
HAL Id: hal-04064674
https://cnam.hal.science/hal-04064674

Submitted on 14 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Operator-software impact in local tie networks
Michael Lösler, Cornelia Eschelbach, Swetlana Mähler, Joffray Guillory,

Daniel Truong, Jean-Pierre Wallerand

To cite this version:
Michael Lösler, Cornelia Eschelbach, Swetlana Mähler, Joffray Guillory, Daniel Truong, et al..
Operator-software impact in local tie networks. Applied Geomatics, 2023, 15 (1), pp.77-95.
�10.1007/s12518-022-00477-5�. �hal-04064674�

https://cnam.hal.science/hal-04064674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


https://doi.org/10.1007/s12518-022-00477-5

ORIGINAL PAPER

Operator-software impact in local tie networks

Case study at Geodetic Observatory Wettzell

Michael Lösler1 · Cornelia Eschelbach1 · Swetlana Mähler2 · Joffray Guillory3 ·Daniel Truong3 ·
Jean-Pierre Wallerand3

Received: 31 May 2022 / Accepted: 14 November 2022
© The Author(s) 2023

Abstract
The operator-software impact describes the differences between results introduced by different operators using identical
software packages but applying different analysis strategies to the same data. This contribution studies the operator-software
impact in the framework of local tie determination, and compares two different analysis approaches. Both approaches are
used in present local tie determinations and mainly differ in the consideration of the vertical deflection within the network
adjustment. However, no comparison study has yet been made so far. Selecting a suitable analysis approach is interpreted as
a model selection problem, which is addressed by information criteria within this investigation. A suitable model is indicated
by a sufficient goodness of fit and an adequate number of model parameters. Moreover, the stiffness of the networks is
evaluated by means of principal component analysis. Based on the date of a measurement campaign performed at the
Geodetic Observatory Wettzell in 2021, the impact of the analysis approach on local ties is investigated. For that purpose,
an innovated procedure is introduced to obtain reference points of space geodetic techniques defining the local ties. Within
the procedure, the reference points are defined independently of the used reference frame, and are based on geometrical
conditions. Thus, the results depend only on the estimates of the performed network adjustment and, hence, the applied
network analysis approach. The comparison of the horizontal coordinates of the determined reference points shows a high
agreement. The differences are less than 0.2 mm. However, the vertical components differ by more than 1 mm, and exceed
the coverage of the estimated standard deviations. The main reasons for these large discrepancies are a network tilting and a
network bending, which is confirmed by a residual analysis.

Keywords Local tie · Network adjustment · Deflection of the vertical · Principal component analysis · Information
criterion · Reference point determination · GeoMetre

Introduction

In surveying engineering and large-scale metrology, net-
work adjustment is a common analysis procedure to com-
bine various observations, which are taken from several
instrument stations but also from different instrument types.
Beside the adjusted coordinates of the observed points,
the network adjustment also provides the corresponding
fully populated dispersion of the estimated parameters. Usu-
ally, the network adjustment only forms the basis for the
subsequent specific analysis, treating the coordinates and
the dispersion as incoming values. For instance, in deforma-
tion analysis the coordinates and the dispersion of several
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epochs are evaluated and checked for congruence (Lehmann
and Lösler 2017; Nowel 2020). As a further example
coming from industrial metrology, in particular accelera-
tor networks the network adjustment results are used to
reconstruct and to align the path components of the accel-
erator beamline (Lösler et al. 2015; Manwiller 2021). At
multi-technique stations such as the Geodetic Observatory
Wettzell (GOW), the network adjustment results are used
to obtain the reference points of the operated space geode-
tic techniques and to provide corresponding local tie vectors
(Leinen et al. 2007; Lösler et al. 2016).

Since the network adjustment is — in most cases
— independent from the specific task to be solved, in
principle any software package can be used for analyzing
the network. However, intensive comparison studies of
different network adjustment applications have revealed
discrepancies between the obtained results. Discrepancies
result, for instance, from different preprocessing steps, the
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implemented stochastic model, or the functional model used
within a specific application (Lösler and Bähr 2010; Durand
et al. 2020). These software-dependent deviations are called
the software effect (Durand et al. 2022). Differences in
results also occur, if different analysis strategies are used
within a given application. In contrast to the software effect,
where the differences result from different implementations,
here the selected parameters of the stochastic and the
functional model within one and the same application lead
to different results. This effect is known as the operator-
software impact (Kutterer et al. 2009), and is investigated
in this contribution exemplified by the analysis of local tie
surveying.

Local ties are vectors describing the relative distances
and orientations between space geodetic techniques, such
as the Global Navigation Satellite System (GNSS), Satellite
Laser Ranging (SLR), Very Long Baseline Interferometry
(VLBI), and Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS). The vector is known as
one of the most crucial components within the combination
process of space geodetic techniques realizing the global
Earth-fixed geodetic reference system, and must be known
with an accuracy of 1 mm to meet future requirements
like a reliable monitoring of the sea level rise (Gross
et al. 2009; Blewitt et al. 2010). Local ties are defined
between the conventional reference points of the involved
space geodetic techniques and can be derived at multi-
technique stations using terrestrial measurements. The
vector directly refers to a global geodetic reference frame.
In classical terrestrial surveying, the instruments are leveled
and relate to an astronomical frame. Wolf (1963) derives the
spatial observation equations that relate the local terrestrial
observations to such a global geodetic reference frame,
considering the deflection of the vertical (DOV). Similar
expressions can be found in numerous textbooks, such as
Hofmann-Wellenhof andMoritz (2006, Ch. 5.10), Torge and
Müller (2012, Ch. 6.2), and Leick et al. (2015, Ch. 4.4)
to cite but a few. Kallio et al. (2022) evaluate different
strategies to introduce the vertical deflections in the network
adjustment. Neglecting the deflection of the vertical
leads to systematic errors, when terrestrial observations
obtained from, e.g., total stations are transformed into
a global geodetic reference frame. For that reason, the
consideration of the vertical deflection in local tie networks
is recommended (Leinen et al. 2007; de Franca et al. 2022).
Hereinafter, this approach is refereed to as DOV approach.

In industrial metrology, instruments need not necessarily
to be leveled because the reference frame is usually an
arbitrarily orientated object based reference frame. To
relate arbitrarily oriented observations to an arbitrarily
oriented reference frame, three coordinate components of
the station position as well as three additional rotation
angles must be considered. In total, each instrument position

has six degrees of freedom (6DOF) (Calkins 2002). In
local tie survey, this approach was applied at the Onsala
Space Observatory to adjust the network observed by a
non-leveled laser tracker (Lösler and Haas 2009). Later,
Lösler et al. (2016) adopted the approach to directly relate
terrestrial observations obtained from a total station to a
global geodetic reference frame. An equivalent approach
was recently applied at the Metsähovi Geodetic Research
Station (Kallio et al. 2022). Hereinafter, this approach is
referred to as 6DOF approach.

The mathematical model of the DOV approach and the
6DOF approach is identical. The only difference between
both approaches is the handling of the vertical deflection
within this mathematical model. Our main intention is
to investigate the impact of the used network adjustment
approach onto the resulting local ties, because both
approaches are used in present local tie determinations but
no comparison study has yet been made. Based on data,
collected during a measurement campaign at the Geodetic
Observatory Wettzell in the fall of 2021, the DOV approach
and the 6DOF approach are compared to each other using
the identical data set. Due to the identical mathematical
model and the identical data set, differences in the results
are caused by the operator-software impact, which is studied
in the present contribution.

In the “Analysis procedure for local tie measurements”
section, the analysis procedure is described. The model
of the network adjustment is derived in the “Network
adjustment” section, and the differences between the DOV
and the 6DOF approach are addressed. The “Model selec-
tion” and “Principal component analysis” sections define
comparison criteria to evaluate the adjustment results.
Moreover, the mathematical models of the reference point
determination of DORIS beacons, Synthetic Aperture Radar
(SAR) corner cube reflectors, as well as telescopes used
for SLR and VLBI are presented in the “Reference points”
section. The proposed models are defined independently
of the used reference frame, and are based on geometrical
conditions. The “Case study at GOW” section deals with
the data set and the analysis of the data. A brief description
of the used data set is given in the “Data set” section.
The data analysis is explained in the “Analysis and results”
section, followed by the presentation and discussion of the
results. It is shown that the results of the 6DOF approach
are slightly better in comparison to the conventional DOV
approach. In particular, the integration of the zenith angles
is improved by the 6DOF approach, as indicated by the
variance-components (VC) estimation. The comparison of
the estimated horizontal coordinates of the determined
reference points shows a high agreement. The differences
are less than 0.2 mm. However, the vertical components
differ by more than 1 mm, and exceed the coverage of the
estimated standard deviations. These discrepancies result
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from a network titling and a network bending, and exceed
the aimed accuracy goal of 1 mm in the position on a
global scale. The “Summary and conclusion” section finally
concludes this investigation.

Analysis procedure for local tie
measurements

The determination of local tie vectors and the corresponding
fully populated dispersion matrix is a complex and chal-
lenging task. As depicted in Fig. 1, the most important
analysis steps are the adjustment of the terrestrial observa-
tion w.r.t. the local site network, the determination of the
reference points defining the local ties between the hosted
space geodetic techniques at the multi-technique station,
and, finally, the transformation of the local results into a
global geodetic reference frame. These final results, the esti-
mated local tie vectors as well as the related fully populated
dispersion matrix, are summarized in the Solution (Soft-
ware/technique) INdependent EXchange (SINEX) format
(Altamimi, 2008).

local observa�ons datum defini�on

determina�on procedures of different reference points

transforma�on to global frame

coordinates of network points and dispersion matrix

local �e vectors
as SINEX-file

approach

DOV 6DOF

coordinates of all reference points and dispersion matrix

network adjustment

Fig. 1 Schematic workflow of the analysis procedure starting with the
local observations and ending with the derived SINEX file containing
the local tie vectors and the related dispersion matrix in a global
reference frame

Network adjustment

To combine terrestrial observation taken from different
instrument stations and different instrument types in
a consistent frame, a network adjustment has to be
performed.

As shown in Fig. 2, three differently oriented coordinate
systems are to be considered within the functional model;
the consistent reference frame of the network, the local
system of the instrument station, as well as the local system
of the target point. The datum of the network can be defined
as a local geodetic xyz-frame, defined by the tangent plane
of a point of tangency P0 at the reference ellipsoid, a global
Earth-fixed geodetic XYZ-reference frame, but also as an
arbitrarily orientated frame. If a global reference frame is
chosen, the final transformation of the local ties is omitted
(Kallio et al. 2022). However, all coordinate systems can
be converted into each other and, hence, do not affect the
interior geometry of the network.

In this investigation, the datum of the network is defined
by a local geodetic xyz-frame because the results are more
descriptive and easier to be interpreted. Moreover, the local
geodetic frame relates to the global geodetic frame via
(Hofmann-Wellenhof and Moritz 2006, p. 209),

⎛
⎝

yi

xi

zi

⎞
⎠ = R (λ0, ϕ0)

⎛
⎝

Xi − X0

Yi − Y0
Zi − Z0

⎞
⎠ , (1)

,

,

Fig. 2 Relation between the conventional geodetic xyz reference
frame defined by the point of tangency P0 and the uvw coordinate
frame of the terrestrial instrument. Neither the instrument nor the
reflector is located at point pi or pj , respectively. Both differ by a
distance h in the direction defined by g
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and the results can be rigorously converted. Here, ϕ0 and λ0
denote the ellipsoidal coordinates of the point of tangency

P0 = (
X0 Y0 Z0

)T
and

R (λ0, ϕ0) =
⎛
⎝

− sin λ0 cos λ0 0
− sinϕ0 cos λ0 − sinϕ0 sin λ0 cosϕ0

cosϕ0 cos λ0 cosϕ0 sin λ0 sinϕ0

⎞
⎠ .

The local coordinate system of a station is defined by
the instrument axes. The u and w axes of the Cartesian
system correspond to the tilting axis and the standing axis
of the instrument, respectively, and are orthogonal to each
other. The v-axis is orthogonal to u and w, and the origin
is defined as the axes intersection point. If the instrument
is leveled, the w-axis corresponds to the vertical axis
defined by the local plumb line, and the instrument frame
corresponds to an astronomical frame. The tilt between the
instrument uv-plane and the xy-plane of the network can be
parameterized by a rotation sequence defined by the angles
ζx and ζy , and reads (Manwiller 2021)

R
(
ζx, ζy

) =
(
1 0 0
0 cos ζx − sin ζx

0 sin ζx cos ζx

) (
cos ζy 0 sin ζy

0 1 0
− sin ζy 0 cos ζy

)
. (2)

In geodesy, the network points are realized by permanent
ground markers or concrete pillars, and the instrument and
the reflector are set up eccentrically. Therefore, the origin of

the uvw-frame does not refer to the
(
x y z

)T
position of

the consistent reference frame, and is shifted by a distance h

along the vertical axis w. Using Eq. (2), the position of the
i-th instrument station expressed in its uvw-frame reads

⎛
⎝

ui

vi

wi

⎞
⎠

i

= R
(
ζxi

, ζyi

)
⎛
⎝

xi

yi

zi

⎞
⎠ +

⎛
⎝

0
0
hi

⎞
⎠ . (3)

Similar to the uvw-frame of the instrument, there is a
further tilted local frame having the reflector center at the
target position as its origin, cf. Fig. 2. The reflector frame
cancels out, if the distance h at the target position is zero.
This is usually the case in industrial metrology applications
(Manwiller 2021) but not in geodetic surveying (Heck et al.
1995; Jäger et al. 2017). According to Eq. (3), the j -th target
position observed by the i-th instrument station is given by

⎛
⎝

uj

vj

wj

⎞
⎠

i

=R
(
ζxi

, ζyi

)
⎡
⎣

⎛
⎝

xj

yj

zj

⎞
⎠ + RT (

ζxj
, ζyj

)
⎛
⎝

0
0
hj

⎞
⎠
⎤
⎦ . (4)

The coordinate differences �uij = uj − ui , �vij =
vj − vi , �wij = wj − wi can readily be expressed by
their corresponding polar representations. The observation

equations for the slope distance, the direction, and the zenith
angle are

sij =
√

�u2ij + �v2ij + �w2
ij , (5a)

τij = arctan
�vij

�uij

− ζzi
, (5b)

ϑij = arctan

√
�u2ij + �v2ij

�wij

, (5c)

respectively. Here, the angle ζz is a third rotation angle, and
takes the non-designated frame orientations into account.

The vertical axis w of an arbitrary point represented
in the global geodetic XYZ-frame can be obtained from
the last row in Eq. (1) (Hofmann-Wellenhof and Moritz
2006, p. 209). Inserting this axis in Eq. (1) converts the
vertical axis to the local geodetic xyz-frame defined by P0,
i.e.,⎛
⎝

wyi

wxi

wzi

⎞
⎠

0

= R (λ0, ϕ0)

⎛
⎝
cosϕi cos λi

cosϕi sin λi

sinϕi

⎞
⎠ . (6)

Using Eq. (2) together with Eq. (6) yields the tilting angles
w.r.t. the reference ellipsoid, i.e.,

ζEll
x = arcsinwy, (7a)

ζEll
y = − arctan wx

wz
. (7b)

As shown by Manwiller (2021) both angles can be
approximated by the central angles

ζEll
x ≈ y

R
, (8a)

ζEll
y ≈ − x

R
, (8b)

if the network extent is small, and the Earth is approximated
by a sphere with radius R. According to Durand et al.
(2022), the network extent should not exceed 1 km to obtain
errors less than 0.1 mm.

Equation (3) relates to the normal vector to the surface
of the reference ellipsoid, which usually differs from the
plumb line. Taking the deflection of the vertical into account
yields

ζx = ζEll
x + ζDOV

x , (9a)

ζy = ζEll
y + ζDOV

y , (9b)

where ζDOV
x , ζDOV

y are the component-wise angles of the
vertical deflection.

In a least-squares adjustment ζx , ζy can be treated
as deterministic parameters, if the vertical deflection is
sufficiently known, or as parameters to be estimated.
In this contribution, the first approach is refereed to as
DOV approach and the second one is referred to as
6DOF approach. For the sake of completeness, it should
be mentioned that ζx , ζy can be treated as stochastic
parameters having variances σ 2

ζx
, σ 2

ζy
, respectively. In this
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case, both angles are introduced to the functional model as
pseudo-observations as well as parameters to be estimated.
However, for σ 2

ζx,y
→ 0 the weighted sum of squared

residuals tends to the DOV approach, and for σ 2
ζx,y

→ +∞
the weighted sum of squared residuals tends to the 6DOF
approach. For that reason, the DOV approach and the 6DOF
approach are the two limiting extreme cases.

Model selection

A network should be parameterized by an adequate number
of parameters and should have a sufficient goodness of fit.
The weighted sum of squared residuals 	 is an unqualified
metric to evaluate models, because the risk of modeling the
noise instead of the signal increases by an extended number
of parameters, and may result in an overfitted model. Beside
the goodness of fit, the model complexity must be taken
into account. In statistic sciences, such a problem is known
as model selection problem, and well-studied approaches
are the Akaike information criterion (AIC) derived by
Akaike (1974) or the Bayesian information criterion (BIC)
proposed by Schwarz (1978). Both information criteria (IC)
evaluate candidate models by scoring the goodness of fit
against the model complexity. The preferable model among
all candidate models is characterized by a simplicity of the
model and by a high goodness of fit. This model is indicated
by the smallest score. The basic equation reads

IC = −2 log (L) + pIC. (10)

Here, L denotes the maximized value of the likelihood
function of the model, and pIC is an IC dependent
complexity penalty, i.e.,

pAIC = 2 (p + 1) + 2 (p + 1) (p + 2)

n − p − 2
, (11a)

pBIC = (p + 1) log (n), (11b)

where p is the number of parameters to be estimated, and
n is the number of observations. Equation (11a) describes
a second-order improved complexity penalty that is highly
recommended, if n is small w.r.t. p as shown by Burnham
and Anderson (2002, p. 378).

Assuming normal distributed observational errors, the
log-likelihood function reads (Lehmann and Lösler 2016)

log (L) = 1

2
log (detP) − n

2
log (2π) − n

2
(12)

− n

2
log

(
vTPv

n

)
,

where P−1 is the positive-definite dispersion matrix of the
observations and v is the vector of observational residuals.
Substituting Eq. (12) in Eq. (10) and excluding constant

terms not affecting the scoring decision yields the fully
equivalent expression

IC � n · log
(

	

n

)
+ pIC, (13)

where 	 = vTPv. AIC and BIC penalize the number of
model parameters differently. By virtue of Eq. (11), BIC
usually penalties complex models stronger than AIC, and
tends to prefer models with less parameters. Moreover, AIC
is preferred to select a model that represents the data well,
while BIC is appropriate to select an explanatory (causal)
model. If the true model is known and is part of the set
of candidate models, BIC will select the true model with
probability 1, if n → ∞. In contrast, AIC can reject the true
model in favor of a better prediction as shown by Burnham
and Anderson (2002, pp. 295ff); Claeskens and Hjort (2008,
pp. 99ff). However, in practical applications, neither the
true model is known nor the number of data increases
arbitrarily, and one has to settle for a proper approximating
model. In a limit range, both criteria lead to contrary
decisions. For that reason, model selection methods should
not be applied exclusively, and it is recommended to include
additional criteria in the selection process. For a detailed
analysis of AIC and BIC, the interested reader is referred to
the contributions by as shown by Burnham and Anderson
(2002) and Claeskens and Hjort (2008).

Principal component analysis

Beside an adequate number of model parameters and
a sufficient goodness of fit, a network must be stiff.
The stiffness of a network characterizes the risk that the
geometry of a network deforms due to self-oscillation. A
high oscillation of a network implies the presence of a so-
called dominant weak-form (Jäger 1990). In the framework
of deformation analysis, the stiffness is evaluated to
distinguish between weak-forms and network deformations
(Schmitt 1997). In optimization computations, the stiffness
of a network is analyzed to refine the datum, to optimize the
observation configuration, or to improve the reliability of
a geodetic network (Jäger and Kaltenbach 1990; Jäger and
Vogel 1990).

As shown by Jäger (1988), there is a remarkable analogy
between geodetic networks and elastomechanical structures,
where the eigenvalues and there corresponding eigenvectors
characterize the natural frequencies and the shapes of the
vibration behavior of the structure, respectively, if the
system is disturbed by attacking forces. The tendency of
a geodetic network to leave its geometry is, therefore,
indicated by the eigensystem, when errors occur in the
observations or deformations are present. Let each station
be interpreted as a link of a chain, the chain becomes more
flexible as the degree of freedom of each link is increased.
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For that reason, treating ζx , ζy as parameters to be estimated
reduces the stiffness of the network and increases the risk of
getting a dominant weak-form.

The eigenvalues and eigenvectors are obtained by a
spectral analysis of the dispersion matrix �x of the
estimated points x, i.e.,

(�x − λiI)mi = 0, (14)

where λi and mi are the i-th eigenvalue and the
corresponding eigenvector of �x, and I denotes the identity
matrix. The i-th principal component of the network reads
mi

√
λi . Let the eigenvalues be sorted in descending order,

so that the first principal component of the network is
defined by the largest eigenvalue λmax. This principal
component is called the essential component, if it dominates
the full eigenspectrum of �x (Jäger 1990). According to
Niemeier (1982), the ratio

pcmax = λmax

tr(�x)
= λmax∑

i=1λi

(15)

should be less than 40% in a stiff geodetic network.

Reference points

Conventional reference points are defined from an idealized
geometric structure. It is rather an exception that such
defined points can be measured directly by optical or
tactile measurement systems. Thus, indirect approaches
are needed. In the following sections, we present general
mathematical models for determining the reference points
of SAR corner cube reflectors, DORIS beacons, and
telescopes used for SLR and VLBI. All presented models
are defined independently of the used reference frame,
are based on geometrical conditions, and are refereed to
conventional reference points.

SAR corner cube reflector

Trihedral corner cube reflectors are used to evaluate the
pixel localization accuracy of a SAR system. The corner
cube consists of three orthogonal sides and the reference
point pSAR is defined as the intersection point of these
sides, which is equal to the position of the electric phase
center (Balss et al. 2018). In order to validate the SAR
accuracy, the position of a corner cube obtained by SAR
is compared to the reference point determined by precise
terrestrial geodetic surveying (Gisinger et al. 2015).

Figure 3 depicts a schematic representation of a trihedral
corner cube reflector. Each side of the corner cube is
parametrized by a plane. The j -th plane is defined by a
normal vector n and a form parameter d, i.e.,

nTj p = dj + rRef, (16)

Fig. 3 Scheme of a trihedral corner cube reflector used for SAR. The
orange normal vectors of the three planes form an orthonormal basis.
The reference point pSAR is the inner corner depicted by a small red
dot. At the bottom plane, a terrestrial reflector with radius rRef is
symbolized

with j = {I, II, III}. Here, p is an arbitrary point lying
in the plane. Depending on the used instrument type,
the surface of a plane is measured either tactile using a
reflector, or target-less by direct measurements. If the plane
is observed tactilely by, e.g., a laser tracker, the known
physical distance rRef between the center of the reflector
and the plane has to be taken into account, cf. Fig. 3. For
target-less measurement systems such as laser scanners or
photogrammetric systems rRef = 0 is obsolete.

The parameter d and the three components of the
normal vector n are linear dependent. A common condition
to prevent the ambiguity between the parameters is to
normalize the normal vector
∥∥nj

∥∥ = 1, (17)

where ‖·‖2 symbolizes the Euclidean norm. In this case, d

represents the shortest distance between the plane and the
origin, and Eq. (16) is known as the Hesse normal form.
The reference point pSAR is the inner corner and, hence, is
the only point lying in each plane. For that reason, the point
must fulfill the condition

nTj pSAR = dj + rRef, (18)

for j = {I, II, III}.
Equations (16), (17), and (18) describe the model of

a three-sided pyramid, where the apex corresponds to the
reference point. However, this derivation does not ensure
an orthonormal basis of the normal vectors of the planes.
To obtain a right-angled three-sided pyramid, three further
conditions must be introduced, i.e.,

nTi nk = 0, (19)

with i = {I, II}, k = {II, III}, and i < k.
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The orientation vector oSAR of the corner cube reflector
is readily obtained from the three normal vectors nj of the
planes and reads

oSAR = 1√
3

∑
j

= nj . (20)

In order to obtain the 12 parameters of the three planes
as well as the reference point position of the SAR reflector,
a generalized least-squares model with additional unknown
parameters in the condition equations is required.

DORIS beacon

The conventional reference point is a non-materialized point
inside the structure of the DORIS beacon. The beacon has a
cylindrical form, and the reference point pDORIS is defined
as the point lying on the main axis of the cylinder, which
is located hc = 390 mm above a reference plane (Tourain
et al. 2016).

Figure 4 depicts a schematic representation of a DORIS
beacon. A red ring at the beacon surface marks a position
close to the reference point, but the center of the ring does
not necessarily coincide with the reference point (Saunier
et al. 2016). The phase center p2GHz of the beacon is
877 mm above the reference plane, and is located on the
main cylinder axis.

Fig. 4 Scheme of a DORIS beacon. The phase center p2GHz is
symbolized by a green star. The reference point pDORIS is the location
point of the cylinder, and is depicted by a red dot. The distance between
the pDORIS and the reference plane is hc = 390 mm. The orange
normal vector of the reference plane is identical to the main axis of
the cylinder. The radius of the cylinder is rc. At the reference plane, a
terrestrial reflector with radius rRef is symbolized

DORIS beacons provide a mounting support for conven-
tional terrestrial reflectors below the reference plane. This
position is centered on the cylinder axis. If the pointing
direction of the axis is known or if it is strictly vertical,
this position provides an easy access to the reference point
(Saunier et al. 2016). However, the position and the tilt of
the beacon can change over time. For instance, a tilt of 0.5◦
shifts the phase center by about 7 mm. For that reason, a uni-
fied approach is suggested that provides both, the reference
point and the pointing direction of the axis. This approach
can be easily adapted to the reference point determination
of GNSS antennas.

According to Lösler (2020) the intrinsic parameters of a
circular cylinder are the normal vector nc, and the radius rc.
Let pc be the location position, the common equation of a
circular cylinder reads

‖(p − pc) × nc‖2 = rc, (21)

where p denotes an arbitrary surface point. Due to the
ambiguity of the normal vector, the vector is normalized
using Eq. (17), i.e.,

‖nc‖2 = 1. (22)

The reference plane is orthogonal to the cylinder axis, so
that the normal vector is identical. According to Eq. (16),
the plane reads

nTc p = dc + rRef, (23)

where dc is the shortest distance between the plane and the
origin, and rRef compensates for a known reflector offset, if
tactile measurement systems are used. The location position
pc can be chosen arbitrarily. Considering the distance
hc between the plane and the reference point yields a
distinct location position, which is identical to the reference
point, i.e.,

nTc pc − dc = hc, (24)

where pc = pDORIS and hc = 390 mm.
The parameters to be estimated are the position of

the reference point, the normal vector parameterizing the
cylinder axis, the radius of the cylinder, and the shortest
distance between the plane and the origin. To estimate
these eight parameters, a generalized adjustment model with
conditions is recommended.

SLR/VLBI reference point

The reference point of swivel mounted telescopes used for
SLR or VLBI is defined as the orthogonal projection of
the secondary axis onto the primary axis of the telescope.
Without loss of generality, let the primary axis and the
secondary axis be the azimuth axis and the elevation axis,
respectively. According to this geometrical definition, the
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reference point is independent from the pointing direction
of the telescope. Since the reference point is enclosed by
the telescope structure, it is generally not materialized and
cannot be measured directly by means of, e.g., optical or
tactile measurement systems (Leinen et al. 2007; Gong et al.
2014). For that reason, the reference point is indirectly
obtained by analyzing the trajectories of mounted markers
at the turnable part of the telescope structure, which result
from the rotation of the telescope in varying azimuth and
elevation orientations.

A common approach to determine the reference point
is derived by Lösler (2009). Here, the reference point pTel
results from a transformation of the telescope-fixed frame
to the consistent Earth-fixed reference frame, cf. Fig. 5. The
mathematical model reads

pi,k = pTel + (25)

Rx (β)Ry (α)RT
z

(
κ∗
k

)
Ry (γ ) (eAO + Rx (ωk) qi ) .

Here, the angles α and β compensate for the tilt between
the azimuth axis and the z-axis of the reference frame, and
γ is the non-orthogonality between both telescope axes.
The k-th telescope pointing direction is defined by the
azimuth angle κk and the elevation angle ωk . The angle
κ0 describes the unknown orientation between both frames,
and κ∗

k = κk + κ0 is the oriented azimuth angle w.r.t. the
Earth-fixed frame. Rotation sequences are parametrized by
basic rotation matrices R. The axis-offset is eAO. Vector qi

Fig. 5 Geometric relations between the telescope-fixed frame and the
Earth-fixed reference frame, which is used to determine the reference
point pTel of SLR/VLBI telescopes. The swivel-mounted telescope
rotates around the azimuth and elevation axis with angles κ and ω,
respectively, and forms the trajectory of a mounted marker pi . The
axis-offset is eAO

is the position of the i-th marker defined in the telescope-
fixed frame, and pi,k is the corresponding position in the
Earth-fixed frame. The coordinates of the reference point as
well as the nuisance parameters can be adjusted by treating
the marker positions as observations.

Initially, the model was derived for reference point
determination at VLBI radio telescopes (Lösler 2008).
However, the model is also valid for telescopes used for SLR
as recently demonstrated by Lösler et al. (2018, 2021) and
Eschelbach and Lösler (2022). In contrast to geometrical
approaches like the circle-fitting approach (Leinen et al.
2007; Gong et al. 2014), Eq. (25) does not require
predefined telescope orientations, and is suitable for an
automated reference point determination during the regular
station process (Ning et al. 2015; Lösler et al. 2016).
Moreover, the model is not restricted to a specific telescope
type and contains important additional parameters like the
axis-offset eAO, which, if unconsidered, biases the global
position (Combrinck and Merry 1997), or the zero-pointing
direction κ0, which is used to reduce the pointing error of
the telescope (Zhang et al. 2021).

Sequential estimation of the parameters

Local ties are introduced to the combination process to
overcome the weak physical connection between different
space geodetic techniques. For a rigorous combination,
the dispersion of the local tie vectors must be considered
(Altamimi et al. 2016). In the previous section, we provide
a general framework for deriving conventional reference
points of different space geodetic techniques. The estimates
of the network adjustment, x and �x, are treated as
incoming values. It is assumed that x and �x are reduced
to quantities needed for reference point determinations. In
fact, determining the reference points individually yields the
dispersion of the reference points but mutual correlations
between the reference points get lost, and the dispersion
of the resulting local tie vectors becomes a block-diagonal
structure. By determining all reference points in a single
adjustment, the correlations implied by the dispersion
matrix are rigorously propagated (Ma et al. 2018). However,
such a model strongly depends on the number of hosted
space geodetic techniques, and has to take site specific
strangeness into account. Considering all contingencies is
challenging or nearly impossible. For that reason, a more
flexible and adaptable procedure is suggested.

The general adjustment model with additional parame-
ters in the condition equations results from the method of
Lagrange multipliers given by

L (β, x, λ) = 	 − 2λT
1f (β1, x) − 2λT

2 c (β1, β2) . (26)

Here, 	 denotes the weighted sum of squared residuals,
x is the vector of observations, and βT = [

βT
1 βT

2

]
are
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the parameters to be estimated. The target function 	 is
combined with the implicit functional model f and the
condition equation c using the Lagrange multipliers λT =[

λT
1 λT

2

]
. Whereas β1 appears in f and c, β2 denotes the

additional parameters, which appear only in c. To obtain
the minimum, the partial derivations w.r.t. β, x, and λ
are evaluated and equated to zero. The resulting normal
equation system reads (Mikhail 1976, p. 234)
⎡
⎣
B�xxBT A 0

AT 0 CT

0 C 0

⎤
⎦

⎡
⎣

λ1

�β

λ2

⎤
⎦ = −

⎡
⎣
w1

0
w2

⎤
⎦ . (27)

Here, matrices A and B consist of the partial derivation of f

w.r.t. to the unknown parameters β1 and the observations x,
respectively, and matrix C consists of the partial derivation
of c w.r.t. the parameters β. The vector of increments is
denoted by �β . Vectors w1 = f − Bvx and w2 contain
the misclosures w.r.t. f and c, respectively. Equation (27)
is solved iteratively by stripping the new iterates of their
randomness, and treating them as improved approximations
into the next iteration step, i.e.,

β̂k = βk−1 + �β, (28a)

x̂k = xk−1 + v̂x, (28b)

where v̂x = �xBTλ̂1. The final step yields β̂, x̂, and λ̂,
as well as the related dispersion matrices, �

β̂
, �x̂, and �λ̂.

It is strongly recommended to evaluate the strength of the
introduced constraints using, for instance, hypothesis tests
as derived by Lehmann and Neitzel (2013).

In order to obtain the stochastic dependencies between β̂

and x, Eq. (27) is rearranged and is expressed as a linear
equation system that only depends on the observations x
(Mikhail 1976, p. 116f), i.e.,

y =
[

β̄

x̄

]
= m +

[ −Eβ̄�
β̂
ATM−1B
Ex̄

]
x, (29)

where the vector m contains the deterministic parts of
the model, and M = B�xBT. Matrices E are selection
matrices and remove quantities, which become meaningless
for further analysis steps like the nuisance parameters. The
vector β̄ = Eβ̄ β̂ contains the coordinates of the reference
point, and the vector x̄ = Ex̄x denotes the remaining points
of the network adjustment. Applying the propagation of
uncertainty yields

�y =
[

�β̄ �β̄x̄
�x̄β̄ �x̄

]
, (30)

where the block-matrices are

�x̄ = Ex̄�xET
x̄ , (31a)

�β̄ = Eβ̄�
β̂
ET

β̄
, (31b)

�β̄x̄ = −Eβ̄�
β̂
ATM−1B�xET

x̄ , (31c)

respectively.

According to Eqs. (29), (30) a certain reference point
is estimated and rigorously combined with the remaining
points of the network taking mutual correlations into
account. This procedure is repeated until all reference points
are estimated by setting x ← y and �x ← �y. At the end
of this procedure, vector y represents the local ties and �y
is the corresponding fully populated dispersion matrix. This
procedure is independent of the computation order of the
reference points.

Case study at GOW

In order to evaluate the impact of the used network
adjustment approach onto the reference points, the data set
of the 2021 local tie campaign carried out at the Geodetic
Observatory Wettzell (GOW) is chosen. GOW is a multi-
technique station and operates instruments of all basic space
geodetic techniques (Hugentobler et al. 2011). The local site
network depicted in Fig. 6 consists of about 30 concrete
pillars, surrounding the hosted space geodetic techniques,
that are one DORIS beacon (WEUC), two SLR telescopes
(SOS-W, WLRS), three VLBI radio telescopes (RTW,
TTW-1, TTW-2), and several GNSS antennas (WTZA,
WTZR, WTZS, WTZZ, WLRG). Moreover, GOW supports
SAR missions by two corner cube reflectors (SAR1,
SAR2). In this investigation, we restrict ourselves to the
analysis of the DORIS beacon WEUC, the corner cube
reflector SAR2, the radio telescope TTW-2, as well as
the SLR telescopes SOS-W and WLRS, because indirect
measurements were performed for these techniques, which
allow the determination of conventional reference points by
means of datum-independent geometrical conditions.

Data set

The measurement campaign was carried out in the fall
of 2021. The survey data form the basis for the local tie
vectors for the upcoming International Terrestrial Refer-
ence Frame. The measurements were carried out using the
Leica total stations TS50 and TS60. Both instruments are
specified identically by 0.6 mm + 1 mm km−1 and 0.5′′
for distance and angle measurements, respectively (Leica
2013; 2015). Moreover, the novel multi-lateration sys-
tem DistriMetre was used for data acquiring at GOW for
the first time. This instrument is a prototype developed by
CNAM. In controlled environments, the uncertainty of the
distance measurement is about 5 um (Guillory et al. 2020b;
2022). However, under the environmental conditions of the
measurement campaign at GOW, the uncertainties on the
measured distances were larger. They were mainly affected
by the limited knowledge of the air temperature used for
the air refractive index determination. The multi-lateration
was applied to improve the reference point determina-
tion by high-precise distance measurements at the southern
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Fig. 6 Local site network at the Geodetic Observatory Wettzell. Concrete pillars are symbolized by triangles and surround the hosted space geodetic
techniques depicted by blue stars. A green hexagon corresponds to the principal point P0 of the network. The distant pillar 51 outside the
observatory site is not shown.

radio telescope TTW-2. The remaining reference points as
well as the pillar network were observed by the total sta-
tions. All pillars were used as instrument station except for
those equipped with GNSS antennas. As already mentioned,
the estimation of the extra rotation parameters requires an
observation configuration that is sensitive for these param-
eters within the 6DOF approach. For that reason, mea-
surements were taken from each pillar to at least three
other pillars. To ensure a reliable integration of each instru-
ment station, measurements were carried out to all visible
network pillars. Figure 7 depicts the realized observation
configuration of the GOWpillar network. In total, more than
31,000 terrestrial observations were conducted.

The International Association of Geodesy (IAG) recom-
mends the dispersion model derived by Ciddor (1996,
2002) and Ciddor and Hill (1999) for high-precise geodetic
applications to compute the first velocity correction
(IAG 1999). Following this recommendation, temperature,
pressure and humidity were measured at each instrument
station using a GFTB100 (Greisinger), because these
meteorological parameters are the most crucial parameters
affecting the first velocity correction (Rüeger 1996,
Ch. 5.8). Due to its smaller impact on the first velocity
correction, carbon dioxide was measured stationary close
to pillar 34 using a CO2-Meter GC-2028 (Lutron).
Table 1 summarizes the manufacturer specifications of
the meteorological measurement sensors. Using these

meteorological parameters, the distances of the total stations
were corrected using the procedure given by Pollinger
(2020). Furthermore, all measurements of the total stations
were carried out in both faces, to reduce systematical
deviations caused by mechanical deficiencies of the total
stations. For data analysis mean values from repeated
measurements of full sets of polar observations were
calculated and introduced to the network adjustment.

The distances of the DistriMetre were corrected for
mechanical misalignment and systematical errors using a-
priori values taken from laboratory calibrations. The group
refractive index of air was calculated with the modified
Edlén’s formulae (Bönsch and Potulski 1998), using the
recorded environmental parameters. A detailed description
of the multi-lateration measurement system DistriMetre
and an evaluation of the uncertainties are given in the
contributions by Guillory et al. (2020a, b).

In total, the preanalyzed data set consists of 1310 points
which were connected by n = 7383 corrected and averaged
terrestrial observations. These observations were introduced
to the network adjustment.

Analysis and results

The network adjustment is realized by the in-house software
package Java·Applied·Geodesy·3D (JAG3D 2022) using the
functional model described in the “Analysis procedure for
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Fig. 7 Realized observation
configuration of the pillar
network (gray triangles) at the
Geodetic Observatory Wettzell.
Additional free instrument
stations, pillar 51, and
observations to space geodetic
techniques are not shown.

local tie measurements” section. The datum of the network
adjustment is defined by the tangent plane of P0, which is
equal to the centroid of the closed polygon defined by the
outer vertices of the network. In Fig. 6, a green hexagon
symbolizes the position of the principal point P0. The
concrete pillars of the network realizing this datum within
the free network adjustment are depicted by red triangles.
The reference ellipsoid is GRS80. According to Kallio et al.
(2022), the deflections of the vertical are ζDOV

x = −5.85′′
and ζDOV

y = +2.18′′, and a uniform tilt of the points
of the entire network is assumed. It must be mentioned
that uniformly applied vertical deflections do not effect the
interior network geometry but only the orientation of the
network. By applying the DOV approach, these vertical
deflections are assumed to be deterministic. In the 6DOF
approach, the vertical deflections are additional parameters
to be estimated.

Network adjustment

In order to study the impact of the functional model on the
estimates, the datum of the network, the observations, and

Table 1 Instrument specifications of the meteorological measurement
sensors

Parameter Uncertainty Sensor

Temperature 0.1 K GFTB 100

Air pressure 1.5 hPa GFTB 100

Air humidity 2.5% GFTB 100

Carbon dioxide 40 ppm GC−2028

Table 2 Components of the stochastic model used for distances s,
directions τ , and zenith angles ϑ observed by the total stations
(TS) and the DistriMetre (DM) system, respectively. The zero point
offset uncertainty is denoted by σa , and σb is the distance dependent
component

sDM sTS τTS ϑTS

σa 0.1 mm 0.3 mm 0.5′′ 1.6′′

σb 1.0 mm km−1 1.0 mm km−1 0.4 mm 0.5 mm

the stochastic model must be identical in both approaches.
The estimated coordinates of the 2018 measurement
campaign are introduced as appropriate approximation
coordinates defining the network datum. The stochastic
model for distances, directions, and zenith angles is
composed of two components in JAG3D: a zero point offset
uncertainty σa and a distance dependent uncertainty σb. The
combined models are (Lösler et al. 2013)

σ 2
s = σ 2

s,a + σ 2
s,bs

2, (32a)

σ 2
τ = σ 2

τ,a + σ 2
τ,b

s2
ρ2, (32b)

σ 2
ϑ = σ 2

ϑ,a + σ 2
ϑ,b

s2
ρ2, (32c)

where s is the slope distance, and ρ converts the angle unit
from radians to arc seconds. Numerical values for σa and σb

are summarized in Table 2.
During the network adjustment, the components of the

stochastic model are evaluated by means of variance-
components (VC) estimation (Crocetto et al. 2000).
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Table 3 Result of the VC estimation. For each approach, the number of observations n, the effective number of observations neff, the redundancy
r , the weighted sum of squared residuals 	, and the resulting variance-component σ̂ 2 = 	/r are given component-wise

DOV 6DOF

Component n neff r 	 σ̂ 2 r 	 σ̂ 2

Total adjustment 7383 3975 3334.00 2355.84 0.7 3202.00 1920.84 0.6

Distance σs,a 2706 1570 1193.06 755.41 0.6 1188.86 722.48 0.6

Distance σs,b 2706 1570 71.96 49.07 0.7 71.86 49.26 0.7

Direction στ,a 2330 1194 127.39 74.32 0.6 126.84 72.86 0.6

Direction στ,b 2330 1194 854.96 540.66 0.6 850.94 525.53 0.6

Zenith angle σϑ,a 2347 1211 421.07 445.03 1.1 362.76 250.68 0.7

Zenith angle σϑ,b 2347 1211 665.55 491.35 0.7 600.74 300.02 0.5

According to (Benning 2010, p. 289), the estimated
variance-component σ̂i should be in a range of

0.6 < σ̂i < 1.4, (33)

because small deviations do not significantly affect the
estimates and are tolerable (Durand et al. 2022). Table 3
summarizes the total number of observations n, the total
redundancy r , the weighted sum of squared residuals 	, and
the estimated VC. Points used to determine reference points
are generally not redundantly observed and therefore do not
contribute to the weighted sum of squared residuals 	. By
excluding these observations,	 remains unchanged, and the
effective number neff of observations is obtained. Table 4
gives an instrument-related overview.

The estimated VC satisfy Eq. (33) and, with the
exception of the VC of the zenith angles, are below the
expected value E

{
σ̂ 2

} = 1.0, which means that the
stochastic model is slightly too pessimistic. However, it
should be noted that the VC estimation is based only on
the dispersion of the observational residuals, which are
not sensitive to all measurement discrepancies, as recently
discussed by Neitzel et al. (2022). For that reason, a further
adaption is omitted. By comparing the component-wise
estimation between both approaches, the differences in the
distance VC and direction VC are negligible. Noticeable
differences can be found for the VC of the zenith angles,
which are most affected by the handling of the vertical
deflections.

The mean standard deviations of both approaches are
summarized in Table 5. Whereas the horizontal components
yield almost comparable results, the vertical component
is larger by about 0.1 mm. Moreover, the DOV approach
leads to slightly smaller standard deviations than the
6DOF approach, but both approaches fulfill the accuracy
requirement of <1 mm.

Figure 8b depicts the estimated vertical deflections
obtained from the 6DOF approach. For most of the vertical

deflection vectors, the orientation and the length match very
well in comparison to the gravimetrically obtained values
shown in Fig. 8a. The reliability of the estimated vertical
deflections depends on the measurement configuration.
Pillars, which are connected to a large number of pillars,
yield a better match than less observed pillars located, for
instance, at the boundary of the network as indicated by
orange rings in Fig. 8b. It should be noted that the estimated
vertical deflections are a combination of overlaying effects.
The standing axis error, for instance, describes an additional
deviation from the local plumb line, and is not compensated
by measuring in both faces. Moreover, the orientation and
the length of the estimated vertical deflections depend on
the introduced approximation coordinates and, therefore, on
the network datum. From a mathematical point of view,
the DOV approach neglects these additional systematical
deviations and, thus, is less rigorous.

The estimated vertical deflection vectors show a slight
torsion, which may be composed of a network tilting
and network bending. A network tilting occurs, if an
inappropriate datum is specified. A network bending, on the
other hand, results from an improper functional model that,
for instance, forces the interior geometry of the network.
A spatial six parameter transformation is performed to
separate both effects, considering the estimated datum
points of the 6DOF and the DOV approach as source and
target system, respectively. The estimated tilting angles are
�ζx = 1.27′′ and �ζy = −0.67′′, and result in a vertical
discrepancy of about 2 mm at a distance of 300 m. The
remaining residuals of the points confirm the assumption
of an additional network bending. The residuals of the
horizontal components are negligible. The residuals of the
vertical component vary in a range of about ±0.8 mm and
are depicted as contour plot in Fig. 9. Smallest values can be
found in the center of the network close to P0. The residuals
increase with increasing distance from P0. Such a bending
may be caused by a dominant weak-form indicated by the
first principal component.
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Table 4 Instrument-related VC. For each approach, the instrument-related redundancy r , weighted sum of squared residuals 	, and resulting
variance-component σ̂ 2 = 	/r are given

DOV 6DOF

Component Instrument r 	 σ̂ 2 r 	 σ̂ 2

Distance σs TS50 360.48 287.28 0.8 359.59 289.14 0.8

TS60 747.14 408.11 0.6 744.43 377.43 0.5

DistriMetre 157.40 109.09 0.7 156.70 105.17 0.7

Direction στ TS50 321.69 220.22 0.7 319.71 214.36 0.7

TS60 660.66 394.76 0.6 658.07 384.03 0.6

Zenith angle σϑ TS50 351.99 189.18 0.5 321.22 147.92 0.5

TS60 734.63 747.20 1.0 642.27 402.79 0.6

Model selection and stiffness

On the one hand, the 6DOF approach reduces the weighed
sum of squared residuals by treating the vertical deflections
as additional parameters to be estimated. On the other
hand, using a more complex model increases the risk to get
an overparameterized model. Based on AIC and BIC, the
goodness of fit is evaluated w.r.t. to the model complexity
using Eq. (13). Moreover, the stiffness of the network is
affected, if the number of model parameters is changed.
According to Eq. (15), the stiffness is characterized
by the largest eigenvalue w.r.t. the full eigenspectrum.
Table 6 summarizes the score values of the model selection
methods as well as the analysis result of the first principal
component. AIC, BIC and pcmax are given for the complete
network. Here, AIC and BIC select the 6DOF approach,
indicated by smaller IC values. By virtue of Eq. (13), the
evaluation of the goodness of fit depends on 	 and n as
indicated by the first term. Non-redundant observations do
not contribute to 	 but decrease the first term and, thus, the
score value. For that reason, Table 6 contains also the score
values calculated from the redundantly observed network.
Again, AIC favors the 6DOF approach, but BIC selects the
DOV approach. The AIC is recommended for prediction
and, thus, the observations are better represented by the
6DOF approach. However, this approach is not necessarily
closest to the (unknowable) true model as assigned by the
BIC.

Table 5 Mean standard deviations of the coordinate components as

well as the mean square positional deviation σ3D =
√

σ 2
x + σ 2

y + σ 2
z

of redundantly observed points in mm also known as Helmert’s point
error

Approach σ̄x σ̄y σ̄z σ̄3D

DOV 0.12 0.10 0.22 0.27

6DOF 0.14 0.13 0.33 0.38

The analysis of the first principal component pcmax

shows a reduction in the stiffness, if the vertical deflections
are estimated within the network adjustment. This becomes
even clearer, when the redundantly observed network is
evaluated. The ratios pcmax increase by a factor of 1.4
and 2.4, respectively, but remain well below 40%. Neither
approach has an essential first principal component, and
the network bending depicted in Fig. 9 does not result
from a dominant weak-form. Since only two approaches
are compared, the cause cannot be clearly determined, and

(a) DOV approach

(b) 6DOF approach

Fig. 8 Deflection of the vertical w.r.t. the adjustment approach:
Deterministic vertical deflections used within the DOV approach (a)
versus estimated vertical deflections obtained from the 6DOF network
adjustment (b)
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Fig. 9 Contour plot of the vertical residuals obtained from a spatial
transformation of the corresponding datum points of both approaches

needs further investigations. However, these differences
result from the operator-software impact and occur, if
different operators apply different analysis strategies to the
same data using identical software packages.

Reference point determination

Based on the results of the network adjustment, the
reference points are determined using the suggested
sequential analysis procedure. The estimates obtained from
the DOV approach are summarized in Table 7 w.r.t.
the coordinates of SAR2. Additionally, the coordinate
differences, � = 6DOF − DOV, and the standard
deviations resulting from the 6DOF approach are given.
The differences of the horizontal coordinate components
are quite small and do not exceed 0.2 mm. However, the
vertical coordinate components differ significantly. By far
the largest discrepancy of about 2.5 mm can be found for
the DORIS beacon WEUC, and exceeds the coverage of the
estimated standard deviation of 0.4 mm. This discrepancy
results from the pillars 25 and 26 in the immediate vicinity
to WEUC, which show similar discrepancies in the vertical
components and have been used to observe the surface of

Table 6 Score values of the IC based model selection methods as well
as the analysis result of the first principal component of �

Complete Network Redundant Network

DOV 6DOF DOV 6DOF

AIC 9514.4 9356.7 −547.6 −968.0

BIC 27,639.6 27,308.2 3241.3 3523.9

pcmax 1.6% 2.3% 5.7% 13.5%

the beacon. For the SLR and VLBI telescopes as well as the
corner cube reflector SAR2, the horizontal components are
almost identical and the vertical components differ by about
±0.5 mm. Both, pillars and obtained reference points, are
affected by the network bending (see Fig. 9) and the network
tilting.

The deformation of the interior geometry of the local
ties is evaluated by the residuals of a spatial six parameter
transformation. Table 8 contains the component-wise
residuals. Largest values can be found for the vertical
component. All residuals are less than 0.5 mm. Thus, the
bending is small w.r.t. the total discrepancies � given
in Table 7, and the differences between both approaches
mainly result from the network tilting. The DOV approach
transforms the network by four parameters onto the
approximation values defining the datum of the network,
namely three translation parameters as well as one rotation
parameter. In contrast, the 6DOF approach considers two
more rotation parameters, and introduces six parameters.
Due to the extra parameters, the network fits better to the
defined datum, if reliable observations are collected that
are sensitive for the extra rotation parameters. However,
if the datum definition is weak, the network orientation is
also weak. Due to terrestrial measurements being insensitive
to define an absolute frame, the datum itself can only be
evaluated in a global context.

The fully populated dispersion matrix of the local ties
results from the suggested sequential analysis procedure.
This matrix describes the uncertainties and the linear
dependencies of the estimated parameters. Both considered
approaches yield comparable correlations between the
estimated reference points, as depicted in Fig. 10. About
96% of the correlations are less than 15%. Larger
dependencies arise between the coordinate components of
one and the same reference point but largely decay between
different reference points. The maximum correlation is 33%
and 43% for the DOV and the 6DOF approach, respectively.
These minor dependencies result from the measurement
configuration at GOW. The reference points are observed
independently from each other using the concrete pillars
in the immediate vicinity to the particular space geodetic
technique. Simultaneous measurements to several space
techniques are generally not possible, resulting in only
minor dependencies.

Even though both approaches yield reliable results, the
numerical differences are noticeable and can be addressed
to the operator-software impact. The variations in the
results of different analysis strategies can by far exceed the
measurement uncertainties specified in the stochastic model
during the adjustment process. In the framework of local
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Table 7 Coordinates of the estimated reference points and correspond-
ing standard deviations. For each reference point, the coordinates w.r.t.
SAR2 and the corresponding standard deviations obtained from the

DOV approach are given. Each second row contains the coordinate dif-
ferences (� = 6DOF − DOV) and the standard deviations resulting
from the 6DOF approach

Id y in m x in m z in m σy σx σz

�y in mm �x in mm �z in mm in mm in mm in mm

TTW−2 98.1323 −156.0958 15.3743 0.06 0.04 0.10

−0.07 0.17 0.73 0.07 0.05 0.16

WEUC −117.8505 27.4097 −3.8566 0.10 0.15 0.22

−0.11 0.09 2.47 0.10 0.15 0.37

SAR2 0.0000 0.0000 0.0000 0.26 0.30 0.43

−0.02 0.01 0.14 0.26 0.30 0.46

SOS–W 84.9647 13.4113 6.0095 0.08 0.09 0.14

0.02 −0.02 −0.53 0.08 0.09 0.20

WLRS 78.4411 −44.6268 8.2123 0.15 0.13 0.19

−0.04 −0.01 −0.59 0.15 0.13 0.24

tie determination, such discrepancies can be larger than
the aimed accuracy requirements and induce errors in the
combination process.

Summary and conclusion

Most applications in engineering geodesy and industrial
metrology perform network adjustments. A network adjust-
ment combines the collected observations w.r.t. the relating
measurement uncertainties and yields a consistent Cartesian
frame. As shown by Durand et al. (2020), the results can dif-
fer, if the same data are analyzed using different adjustment
software packages. These deviations are known as software
effect and result from different implemented functional or
stochastic models (Durand et al. 2022). Even the use of a
certain software package leads to different results, if dif-
ferent operators apply different analysis strategies to the
same data. This effect is known as operator-software impact
(Kutterer et al. 2009).

In this investigation, the operator-software impact was
investigated in the framework of local tie determination for

Table 8 Component-wise residuals ε obtained from a spatial six
parameter transformation. The estimated reference points of the 6DOF
and DOV approach (cf.Table 7) are treated as source and target system,
respectively

Id εy in mm εx in mm εz in mm

TTW−2 −0.05 0.10 0.16
WEUC 0.01 −0.04 0.22
SAR2 0.07 −0.01 −0.45
SOS–W −0.00 −0.02 0.41
WLRS −0.03 −0.03 −0.34

the first time. For this purpose, a universal procedure to
obtain reference points was presented. All suggested models
within the procedure are defined independently of the used
reference frame, and are based on geometric conditions. The
estimates of the network adjustment are treated as incoming
values. The procedure is sequentially applicable and yields
the local ties as well as the fully populated dispersion
matrix.

Two different analysis strategies were compared, which
mainly differ in the consideration of the vertical deflection
within the network adjustment. The mathematical model of
both approaches is identical. Whereas the DOV approach
treats the deflections of the vertical as deterministic param-
eters, the 6DOF approach considers the vertical deflections
as additional parameters to be estimated. Increasing the
number of model parameters within a more complex model
increases the risk to get an overparameterized model as
well as to obtain a dominant weak-form. Both risks were
addressed using information criteria and principal compo-
nent analysis.

To evaluate the impact of the analysis strategy on
the reference points of space geodetic techniques, both
approaches are applied to the identical data set of a local tie
campaign performed at the Geodetic Observatory Wettzell
in 2021. The network was analyzed using the in-house
software package JAG3D. The information criteria AIC and
BIC evaluate both approaches differently. However, one can
conclude that the observations are better represented by
the 6DOF approach, but this approach is not closest to the
true model. The estimated vertical deflections of the 6DOF
approach agree well with gravimetrically obtained values.
Moreover, neither approach has an essential first principal
component, and both approaches yield stiff networks.
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(a) DOV approach

(b) 6DOF approach

Fig. 10 Comparison of the local tie correlations obtained from the
DOV approach (a) and the 6DOF approach (b)

The comparison of both approaches reveals discrepan-
cies in the determined reference point coordinates. Whereas
the horizontal coordinate components are almost identical,
the vertical coordinate components deviate by more than
1 mm, and exceed the coverage of the estimated standard
deviations. These discrepancies result from a network tilting
and a network bending. A network tilting occurs, if an inap-
propriate datum is specified. Due to the extra parameters of
the 6DOF approach, the network fits better to the defined
datum. However, if the datum definition is weak, the net-
work orientation is also weak, and network tilting occurs.
Unfortunately, the datum can only be evaluated in a global
context because terrestrial measurements are insensitive to
define an absolute frame. A network bending, on the other
hand, results from an improper functional model that forces

the interior geometry of the network. It is well-known that
deterministic model parameters affect the interior network
geometry. However, treating these parameters as additional
unknowns requires reliable observations that are sensitive
to the parameters. The network bending of the network
at the Geodetic Observatory Wettzell is less than 0.5 mm
and, thus, both approaches yield almost comparable results
and fulfill the aimed accuracy goal. The crucial part of the
discrepancies results from the datum definition.

A general recommendation is challenging, because the
measurement data allows a limited number of meaning-
ful approaches. Further investigations and comparisons are
needed to provide suitable analysis procedures and guide-
lines, which reduce the datum problem in local tie networks,
and the discrepancies caused by the operator-software
impact. Future work will focus on the benefit of introduc-
ing additional leveling data to the adjustment process, which
could improve the estimated extra rotational parameters and,
therefore, the stiffness of the network. Including leveling
data could lead to a clear information criterion decision
and to reduce the discrepancies between both approaches
under investigation. Moreover, the dependency between the
adjustment approach and the network extent as well as the
network configuration should be addressed.
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Jäger R (1990) Spectral analysis of relative and supported geodetic
levelling networks due to random and systematic errors. In: Pelzer
H (ed) 1. Workshop on Precise Vertical Positioning, vol 64,
Bulletin Géodésique, Springer, Hannover, pp 1-25
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