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IMPROVING THE GEOMETRY OF A 3D LONGITUDINAL NETWORK
USING A STRETCHED WIRE

S. Durand, (GeF, Le Mans, France), T. Touzé, (Heig-VD, Yverdon, Switzerland)
V. Rude, H. Mainaud-Durand, (CERN, Geneva, Switzerland)

Abstract
In this paper, we show that integrating a common

stretched wire in a 3D longitudinal network improve
the geometry of the geodetic network, both in terms
of accuracy and reliability. We used a polypropolen
braided rope type, lightly tensed wire with a sag value
of the order of half a meter. In our 3D longitudinal
test network, angle and distances measurements car-
ried out between points using a total station formed
the basic network. In addition, vertical and horizontal
angle measurements were performed on marks located
on the wire to densify the network. In the first part
of this contribution, we detail the functional models
developed to take into account points on the wire. We
also describe a test campaign carried out with a wire
stretched over 50 m, within a 5 m wide and 60 m long
network. In the second part, we present and discuss
our results, and show that using a stretched wire can
improve significantly the accuracy and reliability of
the network points determination.

INTRODUCTION
The alignment of the components of a particle ac-

celerator is a challenging task as the accuracy require-
ments can be very small (up to a few tens of microme-
ters) in a straight and narrow tunnel. In such a partic-
ular geometry configuration, it is difficult to obtain the
required accuracy with standard 3D measurements.

Since 50 years, surveyors have been developing var-
ious specific tools and methods to align the elements
of the machines more efficiently and more accuratly
than with standard 3D measurements. One of these
tool is the stretched wire, which provides a straight
line over a distance of up to several hundred meters at
least radially. In vertical, one has to take into account
the catenary shape of the wire. This solution has the
advantage to be insensitive to lateral refraction whose
is not negligeable in tunnels. At Cern, stretched wires
are used since more than 50 years [1] jointly with ecar-
tometers or Wire Positioning Systems [2], [3]. In the
LHC machine for example, stretched wires combined
with ecartometers are used to achieve an alignment
accuracy of the order of 0.1 mm at 1-sigma confidence
level, over sliding windows of 150 m.

Currently, CERN uses WPS sensors to per-
form the micrometric position monotoring of specific
quadrupoles located before the four collision points of
the LHC. The sensors carry out offset measurements
with respect to a carbon PEEK wire (350µm diameter,
mass per unit length of about 0.000235 kg/m, tension

force of 150 N). In these conditions, the shape of the
stretched wire is close to a second order polynomial
for distances below 500m [4] and can be modeled in
the vertical plane knowing the difference of height of
at least three points along the wire.

In [5], the authors showed that in a 3D longitudinal
network, determined by standard 3D measurements,
typically performed using industrial total station or
absolute tracker, the determination of the radial po-
sition of the components can be improved by adding
straight line constraints for points of the network lo-
cated onto a stretched wire. In this work, measure-
ments were indirectly performed onto the wire using
capacitive WPS sensors: the absolute position of the
wire was determined using WPS sensors in its refer-
ence frame, and metrological plates equipped with 0.5
inches prims were used to connect WPS measurements
and standard 3D measurements.

The main objective of the present contribution is to
study the advantages of using a basic stretched wire
in a 3D longitudinal network, with measurements di-
rectly performed on the wire with a total station. Our
work will focus in particular on the improvement in
terms of accuracy and reliability. The methodology
proposed is the following: a polypropolen braided rope
is stretched along a longitudinal network and marked
with a pen. Vertical and horizontal angle measure-
ments are performed on the marks located on the wire
from a set of points of the network, in addition to
the angles and distances measurements performed be-
tween points, using a total station. All the measure-
ments carried out in the network are processed to-
gether using the least squares method, and both co-
ordinates of the points and parameters of the wire are
estimated.

STRETCHED WIRE MECHANICS
If a chain or rope is hanged between two fixed points,

namely O and P , it takess a catenary shape (Figure 2).
Let B be the lowest point of the chain, and consider(
B, eb, nb, zb

)
the local astronomical system at point

B, with the negative z-axis defined by the gravity vec-
tor at B. At first order, the catenary can be considered
as included in a vertical plane. Let γ be the azimut
of the plane containing the catenary, and hb the hori-
zontal axis corresponding to the direction with azimut
γ. For each point D on the chain, h denotes the hor-
izontal distance between points B and D (i.e. absissa
along the hb axis), s denotes the curvilinear abscissa
of point D with an origin at point B. The portion BD



of the chain is in equilibrium under the action of three
forces: the horizontal tension T at B, the tension S
at D (both in Newtons), which makes an angle θ with
the horizontal, and the weight of the portion BD. As
indicated in [4], the following relations can be derived
from Figures 1 and 2:

dz

dh
= tan θ =

Q

T
=

gqs

T
(1)

ds2 = dh2 + dz2 (2)

Where q is the mass per unit length of the chain
(kg/m), and g is the standard acceleration due to grav-
ity (m/s2).

Figure 1: Azimut of the vertical plane containing the
stretched wire.

Figure 2: The catenary in the vertical plane containing
the stretched wire.

From equations 1 and 2, it is possible to express
the curvilinear abscissa as a function of the horizontal
distance:

s(h) = α sinh
h

α
(3)

Where α = T
qg is a constant, having the dimensions

of length. For wires typically used at CERN, α values
are about 65000. From equation 3, and knowing that
z(0) = 0 at point B, the equation of the catenary is:

z(h) = α

(
cosh

h

α
− 1

)
(4)

Thus, in order to define a stretched wire, five pa-
rameters are required: (a) the coordinates of the low-
est point B on the wire, (b) the azimut of the vertical
plane containing the wire, and (c) the α-constant of
the wire.

FUNCTIONAL MODEL
Let’s consider a network where conventional mea-

surements (i.e. direction angles, zenith angles and
slope distances) are performed using a total station.
In this network, a particular point S is performing
measurements on a point F . We can express the coor-
dinates of the points S and F in the local astronomi-
cal 3D coordinate system of point S: (esS , n

s
S , z

s
S) and

(esF , n
s
F , z

s
F ) where exponent s indicates that the coor-

dinates are related to the local astronomical system of
point S. Direction and zenith angles from point S to
point F can be expressed from the local coordinates
of points S and F in the local astronomical system at
point S as follows:

LSF = arctan

(
esF − esS
ns
F − ns

S

)
−G0,S (5)

ASF = arctan

(√
(esF − esS)

2 + (ns
F − ns

S)
2

zsF − zsS

)
(6)

Where G0,S denotes the orientation unknown for
station S.

In order to express these observation equations in
terms of Cartesian coordinates in a geodetic Cartesian
reference system, denote ΦS (resp. ΛS) the astronom-
ical latitude (resp. longitude) of point S. It is then
possible to compute matrix RS such as:

 esF − esB
ns
F − ns

B

zsF − zsB

 =

 RS
11 RS

12 RS
13

RS
21 RS

22 RS
23

RS
31 RS

32 RS
33

 XF −XS

YF − YS

ZF − ZS


(7)

As some point F may be located onto a stretched
wire, we also have to consider the local astronomical
system (B, eb, nb, zb) associated with the lowest point
of the wire B. We denote (ebP , n

b
P , z

b
P ) the local coor-

dinates of point P in this coordinate system.
In our processing scheme, our objective is to esti-

mate the coordinates of unknown points in the net-
work, using the fact that some points are located onto
a stretched wire. The parameters of these points are
the coordinates of the lowest point, the azimuth of
the plane containing the wire and the α-constant of
the wire. We have chosen to express the observation
equations 5 and 6 as functions of the parameters of
the stretched wire. Thus, we do not directly estimate
the unknown coordinates of points onto the wire. As
showed by Figures 1 and 2, for a point F onto the
stretched wire, the following relationships exist:



ebF − ebB = hF . sin γ (8)

nb
F − nb

B = hF . cos γ (9)

zbF − zbB = α

(
cosh

hF

α
− 1

)
(10)

For each point F onto the wire, we thus only es-
timate parameter hF as the (ebF , n

b
F , z

b
F ) coordinates

of point F can be expressed as a function of the hF

parameter and of the parameters of the wire.
Using equation 5, we can write:

LSP = arctan

(
esF − esB + esB − esS
ns
F − ns

B + ns
B − ns

S

)
−G0,S (11)

Using the astronomical latitude ΦS (resp. ΦB) and
longitude ΛS (resp. ΛB) of point S (resp. point B), it
is possible to compute the rotation matrix R such as:

 esF − esB
ns
F − ns

B

zsF − zsB

 =
[
Rij

]  ebF − ebB
nb
F − nb

B

zbF − zbB

 (12)

Thus, equation 5 can be expressed as follows:

LSP = arctan

(
∆e+ esB − esS
∆n+ ns

B − ns
S

)
−G0,S (13)

Following the same method, equation 6 can be ex-
pressed as follows:

ASP = arctan

(√
(∆e+es

B
−es

S
)2+(∆n+ns

B
−ns

S
)2

∆z+zs
B
−zs

S

)
(14)

Where:

∆e = R11hF sin γ +R12hF cos γ (15)

+R13α

(
cosh

hF

α
− 1

)
(16)

∆n = R21hF sin γ +R22hF cos γ (17)

+R23α

(
cosh

hF

α
− 1

)
(18)

∆z = R31hF sin γ +R32hF cos γ (19)

+R33α

(
cosh

hF

α
− 1

)
(20)

Using now rotation matrix RS , observation equa-
tions can be expressed as functions of the cartesian
coordinates of points B, S, the parameters of the
stretched wire and parameter hF of point F .

TEST NETWORK
In order to test our methodology, we have conducted

several tests in a test network located on the sub-level
of the main building of the ESGT engineer school. As
shown in Figure 3, the network is approximately 60
m long and 5 m large. A wire has been stretched on
approximately 50 m along the longitudinal axis of the
network, as illustrated on Figure 4. The network is
composed by two points fixed in coordinates (namely
P3 and P1), 4 points where total station or reflector
can be installed (P1, P2, T5 and P3) and 5 points
located on the stretched wire (F1 to F5).

Figure 3: Test network.

The wire used for this campaign is obviously differ-
ent from the ones used at CERN: it is a polypropolen
braided rope, with a diameter of approximately 2 mm,
stretched at approximately 1.3 kg, with a mass per
unit length of about 0.022 kg/m. In our tests, the sag
of the wire is approximately 70 cm, and it is no longer
possible to approximate the catenary with a second
order polynomial. In our tests, the α-coefficient of the
stretched wire has a typical value of about 650.

Figure 4: Left: the stretched wire along the longitu-
dinal axis of our test laboratory. Right: the stretched
wire, a 2 mm diameter polypropolen builders line, with
marks done with a pen.

All measurements were performed in both telescope
faces, using a Leica TM30 total station. Figure 5
summarizes the measurements performed in our test
network. Reciprocal measurements were performed



beetween points where a total station could be in-
stalled (P1, P2, T5, and P3). As the network is a lon-
gitudinal one, and points are nearly on the same line,
measurements were performed only to previous and
next points. For each point on the wire, measurements
were performed on it from at least two other points of
the network. We considered a standard deviation of
0.15 mgon for both zenith and direction angles, and of
±0.5mm± 0.5ppm for slope distances. Distances were
corrected for systematic errors:

- atmospheric EDM errors were corrected following
[7] and using the Vaisala meteorological sensors
distributed in the test laboratory (one PTB210
pressure sensor, one HMP231 relative humidity
sensor and 9 PT100 temperature sensors)

- zero and cyclic errors of EDM instru-
ment/reflector pairs were corrected using
calibration values determined with the ESGT
calibration bench, a 50 m long bench based on
the comparison between EDM and interfero-
metric distance measurements. Such a bench is
equipped with a motorized carriage, holding the
EDM reflector and interferometric prism, that is
moved along the bench.

For all measurements, a centering error of 0.3 mm
was considered for both stations and targets (when
the target was not on the wire). A centering error of
0.5 mm was considered for operator pointing errors on
points located onto the wire.

Figure 5: Angles and distances measurements in the
test network. Blue dots are points known in 3D co-
ordinates. Green dots are unknown points. Dashed
arrows indicate that measurements were performed be-
tween points (only angles measurements or angles and
distance measurements).

RESULTS AND DISCUSSION
In order to study the impact of using a stretched

wire in a longitudinal network, in terms of accuracy
and reliability, two processing strategies were used:

- Strategy 1: the network adjustment do not use the
fact that some points are located on a stretched
wire.

- Strategy 2: the network adjustment takes into ac-
count the stretched wire, and makes use of the
modified functional models of equations 13 and
14.

Table 1 summarizes relevant informations about the
processing strategies. In both strategies, the number
of observations (40), of known points (2) and of un-
known points (7) are the same. In Strategy 1, which
corresponds to a classical adjustment with no wire, we
have 21 unknown coordinates (7 unknown points, 3
coordinates per point) and 4 unknown directions, as
measurements are performed from points P1, P2, T5
and P3 to the other points of the network. In Strat-
egy 2, we have the same 4 direction parameters than
in Strategy 1. For points not located on the wire, we
have to estimate their 3D coordinates (P2 and T5),
which leads to 6 unknown coordinates. For each point
located on the wire, we do not estimate the 3D coordi-
nates but only the hF parameter. The 3D coordinates
are linked to the hF parameter and to the 5 param-
eters of the wire. As 5 points (F1 to F5) are located
on the wire, we have to estimate 5 hF parameters plus
the 5 parameters of the wire. Therefore, the number of
unknowns in Strategy 2 is smaller than in Strategy 1,
and as the degree of freedom in Strategy 2 is greater
than in Strategy 1, we may expect improvement of
the geometry of the network. Table 1 also indicates
the estimated variance factors obtained from our data
processing. As these values are close to one, we can
consider that our measurements are coherent with our
functional and stochastic models.

Strategy
Information 1 2

Nb. of observations 40 40
Nb. of unknowns 25 20

(total count)
Nb. of unknowns 21 6

(coordinates)
Nb. of unknowns 0 10
(due to the wire)
Degree of freedom 15 20

Estimated variance factor 0.97 0.93

Table 1: Relevant informations about each processing
strategy.

The results presented in this contribution were ob-
tained using the CoMeT (Compensation de Mesures
Topographiques) application, a network adjustment
and design program developped at the GeF labora-
tory [8]. The functional models related to equations
13 and 14 were implemented in the CoMeT applica-
tion in order to be able to take into account the use of
a stretched wire.

We first compared the estimated standard deviation



along the radial axis for all points, with regards to the
degree of freedom of the least squares process. Table
2 shows, for each processing strategy, the estimated
standard deviation, at a 95%-confidence level, along
the radial axis of the network. It also indicates in
parenthesis the percentage of improvement of the es-
timated standard deviation compared to Strategy 1.

Point Strategy 1 Strategy 2
P2 0.9 0.7 ( 17)
T5 0.9 0.8 ( 18)
F1 1.1 1.0 ( 8)
F2 1.4 0.8 ( 42)
F3 1.5 0.8 ( 47)
F4 1.4 0.8 ( 44)
F5 1.0 1.0 ( 3)

Table 2: Estimated standard deviation (at a 95% con-
fidence level) along the radial axis of the network for
each processing strategy, in millimeters. In parenthe-
sis, the percentage of improvement over Strategy 1.

In our 3D longitudinal network, where known points
are located at the ends of the network, it is expected
that the standard deviation along the radial axis is
better near the known points and decrease when one
moves away from them. This phenomenon corresponds
to the obtained standard deviations for Strategy 1 as
indicated in Table 2: points F1 and F5, close to points
P1 and P3, have standard deviations of about 1 mm.
Points F2, F3 and F4, located in the middle of our
network, have standard deviations of about 1.5 mm.
Table 2 shows that in Strategy 2, for all points, the
standard deviation along the radial axis is lower than
in Strategy 1: using functional models which include
the parameters of the wire really improves the stan-
dard deviation. Points F2, F3 and F4, located on the
wire, in the middle of our network benefit the most
from the improvement (about 47%). Points F1 and
F5, located close to the known points P1 and P3 ben-
efit the less from the improvement (respectively 8 and
3 %). Points P2 and T5, not located on the wire, also
benefit from the improvement (about 17 %).

Table 3 shows, for each processing strategy, the esti-
mated standard deviation, at a 95%-confidence level,
along the longitudinal and vertical axes of the net-
work. For Strategy 2, it also indicates in parenthesis
the percentage of improvement of the estimated stan-
dard deviation with respect to Strategy 1. Along the
longitudinal axis, estimated standard deviations are
worst than along the others axes, especially for points
located onto the wire. This is mainly due to opera-
tor pointing errors when performing measurements on
the marks on the wire (we used a centering error of
0.5 mm). Our simulations show that if we are able to
improve the pointing accuracy on the wire, the esti-

mated standard deviations along the longitudinal axis
will be close to the one along the other axes. Never-
theless Table 3 shows that using Strategy 2 improves
the estimated standard deviation along the longitu-
dinal axis, with a percentage of improvement for all
points which do no exceed 11 %. Along the vertical
axis, Table 3 shows that using Strategy 2 improves the
estimated standard deviations, especially for points lo-
cated on the wire (angles measurements only) and in
the middle of the network, with a maximum value of
improvement of 38 % for point F3.

Point Strategy 1 Strategy 2
Long. Vert. Long. Vert.

P2 0.7 0.4 0.7 ( 3) 0.4 ( 4)
T5 0.7 0.4 0.7 ( 3) 0.4 ( 4)
F1 2.8 0.8 2.6 ( 5) 0.7 (12)
F2 1.9 0.9 1.7 (11) 0.6 (32)
F3 2.9 0.9 2.7 ( 8) 0.6 (38)
F4 1.8 0.7 1.6 ( 8) 0.6 (12)
F5 3.9 0.8 3.8 ( 3) 0.8 ( 1)

Table 3: Estimated standard deviation (at a 95% confi-
dence level) along the longitudinal and vertical axes of
the network for each processing strategy, in millime-
ters. In parenthesis, the percentage of improvement
with respect to Strategy 1.

Figure 6 shows the distribution of the redun-
dancy contribution values for all the observations in
each strategy in the commonly used intervals [0, 0.3[,
[0.3, 0.60] and ]0.6, 1] as indicated in [6]. This figure
shows that in Strategy 1, 16 observations have a re-
dundancy contribution under the minimum acceptable
value for a 3D network against 11 in Strategy 2. This
is due firstly to the fact that in Strategy 2, the degree
of freedom is greater than in Strategy 1, and secondly
to the fact that in Strategy 2, the functional models
expressed as parameters of the wire improve the ge-
ometry of the network.

Table 4 shows, for each processing strategy, the hor-
izontal 2D and 1D vertical reliability regions at a 95%
and 5% confidence levels. For Strategy 2, it also indi-
cates the percentage of improvement of the estimated
standard deviation compared to Strategy 1.

If we focus on the 1/2 width of the horizontal 2D
reliability region, we can see that using Strategy 2 in-
stead of Strategy 1 decreases the length values by at
least 25% for point P2 and up to 67% for point F5.
For points P2, T5, F2 and F5, the observation linked
with the 1/2 length of the reliability region is the same
in both strategies. This can be seen in Table 4 by the
fact that the orientation of the regions remain close
to each others. The fact that small differences exist
in the orientation values corresponds to small changes
due to the functional models between strategies. The



Figure 6: Distribution of redundancy contribution val-
ues for the observations in intervals [0, 0.3[, [0.3, 0.60]
and ]0.6, 1] for each strategy.

1/2 width of the 2D horizontal reliability region is also
impacted by the strategy used: computed values in
Strategy 2 are smallest than in Strategy 1, with per-
centage of improvement up to 77% for point F3. We
can also notice the case of point F4 for which Strategy
1 gives a smallest value than Strategy 2. If we focus
on the vertical reliability region, we can see that using
Strategy 2 improves the length values, by at least 2%
for point P2 and up to 72% for point F2. Thus, using
Strategy 2 instead of Strategy 1 can really improve the
reliability regions parameters.

CONCLUSION
In this contribution, we show that using basic

stretched wire in a 3D longitudinal network can im-
prove the geometry of the geodetic network, both in
terms of accuracy and reliability. In our test network,
conducted in a 5 m wide and 60 meters long network,
with a polypropolen braided rope type, lightly tensed
wire over 50 m, we show that one can expect accuracy
improvements of about 3 to 47% along the radial axis
of the network, but also along the longitudinal and ver-
tical axes. We also show that using such a stretched
wire can improve the redundancy contributions values
of the observations, and the reliability regions (hori-
zontal and vertical), with a percentage of improvement
up to 70% in some cases.

A key problem in our practical methodology is the
pointing accuracy on the marks located on the wire,
and the fact that only angle measurements are per-
formed on the wire. In future work, we will investi-
gate these problems, and test several methods such as
the use of small pearls on the wire to improve manual
pointing accuracy, and to be able to perform distance
measurements. We will also test different shapes for
the 3D longitudinal network, by means of simulations
and test campaigns, and will use stretched wires over
more than 100 m.
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P2 1 13.2 0.5 133 0.5
2 9.9 (25) 0.5 ( 0) 133 0.5 ( 2)

T5 1 14.9 0.5 133 0.5
2 5.6 (62) 0.5 ( 0) 133 0.5 ( 4)

F1 1 28.7 15.3 33 1.6
2 21.0 (27) 11.4 (25) 77 1.4 (15)

F2 1 16.8 9.6 53 1.9
2 10.6 (37) 2.4 (75) 45 0.5 (72)

F3 1 18.2 14.1 87 1.7
2 9.4 (48) 3.3 (77) 42 0.5 (70)

F4 1 15.1 2.7 138 1.1
2 10.1 (33) 4.5 (-65) 44 0.5 (50)

F5 1 47.3 19.0 55 1.7
2 15.5 (67) 8.2 (57) 54 1.4 (14)

Table 4: Horizontal and vertical reliability regions (at
a 95% and 5% confidence levels) for each point of the
network and for each processing strategy, in millime-
ters. In parenthesis, the percentage of improvement
over Strategy 1.
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