e,θ):

x̂u,j(α,θ, n/k) := âu,j(n/k)


(
k ρ̂u(θ)
nα θj

)γ̂j
− 1

γ̂j

+ b̂u,j(n/k), for all j = 1, . . . , d. (4.5)

We denote this set of points as Q̂RuX(α, e,θ, n/k) and using the quasi-orthogonal property, we get,

Q̂X(α,u,θ, n/k) = R′uQ̂RuX(α, e,θ, n/k). (4.6)
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4.2 Asymptotic normality of Q̂X(α,u,θ, n/k)

We prove in the following the point-wise asymptotic normality of Q̂X(α,u,θ, n/k) in (4.6), when nα→ 0,
as n→∞. Firstly, in our setting, one can get

√
k

(
âu,j(n/k)

au,j(n/k)
− 1

)
d→ Au,j ,

√
k

(
b̂u,j(n/k)− bu,j(n/k)

au,j(n/k)
− 1

)
d→ Bu,j ,

√
k (γ̂j − γ)

d→ Γu,j ,
√
k
(
− log Ĝu(x) + logGu(x)

)
d→ Vu(x) := Wu(x)(Bu + x�Au)′ O(− logGu(x)),

where γ > 0, d→ means convergence in distribution, � means a component-wise product, O(·) means the
vector of partial derivatives of a function; Au = (Au,j ; j = 1, . . . , d), Bu = (Bu,j ; j = 1, . . . , d) and
Γu = (Γu,j ; j = 1, . . . , d) are such that,

Au,j =γWu,j(0) +
(1− γ)2(1− 2γ)

(1− 4γ)

(
Pu,j

1− γ
+
Qu,j

2

)
− 6(1− 2γ)3 + 2(1− γ)(1− 2γ)2 − 8(1− γ)3

2(1− 4γ)2(1− γ)(1− 2γ)
Γu,j ,

Bu,j =Wu,j(0),

Γu,j =2(1− γ)2(1− 2γ)Pu,j +
(1− γ)2(1− 2γ)2

2
Qu,j ,

where
Pu,j =

∫ ∞
1

Wu,j(s)
ds

s
−Wu,j(0), Qu,j = 2

∫ ∞
1

Wu,j(s) log(s)
ds

s
− 2Wu,j(0),

Wu(x) is a zero-mean Gaussian random field with covariance function (see [De Haan and Resnick (1993)]),

Cov(Wu(z),Wu(s)) = µu((0, z]c ∩ (0, s]c).

and µu is the σ−finite measure provided by Proposition 3.2, such that, µu ((0,x]c) = − logGu(x). More-
over, from Proposition 4.1 in [De Haan and Resnick (1993)], one can see that the joint distribution of
(Au,Bu,Γu,Wu) is a multivariate Gaussian distribution. Thus, we can prove the following central limit
theorem.

Proposition 4.1 (Point-wise asymptotic normality for Q̂RuX). Let sn := k/(nα). Suppose that X satisfies
Assumption A3 and for j = 1, . . . , d the following strong marginal second order condition holds

lim
n→∞

n
k

[
1− Fu

(
∞, . . . , au,j(n/k)

sγnxj−1
γ + bu,j(n/k), . . . ,∞

)]
+

xj
sn

Λ (φ(n/k))ψu

(
[−∞,∞]× · · · ×

[
sγnxj−1

γ ,∞
]
× · · · × [−∞,∞]

) = 1.

Assume that

lim
n→∞

(log sn)/
√
k = 0, lim

n→∞
sn
√
k · Λ (φ(n/k))ψu

([
−∞,

sγn − 1

γ

]c)
= 0,

10



where φ(·), Λ(·), ψ(·) are as in Definition 3.3 and ψu(·) := ψ ◦R′u(·).

Then, for n→∞,
√
k

(
x̂u,j(α,θ, n/k)− xu,j(α,θ)

âu,j(n/k)
∫ sn

1 tγ̂j−1(log t)dt
; j = 1, . . . , d

)
,

converges in distribution to
((ρu(θ)θj)

γ Γu,j , j = 1, · · · , d) .

Proof of Proposition 4.1 is given in Appendix A. Finally, in Corollary 4.2 below, the point-wise asymp-
totic normality of Q̂X(α,u,θ, n/k) is derived since the orthogonal transformations preserve the result in
Proposition 4.1.

Corollary 4.2 (Point-wise asymptotic normality for Q̂X). The point-wise asymptotic normality property
of the estimator Q̂RuX(α, e,θ, n/k) is preserved under orthogonal transformations. Therefore the quasi-
orthogonal property in (4.6) implies the point-wise asymptotic normality of Q̂X(α,u,θ, n/k).

4.3 Bootstrap method to estimate the tuning parameter k = k(n)

From Equations (4.1)-(4.4), one can appreciate the key role of sequence k = k(n). However, it is not an easy
task to establish optimal tuning parameter k for a given sample size n. This tuning parameter is complicated
to tackle in practice and methods to provide optimality are still a matter of research and discussion.

In the recent literature, one can find only heuristic guidelines adapted to each multivariate application (e.g.
[Cai et al.(2011), Cai et al.(2015), Di Bernardino and Palacios-Rodríguez (2016)]), where the selection of
parameters such as k are mostly based on the identification of a common region of stability across the
estimation of particular marginal elements such as marginal tail indexes. For instance, k can be selected
through a graphical visualization of the common range of values providing the flattest behavior around
the marginal estimations. On the other hand, some sophisticated methodologies based on bootstrap have
been presented in the univariate case to provide optimality on the choice of k (e.g. [Draisma et al.(1999),
Danielsson et al.(2001), Ferreira et al.(2003), Qi (2008)]). Therefore, a natural question here is: how to select
an optimal value of k to perform estimation in the multivariate context? To achieve this goal, it is necessary
to overcome the lack of a total order in Rd, for d ≥ 2. In this sense, we will use the orthant order introduced
in [Torres et al.(2015)], which is a partial order in Rd based on Definition 2.1. For a fixed direction u,

x �u y, if and only if, Cu
x ⊇ Cu

y,

where x,y ∈ Rd and Cu
x is as in Definition 2.2. Equivalently,

x �u y, if and only if, Rux ≤ Ruy, (4.7)

where the inequality on the right side is component-wise. Our proposal is described in the following pseudo-
algorithm, which is based on the univariate method introduced in [Danielsson et al.(2001)].

Step 1. Rotate the sample to generate {Rux1, . . . , Ruxn}.

Step 2. Set m1 = bn1−εc for some ε ∈ (0, 1/2), where b·c denotes the integer part function. Draw a large
numberB1 of bootstrap samples of sizem1 and drop the observations with non-positive components
(this is equivalent to keep observations greater than 0 according to (4.7)). After this, use the marginal
order to sort each of the remaining observations of the bootstrap samples.

11



Step 3. Denote by Errj(m1, b1, kj) the error obtained in each marginal j = 1, . . . , d, where kj varies from
1 to m1 − 1,

Errj(m1, b1, kj) :=

(
M

(2)
kj ,j
− 2

(
M

(1)
kj ,j

)2
)2

, b1 = 1, . . . , B1.

Then, determine the value kj(m1) that minimizes

1

B1

B1∑
b1=1

Errj(m1, b1, kj).

Step 4. Set m2 = bm2
1/nc, and repeat Step 2 and Step 3 to obtain kj(m2).

Step 5. Estimate marginal rates of convergence to the tail index γ by

π̂j = log

(
kj(m1)

−2 log(m1) + 2 log(kj(m1))

)
,

which marginally are consistent estimators (see [Qi (2008)]).

Step 6. The optimal selection for k = k(n) is given by,

k̂(n) :=
1

d

d∑
j=1

kj(m1)2

kj(m2)

(
1− 1

π̂j

)1/(2π̂j−1)

.

Remark 2 in [Qi (2008)] should be applied for n < 2000/2d.

Notice that the previous bootstrap method selects the optimal k in terms of the quality of the approximation
of the tail index γ. However it does not imply that the same k will be optimal in the estimation of ρ̃u in
Equation (4.4).

5 Simulation Study

In this section, we illustrate the estimation methodology introduced in Section 4 by using the d-dimensional
t-distribution with d.f. ν. This distribution satisfies Assumptions A1-A3 with multivariate regular variation
indexes (γ, π) = (1/ν, −2/ν) (see [Hult and Lindskog (2002)], [Hua and Joe (2011)]). To derive the
theoretical DMQ for any direction u, it is necessary to recall Lemma 3.1 in [Hult and Lindskog (2002)] for
elliptical distributions (see Lemma A.5).

Indeed, Lemma A.5 establishes that RuX is again a multivariate t−distribution with the same d.f. ν, but
with location and scale given by µu = Ruµ, Σu = RuΣR′u. Thus, tail indexes remain invariant for all u and
it makes this model suitable to perform simulation analysis in any direction and/or in different dimensions.
Some results in 2D and 3D scenarios are derived using the following t−distributions,

µ = [0, 0]′, Σ =

[
5 0.1

0.1 1

]
, ν = 3.

µ = [0, 0, 0]′, Σ =

 5 2.44 −1.88
2.44 2.12 0.04
−1.88 0.04 2.36

 , ν = 4.

(5.1)
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The main goal of this section is to illustrate the differences and the importance of the directions in our
methodology, as well as, to show the performance of the estimation method for QX(α,u). Therefore, the
initial analysis over X is performed in the classical direction e. Later, the direction given by the main axis of
the elliptical random vector is considered, which is equivalent to the vector characterizing the first principal
component (FPC). We focus the initial part of the study to the bivariate case and then we present the results
for d = 3.

Figure 2 shows in red the theoretical curves QX(α, e) ≡ {x |Fe(x) = 1 − α} for three extreme val-
ues of α (1/500, 1/2000, 1/5000). It is also displayed in black the theoretical curves QX(α, FPC) ≡
R′FPC{x |FFPC(x) = 1 − α} for the same α’s, (in this case the theoretical FPC is (0.9997, 0.025)).
These level curves show visual improvements of the extreme detection through directional analysis, since
FPC does take into account the shape of the data in contrast to the classical direction e.

-80 -60 -40 -20 0 20 40 60 80

-80
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-40

-20

0

20

40

60

80

Figure 2: Classical and FPC directional quantiles in the bivariate t−distribution case for α = 1/500, 1/2000
and 1/5000.

Now, we proceed to describe step by step all the necessary elements for the estimation of the extreme DMQ.
Our simulation study has been done for different sample sizes, but we present here only two representative
cases: (1) n = 500 (“small sample”), and (2) n = 5000 (“large sample”). We consider in the following
α = 1/n.

1. Tuning parameter k(n): This parameter is estimated with the bootstrap methodology described in
Section 4.3 by considering 1000 bootstrap samples. We performed 100 iterations of the estimation
procedure, i.e., 100 samples from the t−model are drawn, then the optimal bootstrap selection of k is
done and corresponding γ̂j , j = 1, 2 are calculated. Figure 3 displays box-plots of the optimal k when
n ∈ {500, 5000}.
Similarly, Figure 4 shows the results obtained for the ratio of γ̂1/γ when n ∈ {500, 5000}. The results
for the other marginal are similar. However, since Σ11 > Σ22 in (5.1), we only display here the ratios
of the first marginal.

2. Tail index estimation γ and sequences of normalization au,j , bu,j : Previous step provides esti-
mations of the marginal tail indexes γ̂j through moments estimators in (4.1) by using the optimal
bootstrap selection of k described in Section 4.3. Then, for this simulated data example and without
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Figure 3: Boxplots of the bootstrap estimation of the tuning parameter k.
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Figure 4: Boxplots for the ratio γ̂1/γ.

loss of generality, we complete the estimation of γ by taking the average of the marginal estimations.
Finally, the estimations of the sequences of normalization au,j and bu,j are given by using (4.2) and
(4.3).

3. The scalar function ρ̃u(θ): Note that (3.8) uses the function − ln(Gu(·)), which is the stable tail
dependence function of the multivariate extreme value distribution Gu. The theoretical tail function
for a multivariate t−distribution is provided by [Nikoloulopoulos et al.(2009)] [Theorem 2.3]. For
sake of clarity this result is recalled in Appendix A (see Theorem A.6).

Therefore for any direction u, we can calculate ρ̃u(θ) and its estimator by using Lemma A.5, Theorem
A.6 and Equation (4.4). Figure 5 shows the theoretical curves ρ̃e(θ) (in magenta) and the estimated
ones (in blue), with the argument θ described in terms of the (d− 1) angles of its polar parameteriza-
tion. We can appreciate a good performance of the estimation for both sample sizes. Furthermore, as
expected, the larger the sample size, the better the performance of the estimator.

4. The directional quantile curveQX(1/n, e): Once the previous steps are completed, both theoretical
and estimated results for QX(1/n, e) can be calculated. We use the t−model to simulate 100 Monte
Carlo samples and we apply previous items 1-3 in order to construct point-wise confidence bands. The
results are displayed in Figure 6.

Then, for both sample sizes n ∈ {500, 5000}, Figure 6 shows the theoretical quantiles plotted in
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Figure 5: Theoretical and estimated curves ρe(θ).
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Figure 6: Estimations for QX(1/n, e).

black2, theoretical asymptotic approximations through the tail function are in magenta, medians point
by point of the 100 Monte Carlo estimated curves are in blue and confidence regions from 15% to 85%
are shaded in green. We can appreciate the accuracy of the estimations of QX(1/n, e).

Now, for the FPC direction, we have that theoretical FPC is equal to (0.9997, 0.025) and the param-
eters of this directional model are

µFPC = [0, 0]′, ΣFPC =

[
3.0001 2.0025
2.0025 2.9999

]
.

Thereby, we calculate theoreticalQRFPCX(1/n, e) and associated estimators by using previous items
1-4. We consider the same sample sizes n ∈ {500, 5000} and Figure 7 presents the results in the same
colors as before.

Finally, applying the inverse rotation indicated in Equation (4.6), Figure 8 presents the results for
QX(1/n, (0.9997, 0.025)). One can appreciate a good performance of our estimators and the im-

2Theoretical quantiles are the computational 1− α iso-curves and iso-surfaces of the multivariate t−distribution.
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Figure 7: Estimations for QRuX(1/n, e) with u = FPC.

provements on the visualization of extremes, which are more in concordance with the shape of this
data-set.
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Figure 8: Estimations for QX(1/n, FPC).

Similar results can be shown for the case d = 3 presented in (5.1). Firstly, Figure 9 displays the theoretical
quantile surfaces at level α = 1/500. The red quantile is performed in the classical direction e and the black
one is in the FPC direction. These iso-surfaces shown more concordance with the shape of the data when
the FPC direction is considered.

Then, we proceed to illustrate the results through the bootstrap procedure from Figure 10 to Figure 12, but
just in the FPC direction, (u = (0.8417, 0.4202,−0.3392)) and without the construction of the point-wise
confidence bands. However, in Figure 10 we include Monte Carlo replications to describe the distribution of
the tuning parameter k(n) selected by bootstrap method. In this trivariate example we consider n = 500 and
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n = 50000.
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Figure 10: Boxplots of the bootstrap estimation of the tuning parameter k.

Figure 11 displays the behavior of ρu(θ) with θ described in terms of the (d− 1) angles of its polar param-
eterization. The estimation is accurate in general, but specially in the central part of the parametric domain
of θ, which is very important to describe properly the behavior of the directional quantile because it repre-
sents the region with maximum curvature in the quantile surface. Figure 12 displays the final estimation of
QX(1/n, FPC).

The visual performance is quite accurate. We introduce in the following a measurement to assess the quality
of these results, i.e., the relative error between estimated and asymptotic theoretical quantiles in the point of
maximum convexity. By using (3.9) and (4.5), it can be written as

RE = sign(||x̂u(α,θ, n/k)|| − ||x̃u(α,θ)||) ||x̂u(α,θ, n/k)− x̃u(α,θ)||
||x̃u(α,θ)||

,

where θ = (1/
√
d, . . . , 1/

√
d). Box-plots ofRE for the two considered sample sizes are displayed in Figure

13.
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Figure 11: Theoretical and estimated curves ρu(θ), with u = FPC = (0.8417, 0.4202,−0.3392).
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Figure 12: Estimations for QX(1/n, FPC).

6 Application to financial real data set

When the object of study is a financial portfolio, the relevance of analysis in the direction of the vector of
weights of investment was pointed out in [Torres et al.(2015)]. In this section, the aim is to highlight that the
methodology presented in this paper offers an alternative for decision making when investment allocation and
particular management criteria are considered. Therefore, we summarize a real case analyzed previously in
[He and Einmahl (2017)], describing the main differences between a general analysis of risks through close
trimming contours and the specific directional analysis proposed in this paper.

[He and Einmahl (2017)] analyzed the daily market return of a portfolio composed of three international
indices from July 2nd, 2001 to June 29th, 2007. The indices are the S&P 500 index from USA, the FTSE
100 index from UK and the Nikkei 225 index from Japan. The data contains 1564 observations and it is
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Figure 13: Relative error (RE) in QX(1/n, FPC) in the point θ = (1/
√
d, . . . , 1/

√
d).

well-known from the financial literature that stocks returns usually reject the serial independence. Hence,
one cannot work with the raw data since the assumption of i.i.d. observations may be inappropriate. [He and
Einmahl (2017)] filtered the data to solve this issue. Each time series of market returns was modeled by an
exponential GARCH(1,1) and fitted the parameters by maximizing the quasi-likelihood to obtain the filtered
returns, also called innovations, which were modeled by a t−distribution.

As we pointed out in Section 1, methods based on depth and density contours inherently consider the whole
set of directions, which provides an overall analysis. However, an analysis considering particular criteria
or manager preferences is outside of the aim of those methods. [He and Einmahl (2017)] used the Tukey
depth to build out-sample trimming contours for the innovations of these three indices and they suggested
to consider the big loss in the US market on February 27th, 2007 as an outlier by considering its innovation
far enough based on the high level contour with α = 1/10000. Figure 14 displays the results in spherical
coordinates to support their claim.
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Figure 14: Outlier criteria through Tukey depth trimming for α = 1/10000 from [He and Einmahl (2017)].

Thus, the region above the surface in Figure 14 accumulates an approximated probability of 1/10000 in
its global analysis. However, the directional approach concentrates the α−level of probability in the set
{x ∈ Rd : P(C−ux ) ≥ 1 − α}, where u can incorporate some manager preferences. Then, the QR oriented

19



orthant in Definition 2.2 can provide an analog rule to identify directional outliers in a similar way as in [He
and Einmahl (2017)]. A naive proposal is to consider the fact that the QR oriented orthant in direction u
divides the Rd space in 2d “disjoint parts” which leads to the value of α = 8/10000 = 1/1250.

For instance, if the criteria of analysis is the portfolio weights of investment and considering α = 1/1250,
two examples can be chosen to highlight differences: 1) the naive diversification of the portfolio, i.e., u = e
and 2) an investment with large participation in the U.S. market, regular in the U.K. market and small in
the Japanese market: u = (0.6, 0.35, 0.05). The directional analysis is carried out over the filtered losses,
i.e., the negative of the innovations. As in [He and Einmahl (2017)], the filtered losses can be fitted by a
multivariate t−Student distribution, which allows us to perform the directional approach in twofold:

1) A semi-parametric method; that is, the estimation of the parameters of the t−model for the negative
innovations and the calculation of the theoretical directional iso-surfaces for this model by using tools
presented in Section 5.

2) Our full non-parametric method presented in Section 4, considering the fact that [He and Einmahl (2017)]
previously tested the multivariate regular variation condition on this data-set by the method in [Einmahl
and Krajina (2016)].

In Figure 15 we focus in the classical direction e. One can see that the big U.S. loss is not identified here as
an outlier point because it is not contained in the critical region. This suggests a leverage effect that cannot
be underestimated for this particular investment. Conversely, Figure 16 shows that the so called big U.S. loss
is indeed above the critical layer for the investment weights u = (0.6, 0.35, 0.05). This leads to a similar
interpretation of outlier to the one provided by [He and Einmahl (2017)].

(A) Semi-parametric approach (B) Non-parametric approach
Figure 15: Directional portfolio criteria, u = e and α = 1/1250.

[He and Einmahl (2017)] commented that “Neglecting the joint behaviour can lead to an overestimated di-
versifiability of risks across international markets and, therefore, underestimation of systematic risk”. In
this sense, we add that the directional approach allows to include external information or manager criteria
providing a joint local analysis that could lead to different conclusions than those in an overall joint behav-
ior. Furthermore, in [He and Einmahl (2017)] is noted that “an outlier in a high dimensional space is not

20



(A) Semi-parametric approach (B) Non-parametric approach
Figure 16: Directional portfolio criteria, u = (0.6, 0.35, 0.05) and α = 1/1250.

necessarily an outlier in its subspaces with reduced dimensions”. We also point out that an outlier in one
direction is not necessarily an outlier in the other ones.

7 Conclusions

The MEV T theory has been extended by the inclusion of the directional framework into it. Also, this
paper presented an out-sample characterization of those DMQ QX(α,u), recently introduced in [Torres
et al.(2015), Torres et al.(2016)]. Necessary conditions to ensure the estimation of the DMQ at high levels
independently of the chosen direction u were also presented and the proposed estimator integrates different
asymptotic results from the univariate and the multivariate extreme value theory through a parameterization
in polar coordinates in Rd.

We introduced an adapted bootstrap-based method to find an optimal solution for the tuning parameter k
in this multivariate framework, joint to a non-parametric method to complete the estimation of the DMQ.
Finally, asymptotic normality of the estimator was derived.

Based on the multivariate t−distribution, illustrations of the estimation procedure in dimensions 2 and 3
are shown. This family of distributions possesses properties such as heavy tails and closure under rotations,
which provides a good example for comparing theoretical and estimated solutions. Finally, a real case
study identifying directional outliers in the filtered losses of a financial portfolio is performed. This example
suggests that joint local analysis could lead to different conclusions than overall joint behavior. This provides
a wider vision to the fact that neglecting the joint behavior can lead to an overestimated diversifiability of
risks across international markets.

Future interesting works are to extend the directional framework to the multivariate max-domain of attraction
setting, i.e., to relax Assumption A2. Also, to analyze if there exist improvement of estimation by setting
independent optimal tuning parameters, for instance, kρ for the estimation of ρ̃u in Equation (4.4). Finally,
focusing on applications, it is a task to build a multivariate Value-at-Risk measure in the out-sample frame-
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work based on DMQ to analyze risks in different real case scenarios. And also, it is demanding a definition
of return period in a general multivariate framework for environmental problems.

A Auxiliary results and proofs

This section is devoted to the proofs of main results of this paper. Furthermore, different necessary results
are introduced below.

Proof of Proposition 3.2. For each Borel set B, we have that QB := {QX|X ∈ B} is a Borel set. Let
denote P and PQ as the probability measures of X and QX, respectively. For a Borel set B, one can write

P[B] = PQ[QB] or analogously P[Q′B] = PQ[B].

Therefore, we obtain that the random vectorQX is also multivariate regularly varying with tail index γ since

tPQ
[
QX

φ(t)
∈ ·
]

v→ µQ(·) := µ ◦Q′(·).

�

Proof of Proposition 3.4. As in the proof of Proposition 3.2, we denote P and PQ the probability measures
of X and QX, respectively. Then, we get for any relatively compact rectangle B that,

tPQ
[
QX
φ(t) ∈ B

]
− µQ(B)

Λ(φ(t))
=
tP
[

X
φ(t) ∈ Q

′B
]
− µ(Q′B)

Λ(φ(t))
.

Hence,
tPQ

[
QX
φ(t) ∈ B

]
− µQ(B)

Λ(φ(t))
→ ψQ(B) := ψ ◦Q′(B).

�

For the sake of readability, we now introduce the directional multivariate versions of the four lemmas, Lemma
2.1 to Lemma 2.4 in [De Haan and Huang (1995)] without proof. These four lemmas will be useful to prove
Proposition 4.1 below.

Lemma A.1. If − lnGu has continuous first-order derivatives (− lnGu)i, i = 1, ..., d, then
√
k (ρ̂u(θ) − ρ̃u(θ))

converges to Vu

(
θγj−1

γ ; j = 1, ..., d

)
+
∑d

i=1(− lnGu)i

(
θγj−1

γ ; j = 1, ..., d

)[∫ θi
1 (ln t)tγ−1dt

]
Γu,i.

Lemma A.2. Under the conditions of Proposition 4.1,

√
k

(
x̂u,j(α, e,θ, n/k) − x̃u,j(α,θ)

âu,j(n/k)
∫ sn

1 tγ̂j−1(log t)dt

)
converges in distribution to (ρu(θ) θj)

γ Γu,j , for all j = 1, ..., d.
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Lemma A.3. Under the conditions of Proposition 4.1,

lim
n→∞

√
k (ρu(θ) − ρ̃u(θ)) = 0 locally uniformly.

Lemma A.4. Let ψu,j(xj) := ψu ([−∞,∞]× · · · × [xj ,∞]× · · · × [−∞,∞]) j = 1, . . . , d. Then,
under the conditions of Proposition 4.1,

lim
n→∞

√
k (x̃u,j(α,θ) − xu,j(α,θ))

âu,j(n/k)s
γ̂j+1
n ψu,j

((
s
γ̂j
n − 1

)
/γ̂j

) = 0, locally uniformly, for all j = 1, ..., d.

The proofs of these lemmas work in a similar way as in [De Haan and Huang (1995)] considering the
arrangements due to the directional multivariate framework, then they are omitted here. Now, by using
Lemmas A.1-A.4, one can prove the main Proposition 4.1.

Proof of Proposition 4.1. Lemma A.1 proves asymptotic convergence of the standardized difference ρ̂u(θ)−
ρ̃u(θ). This implies asymptotic normality of the standardized difference x̂(α, e,θ, n/k) − x̃u,j(α,θ) in
Lemma A.2.

Also, Lemma A.3 proves the convergence to zero of the standardized difference ρu(θ) − ρ̃u(θ), which helps
to prove Lemma A.4 where the convergence to zero of the standardized difference x̃u,j(α,θ) − xu,j(α,θ)
is given. Then, by using the asymptotic normality of the standardized difference between the approximation
and the estimation in Lemma A.2 and the convergence to zero of the standardized difference between the
true elements and its approximations in Lemma A.4, the result in Proposition 4.1 is achieved. �

We recall below an useful result for elliptical distribution (see Lemma 3.1 in [Hult and Lindskog (2002)]).

Lemma A.5. If X has an elliptical distribution and decomposition given by

X
d
= µ + Σ1/2 rZ,

where r is a random variable independent from the random vector Z, which is uniformly distributed in the
unit circle of dimension d, µ a location parameter and Σ a matrix indicating scale. Then, for any orthogonal
matrix Q, QX has an elliptical distribution with associated decomposition given by

QX
d
= Qµ +QΣ1/2 rZ.

Moreover, its marginals are the associated univariate elliptical distributions with parameters of location and
scale given by Qµ and QΣQ′.

Now we summarize the result from [Nikoloulopoulos et al.(2009)], where the theoretical stable tail depen-
dence function for a multivariate t−distribution is obtained. The interested reader is also referred to [Opitz
(2013)].

Theorem A.6 ([Nikoloulopoulos et al.(2009)], Theorem 2.3). The theoretical tail function of T d0,Σ,ν(·), a
d−dimensional t−distribution with d.f. ν, location parameter µ = 0 and scale parameter Σ, is given by,

− ln

(
G

(
zγ − 1

γ

))
=

d∑
j=1

z−1
j T d−1

0,Qj ,ν+1

(√
ν + 1

1− r2i,j

[(
zi
zj

)1/ν

− ri,j

]
; i 6= j

)
,
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where ri,j are the correlations between the components i, j, T d−1
0,Qj ,ν+1(·) is a t−distribution in dimension

d − 1 (removing the j−component), with d.f. ν + 1, location parameter µ = 0 and scale parameter given
by,

Qj =



1 · · · r1,j−1;j r1,j+1;j · · · r1,d;j
...

. . .
...

... · · ·
...

rj−1,1;j
... 1 rj−1,j+1;j · · · rj−1,d;j

rj+1,1;j
... rj+1,j−1;j 1 · · · rj+1,d;j

... · · ·
...

...
. . .

...

rd,1;j
... rd,j−1;j rd,j+1;j · · · 1


,

where ri,l;j =
ril−rijrlj√

1−r2ij
√

1−r2lj
, for i, l 6= j.
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