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Abstract

Vortex-induced vibrations can damage structures exposed to cross-�ows. The current design
estimates of structural amplitude are based on structural nonlinearity but we will here derive
a di�erent estimate based on a coupled system with nonlinear �uid forcing. Two estimates
of maximum structural amplitude is investigated based on approximations the coupled system
and �uid speed at maximum amplitude. Our result shows that both estimates are close to
the maximum amplitude found using numerical integration but that the predicted �uid speed
di�ers. With further re�nement, the result presented may prove useful in designing structures
to withstand vortex-induced vibrations.

Keyword: Vortex-induced vibrations, nonlinear approximation, design estimates, prediction
error

1 Introduction

Structures in cross-�ow will experience unsteady periodic, loading due to shedding of vortexes
(Blevins, 2001) that can lead to severe vortex-induced vibrations (VIV). For a designer, there are
two useful pieces of information: when vibrations occurs and how severe vibration amplitudes
are. These information pieces enables us to �nd the lifetime of a structure and to design a
good tuned-mass damper.

When designing structures to withstand these aerodynamic loads, simple estimates of load-
ing and response reduces the time spent iterating designs. In the Eurocode (2010) and CICIND
(2010) building codes, structural excitation due to VIV is modeled using random vibration the-
ory and a simpli�ed structural nonlinearity (Vickery and Basu, 1983). This simpli�ed model is
made for the design o�ces of the early 1980s and often only the maximum response is found.

Another approach in modeling VIV is to couple a structural equation with a nonlinear
equation describing or mimicking the vortex forcing. This approach was used Facchinetti et
al. (2004) and several other researchers before them (Païdoussis et. al, 2010). A bene�t of
Facchinetti's model is that it has a simple but powerful coupling between wake and structure.
The problem is that it's a set of nonlinear di�erential equations. This is numerically solvable
but work is needed to make it as simple and useful as the current design model.

Why should a designer consider using something other than the existing design model?
According to Lupi et al. (2018), it is overly conservative and can be unrealistic for many
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Figure 1 � Sketch of the vortex-induced vibration system

designs. This is partly due to the formulation of the method and the parameters used; their
e�ect is especially prevalent at low Scruton numbers.

We will take steps to address the above concerns by creating a new predictive model that
perform better at low Scruton number (Sc<10). Based on an approximation of structural and
forcing amplitudes, we will de�ne two approximations of the �uid speed at maximum response.
The speed estimates is then plugged back into the amplitude approximates. Amplitude and
speed results from both estimates will then be compared with numerical simulations.

2 Vortex-induced vibrations model and approximation

2.1 Model de�nition

Fig 1 shows a simple system experiencing vortex-induced vibrations. The structure is left free
to vibrate in the êy direction and the wake oscillates on it. This has been modeled using a
combination of a linear structural oscillator and a nonlinear wake oscillator shown respectively
in Eqs. 1 and 2 below

ÿ+Dẏ + y = ω2
qMq, (1)

q̈+ε
(
q2 − 1

)
q̇ + ω2

qq = Aÿ . (2)

where the variables y and q are dimensionless. Here, A and ε are experimentally determined
constants and M is the unsteady lift force, F , scaled by the mass-ratio µ (M = F/µ). The
parameters D, F and µ as de�ned as

µ =
m + 0.25πρd2Cm

ρd2
, (3)

D =2ζ +
CD

4πµSt
, (4)

F =
CLo

16π2St2
, (5)

m is structural mass per unit length, ρ �uid density, d diameter, ζ critical damping ratio and St
Strouhal number. Cm, CD and CLo are the added mass, mean drag and unsteady lift amplitude
coe�cients respectively.
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One variable is unde�ned and it's one of the most important: the �uid speed variable ωq.
It's de�ned as the product of the reduced velocity based on the structure's natural frequency
and the Strouhal number (ωq = URSt). It is therefore a reduced �uid frequency equivalent to
the ratio of shedding frequency to the natural structural frequency.

If we assume that the equations are weakly nonlinear, then they can be approximated. This
system can be shown to have the approximate steady-state solutions below when using the
method of averaging:

ry (ωq, θ) =2
ω2
qM

D

[
1 +

ωqAM sin(θ)

εD
(sin(θ)− D cos(θ))

]0.5
sin(θ), (6)

0 =ω2
q(1− AM)− 1 + ω2

qAM sin2(θ) +

(
D

sin(θ)
+
ω2
qAM

D
sin(θ)

)
cos(θ). (7)

where ry is the structural amplitude and θ is the phase di�erence between q and y , i.e. phase
di�erence between force and motion. Notice that there is no equation for the wake amplitude.
As the structural equation and coupling is linear, the equations for wake amplitude can be
expressed as a function of phase di�erence only. This then enables us to write the structural
amplitude as a function of phase di�erence only.

2.2 Amplitude scaling

If we ignore the square root term and the last sin θ term in Eq. Eq. 6, we get an equation that
depend linearly on the ratio of M to D. If we expand this ratio, we get the scaling relationship

ry ∝
2πF

Sc + 2π2ζ +
CD

2St

. (8)

where Sc is the Scruton number de�ned as

Sc =
4πζm

ρd2
. (9)

In words, predicted amplitude is dependent on four parameters: geometry, mass, structural
damping and aerodynamics. This di�ers from some previous notions on maximum amplitude
scaling. However, it corroborates the opinion that combining mass and damping into a param-
eter is arbitrary (Sarpkaya 2004).

2.3 Model validation

To �nd the amplitude at a given speed, the �rst step is to �nd the phase di�erence using Eq.
7. This may look daunting, but it can be rewritten to a cubic equation. One of the closed form
solutions corresponds to the high amplitude VIV response, another to low amplitude and the
last to an unstable solution. Only the phase di�erences between 0 and 180◦ are used.

A "postcritical Reynolds" experiment with dampers by Belloli et al. (2015) is used for
validation and for comparison with the maximum amplitude of the CICIND model (2010). See
Tab. 1 for parameters. Fig. 2 shows the comparison and the design code over predict by
more than a factor of 2. Our model does well at ωq < 1 and less well above. The maximum
amplitude between experiment and model is similar as is the range of high amplitude vibrations.
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Table 1 � Parameters used to compare the approximations and the numerical results.

Case ε A γ F ζ d ρ
Exp. 0.3 [-] 12 [-] 0.479 [-] 0.0401 [-] 0.01200 [-] 0.72 [m] 1.225 [kg/m3]
Low dam 0.3 [-] 12 [-] 0.442 [-] 0.0401 [-] 0.00191 [-] 2.00 [m] 1.225 [kg/m3]
High damp 0.3 [-] 12 [-] 0.442 [-] 0.0401 [-] 0.00955 [-] 2.00 [m] 1.225 [kg/m3]
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Figure 2 � Comparison of models and experiment of Belloli et al. (2015)
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3 Estimates of maximum

3.1 The approximations

Two di�erent approximates of the frequency at maximum amplitude are tested:

ωq1 =
1

1−
√
AM

, (10)

ωq2 =

√
D (sin (θ)− D cos (θ))

AMD sin (θ)3 + AM cos (θ)sin (θ)2 + D (1− AM) sin (θ)
. (11)

The �rst approximate (Eq. 10), dubbed "method 1", is based on the work of de Langre
(2006). Our guess is that maximum amplitude corresponds to the upper limit of the linear
synchronization de�nition. In terms of Fig. 2, this corresponds to the start of our rightmost
low amplitude solutions. Method 1 is independent of the structural damping parameter D and
depends only on the coupling terms associated with forcing.

The second approximate, "method 2", is based on assuming that maximum response coin-
cide with a speci�c phase di�erence. The form of method 2 is shown in Eq. 11 and includes
structural damping and the forcing terms. An added bene�t of this approach, is that it reduces
the calculation process to one longer equation; we are assuming we know θ, so there is no need
to calculate the value. By inspection, the phase di�erence at maximum response is ≈ 0.65π.

The estimates of maximum amplitude and dimensionless �uid speed are compared to results
from numerical simulations at several Sc using two damping cases. One corresponds to a low
damping case and the other to a high damping. The values of µ are inferred from Sc using the
constants given in Tab. 1 and Eqs. 3 and 9. For comparison, both absolute values and the
relative di�erence in percentage are used in the next two subsections.

3.2 Approximation of �uid speed at maximum response

The evolution of dimensionless �uid speed as a function of Sc when structural damping is low
is shown in Fig. 3. When comparing the results using method 1 and numerical, it is easy to
spot di�erences. Predicted speed changes di�erently with Scruton number and the values are
inconsistent for method 1 and numerical. The approximate speed using method 2 is consistently
higher than the numerical result but does drop similarly with increasing Sc .

To further evaluate the approximations, a second damping case is studied. The evolution of
�uid speed at maximum response when damping is �ve times greater is shown in Fig. 4. With
the higher damping, predicted speed drops similarly for method 1 and numerical although the
predicted speed is consistently much higher. Increasing damping barely changed the di�erences
between numerical results and method 2. The main di�erence would be a slightly increased
di�erence in predicted value.

3.3 Maximum response

Maximum response is predicted to decrease similarly to how the �uid speed at maximum re-
sponse drops, i.e. like Sc−1. This gives a rapid drop in predicted vibration amplitude as seen
in Figs. 5 and 6 showing the progression for the lightly and higher damped cases respectively.
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Figure 3 � ωq corresponding to maximum ry for low damping case
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Figure 4 � ωq corresponding to maximum ry for high damping case
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Figure 5 � Comparison of maximum response amplitude using approximates and numerical
integration at low structural damping

Even with the di�erence in predicted speed, method 1 predict similar amplitudes as the
numerical results for most tested Scruton numbers in the lightly damped case. This could be
an indication of low sensitivity in �uid speed when it comes to estimating maximum amplitude.
For the higher damped case, this is not true. At Scruton numbers below 2, the amplitude
becomes noticeably over predicted and then under predicts for all Scruton numbers. The more
egregious error, is that the predicted speed corresponds to the low amplitude solution for Scruton
numbers higher than nine.

Method 2 performs similarly to method 1 for the lightly damped case but with a di�erence,
the predicted amplitude is noticeably higher at Sc = 1. The real point of improvement is in
the higher damped case. While it has the same over predicting behavior at Scruton numbers
below 2, the predicted amplitude is close to the numerical results for all other tested Scruton
numbers. In other words, the maximum speed predicted is within the VIV region and close to
the amplitude peak.

At the shown damping levels, method 1 performed passably for Scruton numbers less than
10. If we increase the damping, method 1 eventually under predicts for all Scruton numbers.
The best estimate of maximum amplitude and �uid speed at maximum is method 2 which is
based on assuming we know the phase di�erence that give maximum amplitude. The results
are promising and in the next section we will further explore the usefulness of our estimate.

4 Applicability of our estimate of maximum amplitude

We have so far compared the absolute di�erences between our approximates and the numerical
results for two di�erent damping levels. This section is focused on the applicability of our
predictions and a comparison with other predictive models, more speci�cally the model of
Vickery and Basu used in building codes (CICIND, 2010; Eurocode, 2010).

As seen in section 2.3 and Fig. 2, there is room for improvement in the models used in the
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Figure 6 � Comparison of maximum response amplitude using approximates and numerical
integration at high structural damping

mentioned building code. We will focus on two connected, negative properties. The �rst of
them, is that they tend to be overly conservative in estimating amplitudes. Lupi et al. (2017)
studied the di�erence between predicted and actual VIV amplitude and found that the predicted
amplitude tended to be much larger than the actual vibration amplitude.

The second property has to do with predictive amplitude as a function of Scruton number
(Lupi et al., 2017). The formulation used in the building codes can have abrupt jumps in pre-
dicted amplitude when slightly changing structural damping or aerodynamics. This is associated
with a critical Scruton number that marks the transition from positive linear structural damp-
ing to negative. High amplitude prediction can also be connected with the imposed negative
aerodynamic damping e�ect.

Our estimates of maximum amplitude follows a di�erent trend and there is a smooth increase
in predicted amplitude as Scruton number decreases without abrupt jumps. Our predicted
maximum amplitude can have large changes with Scruton number at Sc < 2, but this is not as
pronounced as the behavior of the design models..

How applicable is our two dimensional model in predicting the dynamic response of a three
dimensional structure? Due to three dimensional e�ects, lengthwise force correlation and struc-
tural mode shapes, it is not unthinkable that our predictions will be wrong. But it may be
possible to simplify and include the mentioned e�ects into our model. If we follow the same
reasoning as Vickery and Basu (1983), we can modify our lift force by assuming a constant
average speed over the top part of the cylinder. The lift force is then weighted and integrated
over the cylinder length with a weighting factor proportional to the structural mode shape.

Another aerodynamic e�ect not accounted for in our model, but is in the design models,
is the e�ect of turbulence and noise on the prediction. We can theoretically get the response
amplitude using unsteady aerodynamic coe�cients measured in turbulent conditions, but pre-
dicting the correct wind speed is harder; amplitude might be correct but the speed not. Getting
the correct coe�cients at super-critical (or "postcritical") Reynolds numbers is another story
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and requires extensive work.

5 Conclusions

Two estimates of maximum structural amplitude due to vortex-induced vibrations has been
tested and shown to accurately estimate maximum response. The best of the two is to assume
that maximum amplitude occurs at a prede�ned phase di�erence between forcing and motion.
Using a phase di�erence of θ = 0.65π gives an approximate �uid speed at maximum response
slight higher than numerical results but similar evolution with Scruton number. The di�erence
in �uid speed has a small e�ect on the di�erence in predicted maximum amplitude and the
numerical result and estimate are similar.
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