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Abstract—Sparse code multiple access (SCMA) has attracted
growing research interests in order to meet the targets of the
next generation of wireless communication networks. Since it
relies on non-orthogonal multiple access (NOMA) techniques, it
is considered as a promising candidate for future systems that can
improve the spectral efficiency and solve the problem of massive
user connections. In this paper, the basic concept of SCMA is
introduced, including SCMA encoding, codebook mapping, and
SCMA decoding. The major challenge of SCMA is the very high
detection complexity. Then, a novel strategy for blind decoding
based on convolutional neural networks is proposed. Through
simulations, we showed that our proposed scheme outperforms
conventional schemes in terms of both BER and computational
complexity, where 0.9 dB improvements can be achieved.

Index Terms—SCMA; deep learning; convolutional neural
networks; MPA

I. INTRODUCTION

Due to the significant problem of spectrum resources

scarcity and dramatic increase of number of users, wireless

communication is evolving towards new generations [1]. Fu-

ture wireless generations should be very flexible to support

much higher capacity and more services for more connected

mobile users. The next generation is needed to provide max-

imum throughput, high spectral efficiency, and high data bit

rate in large coverage area [2]. These requirements are rather

challenging and it is difficult to satisfy it by using orthogonal

multiple access (OMA) schemes [3]. Future systems need

to put forward a new type of multiple access technology

to provide higher spectral efficiency and increase the access

capability and capacity of the system. To enhance the multiple

access gain, non-orthogonal multiple access schemes (NOMA)

have been proposed and emerged as promising candidates

solution for future systems [4] [5]. SCMA has been considered

as a promising technique for future systems and has attracted

growing research interests in order to meet the targets of

the next generation of wireless communication networks [6].

SCMA is a waveform in which sparse codewords of multiple

layers of devices are overlaid in code and power domains and

carried over shared time-frequency resources [7]. SCMA is a

technique, in which data streams, to be transmitted, are directly

mapped to code words of different multi-dimensional code-

books, where each codeword represents a spread transmission

layer [8].

The major challenge of SCMA is the very high detection

complexity. In order to reduce the computational complex-

ity [9], some methods have been proposed in recent researches,

including the low-density parity check (LDPC) message pass-

ing algorithm (LDPC-MPA) detector in [10], the Jacobi ap-

proximation message passing algorithm (Max-log MPA) de-

tector in [11], and the low complexity Maximum-Likelihood

Approximation detector in [12]. The proposed methods have

exhibited a good tradeoff between the bit error rate (BER)

performance and the computational complexity [13]. These

methods have high computational overheads restricting the

real-time operation of SCMA.

In recent years, deep neural networks technologies have

been applied to successfully resolve the problems of image

recognition and classification [14]. Convolutional Neural Net-

works are a category of Neural Networks that have proven very

effective in such areas [15]. We extend the application of deep

learning to SCMA detection and propose a low complexity

deep neural networks SCMA blind detector. Recently, parallel

works were presented in [16] and [17] investigating SCMA

enabled by deep neural network. [16] proposes a SCMA

scheme in which the generation of codewords and the detection

of symbols are based on deep learning whilst [17] utilizes

a fixed constellation mapping and studies only a detector

based on neural network. Different from [16], we are only

interested on the detection problem and different from [17], a

novel convolutional neural networks (CNNs) based decoding

for SCMA is proposed, where a blind decoding strategy for

SCMA is learned using deep convolutional neural networks, in

which the architecture of the network is different. Thanks to its

structure, CNNs overcome the limitations of traditional deep

neural networks. In fact, it explicitly focus on local structure of

the signal and it is able to gain invariance to local deformations

due to the noise, which minimize bit error rate (BER). The

number of free parameters in CNNs is limited, which make

the complexity lower compared to traditional deep learning.

The training can be done in a single shot to generate the

decoding model, while a MPA based decoder requires several

iterations to achieve a high performance. A set of simulations

is performed to confirm that the blind CNNs based decoder

provides a lower BER and less computational complexity than

a conventional MPA based decoder for SCMA. The remainder
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Fig. 1: Block diagram of SCMA.

of this paper is organized as follows. In section I, we introduce

the system model of SCMA. The conventional MPA based

decoder and the proposed convolutional neural networks based

decoder are discussed in Section II. The simulation results

and discussion are provided in Section III. We conclude and

propose perspectives in Section IV.

II. SYSTEM MODEL

We consider a basic system model of SCMA with J users

spreading over K resources through additive white Gaussian

noise (AWGN) channel. J is greater than K and the ratio J/K
is defined to be the overloading factor as shown in Fig. 1. Bit

streams to be transmitted are directly mapped to codewords of

different multi-dimensional codebooks, where each codeword

represents a spread transmission layer. The transmitted signal

from each user is multiplexed to some orthogonal resources.

An SCMA decoder processes the superimposed signal.

A. SCMA Encoder

An SCMA encoder is defined as a map from log2(M) bits

to a K-dimensional complex codebook of size M. The SCMA

codebooks are designed in order to reduce the detection com-

plexity. The codewords are composed of multi-dimensional

complex symbols, and the codewords in the same codebook

have the same sparse pattern.

Fig. 2 shows an example of a codebook set containing 6

codebooks. Each codebook transmits only one layer, which

is composed of 4 multi-dimensional complex codewords that

corresponds to 4 points of constellation. The length of each

codeword is M = 4, which is the same as the spreading length.

For mapping, the selection of each codeword from codebook

is based on the input bit sequence.

The SCMA encoder can be described as a mapping of coded

bits bj to a multidimensional complex codeword xj . Then, the

data are modulated to the subcarriers. The received signal can

be expressed as bellow:

y =
J∑

j=1

diag(hj)xj + n (1)

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

+ + + + + =

0001 11 10 0111

Fig. 2: SCMA Mapping.

where xj = (x1j , .., xKj)
T is the SCMA codeword of layer

j, and hj = (h1j , .., hKj) is the channel vector of layer j, and

n is the ambient noise.

B. SCMA Decoder

This section proposes a new low-complexity blind-detection

method based on CNNs for SCMA which outperforms MPA

based decoding and reduces the complexity. Subsection B.1)
briefly describes the original MPA decoder. The proposed

detection method is discussed in subsection B.2).
1) Message Passing Algorithm: At the receiver, maximum

a posterior probability (MAP) detection is optimal to decode

the overlaid symbols over each resource but with very large

complexity [18]. There are already some optimizations on the

detection [19], but the complexity is still exponential. The

estimation of transmitted codewords X = (x1, x1, ..., xJ) is

resolved according to:

X̃ = argmax
X∈(XJ

j=1){xj}

P (X|Y ) (2)

where xj is the codebook of user j.

By utilizing SCMA codewords sparsity, an iterative multi-user

detection based on MPA is employed to achieve a near optimal

performance with low complexity. The task of MPA detector

is to separate the interfering symbols in an iterative fashion.

It is based on the message exchange between layer nodes VN

and resource nodes FN in the factor graph. MPA algorithm

updates the extrinsic information of FN and VN nodes along
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Fig. 3: Structure of CNNs based decoder for SCMA.

the edges in the factor graph, which is defined as low-density

matrix F . F is defined as F = (f1, f2, ..., fJ), in which fj =
(fj,1, fj,2, ..., fj,K)T is the indicator vector of the jth layer and

fj,k = 1 means that the layer j is connected to the resource

k, otherwise, fj,k = 0. The following matrix illustrates an

example of factor graph, which is presented as 4 x 6 matrix

given by:

F =




0 1 1 0 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0


 (3)

The codewords of each codebook has a probability to be

the transmitted symbol. Firstly, the probability distribution

of codewords are initialized to be equal. Then, they are

calculated as the exchanged messages in MPA according to

the received signal y, the knowledge of the channel hj , the

noise power N0 and the factor graph.

In each iteration, the probability distribution of each sent

codeword on resource k is deduced by MPA detector

according the rest of the connected user nodes. Considering

the equation (2), the value of the probability of x12 is

computed according to x13, x15, the noise power N0 and the

value of y1. The procedure is detailed in Algorithm 1.

2) Convolutional Neural Networks: In this section, we

briefly introduce a blind detector for SCMA based on con-

volutional neural networks [20]. CNNs use a variation of

multilayer perceptron designed to require minimal preprocess-

ing. These deep-learning networks perform automatic feature

extraction without human intervention, unlike most traditional

machine-learning algorithms [21]. Deep learning’s ability to

process and learn from huge quantities of unlabelled data,

give it a distinct advantage over previous algorithms. In deep-

learning networks, each layer of nodes trains on a distinct set

of features based on the previous layer’s output [14]. Thanks

to its structure, CNNs can perfectly overcome the limitations

of traditional neural networks. A CNN consists of number of

layers such as convolutional, non linearity and fully connected

layers. Convolutional layers take several feature maps as input

and produce n feature maps as output through the calculation

Algorithm 1: MPA detection for SCMA

Input: y, F,N0, hj,k, j = 1..J, k = 1..K,Xj ;
Step1: Initialization
for k = 1..K do

ind = find(F (k, :) == 1) //find users connected to k;
for m1 = 1 : M&m2 = 1 : M&m3 = 1 : M do

f(m1,m2,m3, k,N0,k, hk) =
−(1/N0)|yk − (X(k,m1, ind(1))hk,ind(1) +
X(k,m2, ind(2))hk,ind(2)) +
X(k,m3, ind(3))hk,ind(3))|

2;

I0
j→k

= 1/M, j = 1..J, k = 1..K;

end

end
Step2: Iterative message passing along edges
for it = 1..Niter do

{Resource node k passes updates obtained from
extrinsic information to its neighboring layer nodes }
for k = 1..K & F (j, k) = 1 do

ind = find(F (k, :) == 1) ;
v1 = ind(1) ,v2 = ind(2), v3 = ind(3);
Iit
k→v1

(m1) =
∑M

m2=1

∑M
m3=1 f(m1,m2,m3, k,N0,k, hk);

(Iit−1
v2→k

(m2)(I
it−1
v3→k

(m3),m1 = 1..M ;

Iit
k→v2

(m2) =
∑M

m1=1

∑M
m3=1 f(m1,m2,m3, k,N0,k, hk);

(Iit−1
v1→k

(m1)(I
it−1
v3→k

(m3),m2 = 1..M ;

Iit
k→v3

(m3) =
∑M

m1=1

∑M
m3=1 f(m1,m2,m3, k,N0,k, hk);

(Iit−1
v1→k

(m1)(I
it−1
v2→k

(m2),m3 = 1..M ;

end

end
{Update messages from layer nodes}

{ Layer node j passes updates obtained from
extrinsic information to its neighboring resource nodes }
for j = 1..J do

for m = 1..M do

Iit
j→k1

= normalize(apj(m)Ik2→j(m)) ;

Iit
j→k2

= normalize(apj(m)Ik1→j(m)) ;

Step3: Output the final guess of the sent codeword
by each layer

The guess at layer node j for codeword m is a chain
product of all guesses from all its connected resource nodes
and the a prior probability

Qj(m) = apj
∏dv

l=1 I
Niter
l→j

,m = 1..M ;

dv is the number of connected resources to a user node.
end

end
Finally, the codeword, which maximizes Qj(.) is considered

as the transmitted codeword in the jth user.

of the scalar product between their weights and the region

connected to the input volume, where n is the number of filters

in the convolution layer. The output of layer l consists of m
(l)
1

feature maps of size m
(l)
2 x m

(l)
3 . The ithfeature map in layer

l, denoted Y
(l)
i , is computed as

Y
(l)
i = B

(l)
i +

m
(l−1)
1∑

j=1

K
(l)
i,j ∗ Y

(l−1)
j (4)

where B
(l)
i is a bias matrix and K

(l)
i,j is the filter connecting

the jth feature map in layer (l − 1) with the ith feature map

in layer l.
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If layer l is a non-linearity layer, its input is given by m
(l)
1

feature maps and its output comprises again m
(l)
1 = m

(l−1)
1

feature maps, each of size m
(l−1)
2 × m

(l−1)
3 , given by

Y
(l)
i = f(Y

(l−1)
i ) (5)

where f is the activation function used in layer l and operates

point wise. A fully connected (FC) layer with d inputs and

n nodes have connections to all activations in the previous

layer. It can be interpreted as a convolutional layer with an

input of shape 1 × 1 × d and n filters of size 1 × 1. This will

produce an output shape 1 × 1 × n. FC acts as classifier.

Our goal in using CNNs in investigating SCMA is to

construct a blind decoding strategy with high performance

and low complexity. The act of transmitting data streams

through noisy channels make the decoding technique more

difficult, and the job of the convolutional neural network

is to recognise the codewords sent by each user within the

noise, without prior knowledge of channel information or

the relationships between resource and layer nodes presented

by the factor graph. When a network is being trained, it

generates a model, and measures the distance between that

model and the benchmark through a loss function. The loss

function can be defined in many different ways but a common

one is mean squared error (MSE), which can be defined as:

L =
∑

i

(Ti −Oi)
2 (6)

where Ti is the actual data and Oi is the predicted results.

The attempts of CNNs to minimize the loss function involve

resampling the shuffled inputs and re-reconstructing the data,

until it finds those inputs, which bring its model closest to

achieve the designed targets. A backprpagation method is used

to calculate the gradients of the loss with respect to all weights

in the network. Thus, in order to minimize the output error,

the weights, biases of CNNs and filter values are updated

according to channel samples using a stochastic gradient

descent (SGD) method. The weight update is performed based

on the following equation:

w = wi − α
dL

dw
(7)

where α is the learning rate.

In order to construct the model, it is required to define the

number of layers, the learning weights, number and size of

filters, along with other tunable parameters. These parameters

and the architecture of the network are fixed initially and do

not change during the training process. Only the values of

the filter matrix and connection weights get updated during

training.

We have proposed a blind SCMA decoder based on deep

neural networks. Initially, We have structured the data for

training and testing sinuously. Then, we have architected the

layers and the filters in order to generate the adequate model,

which will be used to detect blindly the codewords sent by

each user, without prior knowledge of signal characteristics or

channel information.

Fig. 4: Factor graph representation of an SCMA with K = 4
and J = 6.

In our proposed decoding scheme, the superimposed input data

streams on each resource are treated as real and imaginary data

in order to construct the adequate inputs for the convolutional

layer as shown in Fig. 3. The input data streams used for

training are generated randomly. Then, they are propagated

through the batch-normalized layers and Rectified layers to

reach the final layer, which can be a logistic, or softmax,

classifier that assigns a likelihood to a particular outcome or

label. We utilized the fully connected (FC) layer for the final

layer in order to combine all information that could spread

over all the resources, given that multiple data streams are

multiplexed over multiple resources.

During training, all the weights and parameters of the network

have been optimized to correctly classify the input data from

the training set. Once the training process is finished, our

model is generated and our network is able to learn to

recognize the sent codewords. When a new data is input into

the CNN, the network goes through the forward propagation

step and outputs a probability for each class. If our training

set is large enough, the network will generalize well to new

inputs and classify them into correct categories.

III. SIMULATION RESULTS

A. Data set

The SCMA design follows the factor graph of Fig. 4

with the basic parameters K = 4 resources, J = 6 users

and df = 3, where df is the number of branches arriving

to a resource node. Hence, the overloading factor is up to

150%. A high ratio of user’s stream to resource degrades

BER performance because more bits are super-positioned to

single resource. The simulations are performed over a fixed

constellation mapping as depicted in Fig. 5. The data are

trained over Eb/N0 of values: 2, 4, 6, 8, 10, 12 and 14. Then,

we conclude that Eb/N0 = 6 is the best training environment

for a high SNR. For training, 300, 000 values of input data

streams are generated randomly. Thus, our network is large

enough to generalize well. In addition, we utilized 4 sets

of convolutional layer, batch normalization layer and ReLU

layer. For the final layer, a full-connected layer is utilized.

The weights and biases are initialized randomly. Yet, the
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Fig. 5: Constellations of 6 users on 4 resources

learning rate of SGD method, α, is set to 0.001, which is

sufficiently small for convergence of loss function. It should

be noted that the convolutional neural network parameters,

e.g., learning rate, number of hidden layers and the number

of nodes, are not arbitrary chosen but determined through

exhaustive searches.

Through training, we generate our model and in order to

investigate its efficiency, data set input streams are utilized

for validation.

B. Results

Numerical results show that the proposed CNNs for blind

decoding in SCMA can achieve an excellent performance gain

as depicted in Fig. 6. It can be seen that the BER performance

of blind CNNs-SCMA are better than MPA based decoder

for SCMA in additive white Gaussian noise channels, where

0.9dB improvement can be achieved. It outperforms MPA

based decoder for SCMA using validation data in terms of

BER. The deep learning enables an efficient blind decoding

strategy for a sparse and multidimensional superimposed sig-

nal.

In Fig. 6, we evaluate the BER for CNNs based decoding

for SCMA using data set values for testing. The simulation

results show that blind CNNs-SCMA exhibits the same BER

performance as MPA under the value of Eb/N0 = 6. Then it

outperforms conventional MPA decoder without prior knowl-

edge about channel information and user-resource connections.

C. Performance vs Complexity

Through simulations, we find that the computational com-

plexity of CNNs for blind decoding in SCMA is much less

than MPA based decoder scheme. The main contribution of

deep learning is to train the network once, and for a new

input data, the output probabilities are calculated using the

0 2 4 6 8 10 12
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b
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0
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MPA decoder
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Fig. 6: BER performance of MPA based decoder vs blind CNN

detector for SCMA

weights which have been optimized to correctly classify all

the previous examples treated during training. Yet, by using

MPA, much iteration is needed to achieve a good performance,

as shown in Fig. 7a. In CNNs for blind detection in SCMA,

all the steps of optimizing the weights and tuning the network

parameters are performed during the training process. Once the

training is finished and the model is generated, our network

is able to detect quickly the sent codewords in low as well

high SNR environment. While, by using MPA based SCMA

detector, the detection of sent codewords vary according to

the value of SNR. Thus, the steps of decoding of new data

streams get repeated at each value of Eb/N0 and during the

iterative process.

We denote the number of iterations by I . The complexity of

MPA receiver is to the order of I.(d2f .M
df+d2fJM/K), where

M is the modulation order and df is the maximum degree of

resource node. Thus, it is clear that the complexity of MPA

based decoder increases linearly with the system parameters,

namely the number of iterations and the codebook dimension.

Whereas, our proposed scheme is a blind detection, which does

not take into consideration the degree of resource node and

user-user connection. For both methods, our proposed scheme

and MPA based detector, the simulations are performed under

the same conditions. The simulations are implemented by

utilizing 2.5GHz Intel Core i5 CPU with 8Go, 1600MHz
double data rate three (DDR3) memory. The obtained results

showed that the computation time of our proposed scheme

is lower than the MPA scheme even with one iteration as

shown in Fig. 7b. However, the BER performance is much

better as confirmed in Fig. 7a. In consequence, CNNs for

blind decoding technique outperforms conventional schemes

in terms of both BER and computational complexity. For a

new data set of symbols, the output probabilities are calculated

using the weights which have been optimized to correctly

classify all the previous training examples.
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Fig. 7: BER Performance of MPA based decoder vs CNNs based decoder for SCMA.

IV. CONCLUSION

In this paper, we have proposed a novel strategy of de-

coding for SCMA based on convolutional neural networks.

The simulation results provided illustrate the performance

advantage of decoding strategy based on convolution neu-

ral networks over the one based on the iterative approach

MPA. Through simulations, we showed that our proposed

scheme outperforms conventional schemes in terms of both

BER and computational complexity. Coupled with the rapid

advancements in distributed and GPU (graphics processing

units) computation, it is now possible to train much larger

and more powerful CNNs that achieve better performance in

lower time. Future research will be directed towards further

improvements on both transceiver and receiver. We aim to

implement a flexible SCMA encoder an decoder that accept a

codebook allocation and a mother constellation as input and

utilize the deep learning advantage in designing the SCMA

codebooks.
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