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Preface

ISFA, the International Symposium on Flutter and its Application, is a cycle of conferences
initiated by the Japan Research Association on Flutter (JRAF). After ISFA2016, organized
in Tokyo in May 2016, the Second ISFA was supposed to be held in Paris on 12-14 May 2020.
Unfortunately, due to the Covid19 sanitary crisis, ISFA2020 had to be cancelled.

However, to recognize the important work done by more than 160 authors from all over
the world, we have decided to publish numerical proceedings of the symposium and to hold
the PhD award. On behalf of the organizing committee of the Second International Sympo-
sium on Flutter and its Application (ISFA2020), we would like to warmly thank all authors
for their scientific contribution to these proceedings.

To quote Dr. Jiro NAKAMICHI, Chair of ISFA2016, "the objectives of this symposium
are to investigate the integration of traditional and fundamental technologies of flutter in
a multidisciplinary research environment, involving aerospace engineering, mechanical engi-
neering, civil engineering, architecture and biological engineering, and to establish new areas
such as energy conversion, explorations of bio-flight mechanisms and propulsions through
analytical and experimental concept of flutter phenomena."

As you will see in these proceedings, ISFA2020 would have been, after ISFA2016, a great
opportunity for students, scholars, researchers and engineers from more than 21 countries
to scrutinize and exchange on flutter and fluid-structure instability topics, encompassing a
great and stimulating variety of disciplines and applications.

Sponsored by the Japan Research Association on Flutter, ISFA2020 was concurrently orga-
nized by the Hydrodynamics Laboratory (LadHyX/CNRS-Ecole Polytechnique), the Struc-
tural Mechanics and Coupled Systems Laboratory (LMSSC/Cnam) and the French aerospace
agency (ONERA).

On behalf of the organizing committee, we would like to warmly thank the Japan Research
Association on Flutter for their support, the international scientific committee for their work
and all our partners and sponsors for their contributions.

Best regards and we hope you will enjoy reading these proceedings!

X. Amandolese and P. Hémon

Chairmen of ISFA2020



LOCAL ORGANIZING COMMITTEE
X. Amandolese (LMSSC /Cnam)

A. Geeraert (DAAA/ONERA)

P. Hémon (LadHyX/CNRS-Ecole Polytechnique)
C. Liauzun (DAAA /ONERA)

O. Marquet (DAAA/ONERA)

STEERING COMMITTEE

X. Amandolese (LMSSC/Cnam)

H. Arizono (Japan Aerospace Exploration Agency)
O. Flamand (CSTB)

P. Hémon (LadHyX/CNRS-Ecole Polytechnique)

E. de Langre (LadHyX/Ecole Polytechnique)

J. Nakamichi (Japan Aerospace Exploration Agency)

K. Saitoh (Japan Aerospace Exploration Agency)

i



INTERNATIONAL SCIENTIFIC COMMITTEE

T. Andrianne, U. Liége, Belgium

H. Arizono, JAXA, Japan

P. Bot, Ecole Navale, France

E. Caetano, U. Porto, Portugal

S. Cao, Tongji U., China

L. Carassale, U. Genova, Italy

C. Cesnik, U. Michigan, USA

J.-C. Chassaing, Sorbonne U., France

J. Cooper, U. Bristol, UK

. Dimitriadis, U. Liege, Belgium

. Dowell, Duke U., USA

. Flamand, CSTB, France

. Gosselin, Ecole Polytechnique Montréal, Canada
. Govardhan, Indian Inst. of Sci., India
Huera Huarte, Univ. Rovira i Virgili, Spain
. Hourigan, Monash U., Australia

. Isogai, Kyushu U., Japan

. de Langre, Ecole Polytechnique, France

. Larsen, COWI, Denmark

Y.Z. Liu, Shanghai Jiao Tong U., China

H. Liu, Chiba U., Japan

J. Macdonald, U. Bristol, UK

A. Md. Mahbub, U. Town, China

C. Mannini, U. Florence, Italy

M. Matsumoto, U. Kyoto, Japan

G. Michon, ISAE-Supaéro, France

T. Mizota, Fukuoka Inst. of Tech., Japan
Y. Modarres-Sadeghi, U. Massachusetts, USA
J. Nakamichi, JAXA, Japan

O. Qiseth, NTNU, Norway

P. Oshkai, U. Victoria, Canada

D. Poirel, Royal Military College, Canada
S. Pospisil, ITAM, Czech Republic

D. Raveh, Fac. Aero. Eng., Technion, Israel
P. Reis, EPFL, Switzerland

S. Ricci, Politecnico di Milano, Italy

K. Saitoh, JAXA, Japan

G. Schewe, DLR, Germany

. Taylor, U. Glasgow, UK

[. Yamamoto, U. Nagasaki, Japan

CPEHRRTTHOEQ

1l



Contents

KEYNOTES

Aerodynamics and Flutter Problems of Sports Ball Flight. T. Mizota

Nonlinear flutter in practice. G. Dimitriadis . . . . . . . .. ... ... ... ..

FLUTTER AND BUFFETING (AIRCRAFT, WING, SECTION-MODEL)

Nonlinear flutter analysis for very flexible wing. L. Yi, C. Xiaolong, Hehaibo

Effects of turbulence models on the unsteady transonic aerodynamics of an
oscillating airfoil. K. Isogai . . . . . . . . . .. .. ... ...

Aeroelastic risks of interflap seals. R. Dubois, T. Andrianne, B. Bernay and G.
Dimitriadis . . . . . . . .

Research on Elastic Wing Flutter Considering Propeller Slipstream. 7. Zhitao,
X. Changchuan, Y. Lanand Y. Chao . . . . . . . .. .. ... ... ......

Preliminary Combat Aircraft CFD Wind Tunnel Testing on Vortex Induced
Loads. J.C.I. Zastrow . . . . . . . . . . .. ...

Aeroelastic stability assessment of a V-tail with integrated propulsion units.

C. Koch and J. Arnold . . . . . . . . . ..

Effect of a bluff-body wake on the flutter characteristics of a pitch-plunge
aeroelastic system. C. Bose and G. Dimitriadis . . . . . . ... ... ... ..

Modal Analysis of Aerodynamic Damping of Light Dynamic Stall on a Pitching
Airfoil. W. Mallik and D.E. Raveh . . . . .. ... .. .. ... ........

Unsteady Aerodynamic Response of a Swept Wing in the Presence of Shock
Buffet. L. Poplingher and D.E. Raveh . . . . .. ... ... ... ... ....

Investigations into the dynamics of a pitch-plunge airfoil with non-smooth
structural and aerodynamic nonlinearities. S.V. Gali, R.V. Bethi and J.
Venkatramani . . . . . . . . ...

Nonlinear Aeroelastic Simulation of Thin Airfoil Model. H. Arizono, H.R.
Kheirandish . . . . . . . . 0

Influence of laminarity on the aeroelastic behaviour of the NLR7301 aerofoil.

H. Mai, M. Braune and A. Hebler . . . . . . . ... ... .. ... ... ....

Static aeroelastic analysis of spanwise variable camber morphing wings with

48

67

68

corrugated structures. K. Soneda, T. Yokozeki, T. Imamura and N. Tsushima 135

Experimental and theoretical investigation of stall flutter in an elastic wing.

T. M. Currier, X. Amandolese and Y. Modarres-Sadeghi . . . . . ... .. ..

v



Development of a CFD-based industrial procedure for supporting the aircraft
certification with application to A400M T-tail flutter. E. Santos, J. Bar-
rera, A. Martinez, P. Martinez, V.R. de la Cruz, F. Arévalo, M. Karpel and
H. Climent . . . . . . . . . 146

Aeroelastic stability of a flexible high aspect-ratio wing with an imperfect end-

support. M. Riazat, M. Kheiri . . . . . ... ... .. ... ... ... ... 156
Nonlinear flutter instability with laminar flow model. J. Moulin and O. Marquet 166

Numerical and wind tunnel studies of highly flexible composite plates for
HALE wing aeroelastic tailoring applications. O. Montagnier, B. Kirsch,
and T.M. Faure . . . . . . . . . . 167

FLUTTER (BLADE, WIND TURBINE, PROPELLER) 177

Study on influence of tip vortex on aerodynamic noise of half ducted propeller
fan for air conditioner. T. Iwase, T. Kishitani . . . . . . ... ... ... .. 178

The investigation of the design parameters influence on blade flutter bound-

aries. F. Abdukhakimov, M. Kolotnikov, P. Makarov and V. Vedeneev . . . . 187

Experimental Evidence of Coupled-Mode Flutter in Relatively Large-Scale
Wind Turbine Blades. P. Boersma, B. Benner, T. Currier, Y. Modarres-
Sadeghi . . . . . . .. 188

Numerical investigation of flutter in low-speed transonic fan. (. Rendu and M.

Vahdatl . . . . . . 189

Diagnostics of the aeroelastic vibrations of aircraft gas turbine engine blades at

bench tests. S. Danilkin, V. Shkurov, T. Mazikina, D. Redkin and V. Teleshev190
Coupling DNS-1DOF for the Simulation of Transition Induced Vibration over

Marine Propeller Sections. S. George, A. Ducoin and J.A. Astolfi . . . . .. 191
Aerodynamic characteristics of wind turbines with various cross-sectional tower

shapes. Y.C. Kimand Y. Tamura . . . . . . . ... ... ... ... ...... 193

FLUTTER IN AXIAL FLOW (PANEL, PIPE, FLAG) 195

Nonlinear Theoretical/Computational Model of a Plate in Hypersonic Flow
with Arbitrary In-Plane Stiffness at the Boundaries. M. Freydin and E.H.
Dowell . . . . . . 196

Nonlinear flutter analysis of a rectangular sheet in uniform flow. K. Hiroaki

and M. Watanabe . . . . . . . ... 206
Snap-through oscillation induced by uniform flow. H. Kim, J. Kim and D. Kim . 216

Why inverted flags flap: An experimental study. M. Tavallaecinejad, M.P. Pai-
doussis, M.F. Salinas, M. Legrand, M. Kheiri and R.M. Botez . . . . . .. .. 217

The fluttering flag: Reynolds number, mass ratio, and mode shape. R.C. Mysa,
K. Venkatraman . . . . . . . .. .. L 227



Flutter and drag of a highly deformable beam under flow. T. Leclercq, N. Peake
and E. de Langre . . . . . . ..o 241

Experimental and Theoretical Investigation into the Dynamics of A Pipe Si-
multaneously Subjected to Internal and External Flows. A.R. Abdelbaki,

A K. Misra and M.P. Paidoussis . . . . . . . ... ... .. ... ........ 242
Flapping dynamics and heat transfer of turbulent channel flow with dual in-
verted flags. Y. Chenand Y. Liu . . . . ... .. .. ... ... ........ 243
Investigation of a panel flutter under different initial disturbances. A.S. Shishaeva,
V.V. Vedeneev, G.B. Sushko, A.A. Aksenov . . . . . ... ... ... ..... 244
Experiments on the Aeroelastic Stability of Plates in High Subsonic and Low
Supersonic Flow. J. Libker . . . . . ... ... ... ... ... ... ... 245
FLAPPING WING, PITCHING FOIL 247

Quasi-nonlinear Aeroelastic Analysis of a Membrane-type Flapping Wing Uti-
lizing Structural Nonlinearity. H. Nagai, K. Nakamura, M. Murozono, K.

Fujita, H. Arizono, S. Nagasaki and S. Yashiro . . . . . .. .. ... ... ... 248
Transitionary flight of a flapping wing flyer: A two dimensional perspective.
R. Sundar, D. Majumdar and S. Sarkar . . . . . ... ... ... . L. 258
Hydrodynamics of forced pitching hydrofoil. Z. Muhammad and Md. Mahbub
Alam . . . . . e 259
Nonlinear aeroelastic behavior of a flapping wing with low-order chord-wise
flexibility. D. Majumdar, C. Bose, and S. Sarkar . . . . . .. ... ... ... 260
Hydrodynamic interaction of self-propelled flapping wings in an infinite array.
L. Benetti Ramos, G. Raynaud, O. Marquet, M. Bergmann and A. Iollo . . . . 261
Survival of the fastest: evolving wing shapes for flapping locomotion. S. Ra-
mananarivo, T. Mitchel and L. Ristroph . . . . . . ... ... .. ... .... 262
FLUTTER IN BIOMECHANICS AND BIO-INSPIRED SYSTEMS 263

Elastic oscillating fin technology and its application to robotic fish. I. Yamamoto264

Fluid-structure interaction dynamics of a flexible filament in the wake of an
elliptical bluff body. R. Chatterjee, C. Bose, S. Gupta and S. Sarkar . . . . . 270

Bifurcation behavior in vocal folds and its impact on physiological conditions.

J. Emilian, V.S. Kanduri, C. Bose, J. Venkatramani and J. Horacek . . . . . . 271

Symmetry-breaking of a flexible splitter plate: experiment and quasi-static

model. M. Couliou, R. Allandrieu, J-L. Pfister and O. Marquet . . . . . . .. 272

Stability and resolvent analyses of boundary-layer flows interacting with finite-
length visco-elastic coatings. J-L. Pfister and O. Marquet . . . . . . . .. .. 273

Fluid-structure interaction in plant- and coral-inspired biomechanics problems.

F.P. Gosselin . . . . . . . 274

vi



FLUTTER IN SPORTS ENGINEERING 275

Experiment and Numerical Simulation of a Rotating Pipe in Flight. G. Kato,

Y. Naito, H. Tanigawa, J. Ishimoto, M. Nakano, T. Noguchi, K. Hirata . . . . 276
Roughness in sports aerodynamics: the cricket ‘reverse’ swing. L. Tadrist, S.

Naresh, A. Intesaaf and T. Andrianne . . . . . . . . . ... .. ... .. .... 277

FLUTTER OF BRIDGES 279

On the roles of small-scaled vortices in bridge wind engineering. D. Gao, W.

Chenand H. Li . . . . . . .. . . . . 280
The influence of angle of attack on twin-box bridge deck flutter. A. Larsen and
M. Rgnne . . . . . . . 281
Re-evaluation of aerodynamic stability of suspension bridges in Seto-Ohashi
Bridges. N. Toyama, M. Takeguchi and T. Hanai . . . . . ... ... ... .. 291
Study on direct identification of rational function approximation coefficients
of self-excited forces. H. Katsuchi, H. Yamada and H. Irpanni . . . . .. .. 301
Flutter stabilization of super long span suspension bridges with aerodynamic
countermeasures. Y. Ge, Y. Yang, L. Zhaoand F. Cao . . . . . . . . ... .. 311
VIV AND GALLOPING 321

Effects of the existence of small protruding lips of flanges of a diagonal member
in a steel truss bridge on aerodynamic vibration. K. Matsuda, K. Kato, N.

Cao and K. Shigetomi . . . . . .. .. ... 322
Wake features of a rectangular cylinder undergoing unsteady galloping oscil-
lations in smooth and turbulent flow. C. Mannini, T. Massai. . . . . . . . . 332

Assessing maximum amplitude and corresponding frequency for vortex-induced
vibrations. ). M. Ellingsen, X. Amandolese, P. Hémon . . . . . . . . . .. .. 333

Flow-Induced Vibrations of a periodically rotating circular cylinder. F. Huera-
Huarte . . . . . . . o 342

Stochastic analysis of vortex-induced vibrations by means of a randomized
wake-oscillator model. V. Denoél . . . . . .. ... ... .. ... ... 343

Dependence of cross-sectional aspect ratio and attack angle on forces and wake

of elliptical cylinder. X. Shi, Md. Mahbub Alam and H. Bai . . . . ... .. 344
Observation of galloping on four-bundled conductors transmission line. H.

Matsumiya, T. Yukino, T. Nishihara, M. Shimizu and S. Taruishi . . . . . .. 353
Flow-Induced Vibrations of Tandem Cylinders in the Transcritical flow regime.

R. Dubois, G. Dimitriadis and T. Andrianne . . . . . . . .. .. .. ... ... 354
Vortex Induced Vibration Analysis of a Cantilevered Hydrofoil by Laser Vi-

brometry and TR-PIV. J.A. Astolfi, P. Bot and L. Leroy . . . ... ... .. 355

Vortex induced vibration of two tandem cylinders in subcritical regime. F.

Rigo, V. Denoél and T. Andrianne . . . . . . . . . ... .. ... ... .... 365

vil



ENERGY HARVESTING 367

Energy harvesting from FIV of different diameter cylinders. Md. Mahbub

Alam, C. Zhenlin, Q. Binand Y. Zhou . . . . . . ... ... ... ... .... 368
Influence of the sweep angle on power extraction performance of a fully-passive
oscillating-plate hydrokinetic turbine prototype. W. Lee, G. Dumas and P.
Oshkai . . . . . . . 376
Reliability Study of a Fully-Passive Oscillating-Foil Turbine Concept. D. Iver-
son, W. Lee, G. Dumas, P. Oshkai . . . . . ... ... ... ... ........ 377
A parametric study of vertical axis hydrokinetic turbines with chordwise-
flexible blades. P-O. Descoteaux and M. Olivier . . . . ... ... ... ... 387
Investigating the energy harvesting potential of intermittent oscillations in a
pitch-plunge aeroelastic system. A.R. Paramasivam, A. Roy and J. Venka-
tramani . . . . ... e e 388
Flow-induced vibration of a cylinder between two walls for energy harvesting.
JoKimand D. Kim . . . . . . . . ... . 399
Blockage effects on the fully-passive flapping-foil turbine. K. Gunther and G.
Dumas . . . . . . . 400
Leaf Flutter Mechanism and its Application in the Wind Energy Harvesting.
K. Wang, W. Xia, H. Feng and S. Shen . . . . . . ... ... ... ... .... 401
Axial transducer for energy harvesting from galloping. M. Hage Hassan, V.
Bernard, X. Amandolese and P. Hémon . . . . . . . . . .. .. ... ... ... 402
Numerical study on energy harvesting from VIV and galloping by a square
cylinder. P. Han, G. Pan and B. Zhang . . . . . . ... ... ... ...... 412
Piezoelectric energy harvesting from panel flutter oscillation of laminated
plates. M. Kameyama, K. Ikegami and N. Kasahara . . . ... ... ... .. 413
Numerical analysis of a flapping flat plate for power generation. C. Usoh, J.
Young and J.C.S. Lai . . . . . . . .. .. 421
Aero-elastic oscillations of circle cylinder with power takeoff. P.R. Andronov,
S.V. Guvernyuk, G.Y. Dynnikova . . . . . . . ... ... Lo 431
Performance of Wind Vibrational Power Generator by Flow-Induced Vibration
of a Prism and Magnetostrictive Material. R. Nagase, T. Kiwata, T. Kono
and T. Ueno . . . . . . . . . e 432
Parameterised reduced order modelling of flutter-induced piezoelectric energy
harvesters. C. Hoareau, L. Shang and A. Zilian . . . . . . . .. .. ... ... 433
CONTROL AND MITIGATION 435
Control of vortex-induced vibration of a single bridge girder by using active
wake slit jets. G-B. Chen, W-L. Chen and D-L. Gao . . . . . . .. ... ... 436
Investigating Amplitude Death as a Possible Flutter Suppression Mechanism
in a Pitch-Plunge Aeroelastic System. A.R. Paramasivam, S. Mondal and
J. Venkatramani . . . . . . . ... 437



Some computational aspects of active flutter suppression for co-design. E.

Faisse, R. Vernay, F. Vetrano, D. Alazard and J. Morlier . . . . . .. ... .. 438

Mitigating the galloping of a square prism with a purely non-linear energy
sink. M.M. Selwanis, S.W. Rishmawi, G. Rosa Franzini, C. Béguin and F.P.
Gosselin . . . . . L 439

Flutter Suppression Test of Two-dimensional Supercritical Wing in Transonic
Region. K. Saitoh and N. Yoshimoto . . . . . . ... ... ... .. ...... 440

Optimal wall deformation for mitigating the boundary layer instability. T.
Leclercq and O. Marquet . . . . . . . . . . . . .. ... ... .. 450

Passive flutter control of aeroelastic wing with a flap-NES. C. Fernandez-Escudero,
S. Prothin, G. Michon, E. Laurendeau and A. Ross . . . . . . . .. ... ... 451

Mitigation of aeroelastic instability for rectangular tapered shape structure.

O. Flamand . . . . . . . . 452

Vortex-induced vibration control research on Long-span Bridge by passive jets.

Y. Wenhan, C. Wenli and L. Hui . . . . ... . ... ... ... ... ..... 462

Flutter suppression using magnetorheological dampers and a LMI-based con-

troller. P.H. Foster Stangarlin, F.A. Ribeiro, R.M. Botez and D.D. Bueno . . 463

Passive alleviation of static and dynamic loads via aeroelastic tailoring of a
composite wing. N. Fabbiane, F-X. Irisarri and A. Lepage . . . . . . . .. .. 472

Mitigation of trailing edge flow-induced vibrations of hydrofoil with piezoelec-
tric resonant shunt. L. Pernod, B. Lossouarn, J.A. Astolfi, J-F. Deii and X.

Amandolese . . . . ... 483
Topology Optimization of Control Surface with Aeroelastic Effect. L. Jinan, G.

Li, W. Xinjiang . . . . . . . . . o e 484

FLUTTER (FUNDAMENTALS) 487

A new divergence mechanism. V. Vedeneev . . . . . . .. ... .. ... ... .. 487

A Note on Mechanism of Two-Degree-of- Freedom Flutter. M. Tamayama and

J. Nakamichi . . . .. .. .. . 498

FLUTTER ANALYSIS (METHODS AND MODELS) 509
A Deep Learning Approach to Model Nonlinear Aerodynamic Forces. H. Mei,

H. Liao and J.H.G. Macdonald . . . . . . . . ... ... ... ... ...... 510
Aeroelastic optimisation of aeronautical composite structures considering un-

certainties. M. Sharifi, A. Vicenti and J-C. Chassaing . . . .. ... ... .. 511

Flutter Analysis of Large Flexible Aircraft based on Structural ROM Method
and Nonlinear Substructure Method. A. Chao, X. Changchuan and Y. Chao 512

Parameter identification of fluid-rigid body interactions using data assimila-

tion. J-C. Chassaing, V. Mons . . . . . . . . . . . . ... ... .. ... ..., 521

1X



Flutter analysis based on state-space model of unsteady vortex- lattice method.

L. Yang, C. Xieand C. Yang . . . . . . . . . . . . ... 522
Investigating Stochastic Resonance in a Classical Flutter System using Recur-
rence Networks. H.S. Varun, M.S. Aswathy and S. Sarkar . . . . . . ... .. 530

A Long Short-Term Memory neural network-based self-excited force model of
nonlinear post-critical flutter. W. Li, S. Laimaand H. Li . . . . . . ... .. 531

Model-Free Nonlinear Flutter Forecasting in Fluid-Structural Systems with
Multiple Varying Parameters. C. Riso, C.E.S. Cesnik and B.I. Epureanu . . 532

Response-Based Stability Analysis and Test Applications Using Parametric
Flutter Margins. M. Karpel . . . . . . . ... ... ... ... ... .. ... 543

Improvement of the Unsteady Two-color PSP Applicable to Wind- Tunnel
Experiments Using Dynamically-vibrated Airfoil Models. A. Wakayama

and D. Numata . . . . . . . ... .. 544
Flutter Analysis of Wing Model with Metal Additive Manufacturing for Wind
Tunnel Test. N. Tsushima, K. Saitoh, H. Arizono, and K. Nakakita . . . . . . 554

A Novel Feature-Based Recombined Deep Learning Method for Aeroelasticity.
Y. Wang, R. Han and G. Chen . . . . . .. .. . ... ... ... ... ... 562

Structural and Aerodynamic Models for Aeroelastic Analysis of Corrugated
Morphing Wings. N. Tsushima, H. Arizono, K. Soneda, T. Yokozeki, T.
Imamura, and W. Su . . . . .. . ... 572

Time domain and time spectral reduced order models for aeroelasticity. F. Di

Donfrancesco, A. Placzek and J.-C. Chassaing . . . . . . . . .. .. ... ... 573

Assessment of flutter methods by numerical correlations with wind tunnel test
data on U-tail configuration. S. Dequand, A. Geeraert and G-D. Mortchelewicz583

Development of Bi-Luminophore Anodized-Aluminum Pressure-Sensitive Paint
for Flutter Wind-Tunnel Experiment. D. Numata, and A. Wakayama . . . . 584

Self-excited force models of nonlinear coupled flutter and model parameter
identification via free vibration sectional model test. L-D. Zhu, G-Z. Gao . 592



Keynotes



Second International Symposium on Flutter and its Application, 2020

Aerodynamics and Flutter Problems of Sports Ball Flight
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Summary
The strange behavior of three kinds of sport balls flying in the air are studied.

First, the three-dimensional flight trajectory theory for golf ball has been described. The
bank concept of a ball rotation axis was introduced instead of side spin one, which has
been described for over 100 years. Drag and lift around the body axis of a golf ball in
flight are converted into drag, lift, and lateral forces in ground coordinates by vector
analysis. These results were verified by field experiments in still air and atmospheric
boundary layer flow.

Next, the mechanism of strange orbit change of baseball ball has been studied. The
research of pitching, yawing, and rolling knuckle balls focuses on the changes in surface
seam position with slight rotation. The transition from laminar to turbulence boundary
layer flow result in large shift of separation line. We are studying the SFF called front
door ball or back door ball as a mechanism of the trajectory change of 2-seam ball and
4-seam ball. It also describes how to measure the aerodynamic three-component force
and aerodynamic friction torque on the golfball and baseball ball by wind tunnel
experiments.

Finally, the aerodynamic mechanism of the unstable behavior of a slowly rotating soccer
ball was investigated. This phenomenon was clarified by the relationship between the
unsteady force and the wake behaviour. Before in this study, in the supercritical Reynolds
number region of the smooth sphere, the irregular change of Q-shaped and two
longitudinal vortices position had been discovered. This is topologically similar with the
bound vortex and wing tip vortex of an aircraft in stable. This finding could be applied to
the strange behavior of a soccer ball flying with supercritical flow due to the seam effect.

We will also report some topics and products that have been commercialized or are
under development as the application examples of this work.

1 Introduction
Mehta' discusses cricket, baseball, and golf balls as a comprehensive report of
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aerodynamic research on sports balls. Azuma? reports on the flight of various sports balls,
including flight-related quantities from an aerodynamic point of view. He covered the
physical factors related to flying sports not only for baseball, volleyball, shot put, soccer,
table tennis, golf, tennis, but also for frisbees, boomerangs, spears and arrows.

(1) Golfball flight aerodynamics.

The golf balls are hit by various golf clubs such as wood, irons, and wedges.
Professional golfers can fire balls at a maximum speed of 288 km / h (80 m / s) with a
driver and a rotational speed of 10,000 rpm (183 rps) with a wedge. The maximum flight
distance is more than 300m. This is a flight distance of more than 7,000 times the ball
diameter, in which are biggest in the ball sports. Players are fighting with the technology
of landing accuracy of pinpoint less than 1% of the total distances. Predicting the flight
trajectory of a golf ball requires very accurate experiments in the aerodynamics.

The aerodynamic description of how a golf ball hooks and slices was described by J. J.
Thomson? in the concept of side spin. Golf instructors have explained this concept to
golfers since then, to more than 100 years. Davies* conducted an experiment in which a
golf ball was given 8000 rpm (130 rps) of rotation and dropped in a wind tunnel airflow
to identify aerodynamic force from its trajectory. The precise measurement of the
aerodynamic force of a rotating golf ball has been performed by Bearman and Harvey®
using a 2.5 times larger ball. The two-dimensional results of numerical calculations have
been good agreement with the experiment of two-dimensional flight trajectory.

Tavares et al.° measured the decreasing rotational speed of a golf ball during flight by
using a radar technique. As a result, the aerodynamic damping coefficient has been
successfully measured. This was confirmed in our wind tunnel experiments.

The flight trajectory and the rotation speed of a golf ball in flying are easily detected
nowadays with the advent of precise electronic measuring instruments using echoes of
reflected radio waves.

The fact that the rotation axis is tilted from the Cartesian coordinate system can be
explained by the construction of the rotation vector around each axis. However, it is
physically difficult to understand that a golf ball with rigid rotation has two axes, such as
back spin and side spin. Therefore, we explain the results of constructing a three-
dimensional flight trajectory equation under the physical condition that one rotation axis
has a bank angle to the X axis of the initial shooting plane.

By the way, Ohnishi” and Jorgensen® pointed out that the physical mechanism that
changes the trajectory of a golf ball in three dimensions is not a side spin but a bank of
spin axes. However, it was not formulated.

In this equation®'®, the aerodynamic force, which is an external force, must be
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determined by a wind tunnel experiment, so it can be called a semi-experimental method.

Four new technologies were developed in this golf ball research. (1) A technology for
rotating a commercially available golf ball without a resonance speed of up to 200 rps in
the wind tunnel flow. (2) Wind tunnel experimental technology that continuously
measures aerodynamic and friction torque with high accuracy. (3) Measuring method of
the flight distance in still air ® '° or in the atmospheric boundary layer' have been
developed. (4) New smoke wire method effective at flow speed up to atleast40 m/s,10
times or more of conventional SW method.

As a product based on this theory, a hitting ball analyzer has been commercialized.
The ball movement immediately after firing is shot with a camera while slightly changing
the shooting time. From this image analysis, the initial conditions of the ball motion are
detected. The subsequent ball flight trajectory is determined by this built-in equation of
motion.

(2) Baseball ball flight aerodynamics.

According to Ichiro Tani'?, there is a report'® that this is an illusion that baseball curves
appear to be curved despite the observation with a high-speed camera. In smooth ball
rotation experiments by Maccoll'*negative Magnus forces appear in a practical range. It
was pointed out that the trajectory of the smooth ball does not change quantitatively
unless the rotation speed increases significantly. However, in the next issue of Life,
experienced catchers testify that the ball will curve. The magazine, Look's, provides
evidence that not only curved balls, but also so-called straight balls, are curved. Early
researchers may have been obsessed with the negative Magnus effect of the smooth
spheres, ignoring the importance of baseball seam effects.

However, Tani'® performed a wind tunnel experiment on a rotating baseball ball and
stated that a negative Magnus effect did not appear in a baseball ball and that the value
of the lateral force generated by the seam effect caused a curved ball. Tani'® had also
interested in the study of knuckle balls by Watts & Sawyer'’. Ichiro made many
achievements in the US Major League, but Japanese fluid mechanic scholar Ichiro
pioneered baseball science, also.

One result of wind tunnel study state that the drag of the ball has Re dependence™,
and another paper argues'® against to this issue. Although the effects of seams have
been discussed, they are not fully understood. The knuckleball equation of motion was
constructed by Watts & Sawyer'’. Weaver?, a student at the University of Calgary at the
time, pointed out the effects of aerodynamic friction torque in an interesting question. An
answer to this question is obtained in the current study. In recent years, new orbit
changing balls have been recognized one after another. Recent performance
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improvement and technical research of baseball pitchers themselves have made
remarkable progress with the times. We will call them the scientists on the mound.

Modern pitchers throw balls at speeds ranging from 70 km /h (19 m/s)to 170 km / h
(47 m / s). Rotational speeds range from 0 rpm (Orps) to 3000 rpm (50rps). Strangely
changing balls, collectively known as knuckle balls and SFF, are created by the
relationship between the direction of the axis of rotation and the seams. There are many
types of changing balls, called straight balls, curves, shoots, sliders, and folk balls. In the
baseball world, if the pitcher himself declares my ball to be such a changing ball, it tends
to be recognized as it is. From the standpoint of conducting research, another definition
is needed. Here, we describe the research results focusing on the initial state at the
moment when the pitcher releases his hand.

The initial conditions refer to the initial speed U of the ball, the rotation speed N, the
relationship between the ball seam and the rotation axis, the direction of the rotation axis,
and the direction of travel of the ball. Only gravity and aerodynamic forces act on the
flying ball. In this research, we deal with a changing ball called a magic ball. Motivated
by this research, Mizuno Co. developed a sensor ball called MA-Q, will appeared in 5-2
(1).

(3) Slowly spinning soccer ball aerodynamics.

The last topics is a study on the magical change of a soccer ball flying with a slowly
rotation. Phenomena such as balloons on going to the high sky exhibiting strange
fluctuation behavior had been observed for a long time. Taneda?' explained this by
observing bound vortices and random wake motion in the supercritical Re number region
of a smooth surface sphere. Mizota?? described this phenomenon by adapting it to the
erratic behavior of a weakly rotating soccer ball in flight. The soccer ball's flight speed
ranges from 5m /s to 30m / s. In the smooth sphere, the flow is almost in the subcritical
Re number range. The rotation speed is ranging 0 to 10 rps.

The surface of the soccer ball is made up of pentagonal and hexagonal panels. The 8-
shaped panels have been also used since 2014. Between the panels there is a groove
of about 1-2 mm deep seam. This makes the surface of the soccer ball rough, which has
the effect of lowering the critical Re number. Due to this roughness, the boundary layer
on the soccer ball surface becomes turbulent. It has the effect of lowering the resistance
by flying in the supercritical region. At the same time, the random position change of the
bound vortex and the wake is important for this phenomenon. The reaction force by the
random movement of the vortex flow, quantitatively generates a random movement of
the soccer ball. Research on recent differences in panel shape is also being conducted?.

When a sports ball flies in the still air, it develops a three-dimensional motion under the
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influence of aerodynamic force and gravity g. The aerodynamic factors related to the
motion in the still air, when limited to the three types of balls discussed in this paper, are
as follows.
@ Geometric factors: ball diameter d, surface roughness (golf ball: dimple?*, baseball
ball: seam, soccer ball: groove between surface panels),
@ Kinematic factors: Initial velocity U, number of rotations N, relationship between
ball advancing direction and rotation axis (or relation with seam),
@ Physical properties of air: air density p, static (dynamic) viscosity coefficient y (v)
of air.

According to the results of the dimensional analysis, the aerodynamic force F (Fx, Fy,
Fz and aerodynamic torque T) =(D, L, S, M) =on the ball is represented by the Reynolds
number Re = Ud /v and the spin parameter Sp = mNd / U (Tangential velocity of the ball
surface with spin/ Ball speed). D=Cp0.50U%A, L= C.0.50U%A , S= Cs0.50U%A, M=
Cm0.50U?Ad, (Cp, Ci, Cs, Cu)= f(Re, Sp), D: Drag, L: Lift, S: Side force, M: Aerodynamic
torque, (Cp, Ci, Cs, Cu): Aerodynamic (drag, Lift, Side force, torque) coefficient.

2. Golf Ball 3D Flight Equation and Wind Tunnel Experiment®1°

2-1 Three-dimensional flight theory of golf ball
The coordinate system of the equation of motion for a three-dimensional flight of a golf
ball in the absence of wind are shown in Fig. 2-1 (a) and (b). The initial launch direction
of the ball is in the XY plane. Each symbol is listed at the end of this section. The initial
conditions for ball movement are determined at the time of recovery from impact
deformation on the club surface. The equation of motion is built under the following
assumptions:
1) The bank of the axis of rotation is determined by the ball's initial conditions, and this
bank angle does not change until the ball lands on the ground.
2) When the axis of rotation is banked, the lift based on the body axis tilts, so a horizontal
lateral force is generated.
3) In the initial state of the ball, the rotation axis of the ball has no yaw angle with respect
to the initial firing direction. Even if a small yaw angle occurs, the lift does not change,
and no lateral force is generated.
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(a) 3-D flight of golf ball (b) Back view of the ball
Figure 2-1(a), (b) Drag and lift on golf ball flight with banked spinning axes

(a) The drag D is opposite to the traveling direction U of the ball, (b) The lift L acts in a
direction orthogonal to U and the rotation axis Zg.
Figure. 2-2 Relationship between velocity U, drag D and lift L during ball flight.
The origin of the coordinate axes (X, Yi, Zi) is the center of the ball during flight.

(1) Drag D and lift L in bank angle 6
The drag vector D is in the opposite direction to the ball velocity vector U. Lift vector L is
orthogonal to velocity vector U and rotation axis Zr. Since the rotation axis direction is
Zr (0, -sinB, cosB), the drag vector D and the lift vector L are as follows.
D=/ D/ (-cosacosB, -sina, -cosasinB) )

L =/L/ (sinBcosasinB+cosBsina, cosBcosacosPB, sinBcosacosp) (2)
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(2) Aerodynamic force Fx, Fy, Fzin ground coordinate axis direction
Thus, the aerodynamic forces in the direction of the ground coordinate axes are as

follows.
Fx=-1/2(CpcosacosB+ C.(sinBcosasinf + cosBsina))pAVg? (3)
Fy=-1/2(Cpsina- C.cosOcosacosf)pAVe>-mg 4)
Fz= 1/2(Cpcosasinf +C.sinBcosacosB)pAVg? (5)
Here, /U /=Vg= (Vx? +VWy2+V2) 2, (6)

(3) Orbital equation of motion and fluid friction torque
The flight trajectory was obtained by numerically calculating the following equation of
motion by the integral progression method (Euler method).
F=mdU/dt (7)
The initial rotational speed given by the club during the flight is reduced momentarily by
the fluid friction torque as follows.
N(t+At)=-pAdCm(t)VB(t)2At/(41Tl)+N(t) (8)
(4) Initial condition and measurement method of ball motion
The initial conditions of the flight speed and the rotation speed of the ball are given by
the following equations.

Vx(0)=Vp(0)cosao (9)
Vy(0)= V(0)sinao (10)
Vz(0)= 0 (11)
N(0)= No (12)

These initial conditions are obtained by photographing the ball motion immediately after
launch with two flash and CCD camera sets at optimal time intervals. We select the light
emission interval etc. so that two ball images are shot within the shooting screen. These
initial motion conditions were obtained by the DLT method from two or more marks
attached to the ball.

In an outdoor experiment described later, an initial lateral shift angle Bo always exists.
Bo is also measured, and the coordinates are converted during calculation.

The main symbols used here are as follows.
d: golf ball diameter 0.0427 [m], m: mass 0.0456 [kg], g: gravitational acceleration [m/s?], : A:
cross-sectional area by ball diameter[m?], p: air density[kg/m3], v : Kinematic viscosity coefficient
of air[m?/s], I: Moment of inertia of ball 1=8.10x10%[kg - m?] , U: Ball flight speed or wind tunnel
airflow speed[m/s], N: Golf ball rotation speed [rps], a: elevation angle [deg.], B: sideways angle

[deg.], B6: bank angle of ball rotation axis [deg.], D: Drag vector or drag [N], L: Lift vector or lift [N],
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T: fluid friction torque [N - m] , Cp: drag coefficient Cp=D/ (0.50U?A), C.: lift coefficient C.= L/
(0.50U%A), Cm : fluid friction torque coefficient Cn =T/ (0.50U?Ad), S, , Sp: spin parameter
Sp=mrdN/U, (peripheral speed due to ball rotation) / (ball speed or ball flight speed), Re: Reynolds
number Re=Ud/V.

2-2 Wind tunnel experiment of aerodynamic force and fluid friction torque measurements

In this experiment, aerodynamic three-component force and fluid friction torque are
obtained by a wind tunnel experiment with a commercially available golf ball. Fig. 3(a)
shows the setup of the wind tunnel test equipment in the early days. The subsequent
improvement results are shown in (b), (c), and (d).

Wind tunnel wall

/ Aluminum frame

L — Piano wire

(#0.3)

| Golf ball

Spinning center
-

Golf ball

Piano wire,
$0.3 mm

(c) Balancing technique of ball spinning (d) Jet nozzle flow for ball spinning
Figure 2-3(a) At the beginning of this study, the ball was suspended by a single vertical
piano wire (¢0.3mm) and rotated by a motor. (b) The ball is now supported by four piano
wires through the central axis. (c) A mechanism that tunes three set bolts to balance the
rotation, and (d) The rotation of the golf ball is given by a jet stream.
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In the early stage of the development of the aerodynamic three-component force
measurement method, as shown in Fig.2-3(a), a golf ball is suspended by a 0.3mm
diameter piano wire penetrating the wind tunnel wall without contact. The motor for
rotating the ball is attached to the upper part of the frame, and the other end of the piano
wire is attached to the lower part of the frame via a bearing. This frame is on the load
cell. When the fluid friction torque acts on the ball, the piano wire is twisted, so that the
time delay between the ball and the end of the piano wire can be measured to determine
the twist angle. A ball with good rotation balance is selected by dipping in a liquid such
as high-concentration saline. The probability was one or two per dozen.

In the updated apparatus, golf ball is suspended by four piano wires as shown in Fig.2-
3 (b). The rotating shaft is embedded in the ball, and miniature bearings attached to the
both ends. Four piano wires are fixed to the outer frame after passed through the bearing
and wind tunnel wall. The frame is on the 3-components load cell or air suspended load
cell. On the equator of the ball, three set bolt holes are arranged every 120 °, adjust
the depth of the set bolts to keep the static balance. As a result, all the practical golf balls
did not show a resonance rotation speed from a maximum of 200 rps to O rps, and
smoothly rotated. In the wind tunnel experiment, the rotation easily reached 200 rps by
the jet stream from the jet nozzle as shown in Fig. 2-3(d). The rotation speed slowly
decreased to about 20 rps during 180 seconds in still air. In the wind tunnel flow, the fluid
friction damping torque increased, so the rotation speed dropped to 20 rps for 60
seconds. The damping torque coefficients of the fluid friction was determined from the
decrease rate of the rotation speed. Aerodynamic data could be measured by continuous
measurement because the degree of rotation decay was slow.

The ratio of drag on the piano wire supporting the golf ball was about 50 % of the total
drag. In the baseball case, in the next chapter, this value was 25%.

2-3 Measurement results of aerodynamic three-component and friction damping torque

coefficients

Fig.2-4(a) shows the drag coefficient Cp and lift coefficient C. change with the spin
parameter Sp. The result of the fluid friction damping torque coefficient Cy is shown in
Fig.2-4(b). The spin parameter when the ball hit by a professional golfer flies in an actual
game varies depending on the club and during the flight. In the case of 1W or 3W, it is
around Sp = 0.1 to 0.25, and for the 5l it is around Sp = 0.2 to 0.7. In the results of this
wind tunnel experiment shown in Fig.2-4(a), the Re number dependence appears at a
ball speed in 25 m / s, but the it does not appear so much at more than the practical
speeds of 30 m / s. However, owing to the dimple shape, Re nhumber dependence

10
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(a) Drag and lift coefficients of golf ball (b) Fluid friction torque coefficient

Figure 2-4(a) Drag and lift coefficients of golf ball by wind tunnel experiment. (b) Fluid friction
torque coefficient. O: Motor driven method, A : Tavares® by radar method, Other symbols

by free rotation method. Free rotation results are well coincident with radar method.

happened to appear in a higher flow velocity region, and such a ball confuses the player.
Each manufacturer pays close attention to the development of the ball. According to
Fig.2-4(b), which shows the measurement results of the fluid friction torque coefficient,
the result of the free-rotation method by Mizota® is closer to the result of the radar method
by Tavares®.

In the early stage of the research, the measurement results of the aerodynamic
coefficients sometimes showed a large dependence on the Re number, and sometimes
varied. This was caused by the rotational vibration of the ball. The double amplitude of
the vibration of the ball or piano wire was taken with a camera. If it is over 90 uym, the
aerodynamic coefficient does not appear stably. The data became stable below 50 pm.

2-4 Verification of measured aerodynamic force by flight experiment in still air

Fig.2-5(a) shows the flight distance X at a bank angle 8= 0 without natural wind. The
measured and calculated results were on a 45-degree line, confirming the validity of this
calculation method and the correctness of the aerodynamic data from wind tunnel
experiments. The measured and calculated results of flight distance X with a bank angle
0# 0 of a robot shooting with no side slip angle o = 0 are shown in Fig.2-5(b). Fig.2-5(c)
shows the lateral distance Z in this case. These results are reasonably good but may
need some more detailed experiment in still air.

11
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(b) Left: Calculated and measured X in 3D hit by Robot. Bank angle 8 # 0, initial
side slip angle Bo = 0. Caution to the change of axes with Fig.(a).

(c) Right: Lateral distance Z. The calculated value (vertical axis) and the
measured value (horizontal axis).

Figure2-5 Measured and calculated distance X or Z in still air experiment.

2-5 Flight experiment in natural wind™

Golf balls trajectory in the air are greatly affected by natural wind. An outdoor
experiment was performed to investigate whether the three-dimensional trajectory
equation was valid under the wind influence of the atmospheric boundary layer. This was
conducted on a terrain where the natural wind blows stably for a long time. The
experiment was performed on a sandy beach where the sea breeze blows from the north
about5.5t0 7.0 m / s speed. Two types of experiments were performed in which the wind

12
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was blown from the right 107 ° (wind from the right side) and 157 ° (wind from the right
rear) with respect to the hitting direction X.

The 5m height natural wind speed was measured at 5 points under the ball trajectory.
The natural wind speed against the ball flight was extrapolated from the atmospheric
boundary layer theory. The ball was shot by a professional golfer and the ball initial

conditions were measured using Pythagoras?®.

300
X(m) 75
vy = 0.9807x Zm) | 2
50 s, %

s 200 F . i
3 3 -
3 _ 25 O
é y = 0.9476x e / o
© 100 r e 25 B0 7%

35 | Measured data

0 . .
0 100 200 300 /

Measured data X_(m) 355

(a) Comparison of flight distance X. Horizontal axis: measured value X. Vertical axis:
calculated one X. O: Only with initial conditions of the ball motion, m: Including the
effect of natural wind speed. The slope of the graph was improved from 0.9476
to 0.981, closer to the 45 ° line.

(b) Lateral distance Z. Horizontal axis: Measured Z. Vertical axis: calculated Z. O:
Without considering natural wind. m: Calculated value incorporating the effect of
natural wind. The results of wind effects incorporation approach the 45 ° line.

Figure 2-6 Measured and calculated distance X or Z direction in atmospheric boundary

layer by professional golfer’s hit.

Aflight experiment of a golf ball under the influence of natural wind was shown in Fig.2-
6(a)and (b). (a)The experimental range of flight distance is 80-270 m. By incorporating
atmospheric boundary layer wind speed data, the slope of the graph was closer to 45 °,
with an improvement of about 4%. The correction for the lateral displacement distance
(b) is also effective, and it is closer to the 45 ° line. Further confirmation experiments are
needed, but the validity of this calculation method is demonstrated.

Finally, three assumptions in constructing this three-dimensional trajectory theory are
described. Regarding section 2-1 1), we have experimentally observed that “the bank
angle of the ball's rotation axis remains unchanged until it touches the ground.” In
addition, a wind tunnel experiment was conducted with respect to the point of | that “the

13
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Yaw angle does not occur at the moment of hitting the club, or the new aerodynamic
lateral force is small even if the Yaw angle occurs”. Wind tunnel experiments were
performed by changing the Yaw angle of the rotation axis from 0 to 30 °, but no new
lateral force was generated in this range.

When | presented this study in Port Douglas (2002, BBVIV3) %6, P.W. Bearman said,
“Taketo, this 3D theory is fine, but | want you to develop it in the next step. When curved
to the right or left, can you develop a ball that returns correctly?” | responded seriously,
“it would find the R & A to be a complete violation.” But the correct answer at that time

was “OK, my next research topics is your order.”

3. Various changing ball of baseball?” -3

3-1 A hopping straight ball

The straight ball is backspinned and thrown by the 4-seam ball as shown in Fig.3-1.
Magnus force lifts the ball weight. If the ball's speed and rotation speed are fast, it will
rise up with same height of the ball diameter between 18.44 m (distance of mound plate
and home base). A ball speed of 160 km / h (44.4 m / s) and a rotation speed of 40 rps

L
Rolling

awing

U

"y,
%
(7

=
-

Pitching

e N
N

Figure 3-1 A coordinate system of the traveling direction X of the baseball and the seams.
2-seam ball: £ Rolling rotation around the X axis or + Yawing (Side spinning) rotation
ball around the Y axis with the ball seam arrangement in this figure.
4-seam ball: A ball that rotates + Pitching (Back or Top spinning) around the Z axis.

are the boundaries where the upward Magnus force balances the ball weight. If the latest
fastest ball is 170 km / h (47.2 m / s) at the same rotation speed of 40 rps, hop larger
than one ball diameter. In the past, it was said that hopping balls could not be physically
possible, but in recent years aerodynamics have certainly been realized due to improved

14
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performance of players. It is the largest changing ball that can be lifted by aerodynamic
lift at a distance of 0.74m falling by gravity.

Instead of a straight high-speed ball, there is a magic ball with a bank rotation axis of
10 ° or more to the left or right. This is the same principle of hooks and slices on golf
balls. The horizontal component of maximum Magnus force, lift, in which acts in the
perpendicular direction of spinning axis, generated by tilting the axis of rotation causes
the ball to shift left or right between 18.44m. If this shift could be skillfully changed at a
ball speed of 150km / h from 7cm to 20cm, it would be very difficult for the batter to
respond. Often missed or become a grounder. NYY's M. Rivera was succeed in this
magic ball called “Rivera’s cut ball”.

3-2. Quasi-stationary theory of knuckle ball and effect of seam?” ~32
(1) Observation of magical trajectory of knuckle ball

A strobe image of the flight trajectory was obtained from a TV image of a knuckle ball
thrown by pitcher T. Wakefield (Boston Redsox). Fig. 3-2 (a), (b), (c) and (d), including

U=110.0 [km/h]
N=0.5[rps]

/-\A 2f

Tegequaatsiiittigy
’

Y(t) [m]

o Spiral knuckle

1 0.5 0 05 -1
Z(t) [m]

(a) Left: Trajectory of rolling knuckleball (b) Center: Rolling ball from Pitcher’s view.
(c) Right upper, Catcher’s view: Calculated trajectory of one seam Rolling knuckleball.
U=110(30.55m/s) Km/h, N=0.5rps, (d) Spinning of this rolling knuckleball, every 5/240
sec., Pitcher’s view.

Figure 3-2 1-seam (Rolling) knuckleball by Tim Wakefield
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the results of knowing the seam position during flight, are shown. Let's call it one seam

rolling knuckle ball*® 3V or Rollin knuckleball. Fig.3-2 (a) shows the strobe image
trajectory of the ball flight. (b) clockwise rotation from the pitcher side. (c) Calculated
trajectory using later data, in which measured with wind tunnel experiment. (d) show the
strobe image of spinning every 5/240 second.

Fig.3-3 shows the (a) strobe trajectory and (b) the rotation of the ball observed from
the catcher side by the same pitcher's 4-seam back spin (pitching rotation)? 2, The
lateral displacement of the side (Yawing) spin knuckle ball® is shown in Fig.3-4, in which
was thrown by the same pitcher. This is a flutter that oscillates in the horizontal direction
for about 1.5 cycles during flight with a twice amplitude of about 10 mm during flight.

Two kinds of knuckle ball launcher (named Fairy 1: Rubber powered catapult system,
Fairy 2: Pneumatic system) were handmade. Fig. 3-5 (a) to (d) show the results of
shooting a ball with the same setting conditions, photographed with a video camera, and
processed to strobe image. The flight trajectory of the ball corresponding to the images
of these four cases is shown as Fig. 3-5 (e)Observation from the third base side, and
(f)Observation from above. It draws various orbits so that it returns to the original orbit or
not to return while flying to the home base (18.44m) but does not follow the same orbit

3 4 S
9 10

(a) Trajectory of back spin knuckle ball  (b) Back spin knuckle ball, 1/4 revolution.

Figure 3-3 Back spin knuckleball by Tim Wakefield (Catcher’s view).
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Frame number of TV image
Knuckle ball to Berny Wiliams by Tim Wakefield

Figure 3-4 Double amplitude of side (Yawing) spin Knuckleball?
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(a) Yawing spin Knuckle ball with pitching machine, Catcher’s view. (b)
(Left to right, Fig.1g, 1h, 1i, 1j)
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(c) Side view from third base (d) Top View
Figure 3-5 Yawing or side spin knuckleball by shooting machine, named Fairly1.
Local numbering of Fig.1g, 1h, 1i, 1j in Figure 3-5(c) and (d) are correspond with Figure
3-5(a).

as one. Oscillatory changes in the vertical direction are difficult to discern.
(2) Aerodynamic force and friction torque of knuckleball*°

Fig. 3-6 (a) shows the measurement results of the aerodynamic three-component force
coefficient of a rolling 1-seam knuckle ball. In the case of the seam arrangement 6 =35 °
shown on the right side of the fig, the lateral force of the body axis is maximum as
described later, and the lift is zero. This lateral force acts obliquely by the rolling rotation
with the ball and is decomposed into a lateral force and a lift. The value of Cp should stay
constant during 360 ° but drops off at around 270 °. This is because the wake was
inclined and at about 270 °, the support rod resulted in the wake and the base pressure
changed. The aerodynamic friction torque coefficient Cy is shown in (b). It is interesting
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that this change follows a different history depending on the initial rotation direction. The
aerodynamic friction coefficient of CCW changes to a higher value over the entire region
of Sp compared to CW. The coefficient value in the case of CCW changes from 0 to the
positive(driven) value at a low rotation speed. Currently, rotation stops once and then
starts reverse direction to CW. When the wind tunnel velocity was around 40 m / s, the
steady rotation speed was 36.4 rpm (0.606 rps). This may be the riblet effect due to the
seam, but the details are unknown.

Rolling Knuckle ball is thrown at the ball speed of about U = 108 km /h (30 m/s). If the

initial spin speed is 0, the ball will rotate only 5.8° during 18.44 m flight. The effect of
aerodynamic friction torque is not significant.
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(a) Aerodynamic 3-component coefficients with rolling rotation. (b) Aerodynamic friction
coefficients in rolling with CCW or CW.

Figure 3-6 Aerodynamic coefficient and friction torque coefficient with 1-seam rolling.

Next, Fig. 3-7 (a) and (b) show the aerodynamic three-component coefficient and the
aerodynamic friction torque coefficient during a 360 ° side spin with a 4-seam ball. This
measurement was performed at each fixed angle. Aerodynamic side forces vary with the
same trend as Watts & Sawyer'. Aerodynamic friction torque was measured by the
following two methods. Angle correction load torque method: The rotation angle of the
ball is set to a predetermined angle every 10 °, and the angle change caused by the
action of aerodynamic friction torque is returned to the predetermined angle by the
correction torque. Strain gauge method: Obtained from the signal displayed on the leaf
spring strain gauge by aerodynamic friction torque.

The side force coefficients show the characteristic peak values in the degree of 35°,
125°, 215° and 305°.

Similarly, the aerodynamic friction torque coefficient changes by four periods per
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rotation with an amplitude CM of about 0.006 due to the yawing rotation of the ball. As
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Figure 3-7 Aerodynamic force coefficient and friction torque of side (Yawing) spin

knuckleball.

described later, the 4-seam knuckle ball is displaced up to 1.17 m, in one direction when
the initial rotation speed approaches 0 with the peak side force angle. In the case of the
maximum aerodynamic driven torque acts, the ball angle changes by about 8.8 °. It is
unlikely that this angular change will significantly affect the trajectory.

It should be noted that even in the 4-seam yawing rotation, automatic rotation of 5 rps
at 10 m/ s and nearly 20 rps at 40 m / s was observed in the wind tunnel experiments.
In the still air, the ball supported with less friction continues about 5 minutes rotation at
an initial rotation speed of 60 rps.

(3) Knuckle ball flutter equation and verification by wind tunnel experiment?”: 28. 3%
For a knuckle ball, the value of (ball speed) / (ball peripheral speed)is 1/Sp =133.5to
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1780. A quasi-stationary approximation can be applied to the aerodynamic forces acting
on a knuckle ball in flight. If this lateral force is used as a periodic function, a flutter
equation representing the lateral displacement can be obtained.

Lateral displacement Z (t) spirar Of Rolling type knuckle ball is

Z()spirat = (PUPACs/(2m(21TN)?) - [1-cos(21TNt)] (13)
The lateral amplitude Z () sise Of the Yawing (side spin) knuckle ball is
Z(t)siee = (PUPAC/(2m(81N)?) - [1-cos(8TTNE)] (14)

A flutter experiment was conducted with two types of knuckle balls. The ball is set with
a support rod in the center of the wind tunnel test section and placed on a trolley below
the wind tunnel. The ball and bogie reciprocate on the rails due to the aerodynamic lateral
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(a) Rolling knuckleball (U=30.5m/s), (b)Side (Yawing) spin knuckleball
ball oscillation N>0.813 rps. (U=21.5m/s), ball oscillation N>0.139 rps.
Figure 3-8 Double amplitude of flutter experiment and quasi-steady theory.

vibration force exerted by the rotation of the ball. Vibration amplitude is measured with a
laser displacement meter. The added mass and mechanical friction are modified in the
equations.

Fig. 3-8 (a) shows the experimental results of the full (double) amplitude value and the
results of the flutter Eq. 13. Fig. 3-8 (a) also shows the experimental results of the side
spin knuckle for comparison. Fig. 3-8 (b) shows a more detailed experimental result of
the side spin knuckle and the flutter Eq. 14. Distance Zmax means the maximum
amplitude converted during a flight of 18.44m. These vibration amplitude results are in
good agreement with the calculations. The knuckle ball indicates that it is a flutter that
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can be formulated by a quasi-stationary approximation.

The amplitude terms in Eq. 13 and Eq. 14 are for the rolling knuckle (oU?ACs / (2m
(21TN) 2) and for the side spin knuckle (oU?ACs/ (2m (81N) 2)).

At the same speed U and rotation speed N, the vibration amplitude of the rolling
knuckle ball is 16 times larger than that of the side spin knuckle. Rolling knuckles are
actually thrown at 1.5 times speed, so they have 36 times the amplitude. According to
Knuckler's opinion, as described below, it is actually more complex and very serious.

There is an interesting testimony about the trajectory of the knuckle ball shown in Fig.
3-8 (a) and (b). In connection with that testimony, (a) in a rolling knuckle ball, the
trajectory of the ball repeats at least one cycle between 18.44 m with N> 0.813 rps, and
(b) in a side spin knuckle ball, the trajectory of the ball is note that it oscillates in the
range of N> 0.139rps.

On the other hand, the impression expressions of the batters are as follows.

BN

It's like a spacewalk.

)
2) | can't hit without a tennis racket.
3) It's like a butterfly.
4) Shake and fail a couple of times, I've seen it but never hit it.

5) It's like catching flying flies with chopsticks.

The knuckler himself are not outdone.

1) I don't even know the ball where to go.

2) Please ask the ball its destination.

3) Even though | told him | would throw it now, so he stood with his back to home base
after giving up.

These fuzzy expressions show large swinging or oscillating trajectories. It is in good
agreement with the flutter experiment of Fig.3-8.

If the ball seam is arranged so that the maximum lift acts in the + Y direction, and the
ball speed is 30 (20) m / s, this ball will have 0.38 (0.73) g in the downward direction. |
had the opportunity to hit such a knuckle ball thrown by knuckler Shigeru Mizuno. | could
hit 100% if it was a ball other than a knuckle, but the ball passed 30 cm above my bat
swing.

Fig.3-9 (a) shows the side view of the streamline pattern at the ball with pitching angle
® = 0 and + 35 ° (40m / s) at which the maximum lift force occurs?. The wake is
significantly shifted by the action of the seam, consistent with the generation of a large
lift force. Fig.3-9 (b) shows the velocity defect distribution behind the ball (measured by
the one diameter behind with hot-wire). The peak position of the velocity defect is shifted
downward as same degree of the ball radius. The streamlines in Fig. 3-9 (a) were based
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on the PIV method. The original flow pattern was effective at 40 m / s by the modified
smoke-wire method®*.
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(a) Streamline pattern by PIV behind the ball at 6 = 35 °, acting on the maximum side
force (with top view) or lift force (with side view). Visualization by smoke wire method.
U =30m/s. 2114 flames average, 15,000 fps. (b) Large shift of wake velocity profile
with ball angle (6 = 0 °, £ 35 °), model at rest, hot-wire measurement, (6=+35°, X/d=1.5
from ball center).

Figure 3-9 Streamline®® and Velocity distribution of the wake,

The cause of this large lateral force is related to the wake shift by a single-sided tripping
wire effect on seam turbulence. Unsteady flow velocity was measured by inserting a hot-
wire into the position shown in Fig. 3-10 (b) at the yawing angle of 35 ° in Fig. 3-10 (a).
Output signals are shown in Fig.3-10 (c), (d), (e), (f).

(c) Point M X =0 mm, 0.5 mm above the surface: Turbulence signal.
(d) Point @ X =0 mm, 1.5 mm above the surface: Laminar flow signal.
(e) Point @ X =10 mm, 3.0 mm above surface: Laminar flow signal.
(f) Point @ X =10 mm, 0.5 mm above surface: Turbulence signal.

(DX =0mm,0.5nm from surface

@X=0pm,1.5mn from surface

(@X=10gm,3.0mn from surface

= @X=10mm,0.5m from surface
GX=20gn ,0.5m from surface

@X=25am ,0.5 mmfrom surface

(a) Baseballballin 6=35" . (b)Measured position near the surface.
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(e) Point @ X =10 mm, 3.0 mm above (f) Point @ X =10 mm, 0.5 mm above
surface: Laminar flow signal. surface: Turbulence signal.

Figure 3-10 Flow velocity signal near the ball surface, 6 =35°, U=21.5m/s

On the upper surface of the ball, the boundary layer becomes turbulent due to the
tripping wire effect. The position of the separation line recedes around 130 ° from the
front surface of the ball. On the other side of the ball, the seam does not trigger
turbulence due to the low flow velocity outside the seam. The position of the separation
remains at 90 °. A large non-symmetric flow occurred in the wake®, and results in a large
lateral force3" 38,

The results of the knuckleball study are summarized as follows.

(1) The wake of a 4-seam side(top)-spin knuckle ball repeats its wake oscillation every
90 ° cycles as shown in Fig. 3-11.

(2) The one-seam rolling knuckle ball corresponds to (b) 8 = 35 °with rotation around X
axis creating the fluctuating lateral force and lift one as shown in Fig. 3-6 (a).

23



Second International Symposium on Flutter and its Application, 2020

(a) 6=0°

S.

(b) 6=+35° +Z_ ,
U &T8.

U:;qy‘ -
g:ig N
s,

(c) 6=+45°

S—_
=) 3_
W

£ -ﬁ

LS.
(@) 6= 0 °: Small wake area with minimum drag, (b) 6=35 °: Wake area inclined
maximum, + Z side force maximum, (c) 6=45 °: Expanded wake area , (d) 6=55 °:

Reverse lateral force of (b)6=35 °, (€¢) 6=90 °: Same flow as (a).
Figure 3-11 The characteristic wake flow of Knuckle ball wake. Wake flow during CW
quarter period. As a top view, this is Side (Yawing) spin knuckle ball. As a

side view, this is Back spin knuckle ball.

3-3 Split finger first ball (SFF) with rotation axis in the X direction

The SFF ball is thrown with a slight gap between the index and middle fingers. It is
thrown by devising how to put and hold a finger on the ball, or the action at the moment
of release. There is no reliable way to throw this magic ball, and pitching methods vary
widely depending on the pitcher. Unlike typical straight balls and curves whose ball
rotation axis is in the YZ plane of Fig. 1, many balls can be thrown at various angles (0 °
to 30 ° to 60 °, etc.) from the X axis. As a result, a lateral or a downward aerodynamic
force acts, and the ball slides while flying or slides while sinking, producing various
magical ball-like changes.

Fig.3-12 (a) shows an image of a ball thrown by pitcher Daisuke Matsuzaka (Seibu
Lions (NPB 11 years), BOS (MLB 8 years)), which is called a vertical slider3. The ball
rotation axis faces correctly toward the catcher. It is thrown with around Sp = 0.259
(U=140km/h, N=45 rps). According to the wind tunnel experiment, the aerodynamic
three-component force characteristics of this ball are as shown in Fig. 3-12 (b). The drag
coefficient of Cp = 0.26 is smaller than that of the 4-seam straight ball of Cp = 0.40 as
shown in Fig. 3-12 (¢). Compared to a 4-seam ball, there is no lift and drag is low, so
under the same speed, during 18.44m length, vertical slider ball reaches about 35 cm
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faster. This ball, which falls sharply by the gravity force, is a troublesome magic ball for

a batter.
n
(a) SFF ball called Daisuke Matsuzaka's vertical slider®. 90fps shooting.
N = 45rps, 140km / h (39m / s).
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(b) Aerodynamic three-component force coefficient of gyro (vertical slider) rotating ball.
(c) Aerodynamic three-component force coefficient of 2 and 4-seam back spin ball. Sp =
0.259, Cp = 0.40.

Figure 3-12 SFF ball image, it's aerodynamic force coefficient of gyro-rotating ball and
2 or 4seam spinning ball.

This is a 2-seam ball with Sp = 0.259 and the axis of rotation pointing correctly toward
the catcher. The ball falls sharply due to gravity. At the same time, it is a troublesome
sphere that approaches the batter's hand quickly due to the low drag coefficient Cp=0.26.

This ball was called a gyro-ball and was accidentally spread out as a magic ball where
the ball lifts. If the axis of rotation is oriented in the direction of travel, no lift act on and it
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falls by gravity. Since the drag is small, the deceleration is small and it reaches the batter
quickly, and it is a troublesome ball. It is currently called a gyro-rotating ball.

3-4 Magic ball SFF with yaw angle change of rotation axis3* 3°

At the end of the magic ball topics, we will discuss the so-called “front door ball” or
“back door ball” aerodynamic issues. The pitcher throws this ball along the ball course.
The batter cannot predict the ball to become a strike, finally. The ball coming from the 3-
base side of the home base is the “front door ball” for the right-handed batter’s box and
the “back door ball” coming from the opposite side (1-base side). The opposite is true for
left-handed batter.
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Figure.3-13 Aerodynamic characteristics of (a), (b) 4-seam ball and (c), (d) 2-seam ball.
Compare with both sign of Side force Cs in Yawing angle 50° and 60°.

The aerodynamic three-component force coefficients are shown in Fig.3-13 as (a) Yaw
angle 50 °, (b) 60 ° of 4-seam rotation and (c) 50 °, (d) 60 ° of 2-seam one. The
experimental results of both top spin (CCW) and back spin (CW) are shown. In each
figure, the drag coefficient Cp and the lateral force coefficient Cs do not change
depending on the rotation direction, but the lift coefficient C. acts in the opposite direction
by the reverse rotation. The lateral force Cs showed a difference in the opposite direction
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depending on the seam arrangement not by the different direction of rotation. In the case
of 4-seam rotation, both (a) 50 ° and (b) 60 ° have a negative value (-) in the Csover the
entire range of Sp, but in the case of 2-seam rotation, (c) Cschanges to a positive value
(+) for both 50 ° and (d) 60 °

Considering the repeatability of the seam shape on the entire ball surface, Fig. 3-14
shows the aerodynamic three-component coefficients near Sp = 0.2 in the range of Yaw
angle 6 = 0 ° to 90 °. Both lateral force coefficients Cs tend to take a negative value, but
in the case of a 2-seam ball, the value changes to a positive value in a narrow range of
8 =40 °to 70 °. Focusing around 60 °, this lateral force shifts the 2-seam ball to the right
and the 4 seam ball shifts to the left. The pitcher can throw a back-door ball with a 2 (4)
seam ball and a front-door ball with a 4 (2) seam ball to the right (left)-handed batter.

0.6
U=40 [m/s] , N=35 [rps] . Sp=0.2, YAW : 4-seam 6=0~90 [deg]
2-seam 6=0~~90 [deg]
*
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Figure 3-14 Aerodynamic 3-component force coefficient between 0 ° and 90 ° of Yawing
angle. Note that the direction of the lateral force in 8=60 °is opposite for 2-seam ball and
4-seam ball.

Fig. 3-15 (a) and (b) show the flutter experiment conducted by giving a ball with same
0=60 °yawing angle on a platform moving left and right. (a)4-seam ball moves to the
leftward as a front-door ball for a right-handed batter. (b) 2-seam moves to the rightward
as a back-door ball for a right-handed batter. These reflect the result of the aerodynamic
lateral force. In wind tunnel experiments, the effect of the ball surface on the ball support
rod and the edge of the spinning axis is not zero. To eliminate these effects as much as
possible, it is effective to throw the actual ball itself and check the results of the wind
tunnel experiment. Therefore, the pitcher of the college baseball team threw 2-seam ball
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and 4-seam ball. Fig.3-16 shows a strobe image of a high-speed camera. Image (a) is a
4-seam ball with 8 = 60 ° shifted to the left. Image (b) is a 4-seam ball at 6 = 46 ° and
moves to the right without inconsistency with previous flutter experiment. The ball attitude
was not exactly the same as the wind tunnel experiment, but the results showed the
same direction of change as the aerodynamic and flutter experiments. Flight trajectory
simulation calculations are also being performed.

It is difficult for the same pitcher to subtly change the direction of the rotation axis in
actual games and practice. However, it is relatively easy to throw while changing the

(a) 2-seam ball, 6=60°, to the left. (b) 4-seamball, 6=60°, to the right.

Figure 3-15 Flutter experiments of 2 and 4-seam ball with 6=60°Yawing angle rotation.
Balls in the wind tunnel center are at rest, other’s are spinning in wind tunnel flow, U=35
m/s.

C.W. Top view
¢=60"° 0=-3

(a) Yaw angle 60 °, 4-seam pitching. (b) Yaw angle 46 °, 2-seam pitching.
Shifted to left direction. Shifted to right direction.
Figure.3-16 Strobe video image of high-speed camera. SFF ball pitched by Yano (FIT).
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relationship between the seam and the rotation axis. Nevertheless, it is surprising that
the pitcher finds that the two-seam ball moves sideways within 20 ° of the yaw angle and
uses it separately as a 4-seam.

On the other hand, there is a magic ball called a ghost folk (by Koudai Senga, Soft
Bank Hawks, 2017 WBC). The ball is thrown with about 30 degrees downward direction
of rotation axis from the X axis. This ghost fork ball falls more vigorously than the vertical
slider ball in Fig.3-12. The total downward force is 1.3 g because the air force is added
to the gravity forces.

Also, there is a magic ball utilizing aerodynamic characteristics near 8 =0 ° to 30 ° in
Fig.3-14. In this angle range, the values of Cp and C. hardly change. Although 6 around
30 °, the lateral force of a 4-seam ball acts at Cs = -0.1, and the ball slides about 30 cm
to the left between 18.44 m. The vertical trajectory is the same as a speed ball thrown at
8 =0 °. When the ball is thrown towards a right-handed batter, he tries to escape to avoid
it, but the ball moves to the left and strikes mercilessly. This magic ball has been thrown
for a long time and it is difficult to respond without predicting the change.

3-5 Discussion on the wonder of baseball trajectory
(1) Report of knuckler Ryo Sanogawa®* and observation by Philip Nieklo

Knuckle pitcher Ryo Sanogawa had also played in the French Baseball League (2017,
MVP in the All-Star Game). He had a valuable opportunity to talk with Philip Nieklo
(knuckle pitcher, MLN, ATL, NYY, et al., between 26 and 48 years old, 318 major
league wins).

“Nieklo liked my knuckle ball. And | met Chris Nowlin, a knuckler who has been
throwing in the minor league for 10 years and gained a lot of knowledge. The topics
was the rotation of the ball.

(a) Wakefield (BOS, etc.) and Charlie Hough (TEX, etc.) seemed to throw a 1/4 turn
with top spin knuckle ball.

(b) Spiral (Rolling) knuckle ball looks good, but it is dangerous to keep throwing it,
because of easy to prediction the trajectory, so only one step away from missing.
The back-spin knuckle is a complete failed ball. Although the side spin fluctuates, it
seems that the change is easy to predict because it only shifts to one way of direction
of rotation. "

The wind tunnel results of the side spin knuckle ball related to the observations by

Nieklo is shown in Fig.3-17(a) and (b).
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Figure 3-17 Side force on slowly and side spinning 4-seam ball

Side spin balls produce steady lateral forces in the same direction as Magnus forces
with CS = 0.15 to 0.1, even at low rotation speeds, such as Sp = 0.01 to 0.001 (1.1 ~11
second period). This phenomenon of fluid memory or hysteresis may not occur in golf
ball® with a uniform surface roughness. This may occur with seam effect turbulence. The
Niekro’s observation on the mound as the ball shift toward its rotation direction was
confirmed by wind tunnel experiments.

(2) Mystery of 2 & 4-seam ball

The correct reason concerning the Fig.3-14 and Fig.3-15, why a leftward lateral force
acts when a 4-seam ball is thrown at a yaw angle of 0 to 90 °, and a right lateral force
acts on a 2-seam ball only in the range of 40 ° to 70 ° is unknown in this stage. In the
case where the whole area covered with roughness such as dimples of a golf ball, the
lateral force was almost 0 in the range of the Yaw angle of 0 to 30 °. There is a curved
seam on the baseball ball surface, and the position changes with the ball rotation.
Depending on the speed of the outer flow of the seam on the front side, it may be a
trigger to the turbulence of the boundary layer, which greatly affects the separation area.
The separation phenomenon seems to have hysteresis and is complicated, and the
experimental facts have been clarified, but the details of the mechanism are still unknown.
(3) Ball speed U and sharp lateral change Z.

Simplify that the average speed is U, between 18.44 m, and let Z be the distance that
changes by the action of the lateral force Fs. Z = 0.5 (Fs / m) t2, flight time is t = 18.44 /
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U, lateral force is Fs = 0.5pU?ACs, and Z = (pA18.44?/ 4m) Cs. If Cs = 0.1, Z = 2.84 Cs
= 0.281 [m], which is independent of the ball speed?. If the ball is fast, the flight time is
short, and the ball will change by the same distance in a short time, so that the batter will
feel a sharp change, and difficult to deal with. The natural fall due to vertical gravity is
about 1[m] at U = 140 ~ 150km / h, but if it is applied with aerodynamic force, it will fall
about 1.284m.

4. The strange flight behaviour of slowly spinning soccer balls?

There is no reasonable qualitative aerodynamic explanation for the mechanism of the
erratic flight trajectory of soccer balls. In the subcritical Reynolds number region, vortex
shedding from the spheres with smooth surface was previously investigated“°. For higher
Re numbers, some observations of steady fluid forces on the sphere with smooth surface
were reported*!, including the effect of surface roughness*? on the drag crisis
phenomenon®38 The mechanism of unsteady forces acting on smooth spheres with
supercritical Re numbers was explained by Taneda?' through observations of bound and
wake vortices; that is, the longitudinal twin - vortices irregularly move on the surface of
a sphere and in a wake. A model calculation of ring vortex shedding was performed to
explain the generations of unsteady lift and drag forces on spheres*®. Some research
also indicated** #° that the cause of the erratic behaviour of low-spinning soccer balls is
strongly related to the findings of Taneda. The steady aerodynamic forces were
calculated by CFD methods, and the flight trajectory estimation was conducted under the
quasi-steady approximation with the ball slow rotation*®. The aerodynamic forces of
strange flight trajectory of soccer ball depend on the Re number and spin parameter (Sp),
in which Sp is a non-dimensional parameter of (ball surface speed due to spin)/ (ball
speed).

4-1 Flight test image and Reynolds number

The initial speed of a low-spinning ball that was kicked by Keisuke Honda*" “8 was 104
km/h (28.9 m/s), and a goalkeeper hardly moves to stop the soccer ball because of the
erratic behaviour. A stroboscopic image from a free-fall experiment under natural low-
wind conditions is shown in Fig.4-1(a). A strange displacement of the soccer ball was
observed during free-fall. The maximum amplitude within the horizontal plane (Y-Z plane)
was approximately 0.75m during a 4.3s period, the ball shift frequency was
approximately f=1.2 Hz, and, the maximum speed was approximately 22.5 m/s in Fig.4-
1(a), and the ball speed continued to be still accelerated. According the measured value
of drag coefficient, the final speed of the ball could be estimated to be about 30m/s under
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higher free-fall drop test. The relationships between the lift and side forces are indicated
in Fig.4-1(b). In this free-fall experiment, the lift and side force direction were defined
toward upward and right directions, respectively, in Fig. 4-1(a). The abrupt change in
aerodynamic coefficients (C., Cs) is a characteristic feature of the final falling stage,
because of faster ball speeds.

The flight trajectory results obtained using a shooting machine showed strange erratic
behaviour as shown in Fig. 4-2(a), (b) and (c), (U=82 km/h, 22.8 m/s) and Fig. 4-2(d), (e)
and (f), (105 km/h, 29.2 m/s), including the Y-Z plane trajectory (Fig.4-1(b) and (e)) and
time trace of the side force coefficients Cs (Fig.4-1(c) and (hf)). We observed erratic
trajectories along dissimilar flight with probabilities greater than 80%. Ball shift
magnitudes in the Y-Z plane perpendicular to the beam of the camera image were
calculated. The results did not indicate a smooth shift of aerodynamic forces in the Y and
Z directions. In Fig.4-1(e), the initial direction of the ball is +Z, the side forces are acting
toward - Z (asin Fig.4-1(f)), and the maximum displacement is approximately 0.9 m. As
a result, the amplitude of the side force coefficient Cs and period are within the
approximate range of 0.1-0.15 and 1.3 s, respectively, as shown in Fig.4-2(c)and (f). The
Sp values were 0.002 in the free-fall experiment and about 0.03 in the machine shooting
experiments, respectively. Such the low spinning rates did not affect the strange
behaviour of soccer ball. As a result, the aerodynamic force in flight is available in the
quasi-steady condition.

05 T
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0.1
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02

(a) 65 m free fall strobe image (b) aerodynamic coefficients (C. and Cs)
Figure 4-1 Strobe image of a 65m free-fall soccer ball and changes in aerodynamic side
force coefficients in flight.

(CL and Cs) were obtained from the two-step time derivative of position change. The

red arrow indicates the lapse of time from start S to landing E. N = 1/ 16rps, high-speed
camera shooting at 250fps, Sp = mNd /U = 0.002.
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(c) Time traces of side force coefficient (f) Time traces of side force coefficient (Cs)
(Cs) of (a) and (b). of (d) and (e).
Figure 4-2 Free-flight ball trajectories and aerodynamic forces of soccer balls launched
by shooting machine.

(a - ¢) and (d - f) are two examples of three-dimensional flight by a shooting machine.
(a) and (c) display stroboscopic images of balls shot by the machine. The initial speeds
in (@) and (d) were Up=82 km/s (22.8 m/s) and 105km/h (29.2 m/s), respectively. The spin
rates were about 1rps, and Sp was =0.03. (b) and (e) present displacements in the Y-Z
plane based on the stroboscopic image in (a) and (d). (c), (f), Time traces of the side
force coefficient (Cs). The Cs amplitude and period were 0.10-0.15 and 1.3 s,
respectively, in both cases. The accuracy of the measured ball position may be within
+5.0~ - 5.0 cm, due to the digitised pixel number.
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4-2 Time-averaged drag on soccer balls and spheres with smooth surfaces

The time-averaged drag Cp on soccer balls was measured in a wind tunnel with uniform
flow and indicated in Fig.4-3(a) with smooth-surfaced spheres*. For a sphere with a
smooth surface, the phenomenon of drag crisis appears at Re=3.5x105, under low-
turbulence flow. This result is due to the natural transition from the laminar boundary
layer to the turbulent boundary layer. However, many patches exist on surface of a
soccer ball that are surrounded by regions with approximate depths of 1.50-1.60mm,
which artificially promotes the transition of the boundary layer flow from laminar flow to
turbulent flow, and results in a drag crisis in the lower Re number region. These surface
roughness effects of soccer balls correspond well with spheres*! and soccer balls®®. The
supercritical Re number flow around soccer balls is similar to the flow around smooth
spheres (Re=3.8 x10° (U=26.0 m/s, in soccer ball diameter)), which is higher than
Re=2.0 x10° (U=13.2 m/s) as shown in Fig.4-3(b) and (c) for Type A-ball and Type B-ball,
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Type - Aball Smooth sphere
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(a) Time-averaging drag coefficients of a sphere with smooth surface and soccer balls.

(b) Type A-ball, +Teamgeist, Molten. (c) Type B-ball, truncated icosahedron, Mizuno
Figure 4-3 Time-averaged drag coefficients of a sphere with smooth surface and soccer
balls at various Re numbers. Type A-ball, Type B-ball.
respectively. All the experiments of the unsteady force measurements and flow
visualizations are conducted using Type A-ball in this study.
Fig.4-3(a) shows drag coefficients Cp of soccer balls and sphere with smooth surfaces.
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The drag coefficients depend on Re, d is the ball diameter, (0.225 m) and v is the dynamic
viscosity of the air. The drag crisis appeared at approximately U=25 m/s for smooth
sphere and 10 m/s for soccer balls. (b) Type A-ball, + Teamgeist, Molten: the groove depth
is 1.51 mm (average value of 10 locations on a random sample), and the standard
deviation is 0.042 mm.(c) Type B-ball, truncated icosahedron, Mizuno: the groove depth
is 1.69 mm (average value of 10 locations on a random sample), and the standard
deviation is 0.058 mm. The representation of these ball photographs (b) and (c) are under
the permissions of Adidas Co. and MIZUNO Co.

4-3 Unsteady aerodynamic forces and flight trajectory®’

Unsteady aerodynamic forces on Type A-ball (Fig.4-3(b)) were measured with a soccer
ball at rest in a wind tunnel flow. The coefficients of unsteady lift C. and side force Cs for
U=22 m/s are shown in Fig.4-4(a). These measured results exhibit purely random
characteristics, even when assessed by spectrum analysis. In this example, the results
were simultaneously constant for a few seconds as they centered for approximately 5 s.
The ball shift magnitudes were obtained by a two-step time integration as shown in Fig.4-
4(b) (10 s) and Fig.4-4(c) (2 s during a period of approximately 6.0-8.0 sec.). In these
calculations, the ball speeds are constant at 22.0 m/s and the gravity force is neglected
to emphasise the effect of aerodynamic forces. For 1.2 s during an approximately 6.8-
8.0 s period, the ball shifts 0.3 m right and rapidly returns to the reverse direction by 0.3
m.

These unsteady aerodynamic forces are induced by unsteady flow in the wake of the
ball. High-speed camera images of condensed smoke in the longitudinal vortex flows,
which will be mentioned later in the discussion, are shown in Fig.4-4(d) @ - ® and
Fig.4-4(e) - (g). The frame rate of high - speed camera was 250 fps, with images taken
every 0.004 s period, and the images in these figures represent every 0.128 s. During
these sampling times, the dominant positions of the vortex fall in the lower-right position.
Through precise observations within this sequence of 0.640 s, we were able to recognise
that the phases of these vortices change in every 0.128 s frames. The pattern of vortex
phase undergoes various changes from a pair of adjacent twin vortex to a pair of clearly
separated twin vortex (Fig.4-4(d)@0.384 s—Fig.4-4(d)®0.512 s or 60.640 s) and from
a pair of clearly separated twin vortex to a pair of adjacent twin vortex (Fig.4-4(e)—Fig.4-
4(f) and (g)) within a short time period. Other examples show a pair of clearly separated
twin vortex during a 0.34 s period or no phase change for more than 1 s.
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(a) Unsteady forces on soccer, Unsteady aerodynamic forces C. (red line) and Cs (blue
line) on the type A-ball during a 10 s period (Re=3.3x10° U=22.0 m/s, 50 Hz sampling

frequency).
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(b) Unsteady ball shift magnitudes. Ten seconds ball shift in the Y-Z plane during the
unsteady aerodynamic force of (a) (U=22.0 m/s).

03
- TN
L e | /‘ES—S'//
i el
— LV 4 W
= 8s
B=
- P
§ A" e ) /
© P
>I_ L | 7
Uug
65 L il 1 L L J
start
—0.2 (0] 0.2 0.4 0.6 0.8 1 1.2

Z—direction [m]

(c) Unsteady ball shift magnitudes. Magnification of the Y-Z plane ball shifts between 6
and 8 s of (a) and (b), (U=22.0 m/s).
Figure 4-4 Unsteady aerodynamic forces and ball shift magnitude during 10 seconds and

6-8 seconds.
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(a) Left : Images for each 0.128 s time step, D~®.
(b)Right: Mode change in the twin vortex.
Figure4-5 Unsteady flow patterns visualized by the smoke method. (a)Various image of
vortices. (b) Mode change in twin vortex.

Fig.4-5, M~® show various mode of vortices. During these periods of Fig.4-5(a), the
vortices primarily exist in the lower-right position with small variations. Two longitudinal
vortices are in close proximity. Between t=0.512 and 0.640 s, one vortex suddenly
separates as it passes two vortices. Fig. 4-5(b) show the mode change in the twin vortex
images 0.568 sec. to one vortex 0.868 sec., followed by the two vortices or the twin

vortex pattern, 1.180 sec.

4-4 Discussion of strange trajectory of slowly spinning soccer ball

Instantaneous flow images of smooth spheres?’ in the supercritical Re flow region are
illustrated in Fig.4-6(a), where the 3-D boundary layer flow on the surface is integrated
into a Q-shaped vortex that transforms into twin longitudinal vortices. Fig.4-6(b) displays
the flow image in the same region, which had appeared in the article by Taneda?" the
colour image was directly copied from his research notebook provided by his bereaved
family. This conceptual sketch, which appears very similar to the bound and tip vortices
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produced by airplane wings, as well as to the general flow around 3-D bodies, is a
reasonable shape from a topological stand-point, as is his sketch of the flow around a
delta wing in Fig.4-6(c). However, the asymmetric vortices of the sphere have the
freedom to rotate or oscillate around a central axis in the main flow direction behind a
sphere. The reaction force to a momentum change by the unsteady vortex flow is the
main cause of the unsteady aerodynamic force on a sphere.

(a)lmage obtained by Taneda?' of flow around a smooth sphere at the supercritical Re
number, Re=3.8x10°. This flow is an integrated streak line of the surface boundary layer
into a Q-shaped or U-type vortex and two-line flows of the longitudinal vortices. (b)The
colour version was reproduced from the research notebook of Dr. Taneda with
permission from his bereaved family. This figure was dated at March 9, 1976.
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(c)Flow around delta wing in his sketch. This figure was dated at February 24, 1976.

(d)Typical twin longitudinal vortices as shown in a. U=26.0 m/s with 25 integrated frames
during a 0.1 s period.

Fig. 4-6 Q-shaped and two longitudinal vortices of a smooth sphere by Taneda?'

The other observation of flow behind the soccer ball, which is shown in Fig.4-6(d),

yields U=26.0 m/s, 250 fps and an integration of 25 frames during a 0.1 s period. The
integrated tuft images indicate clear twin vortices and show the longitudinal twin vortex
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flow.

Simultaneous observations of flow visualisation and unsteady force measurements
are shown in Fig.4-7(a) and (b), (the same series as that shown in Fig.4-4(a)). In the first
2 s, both amplitudes were small; then, they suddenly began to oscillate. The amplitudes
of unsteady lift force CLand the side force Cs were approximately 0.05, and the frequency
was not constant, ranging from 0.7 - 2.5 Hz. In both figures, the vertical red lines indicate
at t=6.80 s. Flow visualisation by the tuft method, with an integration of 25 frames during
a 6.75 - 6.85 s, is shown in Fig.4-7(c). The resultant force vector F of the unsteady lift
and side forces is oriented toward the upper and left direction as Fig.4-7(c). In this
instance, the longitudinal vortex is observed to be toward the right and downward
direction, which is just opposite to the direction of F.

In this relationship between the unsteady flow momentum and the aerodynamic forces,
a quasi-steady flow condition must be ensured as a precondition. The Strouhal number
is an index of this condition, being the order 0.01 (St=f - d/U, where: f=1.0 Hz, U=20 m/s
and d(ball diameter)=0.225 m). This small value indicates that the flow-phenomenon may
be treated as quasi-steady conditions.

The strange change in the flight trajectory of low-spinning soccer ball occurs for
masses in the range of 0.410 - 0.450 kg . The values of mass ratio m/(pV) = 64, for an
example, were suitable for these strange trajectory flight caused by the unsteady
aerodynamic forces. In this example value of 64, m is mass of the soccer ball (0.425 kg),
p is the air dencity (1.205 kg/m?®) under 1 atm and 20 degree, and V equals to the volume
of the soccer ball.

-.u AlA
A VY
Yy iy v

.\
1)
o
-

T4 Ay
ol @ Back view
8-

time [sec]

(@)

39



Second International Symposium on Flutter and its Application, 2020

01 r
005

. M LU

” g 14 A L [ﬁ “.‘ x = : j\ ’ \
O 0 X ] ‘r‘ 3 N, { A g \
4 5 e \|/7) I8 o

< i \ W { MK

-005 —Backview ¥ i = T
. F \/ \y W\ | aLE \
ay= -

01t : LA}

; » { A
tI_FI‘If [SBG] . .\ \ ‘\ <

(b) (c)
(a -b), Unsteady aerodynamic force coefficients (C. and Cs) at 4-8 s, in Fig. 4-4(a).
(b) The averaging flow pattern during 0.1 sec. (6.76-6.85 second) around the red line in
Figure 4-7 (a) and (b).
Figure 4-7 The relations between unsteady forces and flow direction around a soccer
ball.

In the case of spinning balls, the unsteady resultant lift and side forces may disappear
and an increase in the rotational speed of the ball generates the steady Magnus force,
which should result in a curved ball. The values N of the ball rotational speeds under the
conditions ranging from purely random conditions to nearly steady conditions, was
determined experimentally to be approximately 2 - 3 rotations per second®'. The other
hand, we observed that the free-fall experiments (in Fig.4-1(a)) showed only less than
1/8 rotation of the ball during 65m fall process, in which the Sp value equals 0.002. In
the machine shooting experiments (in Fig.4-2 (a) and (d)), we observed that the ball
rotates less than one round during 30 m flight, in which the value of Sp equals about
0.03.

Our results indicate that the random behaviour of the flight of low-spinning soccer balls
is mainly caused by the unstable movements of the Q vortex and the twin longitudinal
vortices behind the ball. Grooves on the surfaces of soccer balls promote the transition
of boundary layer from laminar flow to turbulent flow and yield a supercritical Re number
flow around soccer balls. Incidentally, we recognised that strangely behaving volleyballs
that undergo floater serve exhibits the same type of moving behaviour and aerodynamic
mechanism of the soccer balls. Scientific viewpoints regarding similar types of sports ball
phenomena have generally been ignored in literature, but this finding may evoke
scientific interests in sports science.

Fig. 4-7(c) shows the flow pattern observed in multiple images in 25 frames during the
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0.1 s period of 6.75-6.85 s centered around the red lines of (a) and (b). A longitudinal
vortex exists in the lower-right directions. The resultant aerodynamic force F, which is
indicated by the arrow in (c), was oriented the opposite direction of the vortex position at

the symmetrical position of the ball center axes.

5. Applied products by aerodynamic study of sports balls

5-1 By the golfball flight research
(1) Inspection of golf ball characteristics by aerodynamic experiment

The current method of qualifying the aerodynamic properties of golf balls is flight testing.
We suggest that public committees such as R & A and the USGA consider this wind
tunnel testing.

(2) Development of the hit ball analyzer Pythagoras?®

An analysis device called Pythagoras, which measures these initial conditions and
calculates the flight trajectory, has been developed?. This device has been delivered to
400 golf shops in Japan. It is used to assess the suitability of a club when a player
purchases it. Consistent results are reputed compared to existing devices because the
equations of motion are correctly incorporated.

(3) A learning device “Spin-Axis” is approved by the Japan Professional Golf
Association®.

Inspired the bank concept, Masafumi Wakao, a professional golfer, invented learning
equipment. This link device called the Spin-Axis is an excellent learning tool that can
visualize how the rotation axis of the ball banks when set the swing trajectory of the golf
club head and the normal direction of the club surface. The Spin-Axis has been certified
as an official teaching material of the Japan Professional Golf Association.

(3) NHK is trying to improve the accuracy of robots’ camera work by predicting the orbit
with this theory.

5-2 By the baseball research
(1) Development of MA-Q 53

Mizuno has embedded various acceleration sensors in a model baseball ball. A sensor
ball has been developed that can detect the pitching speed U, rotation speed N, and
three-dimensional direction of the rotation axis. Among them, the three-dimensional
direction of the rotation axis is obtained by detecting the earth's magnetism with a high-
sensitivity magnetic sensor. Although MA-Q is this product name, it has the same
pronunciation as "MAKYU: Magic Ball" in Japanese.
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(2) Advanced Topgun: Pneumatic launcher % equipped with changing ball generation
function

A study of the magic ball of a baseball has revealed the initial conditions (initial speed,

rotation speed N, direction of the rotation axis, the direction of ball advance, and the

seam) immediately after the pitcher's hand is released. We are conducting R & D to make

it possible with launchers. A gyro-rotating ball launching device has already been

patented®®.

5-3 By the soccer ball erratic flight research

The only way to create this magic ball is to kick the soccer ball with a slight spin. Shoes
for that were developed®®. Wearing these shoes (Wave Ignitus by MIZUNO Co.), Keisuke
Honda had shot a historic ball*” at the 2010 FIFA World Cup (Japan 2-1 Denmark), in
South Africa.

6. Conclusions
Aerodynamic studies of a sports ball flying will have three main implications.

1) Creates even more mysterious excitement for audiences and TV watchers.
2) Improving the performance and early recovering from damages.
3) Related goods developments.
The main conclusions of this study are as follows.
1) 3D trajectory formulation of golf ball flight

Instead of the concept of side spin for over 100 years, we introduced the concept of a
bank of rotating axes. A three-dimensional trajectory equation has been constructed. The
technology to measure aerodynamic three-component force and aerodynamic torque in
a wind tunnel experiment has been completed. These results have been verified by
outdoor experiments under the influence of still air and natural wind. A device called
Pythagoras that can analyze the trajectory of a ball and a learning machine for players
have been developed.
2) Research of baseball erratic flight

The aerodynamic mechanism of the strange changing ball of a baseball thrown by a
pitcher has been studied in relation to ball speed, rotation speed, direction of rotation
axis, and seams. A technique has been developed to accurately measure the
aerodynamic three-component force and aerodynamic torque applied to a baseball ball
rotating in a wind tunnel airflow.

The mechanism of the rolling knuckle ball and yawing knuckle ball is flutter expressed

by quasi-stationary theory. Knuckler, however, has chosen a ball that moves more
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irregularly. The effect of friction torque is not so great. SFF balls, called front door balls
or back door balls, could be described experimentally in relation to the axis of rotation
and seams. Until now, it had been said that no hopping ball, but recent pitcher skills have
made it possible to hop higher than one ball height.
3) The erratic behaviour of slowly spinning soccer ball

The strange flight of a slowly spinning soccer ball is caused by a change in the position
of the bound vortex and the subsequent vertical vortex. This is a purely random flutter,
similar to the supercritical Re number smooth sphere studied by Taneda?'. The
simultaneous measurement of the unsteady force and the unsteady flow pattern around

the soccer ball revealed these mechanisms.
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Abstract

Classical descriptions of nonlinear flutter phenomena are based on bifurcation theory, as de-
scribed in the nonlinear dynamic literature. These descriptions generally involve the occurrence
of a subcritical or supercritical Hopf bifurcation, followed by one ore more fold bifurcations
of limit cycles. The behaviour of simple aeroelastic models with basic nonlinearities conforms
perfectly with this description of nonlinear flutter. However, real aeroelastic systems gener-
ally display more complex and, sometimes, surprising behaviour. This work presents four wind
tunnel experiments on nonlinear aeroelastic systems, featuring aerodynamic and/or structural
nonlinearity. It is shown that one of the systems conforms indeed to the classical description of
nonlinear flutter. The other three feature more complex behaviour, such as the abrupt appear-
ance of nonlinear oscillations in the absence of a linear aeroelastic instability, or a two-parameter
bifurcation that can change the nature of the flutter from subcritical to supercritical.

Keywords: Nonlinear Aeroelasticity, Flutter, Limit Cycle Oscillations, Bifurcation, Wind Tunnel
Experiments

1 Introduction

Over the last 40 years, nonlinear aeroelasticity has become an increasingly important area of
research. Nonlinear aeroelastic systems exhibit much more complex behaviour than their linear
counterparts, including the existence of multiple solutions at the same parameter values, as
well as the phenomenon of Limit Cycle Oscillations (LCO). Hence, nonlinear flutter is not
understood or described as well as linear flutter. Typical theoretical descriptions of nonlinear
flutter (Lee et al. , 1999; Dowell, 2004; Dimitriadis, 2017) are inspired from the nonlinear
dynamic literature (e.g. Kuznetsov (1998); Guckenheimer & Holmes (1983)) and analyse the
phenomenon using bifurcation theory. Nonlinear flutter is therefore presented as the result of
a Hopf bifurcation, which can be subcritical or supercritical and can lead to high amplitude
LCOs at subcritical conditions or low amplitude LCOs at supercritical conditions, respectively.
Dowell has categorised these phenomena using the terms ‘bad LCO’ for the subcritical case
and ‘good LCO’ for the supercritical case. Furthermore, simple nonlinear aeroelastic models
(typically 2D airfoils with pitch and plunge degrees of freedom and with cubic stiffness) conform
to this description of nonlinear flutter, although they can sometimes also display richer and more
complex behaviour.

Experimental investigations of nonlinear aeroelastic systems can also conform to the classical
description of nonlinear flutter. However, in many cases the phenomena observed in practice are
more complex and more difficult to categorise. The purpose of the present paper is to present
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four examples of wind tunnel experiments on nonlinear aeroelastic systems and to discuss how
the behaviours observed differ from the typical Hopf analysis. The nonlinearities featured in
these experiments can be due to structural stiffness effects, structural damping effects or aero-
dynamic effects. Furthermore, some of these nonlinearities, particularly the structural damping
are not designed for, they are just natural byproducts of the mechanics of the system (e.g.
friction in bearings). The paper starts with a discussion of classical nonlinear flutter theory and
then presents the experimental test cases.

2 Classical nonlinear dynamics for fluid-structure interaction

A general form of the flow equations can be written as

P P pu
5 | P +V- pu@u+pl—T =Q (1)
pE puE +~pu—17-u—rVT

where t is the time, p is the flow density, u = [u v w]7 is the flow velocity vector, E is the
total energy, p is the pressure, T is the viscous stress tensor, k is the thermal conductivity, T
is the temperature and Q is a generic source term. Furthermore, V is the gradient operator,
V- is the divergence operator and ® is the vector outer product. For a Newtonian fluid, the
viscous stress tensor is written as

7=p(Vu+Vu') (2)

and, for gas flows, closure can be achieved by use of the gas state equation.

The flow equations can be simplified by assuming incompressible and/or inviscid flow. They
can also be written in the Random Averaged Navier-Stokes (RANS) form by averaging them
in time in order to remove the effect of small turbulent fluctuations. Whichever form of the
equations is used, it is solved numerically by discretising the flow domain into i = 1,2, ..., nf
nodes. Writing the flow state vector at the ith node as

Pi
Xi= | piui
piEi
we can assemble the complete flow state vector
X1
X2
X =
Xp,

and reformulate the semi-discretized flow equations as
Xr = fr(X¢) (3)

where f¢ is a vector of nonlinear functions. In expression 3 the source term has been set to
zero, the gas state equation has been implemented and viscosity has been assumed constant.
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The reason for discretising equations 1 in space but not in time is to show that the flow
equations can be written in the form of a first order nonlinear dynamical system. The flow
can be specified in more detail by defining the free stream flow velocity U, density p,, and
pressure p... Equations 3 then can feature these parameters

Xs = fr(Xf, Uso, Poor Poo) (4)

The structural deformation equations can be semi-discretised in the same way, using finite
element modelling for example, leading to equations of motion of the form

Xs - fs(xs) (5)

where X. is the vector of structural states at the n, structural nodes and f. is a vector of
nonlinear functions.

In typical fluid-structure interaction problems the flow applies loads to the structure and
the structure deforms, such that that the flow boundary changes and so do the fluid loads. A
general form of a fluid structure interaction equation is then

X =f(X, Us, Poos Poo) (6)

X
(X))
and f is another set of nonlinear functions that reflect flow physics, structural physics and

fluid-structure coupling physics. Equations 6 can be studied using standard nonlinear dynamic
analysis (Dimitriadis, 2017). Consider the fixed point Xg, for which

where the combined state vector is

f(XE' Uoovpom poo) =0

The nonlinear function can be linearised around this fixed point by applying a Taylor expansion,
such that

of
f(Xe + %, Uso, poc, o) & F(XE, Usc, pocs Poc) + 73| X
X |x,
where |x| << |Xg|. Substituting back into equation 6 we obtain
x = AU, Poo, Poo)X (7)
where of
A UOO! o1 Po) = Gw
(Uoc, pocs Poc) = 5o .

is the system’s Jacobian around fixed point Xg. The parameters U, poo, Poo are bifurcation
parameters that govern the stability of the system. Equation 7 is a linear Ordinary Differential
Equation with solution

x(t) = Z vietite (8)
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where m is the total number of states, v; and \; are the eigenvectors and eigenvalues of A
respectively and ¢; is the ith element of vector ¢ = V7'x(0), V = [v; ... v,] being the
eigenvector matrix of A and x(0) being initial conditions.

Flutter is usually defined on linear systems of the form of equation 7. The critical flutter

condition is the combination of parameters U, poo, Pso for which one pair of complex conju-
gate eigenvalues of A becomes purely imaginary. At this condition, the steady state response
of equation 8 is purely harmonic, with frequency |\|, the magnitude of the pair of imagi-
nary eigenvalues. The critical flutter condition splits the possible values of the system's flow
parameters into two sets:

Ty

e At subcritical conditions the fixed point attracts response trajectories and the system is
said to be stable as it undergoes damped oscillations whose amplitude decays towards the
fixed point. This situation is displayed in the phase-plane plot of figure 1(a), which plots
the velocity response of a system, x;(t) = %»(t), against its displacement, x,(t). The
response trajectory starts at the initial condition x;(0) = 0, x2(0) = 0.1 and spirals inwards
around the phase plane, all the while approaching the fixed point lying on x; = x, = 0.

e At supercritical conditions the fixed point repels response trajectories and the system is
unstable, undergoing oscillations whose amplitude increases exponentially with time. This
situations is exemplified in the phase-plane plot of figure 1(b). The initial condition is
the same as in figure 1(a) but this time the response trajectory spirals outwards, moving
faster and faster away from the fixed point.

3000(
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Figure 1: Stable and unstable oscillatory responses of a linear system.

Nonlinear systems behave in a similar manner very close to the fixed point but display more

complex behaviour further away from this point. The term nonlinear flutter is usually applied
to the Hopf bifurcation, whose critical condition is identical to the linear flutter condition.
Nonlinear systems are characterised by the fact that they can have more than one solutions at
the same parameter values, hence their steady state response depends on the initial conditions.
As the parameters are varied, these solutions also vary and form solution branches. A bifurcation
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is the intersection of two or more such solution branches. A Hopf bifurcation is the intersection
of a branch of static solutions (the fixed point) with a branch of oscillatory solutions, known as
a limit cycle branch. Limit cycles can attract or repel response trajectories in the same way that
fixed points do. Responses that decay onto a limit cycle are oscillations with limited amplitude,
known as Limit Cycle Oscillations (LCO). This type of response is displayed in the phase plane
plot of figure 2(a), where response trajectories starting either outside or inside the limit cycle
spiral towards the latter. An unstable limit cycle causes the exact opposite behaviour, as shown

in figure 2; response trajectories starting either inside or outside the limit cycle spiral away from
the latter.

T
€1

X9 )

() (b)

Figure 2: Stable and unstable limit cycle oscillations.
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Figure 3: Supercritical (left) and subcritical (right) Hopf bifurcations.

At the Hopf bifurcation point, the fixed point still exists but its stability changes. Further-
more, a limit cycle starts to grow around it. Two major cases of Hopf bifurcation exist:
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1.5¢

0.5

Supercritical Hopf bifurcation: The fixed point is stable at parameter values lower than
the Hopf condition and unstable at higher parameter values. A stable limit cycle branch
emanates from the Hopf point in the direction of increasing parameter value. This phe-
nomenon is demonstrated in figure 3(a), where the limit cycle amplitude r is plotted
against the bifurcation parameter V. As the Hopf condition and the linear flutter condi-
tion are identical, it follows that a linear flutter analysis can predict the parameter value
at which LCOs will begin.

Subcritical Hopf bifurcation: The fixed point is again stable at parameter values lower
than the Hopf condition and unstable at higher parameter values. An unstable limit cycle
branch emanates from the Hopf point in the direction of decreasing parameter value.
This phenomenon is demonstrated in figure 3(b). A linear flutter analysis can still predict
the Hopf point but the usefulness of such a prediction is limited, as the system can be
unstable at airspeeds below the flutter condition, if the initial condition lies outside the
unstable limit cycle.
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Figure 4: Folds after supercritical (left) and subcritical (right) Hopf bifurcations.

Hopf bifurcations can sometimes be followed by fold bifurcations of limit cycles. These
phenomena cause the limit cycle branch to change its stability and to reverse its direction.
Figure 4 demonstrates two examples of such folds:

In figure 4(a) a supercritical Hopf bifurcation is followed by two fold bifurcations. The
limit cycle branch is initially stable and propagates towards the right. After the first fold
the branch becomes unstable and propagates towards the left. After the second fold,
the branch becomes stable again and propagates towards the right. In the parameter
range between V = 4.2 and 6.2 the system’s response trajectories can undergo either a
low-amplitude or a high-amplitude LCO, depending on the initial conditions.

In figure 4(b) a subcritical Hopf bifurcation is followed by a single fold bifurcation. The
limit cycle branch is initially unstable and propagates towards the left. After the fold
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the branch becomes stable and propagates towards the right. This means that high-
amplitude LCOs are possible at parameter values significantly lower than Hopf condition.
Linear analysis cannot predict the occurrence of such LCOs.

LCOs can occur as a result of other types of bifurcation, such as the grazing bifurcation oc-
curring in systems featuring non-smooth nonlinear functions. Furthermore, LCOs can have very
small amplitude or can even be suppressed in the presence of high damping. Hence, the occur-
rence of a Hopf bifurcation is not necessarily catastrophic in the linear flutter sense. Nonlinear
flutter is much more complex than linear flutter and it is not easy to split the possible values of
the flow parameters into safe and unsafe categories. The following experimental examples will
demonstrate that real nonlinear aeroelastic systems can conform to the Hopf/fold bifurcation
model describe above but they can also display surprising and more complex behaviour.

3 Cantilever flat plate wing

The first example concerns a cantilever flat plate wing installed vertically in the wind tunnel (De
Oro Fernandez et al. , 2020). It is a flat plate made from aluminium with a thickness of 1 mm.
The Aspect Ratio is 2.11, the span b = 0.96 m and the taper ratio A = 0.82. Figure 5 shows
a photograph of the wing installed in the aeronautical working section of the wind tunnel fo
the University of Liége. The wing was placed on a flat steel base lifted 0.3 m off the floor of
the working section by means of a steel support rod in order to ensure that the wind tunnel's
boundary layer will not affect the flow. The wing was secured to the steel base using two right
angle sections, one on each side. Two SICK laser sensors (OD2-P250W150U0) were used to
measure the vibrations of the wing's surface with a sampling frequency of 1 kHz.

Eternal excitation was administered by tugging on a string attached to the wingtip's trailing
edge. The response signals were assumed to be impulse responses and were analysed using
an in-house version of the Least-Squares Complex Frequency-Domain (LSCF) modal parameter
estimator, commercially known as PolyMAX (Peeters et al. , 2004). As this type of excitation
cannot provide enough energy to the higher modes of vibration, only 2-3 modes could be
identified, depending on the airspeed. The modal parameters of the first three wind-off modes
of vibration are tabulated in table 1.

Table 1: Wind off modal parameters

Mode 1 Mode 2 Mode 3
Frequency (Hz)  3.29 9.91 16.69
Damping (%) 2.6 22 2.1

The wing was tested at a range of airspeeds, from U,, = 0 to 24.4 m/s. Figure 6 plots the
time responses of the laser sensors at four of the airspeeds. It can be seen that the damping is
increased significantly by the effect of the aerodynamics, up to an airspeed of 22.9 m/s when
the wing starts to undergo limit cycle oscillations with a small amplitude of around 0.03 cm.
LCOs also occur at all higher airspeeds. The decays of the signals at subcritical airspeeds are
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Figure 5: Cantilevered flat plate wing in wind tunnel

exponential, as predicted by equation 8 for systems whose eigenvalues have all negative real
parts.

Figures 7(a) and 7(b) plot the variations of the natural frequency and damping ratios of the
first two modes of the wing for all the tested airspeeds. Both experimental data and predictions
obtained from an aeroelastic model based on the Vortex Lattice Method (Dimitriadis et al.
, 2018) are plotted. The natural frequencies of the first and second modes (corresponding
to the first bending and first torsion modes) approach each other as the airspeed increases.
Furthermore, the damping ratio of the bending mode becomes very big, while that of the
torsion mode drops to zero. This is a classical binary flutter mechanism involving the first
bending and first torsion modes. Figure 7(c) plots the variation of the LCO amplitude with
airspeed. The first limit cycles appear at 22.9 m/s and their amplitude is small; the amplitude
increases steadily over the next three airspeeds. This behaviour is typical of a supercritical Hopf
bifurcation.

The nonlinearity present in the system is thought to be mostly dependent on geometric stiff-
ening effects due to high displacements. Some amount of dynamic stall may also be occurring,
particularly since the leading edge is rectangular and not rounded off. The results obtained
from the cantilevered flat plate wing conform to the classical theory of nonlinear flutter:

e The subcritical behaviour of the system around its fixed point is equivalent to that of the
underlying linear aeroelastic system. A typical bending-torsion flutter mechanism brings
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Figure 6: Time response of cantilevered flat plate wing at different airspeeds.

about the loss of stability.

e At supercritical airspeeds, small amplitude oscillations appear but their amplitude in-
creases with airspeed.

It should be noted that many other flat plate wings of the same thickness but with different
geometries were tested in the wind tunnel. The bifurcation behaviour was qualitatively the
same, even though the LCO critical speeds, frequencies and amplitudes were different.

4 Pitch-plunge wing

This example concerns a finite wing with pitch and plunge degrees of freedom tested in the
wind tunnel of the University of Liége. The wing was installed vertically on a support structure
that consisted of a base plate (lifting the wing outside the wind tunnel's boundary layer) and a
spring assembly that provided restoring loads in the pitch and plunge degrees of freedom. The
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Figure 7: Frequency, damping and amplitude variation with airspeed.

wing had a mass m = 3.3 kg, a NACA 0012 section, a chord ¢ = 0.146 m and a span b = 0.47
m, leading to an aspect ratio of 3.2. The mean angle of attack was set to zero. Figure 8 shows
a photo of the wing and its support structure installed in the wind tunnel.

The pitch axis lay at 0.3c and the spring supports were designed such that the plunge
and pitch degrees of freedom had wind off frequencies of 4 Hz and 8 Hz respectively. Three
accelerometers were placed on the wing's surface to measure its motion, two near the wingtip's
leading and trailing edges and one on the pitch axis near the root. The accelerometer signals
were acquired with a sampling frequency of 1 kHz using a National Instruments Data Acquisition
system managed by the Labview software package. The wing was excited by pulling a string
attached to the pitch axis under the root. The response signals were assumed to be impulse
responses and were again analysed using the LSCF modal parameter estimator. The modal
parameters of the first four wind off modes are tabulated in Table 2. The first two modes are
the plunge and pitch degrees of freedom; the next two modes could be harmonics of the plunge
or they could be additional modes due to undesigned flexibility.
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Figure 8: Pitch-plunge wing in wind tunnel

Table 2: Wind off modal parameters

Mode 1 Mode 2 Mode 3 Mode 4
Frequency (Hz)  3.96 7.81 11.64  16.26
Damping (%) 6.8 8.0 3.3 4.4

The wing was tested at airspeeds ranging from U,, = 0 to 10.4 m/s; figure 9 plots the time
responses of the three accelerometers at three different airspeeds. The responses damp out in
figures 9(a) to 9(c) for Uy, =0, 7.1 and 7.5 m/s respectively. Note that, unlike the flat plate
wing case, the decays are not exponential, the decay envelopes are in fact nearly triangular,
particularly at the lowest airspeeds. These decays cannot be predicted by equation 8; this
phenomenon is probably due to friction in the bearings. At U,, = 7.5 m/s the response could
decay, as shown in figure 9(c), but could also undergo LCOs, as shown in figure 9(d). This was
also the case for U,, = 7.8 m/s. At all higher airspeeds only LCOs were encountered.

All the responses were analysed using the LSCF method, noting that at least four excitations
were applied at each airspeed. Figure 10 plots the variation of the natural frequencies and
damping ratios of the first four modes of the system, as well as the variation of the LCO
amplitude recorded by the three accelerometers, with airspeed. Several aspects of these graphs
are interesting:

e The natural frequencies vary very little with airspeed (see figure 10(a)). As mentioned
previously, the usual binary flutter mechanism dictates that two of the frequencies must
approach each other in order to cause flutter. This is clearly not the case here.

e The damping ratios all decrease with airspeed and jump abruptly to zero when the LCOs
start (figure 10(b)). Again, this phenomenon is incompatible with the classical binary
flutter mechanism, whereby one of the damping ratios goes to zero while the other
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Figure 9: Time response of pitch-plunge wing at different airspeeds.

becomes very high. Note that the damping ratios are very high at wind-off conditions,
which is compatible with the previous observation that there may be significant friction
in the bearings.

e The first limit cycles encountered at U,, = 7.5 have a finite, non-negligible amplitude
(figure 10(c)). Furthermore, at two airspeeds both stable and LCO responses are encoun-
tered. It can be concluded that the LCOs are a result of a subcritical Hopf bifurcation.

The nonlinearity causing the LCOs is not known. Clearly, high amplitude oscillations can lead
to dynamic stall and, hence, stall flutter. This could be the case here, as there is no discernible
flutter mechanism at subcritical airspeeds. However, significant friction is also present and
further undesigned structural nonlinearity cannot be excluded. In any case, the aeroelastic
instability observed in figure 10 appears to bypass the classical Hopf mechanism. This could
mean that stall flutter (if that is truly the phenomenon occurring here) does not require a
classical flutter mechanism to occur; dynamic stall can cause LCOs on an otherwise stable
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Figure 10: Frequency, damping and amplitude variation with airspeed.

aeroelastic system far from its flutter speed. Nevertheless, at airspeeds U,, > 8.3 m/s, stable
responses are no longer possible; only LCOs can occur. This could mean that the Hopf point
lies at this airspeed but that the frequency coalescence phenomenon is hidden by the fact that
the wing already undergoes LCOs at airspeeds above U,, = 7.8 m/s. Nevertheless, it is also
possible that the non-standard subcritical behaviour seen in figure 10 is due mostly to the high

amounts of friction present in the system.

5 4:1 rectangular cylinder undergoing torsional oscillations

This experiment investigated the LCO behaviour of a rectangular cylinder with aspect ratio 4:1
and a pitch degree of freedom (Andrianne & Dimitriadis, 2013). The rectangle had a chord
¢ = 0.08 m, height d = 0.02 m and span b = 1 m. The pitch axis passed through the centre of
the rectangle and the pitching motion was measured by means of two accelerometers installed
on an adaptor arm. Figure 11 shows a photo of the rectangular cylinder installed horizontally
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in the wind tunnel. The root of the cylinder was adjacent to an end-plate while the tip was
adjacent to the wind tunnel's wall, ensuring quasi-2D flow. The spring assembly providing a
restoring moment in the pitch direction was chosen such that the wind-off natural frequency
of the system was 8.15 Hz while the wind-off damping ratio was 2.6%. The critical airspeed
for vortex-induced vibrations was much lower than the airspeeds at which LCOs occurred. The
nonlinearity in this system is mostly due to dynamic separated flow and, in particular, associated
with the shedding of a Motion Induced Vortex. Some structural nonlinearity occurs at angles
higher than the highest LCO amplitude recorded during the experiments but this does not
preclude other types of undesigned structural nonlinearity, including friction in the bearing.

Figure 11: 4:1 rectangular cylinder in wind tunnel

The cylinder was tested at airspeeds between U,, = 0 and 14.6 m/s. Initial condition
excitation was imposed; the rectangle was held at initial pitch angles between 1° and 10° and
then released. Figure 12 plots the variation of the LCO amplitude and frequency with airspeed.
LCOs first occurred at U,, = 6.7 m/s. However, the system needed an initial pitch angle of
at least 3° in order to start undergoing LCOs at this airspeed; lower initial pitch angles led to
decaying responses. At 6.9 m/s an initial pitch angle of 2° was sufficient to cause LCOs while
at higher airspeeds up to 13.9 m/s the LCOs were started using an initial pitch angle of 1°.
Nevertheless, at all these airspeeds the system remained stable if the initial pitch angle was 0°.
The only airspeed at which LCOs were obtained even with a 0° initial condition is the highest
airspeed that was tested, U,, = 14.6 m/s. Figure 12(a) plots the initial conditions necessary
for LCO responses as black circles. It can also be seen that the LCO amplitude variation with
airspeed is discontinuous at 9.4 m/s, where the amplitude jumps up by about 5°. The variation
of the LCO frequency (in Hz) with airspeed is plotted in figure 12(b). Unlike the amplitude,
there is no discontinuity in the frequency. Furthermore, plotting period against amplitude in
figure 12(c) we can see that all the points lie on a straight line and that the period increases
with amplitude or, equivalently, that the frequency is inversely proportional to the amplitude.
This means that the nonlinearity in this system is softening; such systems are usually associated
with subcritical bifurcations that lead to static instability. This is clearly not the case here.

The behaviour of figure 12 could be explained in terms of classical nonlinear dynamics, if
it is assumed that a subcritical Hopf bifurcation takes place at U,, = 14.6 m/s. The unstable
limit cycle branch would then propagate down to 6.7 m/s before folding, becoming stable and
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Figure 12: LCO amplitude and frequency variation with airspeed.

reversing direction. The amplitude jump at 9.4 m/s could be the result of a second fold.
However, the behaviour could also be explained as the effect of friction in the bearing. It could
be that a supercritical Hopf bifurcation occurs at U,, = 6.7 m/s but, if the initial condition
is too low, the friction is sufficient to dissipate the energy absorbed from the flow and the
response will decay. Then, at U,, = 14.6 m/s excitations due to the wind tunnel’s natural
turbulence and due to vortex shedding from the rectangle would become sufficient to overcome
the dissipative effect of the friction and to start the LCOs.

6 Fully suspended finite wing

The previous examples included one case without bearings (the cantilevered flat plate wing) and
two cases with at least one bearing. The case without bearings exhibited a classical nonlinear
flutter behaviour while the cases with bearings had more complicated bifurcations. However,
the present example will demonstrate that this is not a general case; it concerns a rectangular
wing with a NACA 0018 section suspended horizontally from 8 extension springs, as shown in
figure 13 Abdul Razak et al. (2013). The pitch axis lay at 37% of the chord. The wing's chord
was 0.36 m and its span 1 m, resulting in an aspect ratio of 2.78. The wing was hollow and
contained 16 pressure tappings in its mid-span position, connected to 16 piezoresistive pressure
transducers. The wing's motion was measured by means of four accelerometers attached to the
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spring adaptor arms and sampled at 1 kHz. A time-resolved Particle Image Velocimetry (PIV)
system was used to visualise sections of the flow on the upper surface. The equilibrium angle
of attack of the wing, a., was set to different angles, from 11° to 16° and the wing was tested
at airspeeds between 0 m/s and 26 m/s.

Supports

Arm Wing

(@)

Figure 13: Fully suspended finite wing in the wind tunnel.

As the wing was fully suspended, it had 6 degrees of freedom but its motion was nearly ex-
clusively in the pitch direction, around the pitch axis. The nonlinearity was purely aerodynamic,
as the spring assembly behaved in a linear manner throughout the tested extension range and
there were no bearings. The interesting aspect of this experiment was that the bifurcation
behaviour of the system changed both quantitatively and qualitatively as the equilibrium angle
of attack was varied. The complete bifurcation diagram can be seen in figure 14. lts most
important characteristics are the following:

o At aeqy = 11° the wing underwent a very abrupt bifurcation at 25.2 m/s, which changed
the nature of the response from stable to very high amplitude LCOs. The amplitude
increased even more at 25.5 m/s, at which speed the test was terminated to preserve the
structural integrity of the system. The highest amplitude measured was 15°.

o At aeg = 12° small amplitude LCOs appeared at 20.8 m/s but the amplitude increased
abruptly at 21.2 m/s. It increased further with airspeed before the test was terminated.
Clearly, two regions of LCO were encountered, a short low-amplitude region and a longer
high-amplitude region.

e At aieg = 13° the behaviour was qualitatively similar to the 12° case but all the LCOs
appeared at lower airspeed and the low-amplitude region was longer with respect to the
high-amplitude region. Furthermore, there was an airspeed range in which both low- and
high-amplitude LCOs were possible.
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o At (eq = 14° the bifurcation behaviour was changed again, as the jump in amplitude ob-
served in the two previous cases disappeared. Now the LCO amplitude changed smoothly
from zero to the highest value of around 10°, although there were three inflection points
at around 15, 16 and 18 m/s.

o Finally, at aeg = 16°, the number of inflection points in the LCO amplitude-airspeed
graph was reduced to one. The critical airspeed was the lowest encountered throughout
the tests.

5L

LCO amplitude in pitch (degrees)
o
T

_15 I I I I I I I ]
10 12 14 16 18 20 22 24 26

Airspeed (m/s)

Figure 14: Complete bifurcation diagram for the fully suspended rectangular wing

Interestingly, the fundamental LCO frequency remained nearly constant at all airspeeds
and angles of attack, between 5.5 Hz and 6 Hz. The two-parameter bifurcation observed
in figure 14 can be described in terms of the Generalised Hopf bifurcation presented in the
nonlinear dynamics literature. As the equilibrium angle of attack is increased, the nature of
the bifurcation changed from subcritical to sub-critical. At aq = 11° the bifurcation results
in nearly linear flutter; it can be idealised as a subcritical Hopf undergoing a fold at high
amplitudes. At aeq = 12° and g = 13° the bifurcation is supercritical but the limit cycle
branch undergoes a fold, resulting in high amplitude LCOs. At higher equilibrium pitch angles
the fold disappears.

In this test case, the bifurcation behaviour is governed completely by dynamic stall. PIV
measurements demonstrated that a Leading Edge Vortex is generated near the leading edge
and shed over the surface of the wing during the LCOs, at least for ae;, = 13°. Nevertheless,
it is not clear exactly which aspect of the dynamic stall phenomenon causes the bifurcation
between low- and high-amplitude LCOs and how the equilibrium angle of attack changes the
bifurcation from subcritical to supercritical.
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7 Conclusions

This work has presented four wind tunnel tests on nonlinear aeroelastic systems. The nonlin-
earities were either aerodynamic (dynamic stall) or structural (geometric stiffening or friction).
The cantilever flat plate wing conformed to the classical description of nonlinear flutter, which
involves a supercritical or subcritical Hopf bifurcation, sometimes followed by one or more fold
bifurcations of limit cycles. For the cantilever wing, mostly linear subcritical behaviour turned
into LCOs of increasing amplitude at supercritical conditions. However, the pitch-plunge wing
system displayed marked differences with classical theory. The subcritical behaviour did not
betray the existence of a flutter mechanism, the damping ratios all decreased abruptly to zero
and non-zero amplitude limit cycle oscillations appeared abruptly. In classical subcritical Hopf
cases, the underlying linear system still features a flutter mechanism; here, there was no evi-
dence of such a mechanism. The bifurcation behaviour of the 4:1 rectangular cylinder could be
described as a subcritical Hopf followed by three folds. However, the unstable part of the limit
cycle branch would then have a constant and very low amplitude, which is incompatible with
the classical quadratic variation of limit cycle amplitude close to a Hopf point. Finally, the fully
suspended finite wing demonstrates a two-parameter bifurcation behaviour, whereby the nature
of the Hopf and the existence of folds depend on the chosen value of the equilibrium angle of
attack.
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Abstract

Because of the extraordinary light weight and flexible structure, the large aspect ratio wing
may induce large elastic deformations when undergoing aerodynamic loads and present
notable geometric nonlinearity. Thus, the structural stiffness and dynamic characteristics
may vary under different aerodynamic loads and deformations, and then the flutter
characteristics may change and also present nonlinearity. In this paper, nonlinear flutter will
be analyzed under large structural deformation for flexible wings. The analysis results
indicate that the flutter speed obtained by nonlinear analysis is much lower than the linear
case and even the flutter coupling modes changed. The horizontal bend mode obviously
contains twist component and contribute to the unsteady aerodynamics and causes the
decline of flutter speed according to the investigation of nonlinear flutter. So the nonlinear
flutter analysis can clearly reflect the structural dynamics under large deformation and
becomes inevitable.

Keyword: flexible wing, geometric nonlinearity, nonlinear flutter

1 Introduction

The chase for extraordinary flight performance and the wide application of composite
materials in aircraft design make the structure flexible and then the flexible aircrafts
continue to come forth, such as large-aspect-ratio UAVs, solar-powered UAVs and flying
wing UAVs. The flexible aircrafts often utilize large aspect-ratio wing to obtain the good
lift-drag ratio and flight performance but the wing may induce large deformations under
aerodynamic loads and present notable geometric nonlinearity. The traditional linear
aeroelastic analysis based on small deformation hypotheses is no longer suitable and the
nonlinear aeroelastic stability and response analysis for flexible aircraft considering the
geometric nonlinearity is urgently demanded.

The geometric nonlinear aeroelasticity means the structural large elastic deformations and
loads conditions make the structure present notable geometric nonlinearly and change the
aircraft configuration. Thus the aircraft stiffness and dynamic characteristics may vary
under different deformation and change the flutter characteristics. So for flexible wings the
nonlinear flutter speed often lower than the linear flutter speed and make the nonlinear
flutter analysis necessary and essential.

Due to the discussions above, the geometrically nonlinear flutter analysis methods are
established in this paper. The structural quasi-modes, obtained under nonlinear equilibrium
state are combined with unsteady aerodynamic based on deformed configuration to form
the flutter equations in frequency domain and solve the critical flutter speed and coupling
style. This nonlinear flutter analysis methods can well consider the effect of deformation
and loads condition on structural geometric stiffness and stress stiffness and obtain the
geometrically nonlinear flutter characteristics. This flutter analysis is much closer to the real
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physical scene and get more accurate flutter results.
2 Theory

2.1 Structural geometric nonlinearity

Because of the light weight and weak stiffness, the flexible wing may induce large bend and
twist deformations and make the linear small deflection hypotheses vanished. The
structural geometric nonlinearity roots form the nonlinear geometric equation, which
includes the quadric term of the displacement differential, and requires the nonlinear force
equilibrium equation established on the deformed state of the structure. Meanwhile, the
linear stress-strain constitutive relationship is still applicable. Structural geometrically
nonlinear problems are often solved by the nonlinear incremental finite element methods
In this paper the Updated Lagrange Formula is adopted in this study, and the primary
equations are presented briefly below.

The relationship between the nonlinear Lagrange/Green strain and displacement is

t<9ij :%(tui,j + tuj,i +'Uy tuk,j) (1)
Despite large elastic deformations, the material remains within the elastic limitation for a
small strain. So the final element-governing equation can be expressed as:

(tKN+tKNL)u:t+AtQ+tF )
The stiffness matrix in Eq.(2) can be decomposed into a linear part and nonlinear part. The
linear part is only related to the structure itself, whereas the nonlinear part is related to the
deformed configuration, load condition and strain quality, each of which should be updated
in each computation step.
For aeroelastic stability problems, an assumption of small-amplitude vibration around the
nonlinear static equilibrium state is suitable for many dynamic problems, including dynamic
stability flexible aircraft:

u=u+x 3)
the vibration equation of the system and the linearized structural quasi-mode can be
obtained by generalized diagonalization,

M X+K.x=0 4)
Despite the hidden nonlinear relations, the form the equations is consistent with the linear
free vibration equations, thus the classical solving methods can be adopted. The mode
shapes and frequencies under different equilibrium states can be deduced from Eq.(4). The

modes get through the linearized dynamic equation is called “quasi-modes”, and that can
be utilized in nonlinear flutter analysis.

2.2 Non-planar Doublet Lattice Method(NDLM)

To meet the demand of non-planar aerodynamic computations, mesh dividing should be
determined on the deformed surface and updated along with the structure deflection, as
shown in Figure 1. In addition to the spatial lattices, local coordinates should be established
to reflect the exact non-planar configuration of the wing. The non-planar effect not only is
reflected geometrically but also should be contained in the kernel unction [J. In this section,
the DLM code is extended into non-planar cases to account for the 3D unsteady loads of
large-aspect-ratio wings with large deflections and can be successively applied in
engineering practice.
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Figure 1: Captions should be centered below figures and above tables.

Figurel Typical non-planar lattice on a curved lifting surface

doulet-lattice line

normal wash

Figure2 Non-planar lattice and the normal wash direction

The kernel function can be expressed as

K= Iimi{e‘i“’x’uw J'; 0 [ 1 @il MR)M, }d,}l} (5)

" an o R

The critical problem of NDLM is the implementation of exact geometric boundary conditions.
The local normal wash velocity can be is computed spatial distributed doublet lattice via
kernel function and the boundary condition should be determined by geometrically
nonlinear curve lifting surface. Unlike traditional doublet-lattice methods, the local normal
wash should be concerned and the linearized model shape obtained around nonlinear
equilibrium state should be introduced in unsteady aerodynamic computation in frequency
domain. Since the linearized modals may be vary under different equilibrium states, so the
unsteady aerodynamics may also be vary and present different characteristics.

Due to the large deformation, the wing can not be treated as vibrating around xy plane, the
actual curved boundary condition should be taken into account. n is the normal vector of
lifting surface S(x,y,2)=0, (n,x),(n,y),(n,z)are the angles between normal vector and
coordinate axis, the motion of lifting surface can be written asS :Sem, so the normal
motion velocity can be expressed as

(Un)S:(%j cos(n,x)+£%j cos(n,y)+£%) cos(n,z) (6)

All these geometrically nonlinear managements make it quite different from traditional DLM.
Also, the NDLM aerodynamics can be expressed as follows:

w = DAc, @)

D is the spatial doublet-lattice influence coefficient matrix. Solve the equations above the
unsteady pressure can be obtained,

70



Second International Symposium on Flutter and its Application, 2020

PK method, which is also utilized for flutter analysis, combined with NDLM can be used to
implement the nonlinear flutter analysis for very flexible wings to obtain the nonlinear flutter
boundary considering the large structural effects.

2.3 Nonlinear flutter analysis

Small disturbance hypotheses are adopted around the nonlinear equilibrium state and
“quasi-modes” are introduced in the dynamic equations, then we got:

Mg+Kq=Q (8)

Using p-k method to solve the equations, it can be rewritten as

[(pZM p2 Q! +(K—%pV2QR)}q ~0

2k
b 9)
k=—{Im(p)
Slmp)
The geometrically nonlinear flutter analysis flow chart is shown below, in can be concluded
as:
. . Quasi-mode analysis
Confirm the Structure and Nonlinear static
calculate state - aerodynamic modeling ‘ aeroelastic analysis ‘ undﬁr dgfonned
equilibrium state
N Unsteady aerodynamic
Outguitthe norﬁmear - Scle ftliut'ter - calculation under deformed
utter results equation conﬁguration
Figure 3Nonlinear flutter analysis flow chart
1) First, conduct the geometrically nonlinear static aeroelastic analysis to get the
structural deformation, aerodynamic loads under deformed configuration and the
linearized dynamic mass and stiffness matrix.
2) Linearized dynamic vibration analysis around nonlinear equilibrium state to get the
“‘quasi-mode”.
3) Unsteady aerodynamic calculation wunder deformed configuration with
“‘quasi-mode”.
4) Establish the aeroelastic flutter equations and solve it with p-k methods in
frequency domain.
5) Obtain the nonlinear flutter speed and flutter characteristics for very flexible wings.
3 Example

The calculated example wing is constructed with 3 main beams located at front, middle and
back, 17 ribs, 4 stringers and skin. While in the FEM model, they are modeled with beam
elements and shell elements shown in Figure 4. The detailed calculation conditions are
listed in Table 1.
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Figure 4 Wing model
Table 1 Calculate conditions

Altitude ‘ Mach ‘ Angle of attack
5000m | 0.5 1°

3.1 Linear flutter analysis

The linear flutter analysis is only related with linear structural modes and unsteady
aerodynamics but nothing on deformations and load conditions. The linear structural modes
and interpolated unsteady aerodynamic modes are shown in Table 2.

Table 2 Linear structural modes
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Solving the flutter equations with p-k method can get the varying tendency of mode
frequency and damping with the increase of speed. When the mode damping turns to
positive from negative, that indicate the flutter occurs and the critical flutter speed
corresponding to the zero damping. Here are the linear flutter analysis results.
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Figure 5 Linear flutter V-g and V-F curve
The analysis results in Figure 5 indicate that the wing presents a typical bend/twist coupling
flutter( 1st vertical bend coupled with 1st twist) in linear analysis. With the increase of speed,
the 1st twist mode tends to unstable under the speed of 179m/s, with the frequency at
19.6Hz.

3.1 Nonlinear flutter analysis

Before the nonlinear flutter analysis, the geometrically nonlinear static aeroelastic analysis
should be conducted first. Apply the aerodynamic load on the flexible wing and use the
updated Lagrange formula to get the nonlinear structural deformation, which is shown
below.

Figure 6 Nonlinear static deformation
Table 3 Wingtip deflections

o . . ) Relative vertical deflection
Wingtip X-axis y-axis Z-axis

Compared with semispan

deflections
49.81mm | 1638.83mm | 187.51mm 14.89%

The nonlinear static analysis indicate that the vertical deflection of wingtip is
1638mm(almost 15% of the semispan), and the chordwise(x-axis) and spanwise(z-axis)
deflections are also significant, which can not be reflected and often ignored in linear
analysis. However, it is quite important in nonlinear analysis and has a big influence on
structural dynamic characteristics.

After the nonlinear static analysis, the linearized dynamic characteristics are analyzed and
the obtained “quasi-mode” are shown below.
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Table 4 The linearized “quasi-mode”

Frequency o Aerofdynamic
description Mode shape
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Figure 7 Nonlinear flutter V-g and V-F curve
In nonlinear flutter analysis, there are two modes across the critical damping line and
become unstable, which is quite different from the linear analysis results. The lowest flutter
speed is 97m/s, at the frequency of 10.2Hz, which is coupled with 1st vertical bend and 1st
horizontal bend. The second flutter speed is 203m/s at the frequency of 22.5Hz. It can be
concluded that because of the geometric nonlinearity not only the flutter speed is
decreased but the flutter coupled modes are also changed. The traditional bend/twist
coupling form are not typical and instead the horizontal bend mode participate and become
the key mode in flutter, changing the flutter coupling style and decreasing the flutter speed.

Conclusion

Nonlinear flutter analysis method in frequency domain considering the geometric
nonlinearity caused by large deformation for very flexible wing is established in this paper
and an example flexible wing are analyzed to validate the method and demonstrate the
nonlinear flutter characteristics. The analysis results indicate that the large structural
deformation may change the stiffness and dynamic characteristics, and as a consequence,
the flutter characteristics are changed. Because of the structural large deformation and
geometric nonlinearity, the linearized horizontal bend modes frequencies declined and the
modes shape contain twisting components, thus the flutter speed and flutter coupling form
are both changed. The coupling form is changed from typical bend/twist coupling form,
which is usually presented in linear flutter, to vertical bend modes coupled with horizontal
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bend modes. Additionally, the nonlinear flutter speed decreases dramatically. Therefore, the
nonlinear flutter analysis considering about the structural large deformations and geometric
nonlinearity is inevitable and it can prevent the flight performance decline and the defect of
flight envelope.

References

E. Dowell, J. Edwards, and T. Strganac, “Nonlinear aeroelasticity,” Journal of Aircraft, vol. 40, no. 5,
pp. 857-874, 2003.
M. J. Patil and D. H. Hodges, “On the importance of aerodynamic and structural geometrical
nonlinearities in aeroelastic behavior of high-aspect-ratio wings,” in Proceedings of the
41stAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp.
799-809, Atlanta, Ga, USA, April 2000, AIAA-2000-1448.
M. Y.Harmin and J. E. Cooper, “Aeroelastic behaviour of a wing including geometric nonlinearities,”
The Aeronautical Journal, vol. 115, no. 1174, pp. 767-777, 2011.
E. Albano and W. P. Rodden, “Adoublet-lattice method for calculating lift distributions on oscillating
surfaces in subsonic flows,” AIAA Journal, vol. 7, no. 2, pp. 279-285, 1969.

MSC, Nastran 2001 Books-Aeroelastic Analysis.
Changchuan Xie, Yi Liu, Chao Yang, J.E. Cooper. Geometrically Nonlinear Aeroelastic Stability
Analysis and Wind Tunnel Test Validation of a Very Flexible Wing. Shock and Vibration, vol.2016,
Article ID 5090719,17 pages,2016. D0i:10.1155/2016/5090719.
C. C. Xie and C. Yang, “Linearization method of nonlinearaeroelastic stability for complete aircraft
with high-aspect-ratiowings,” Science China Technological Sciences, vol. 54, no. 2, pp.403-411,
2011.
Yi L, Changchuan X, Chao Y. Aeroelastic Trim Analysis of Flexible Aircraft Based on 3-D Lifting-line
Theory, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference April 8-11, 2013, Boston, Massachusetts
S. Tianxia, Nonlinear Structure Finite Element Computation,HuaZhong University of Science &
Technology Press, Wuhan,China, 1996 (Chinese).
Yi Liu, Changchuan Xie, Chao Yang, Jialin Cheng. Gust response analysis and wind tunnel test for a
high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2015. DOI:10.1016/j.cja.2015.12.013

77



Second International Symposium on Flutter and its Application

Effects of turbulence models on the unsteady transonic
aerodynamics of an oscillating airfoil

Koji Isogai

Professor Emeritus, Kyushu University, Fukuoka, Japan, koji.isogai®@nifty.com
Keyword: turbulence model, unsteady transonic flow, CFD, RANS code

The unsteady transonic aerodynamics is very important in the sense that the swept back
wing experiences the sharp drop of the flutter speed in transonic region. In this paper, the
accuracy and reliability of the turbulence models, that are indispensable for the prediction of
the unsteady transonic aerodynamic forces at high Reynolds numbers using the RANS (Reynolds
Averaged Navier-Stokes) code, are extensively examined. The turbulence models examined are
the Baldwin and Lomax algebraic model and the SST k — w model. The detailed comparisons
of the unsteady pressure distributions and the aerodynamic forces with the experimental data
obtained for the NACA64A010 at Reynolds number 1.2x107 are conducted. Both the models
give satisfactory agreement with those of the experiment as far as the boundary layer is attached.
However, the B & L model shows poor agreement with the experimental data obtained at
Re = 1.2x107 in the case where the shock induced flow separation occurs, while the SST k —w
model shows a fair agreement with those of the experiment. In Fig. 1, the typical flow patterns
(iso-density contours) around the NACA64A010 airfoil oscillating in pitch around the quarter
chord point at Mach=0.80 and the mean angle of attack of 4 degree, that are computed using
the B & L model and the SST k — w model, are shown as an example of the computations.
As seen in the figures, both the models predict the shock induced flow separation. However
the B & L model predicts too strong and too aft-positioned shock wave compared with that
of the SST k — w model which gives better agreement of the shock pattern with that of the
experiment.

Baldwin & Lomax model SST k-o model

Figure 1: Flow pattern (iso-density contour) around oscillating NACA64A010 airfoil. (M, =
0.80, o = 4° + 1°sin(kt), k = 0.204, Re = 1.2x107).
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The work aimed to initiate the investigation of aeroelastic risks of interflap seals. The latters -
located between the inboard and outboard flaps - suffered from aeroelastic phenomena during the first
test flights performed by the aircraft manufacturer. A methodological study was therefore carried out
to identify the features which can be at the origin of the vibrations the seals suffered from.

To do so, a two-dimensional CFD analysis at low-subsonic conditions was first performed by means
of unsteady RANS simulations. The analysis revealed the shedding of vortices at the trailing-edge of
the flap. This is illustrated in Fig. 1. The vortex shedding causes periodic aerodynamic load oscillations
on the flap which may induce the seals to vibrate.

TN { e~ L 250
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0

shear layer
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TE vortices

Figure 1: Vorticity contours at different time instances in a period of oscillation.

Once modal analyses of the structure were computed, a qualitative comparison between the re-
sults from the CFD analysis and the modal properties was made to briefly introduce and discuss the
potential aeroelastic risks the structure may encounter in the nominal flight conditions. The evolution
of the aerodynamic forces on the flap reported non-negligible amplitudes of oscillation with respect
to the time-averaged values, especially considering flexible bodies such as the investigated seals. The
excitation frequency (shedding frequency) was found particularly close to the resonance frequencies of
two modes of a particular stacking version. The excitation mechanism finally confirmed the possibility
for those modes to be excited.

Note that an experimental set-up will be developed to reproduce the aeroelastic behaviour of the

seals in a wind tunnel. The experimental measurements will therefore serve as validation data for
further numerical simulations.
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Abstract

Due to its excellent performance, the propeller aircraft plays an important role in the military filed. As
a matter of fact, high-speed rotation of the propeller produces slipstream. The slipstream has complex mutual
aerodynamic interference with other parts of the aircraft, such as wing and tail. Flutter is a dynamic
aeroelastic instability, which is an undesirable phenomenon in aircraft. The propeller slipstream effect on
elastic wing aerodynamics and flutter is one of the most important issues in the research of aecrodynamic
layout design of propeller aircraft!!!l],

The aerodynamic load is calculated by unsteady vortex lattice method(UVLM). As shown Fig.1, we
get the aerodynamic model of propeller and slipstream. Now, we are developing a rapid computational
method to predict the propeller slipstream-elastic wing aerodynamic interaction. All calculations in this

paper will be based on this aerodynamic global coordinate system.

< o

Figure 1 propeller aerodynamic model

As shown in Fig.2, we use the “elastic wing / propeller” model to develop the flutter characteristics.

! N
propelle : Wingtip
e

------------------------------------------------

1 I " I L L
Root fixed 7 T T T (. T T '\
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it L Y/ 0

Wing Wing sections

Figure 2 Structure of the “Elastic Wing / Propeller” system
The work presented here uses UVLM for aerodynamic modeling and FEM for elastic wing/propeller
system modeling. A method to predict elastic wing flutter in the time domain based on unsteady vortex

lattice is in processing. In final paper, completed flutter analysis will be illustrated.

[1] Agostinelli C,Liu C H,Allen C B,et al. Propeller-flexible wing interaction using rapid computational
methods, AIAA-2013-2418[R].San Diego:AIAA,2013.

[2] Ognev V, Rosen A . Influence of Using Various Unsteady Aerodynamic Models on Propeller Flutter
Prediction[J]. Journal of Aircraft, 2011, 48(5):1708-1721.
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Even though the progress in CFD-development is very rapid, unsteady and aperiodic phe-
nomena in fluid mechanics are still mostly the domain of experiments, since the numerical
results are either not precise enough, the calculations demand too many resources or both ap-
plies. Consequently important effects on fighter aircraft such as buffeting, control reversal and
force-motion hysteresis ask for thoroughly planned wind tunnel experiments, which binds a lot of
personnel and financial resources. Accompanying the planning of the investigated flight regime
and the wind tunnel model’s sensor instrumentation by numerical calculations is a mandatory
task. Preliminary investigations decrease the resulting risks for the experiment dramatically,
while they increase its effectiveness through adapted parameter settings.

An upcoming wind tunnel test campaign with a next generation fighter jet planform DLR-
F23, which runs in scope of the DLR-project "Diabolo", shall be investigated on beforehand
numerically with the usage of a grid adaptation technique. The implementation of this technique
leads to skipping the laborious process of grid design almost completely?.

1 Zastrow, J. (2019). Characterizing a Multi Delta Wing for Aeroelastic Wind Tunnnel Experiments.
International Forum on Aeroelasticity and Structural Dynamics 2019.
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Abstract

This paper deals with the aeroelastic stability assessment of the empennage section of the
hybrid-electric motor glider FVA 30. Because of its integrated propulsion units at the tips it is
prone to a special kind of aeroelastic instability called whirl flutter. This instability of the V-tail
involves the whirl modes of the propellers. Parameter studies regarding the most important
structural parameters are carried out to evaluate the design space and identify critical flutter
modes. The models are also checked for empennage flutter and ground resonance. Due to the
early design phase this is done by numerical studies with simplified models using the in-house
flutter process, PySTAB, and strip theory propeller aerodynamics. The investigations show the
possibility of a V-tail flutter due to insufficient mass balance of the combined elevator/rudder
control surface. In contrast, the empennage structure shows large margins regarding whirl
flutter of the tailplane structure itself. The pylon and engine mount are assumed to be rigid
though due to lacking design data. Ground resonance of the elastic propeller blades is prohibited
by the dynamic couplings due to blade twist.

Keyword: aeroelastic stability, motor glider, V-tail, whirl flutter

1 Introduction

The FVA 30 is a hybrid-electric motor glider which is currently being designed by the FVA, a

student association based in Aachen, Germany. The aircraft will be a two-seated touring motor

glider (TMG) in side-by-side configuration and powered by two electric motors at the two tips
of a V-tail (shown in Fig. 1). To speed up the design, the front part of the fuselage as well

as the wings are adopted from the eGenius, an

aircraft built by the university of Stuttgart (Schu-

o mann 2018). The project is now moving towards

the critical design review (CDR) and the configu-

/i ration shall be evaluated for its aeroelastic stability

’ beforehand. Due to the large propellers mounted

at remote locations this evaluation especially in-

volves instability phenomena caused by these pro-

pellers, namely whirl flutter and ground resonance.

This is done before the CDR to account for any

necessary changes in the design.

Figure 1: Design of the hybrid electric mo-
tor glider FVA 30
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2 Methods

Before moving on to the model of the FVA 30 empennage and the stability results, an intro-
duction into the theory and used methods is given. This includes the basic whirl flutter theory
as well as its integration into the in-house flutter process, PySTAB. As the theory and stability
analysis for ground resonance differ from this, it will be summarised separately. For a more
detailed discussion of the methods refer to Koch et al. (2019).

2.1 Theory of (whirl-) flutter analysis

A rotating propeller in a flexible engine bed is subjected to gyroscopic whirl modes. Due to the
aerodynamic forces these whirl modes can become unstable (Cecrdle 2015). This phenomenon
is called whirl flutter. A simple model to describe this behaviour is shown in Fig. 2. This
system consists of a rigid propeller on a shaft with a yaw and pitch degree of freedom (cf. top
of Fig. 3). The yaw and pitch modes merge to a forward and backward whirl mode due to
gyroscopic coupling under rotation. Considering the aerodynamic forces caused by this whirling
motion the backward whirl mode eventually becomes unstable (Cecrdle 2015).

P, M,

(b)

(d)

P,

Figure 2: Rigid propeller with two tilting- Figure 3. Basic behaviour of a propeller in
DOF a flexible engine bed

Considering a linear strip theory one can describe the propeller aerodynamics by stiffness and
damping terms for the propeller hub point (Houbolt and Reed 11l 1962). In Eq. 1 these terms
are expressed as non-dimensional derivatives. G, for example is the non-dimensional pitching
moment m due to a yaw angle v. In general these depend on the forward and rotational speed.
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To analyse more complex systems than the one in Fig. 2, the propeller aerodynamics has
to be coupled with a structural model (e.g. the empennage structure of the FVA 30). This
is done by adding the stiffness and damping terms of the propeller to the structural model in
physical coordinates (Rodden and Rose 1989). To reduce the number of degrees of freedom for
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the stability analysis, the complete model is transformed into modal coordinates. This results
in Eq. 2:

) 1
MgenG + Keeng = ¢ Kpdq + ¢ Dppg + 5P VZ Qun(k) (2)

Mgen and Kge, represent the modal mass and stiffness matrix of the base structure, phi is
the modal matrix transforming physical into modal coordinates q. Kp and Dp represent the
propeller terms from Eq. 1 including the gyroscopic terms. The last part of Eq. 2 allows for
the inclusion of frequency-domain aerodynamics for the remaining part of the aircraft. Quu(k)
represents the generalized aerodynamic forces, that depend on the reduced frequency k. In this
case, the aerodynamics for the tailplane and the control surface are calculated by an unsteady
acceleration potential method, ZONA6 (Chen et al. 1993). If these are included in the stability
analysis, the problem changes from a set of explicit eigenvalue problems (first terms in Eq. 2
are only velocity-dependant) to an implicit flutter problem. These can be solved e.g. using the
g-method for flutter solutions (Chen 2000). The solution of Eq. 2 in different varieties is a very
common problem for aircraft flutter application and is therefore automated in the in-house tool
PySTAB.

2.2 Linear Frequency Domain Flutter Process : PySTAB

To analyse aircraft configurations w.r.t their flutter stability in the linear frequency domain, a
python environment is used to automate the flutter analysis process. This environment uses
the commercial software ZAERO as a core and allows for the consideration of different as-
pects like engine gyroscopic loads, in-plane aerodynamic forces, propeller forces or even more
sophisticated generalized aerodynamic forces (GAF) from the CFD Solver TAU-LFD (cf. Fig.
4). By switching to state-space formulation, aeroservoelastic calculations can be carried out.
Depending on the needs of the configuration to be analysed, the user can decide which effects
to be included. In the case of the FVA 30 empennage section, propeller gyroscopic and aerody-
namic loads are considered, while the aerodynamics for the tailplane are the standard ZONA6
aerodynamics, as flight speeds and Mach numbers are moderate.

AR ERHE CEEE, control script interactive GUI
pre- control scripts, selection of methods
processing
gyroscopic in-plane propeller TAU-LFD ‘ v
““““““ B A

flutter-
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PySTAB (frequency domain/state-space)

Figure 4: PySTAB: linear frequency do- Figure 5: PySTAB software architecture
main stability process
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As the flutter assessment of an aircraft usually needs a lot of parameter studies (Mach num-
ber, density, mass cases, control system, structural parameters,...), PySTAB uses a three-layer
architecture (cf. Fig. 5). A underlying database stores all data for the different configurations
and analysis steps, while a functional layer manages all the tasks during the analysis. Finally,
control scripts and a GUI provide easy access and control over the simulations and results.

2.3  Ground Resonance

If flexibility of the rotor blades is considered, there is the possibility of another instability
phenomenon called ground resonance, which is of completely different nature. While (whirl-
)flutter involves aerodynamic forces, ground resonance is a pure mechanical instability (Bielawa
1992). It is well known in the field of helicopter dynamics, but can also become relevant in
case of very flexible propeller blades.

The mechanism causing this instability is an energy transfer from the drive system through
a rotating blade mode into the support (Cardinale et al. 1969). The rotor mode involved is
the so called regressive cyclic mode. The blades oscillate with a 120 deg phase shift in this
mode. For a lead-lag-degree of freedom, this is shown in Fig. 6. This phase shift leads to a
whirling motion of the rotor center of gravity around the hub. In the regressive cyclic mode,
this whirling motion is inverse to the direction of rotation, which also affects the frequency
characteristics with increasing rotational velocity. Looking at the eigenfrequencies of a simple
rotor on an elastic support, one can observe the regressive rotor mode dropping in frequency
(branch labelled |w: —£2| in Fig. 7) till it reaches a point of zero frequency. From this rotational
speed on the rotation of the whirling motion changes to forward. This low frequency forward
cyclic mode (also called supercritical cyclic mode) can now couple with the underlying support,
leading to the described instability called ground resonance (coupling regions are marked with
dashed circles in Fig 7).
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Figure 6: Regressive cyclic lead-lag mode Figure 7: Example for a Campbell-diagram
shape with shifted rotor-CG with two regions of ground resonance

To assess a system for ground resonance, a coupled dynamic description of the rotor blades
and the support structure is needed. Johnson (1974) developed a dynamic description of a
flexible rotor at the tip of a wing structure. The model includes two degrees of freedom per
blade, one lead-lag and one flap mode, as well as the first three eigenmodes of the wing structure
(in- and out-of-plane-bending as well as torsion).
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If more degrees of freedoms shall be incorporated or a more sophisticated dynamic descrip-
tion of the model is necessary, numerical multi-body-simulations (MBS) can be used to capture
more effects (cf. Arnold and Waitz (2018)). In this case, the MBS-software SIMPACK is used
to couple a modal description of the propeller blades with the flexible tailplane structure. The
MBS-model is linearised at different rotational speeds and the resulting state space model is
subjected to an eigenvalue analysis. Beforehand the rotating blade degrees of freedom have
to be transformed into rotor degrees of freedom in the non-rotating frame. This is done using
multi-blade coordinate transformation (Bir 2008).

3 Models

After summing up the theory and methods used to analyse the empennage structure, a brief
introduction into the modelling of that structure will be given before moving on to the results.
The basic structural layout of one side of the V-tail consists of a box beam stiffened by four
stringers and five ribs (cf. Fig. 8 left). A control surface takes up the trailing 35 % of the
lifting surface. The rotational degree of freedom around the hinge axis has no stiffness and
the control surface can therefore rotate freely. The main structure will be manufactured from
carbon composite and is modelled as a finite-element shell-model in MSC.NASTRAN.

The electric propulsion unit is mounted in
front of the leading edge at the tip of the V-
tail (marked with a black marker in Fig. 8
left). It is structurally modelled as a point
mass that is rigidly attached to the base struc-
ture. Both sides of the V-tail are attached to
a beam representing the fuselage degrees of
freedom. The unsteady aerodynamics of the
lifting surfaces are calculated by an accelera-
tion potential method, ZONA6 (Chen et al.
1993). One side is therefore discretized into
24 x 12 panels (cf. Fig. 8 right) and con-
nected to the structure by an infinite plate
Figure 8: Structural and aerodynamic model of spline to interpolate deformations and forces
one empennage half between the different grids. A node at the

propeller hub serves as interface for the prop-
eller forces in Eq. 1. Due to the early de-

Table 1: Frequency ranges for the first three sign phase, most O.f the structural parameters
eigenmodes of one V-tail half. For the definition are not clearly defined. To include these un-

of the base configuration see Koch et al. (2019) certainties into the stability assessment, pa-
rameter studies for the driving uncertainties

frnin [HZ] | foase [Hz] | fmax [Hz] are carried out to evaluate their effect on the

out-of plane 59 67 106 stability. These include the mass balance .of
_ the control surface, the motor mass and its
in-plane 12.7 16.2 306 distance from the leading edge as well as the

torsion 44.0 66.3 75.0 number of composite layers in the main struc-
ture. By combining several values a large set
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of parameter combinations is formed around the nominal design. Using the automation ca-
pabilities in PySTAB this parameter space can easily be covered. The variation of structural
parameters mainly affects the eigenfrequencies. The ranges for the first three eigenmodes are
shown in Tab. 1, together with the corresponding mode shapes in Fig. 9 - 11.

Figure 9: First out-of-plane Figure 10: First in-plane Figure 11: First torsional
bending mode bending mode mode

4 Results

Moving on to the results of the stability assessment, this section will start off with presenting the
results focussing on tail flutter. Afterwards the stability with rotating propeller is investigated
and results for whirl flutter and ground resonance are shown.

4.1 Tail Flutter
Using the full model of the FVA 30 empennage including

N | a e both sides, the control surface and the fuselage beam, flut-
5 ettt deatasaad  ter calculations are carried out for the whole design space
E 2 to check for flutter stability. Frequency and damping for the
5 . - +++  first ten eigenmodes of the base configuration are plotted in

0.05 Fig. 12 for increasing velocities up to the certification speed

of 1.2 times the dive speed Vj equal to 100 m/s. Two in-
stabilities indicated by negative damping arise between 30
- 70 m/s. One is a symmetric control surface flutter, the
second one is its antisymmetric counterpart. Both instabil-

damping [-]

airspeed [m/s] ities are caused by a coupling of the control surface mode
—=— CS-rotation —— torsion with the first tailplane bending mode as the control surface
—— out-of-plane symmetric . . . -
—e—inplane - - - - antisymmetric mode increases in frequency with airspeed due to aerody-
—— fuselage . H H .
namic stiffness terms. In case of approaching frequencies

the control surface movement extracts energy from the flow
and feeds it into the bending mode. Due to the phase lag
between both motions the bending mode becomes unstable
(Forsching 1974). The phase lag is a result of insufficient
mass balance of the control surface. The center of gravity
(CG) of the control surface usually lies aft the hinge axis.

Figure 12: Frequency and damp-
ing trends for the base configura-
tion

87



Second International Symposium on Flutter and its Application, 2020

This leads to a mass coupling between heave motion and control surface rotation. A mass
balance reduces this coupling by shifting the control surface CG forward, eventually eliminating
the instability. The effect of increasing mass balance on the damping of the first tailplane
bending mode is shown in Fig. 14. A full mass balance (100%) is equivalent to a control
surface CG lying on the hinge axis (and therefore completely removing the coupling). It can be
seen that above a certain value of mass balance the model stays stable over the whole range of
velocities. The mass balance needed to stabilise the control surface flutter varies over the design
space. Fig. 13 shows the percentage of unstable configurations in the design space depending
on the value of the mass balance. Below a mass balance of 70% almost all configurations show
control surface flutter, while above 87% the whole design space is stable. This also implies,
that no other flutter mechanism besides control surface flutter occurs.
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Figure 13: Share of unstable configurations Figure 14: Effect of mass balance on the
depending on the mass balance damping trends

4.2  Whirl Flutter

Taking the gyroscopic and aerodynamic terms for the propeller into account, the possibility of
whirl flutter arises. First the system is checked for whirl flutter without taking the tailplane
aerodynamics into account (neglecting the last term in Eq. 2). The design space is evaluated
for its whirl stability and margins for the driving parameters, e.g. first eigenfrequencies are
identified. The effect of the combined consideration of propeller and tailplane aerodynamics is
shown exemplarily for the base configuration (c.f. Tab. 1).

The stability of a whirl system is heavily dependant on the first eigenfrequencies of the
support structure showing a significant tilting of the propeller plane. Therefore these (in form
of the entries of the generalized stiffness matrix Kge, in Eq. 2) are scaled, until the system
becomes unstable. Fig. 15 plots a parameter space for the first two eigenfrequencies with a
tilting of the propeller plane (cf. Fig. 10 and 11). The black line marks the limit of stability.
Higher frequencies (upper right corner) are stable, lower frequencies result in whirl flutter. The
dark grey area surrounding the stability limit marks the area of uncertainty gained form repeating
this process throughout the design space. It should be noticed, that this stability limit marks
the frequencies, at which the system would theoretically become unstable due to whirl flutter.
The actual frequencies of the in-plane and torsion modes are marked as a point and a light grey
area for the uncertainty. It can be seen clearly in Fig. 15 that the area of the actual frequencies
lies far beyond the stability limit in the stable range, leaving a minimal margin factor of 4.5.
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Figure 15: Whirl flutter stability limit with empennage modes with different aerody-
uncertainty ranges namics considered

The safety margins increases even further when taking the tailplane aerodynamics into
account. Fig. 16 shows the damping trends for the first five symmetric empennage eigenmodes
for the base configuration including 100 % mass balance to suppress the control surface flutter.
Trends only considering the tailplane aerodynamics are drawn continuously, the ones considering
only the propeller aerodynamics in dotted lines and the ones combining both aerodynamics and
solving Eq. 2 including all terms are depicted as dashed lines. As expected for a linear system,
damping effects add up and the complete system shows higher damping ratios. In this case a
separate evaluation of empennage and whirl flutter stability is therefore a conservative approach.

4.3 Ground Resonance

By considering flexibility of the propeller blades the model is also checked for ground reso-
nance. Because ground resonance requires a supercritical cyclic mode, one has to look for
the behaviour of the regressive cyclic modes with increasing rotational velocity. The Campbell
diagramm showing the structural eigenfrequencies of the base configuration is shown in Fig.
17. Continuous lines are calculated using the analytical model developed by Johnson (1974)
whereas the dashed lines result from numerical analysis using MBS SIMPACK. Two blade de-
gree of freedoms are considered, called flap and lead-lag. In case of a three-bladed rotor these
form three rotor modes, which are marked with diamond and square markers respectively. The
regressive modes drop in eigenfrequency, but none reaches a supercritical state. The model is
therefore free of ground resonance.
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To ensure stability even for more flexible blade designs this is captured by a parameter
study, gradually decreasing the first blade eigenfrequencies. The effect is shown in Fig. 18
for the first blade mode. It can be seen, that instead of reaching a supercritical state, all
trends approach a linear asymptote. This is due to centrifugal stiffening caused by the out-of-
plane motion. Despite the categorisation into flap and lead-lag mode, both modes show in-
and out-of-plane movement originating in the large blade twist and the resulting coupled flap
and lead-lag dynamics. It can therefore be stated, that due to the highly twisted blades the
regressive modes cannot turn supercritical, preventing ground resonance from occurring.
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Figure 17: Campbell diagram for one V-tail Figure 18: Frequency trends for the regres-
half and two flexible blade modes consid- sive cyclic flap mode with decreasing non-
ered rotating frequency

5 Conclusions

The aeroelastic stability of the empennage of a hybrid-electric motor glider including a V-tail
with tip-mounted electric motors and propellers was analysed. The in-house tool PySTAB was
used to assess the model for empennage and whirl flutter. Supplementing analyses to find
a possible ground resonance were conducted with an analytical model and MBS simulations.
The only instability found was a control surface flutter resulting from a coupling of the control
surface rotation with the first tailplane bending mode. A sufficient amount of mass balance
prevents this coupling and removes any instability.

The margins against whirl flutter of the whole tailplane structure were found to be quite
large even without considering the tailplane aerodynamics, which further increase the system'’s
stability. Whirl flutter of the pylon structure was not investigated due to the lack of adequate
design data and has to be evaluated at a later stage.

Ground resonance due to coupling of elastic blade modes with the supporting tailplane
structure is prohibited by the highly twisted blades. These result in a coupling between lead-lag
and flapping motion, ultimately preventing the occurrence of supercritical modes.
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Studying the unsteady interactions of a wing and incident vortex structures coming from an
upstream bluff-body or another wing is currently a topic of considerable interest due to its
numerous applications in biologically-inspired propulsion systems and energy harvesting
among others. Several studies have been carried out to understand how an actively flapping
system utilizes the energy of the incident vortex structures to augment its aerodynamic
performance?; few such studies? have taken aeroelasticity into account. The oscillation
amplitude of an aeroelastic system, situated in the primary wake formation region of an
upstream bluff-body, can attain a considerably high value if the coupled system frequency
locks in with the shedding frequency of the bluff-body; thus having a significant energy
extraction potential. This paper investigates the flutter characteristics of a pitch-plunge
aeroelastic system in the wake of an upstream bluff-body through high-fidelity numerical
simulations. The present FSI framework is developed by coupling a Navier-Stokes solver
with the nonlinear structural model using a partitioned approach. The focus of this work is on
characterizing the wake-induced limit-cycle oscillation (LCO) behavior of the elastically
mounted wing in the presence of both structural and aerodynamic nonlinearities in the low
Reynolds number regime. The aeroelastic system is seen to undergo successive Hopf
bifurcations leading to an interesting bifurcation scenario at low values of mass-ratios in the
uniform flow condition (when the bluff-body is absent)®. This is considered as the base case
to assess the effect of the bluff-body wake on the nonlinear aeroelastic response dynamics.
The present study also aims to investigate the effect of different bluff-body shapes and
spatial locations relative to the wing in order to tune the oncoming vortex shedding frequency
in comparison to the natural frequencies of pitch and plunge. In this way, it will be possible to
study how the strength of the wake vortices and the shedding frequency influence the flutter
boundary and the post-flutter characteristics of the wing as compared to the case without a
bluff-body. Moreover, it will be interesting to study how the variation in the structural
properties such as pitch and plunge stiffness changes the sensitivity of the aeroelastic
response to the oncoming vertical disturbances by altering the vortex energy transfer from
the wake to the wing.

1. Lau, Y.L, So, R. M. C., & Leung R.C.K. (2004). Flow induced vibration of elastic slender structures
in a cylinder wake. Journal of Fluids and Structures, 19(8), 1061-1083.

2. Kirschmeier, B., & Bryant, M. (2018). Experimental investigations of wake-induced aeroelastic limit
cycle oscillations in tandem wings. Journal of Fluids and Structures, 81, 309-324.

3. Bose, C., Gupta, S., & Sarkar, S. (2019). Transition to chaos in the flow-induced vibration of a
pitching-plunging airfoil at low Reynolds numbers. International Journal on Non-Linear Mechanics,
109, 189-203.
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Abstract

This study presents a modal analysis of the aerodynamic damping associated with delayed
detached eddy simulations (DDES) of light dynamic stall on a pitching NACA 0012 airfoil
using Dynamic Modal Decomposition (DMD) and Proper Orthogonal Decomposition (POD)
techniques. The DDES results indicated negative aerodynamic damping for this light dynamic
stall case. It was observed that the DMD technique, which results in single-frequency modes,
provided a single DMD mode representing the complete aerodynamic damping of the system.
Also, this DMD mode had a constant intra-cycle aerodynamic damping owing to its single
frequency. On the other hand, the total aerodynamic damping was distributed among several
POD modes. Also, all POD modes were comprised of multiple frequencies, leading to the
variation of intra-cycle aerodynamic damping with the phase of the pitching motion. Such
variation of intra-cycle damping renders POD modes intractable for aerodynamic damping
distribution analysis, which may have potential application for devising flow control strategies.
Also, the aerodynamic damping distribution of DMD mode 2 indicates that during light dynamic
stall at high, turbulent Reynolds numbers, the leading and trailing edge regions of the chord
are the major contributors to the negative aerodynamic damping.

Keyword: Dynamic stall, DMD, POD, Aerodynamic Damping

1 Introduction

Dynamic stall is a complex fluid dynamics phenomenon that manifests itself during rapid,
transient motion in which the angle of incidence surpasses the static stall limit. It has been an
active area of research for helicopters, wind turbine blades, unmanned aerial vehicle (UAV) and
micro aerial vehicle (MAV) applications, as well as low-Reynolds number insect and flapping-
wing bird flight. Dynamic stall can be separated into a light stall and a deep stall regime. In
light dynamic stall regime, the excursion of the peak dynamic angle of attack from the static
stall angle is smaller than in the deep dynamic stall regime, leading to a less abrupt drop in
the lift and moment coefficients [12]. The nature of the pitching moment response during
light dynamic stall, under certain conditions, can lead to positive aerodynamic work. In an
aeroelastic system (an elastic wing or a spring-suspended airfoil), light dynamic stall might
lead to instability, such as stall flutter. Thus, the aerodynamic damping of light dynamic stall
needs to be investigated carefully, especially for wind-turbine blades and UAVs subjected to
strong gust excitations, which often experience light dynamic stall. Although the computation
of aerodynamic work or aerodynamic damping is important for light dynamic stall, it has not
been discussed comprehensively in recent studies apart from Ref. [4]. This is the main focus
of the current study.
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The inherent complexity and flow separation during dynamic stall require high-fidelity com-
putational fluid dynamic (CFD) simulations for accurate analysis. The choice of governing
equations to be solved numerically is important. Reynolds Averaged Navier Stokes (RANS)
equations, often used in the past to study dynamic stall, [7, 1, 19], may be susceptible to in-
accuracies in the presence of significant flow separation. An alternative is to use Large Eddy
Simulations (LES) in which, the smaller turbulent length scales are modeled and the larger
ones are resolved [18]. However, owing to the large computational cost associated with LES,
hybrid RANS/LES methods capable of representing a RANS-type behavior in the vicinity of the
solid boundary and an LES-type behavior far away from the wall boundary, have also been used
extensively [5].

Modal analysis of complex dynamic phenomena often leads to key insight into the physics of
the problem. This has led to the application of techniques like proper orthogonal decomposition
(POD) [2] and dynamic mode decomposition (DMD) [15] for studying various flow phenomena
associated with separation and complex flow structures. Both POD and DMD are data-based
techniques that extract dominant dynamic features from time-resolved measurements of the
flow-field, but while POD modes are ranked according to energy, DMD modes are ranked
according to the dynamic behavior. Both these techniques will be employed to study the
aerodynamic damping of the system experiencing light dynamic stall phenomenon.

Here, we explore the light dynamic stall regime at high, turbulent Reynolds number, where
many UAVs and wind turbine blades operate. In the present study, DMD and POD are used to
analyze computational, time-resolved snapshots of pressure obtained via a RANS-LES hybrid,
delayed detached eddy simulations (DDES), with a k — w SST turbulence model. Although
either the velocity magnitude snapshots or velocity component snapshots were used in previous
studies [13], the pressure flowfield is selected here as it can be used for computation of the
pitching moment response, and subsequently the aerodynamic work due to individual DMD or
POD modes.

2 Test Case

The light dynamic stall case studied is that of a NACA 0012 airfoil with pitching oscillations
about the quarter-chord point. The flow has a Mach number M., = 0.3 and Reynolds number
Re., = 4 x 10°. The pitching motion has a reduced frequency of k = 0.1 and an amplitude of
a; = 5°. The mean angle of attack is «g = 11°. The unsteady pitching angle of the airfoil can
be written as,

a(t) = ap + agsin(w t) (1)

Equation 1 can be written in terms of nondimensional parameters as,
Oé(tnd) =g+ o1 sm(2kMoo tnd) (2)

The experimental results were presented in [11], which considers a mean angle of attack of
10°. However, more recent experiments of NACA 0012 airfoil at a similar Reynolds number and
Mach number [14] show that the angle of attack for maximum steady c/ lies somewhere between
15° and 16°. Thus dynamic stall cannot be observed at o = 15°, which was also corroborated
by the DDES results. It is reasonable to suspect that wall effects or some potential measurement
error may have led to experimental dynamic stall at the slightly lower angle of attack. The
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mean angle of attack in the DDES simulations was increased accordingly to 11° to obtain an
O max = 16°.

3 Computational Setup

DDES [17, 16] is performed here using the k — w SST turbulence model in EZNSS [8], an
in-house code developed by the Israeli CFD center. The unified hybrid RANS/LES DDES in
EZNSS is formulated according to Ref. [16]. The mesh used here is an O-type mesh with
periodic boundary conditions and consisting of 6.7 million grid points. The mesh dimension is
651 x 251 x 41 with 0.25 chord along the spanwise or Y direction. The first dimension (651)
represents the number of grid points along the airfoil surface. Grid points are concentrated near
the airfoil in order to capture the DSV formation and initial convection. An illustration of the
mesh with various levels of magnification is provided in Fig. 1.

BsEazERRuny
/7R \ = = 2 S
(a) Magnification=50 (b) Magnification=150 (c) Magnification=500

Figure 1 — Mesh used for k —w SST DDES

A reduced computational domain (shown in ref. [10]) consisting of a slice around the suction
surface of the airfoil including the leading and trailing edges, was used for taking the DMD
and POD snapshots. The 3D high-fidelity snapshots generated from the DDES were averaged
in the spanwise direction, along the Y direction. The snapshots were sampled in intervals of
17 time steps, where each nondimensional time step for the DDES is 2.053 x 1072. Thus,
the nondimensional sampling time interval, At,q, for obtaining the DMD snapshots is 0.3491,
resulting in 300 snapshots in a single pitch cycle. As explained in Ref. [13], such a sampling rate
will not be able to capture the small-scale highly fluctuating structures in the shear-layer but
will capture the primary structures of interest. The DDES pitching simulations were carried out
with the second-order accurate, dual-time stepping scheme available in EZNSS. The criterion
for convergence of the dual-time step solution at each time step is the reduction of the residual
by two orders of magnitude (OOM), for both the mean-flow equations and the turbulence
model. The criterion for OOM reduction of the residual and the dual-time step procedure in
EZNSS has been explained further in Ref. [9].
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4 Mathematical Model

Both the DMD and POD algorithms used in this article require snapshots of the flow past the
airfoil. The sampling frequency of the snapshots and the pre-processing of the DDES results
are discussed in the next section. The mathematical details of the POD and DMD techniques
used for this study can be obtained from Ref. [10].

5 Aerodynamic damping and stall flutter

Aerodynamic damping is used as a measure of the effect that aerodynamic forces may have
on the stability of an aeroelastic system (for example, if the airfoil was suspended in springs).
Positive damping indicates a stabilizing aerodynamic force whereas negative damping might lead
to aeroelastic instabilities. The cycle-averaged aerodynamic damping coefficient, =, indicates
the potential of the dynamic stall phenomenon to lead to aeroelastic instabilities like stall flutter.
For pure pitching motion, = can be derived as,

=— 12j{cmda (3)

iyest

where ¢m and «; are the amplitudes of the pitching moment coefficient and angle of attack,
respectively. For dynamic stall, the pitching moment response becomes non-linear. Thus, for
pitching moment measured at the quarter chord, the cycle aerodynamic damping is computed
from the area enclosed in the cycle variation of the pitching moment coefficient as:

= ’7T04112 /amin (Cmy,x/c=0.25D - Cmy,x/c:O.ZSU) da (4)

For simple harmonic input and output, we can write @ = a;e*t and cm = cm e @t+¥),
where 1 is the phase difference between the pitching moment response and the excitation.
These can be substituted in equation 3 to obtain the aerodynamic damping coefficient. A
lagging pitching moment response (—m < ¢ < 0) indicates negative work done or stable
airloads. On the other hand, a phase lead (0 < ¢ < 7) indicates positive work done, or
unstable airloads. A complete derivation of the aerodynamic damping coefficient in provided in
ref. [10].

6 Results

6.1 DDES results

Four cycles of DDES of the pitching airfoil were simulated in EZNSS. The phase-averaged lift
coefficient, and the pitching moment coefficient at the quarter-chord obtained from four cycles
of the DDES are compared against available experimental results in Fig. 2. Overall, the phase-
averaged DDES results show a close correlation to the experimental results with some differences
during the pitch-down phase. The largest differences are observed just after the moment and
lift stall as the flow slowly recovers from the stall. Similar behavior has been observed and
explained in other dynamic stall studies [6]. A negative cycle-averaged aerodynamic damping
value of =, = —0.23 was obtained from the DDES pitching moment response compared to
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=ycle = —0.05 in the experiment. Mesh convergence of the DDES results are provided in Ref.
[10].
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Figure 2 — Comparison of k —w SST DDES results with experiments

The dynamic stall phenomenon is further investigated by looking at the suction coefficient,
—cp, on the upper surface of the airfoil at different phases of the pitching motion and comparing
it to the ¢/ and cm, «/c—0.25 variations with the phase in Fig. 3. Here, we define the phase
as & = wt. Fig. 3 (a) shows a large suction at the leading edge of the airfoil till & = 80°
(o = 14.2°). This is denoted as the leading edge suction (LE suction) phase of the dynamic
stall. At & = 80° (o = 14.2°), a locally formed high suction region is observed at about
35% of the chord, indicating the formation of the dynamic stall vortex (DSV). As expected for
the light dynamic stall regime at high Reynolds number, the DSV is formed at the location of
maximum airfoil thickness. Such behavior was reported earlier and explained in Refs. [12, 11].
We can also observe that the DSV formed at ® = 80° (o = 14.2°), eventually moves along
the airfoil and leaves the trailing edge at ® = 125° (« = 15.44°). Another locally formed high
suction region at the trailing edge at ® = 125° (o = 15.44°) is considered the trailing edge
vortex (TEV). The moment stall is observed around ® = 85° (o = 14.38°), shortly after the
formation of the DSV. The pitching moment coefficient at the quarter-chord decreases as the
DSV travels towards the trailing edge of the airfoil. The lift stall is observed around ¢ = 105°
(ov = 14.97°) as the DSV reaches the trailing edge. While the airfoil recovers from the moment
stall, the c/ reduces further as the DSV leaves the trailing edge completely. Eventually, the flow
reattaches and the airfoil recovers from both the lift and moment stall.

6.2 Modal Analysis of Aerodynamic Damping

The DMD and POD analyses were used to investigate the contribution of the various modes to
the cycle-averaged aerodynamic damping. As we have already seen from the experimental and
DDES pitching moment response, the present case has a negative cycle aerodynamic damping
indicating a potential for stall flutter when attached to an aeroelastic system. Thus, if we can
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Figure 3 — Variation of aerodynamic forces with change in the phase of the pitching motion

find specific DMD or POD modes having a major contribution to the negative aerodynamic
damping of the system, such modes can be further investigated to understand possible causes
for such damping and also devise possible control strategies of any potential instabilities.

First, the DMD analysis was performed on the phase-averaged snapshots of the pressure
coefficient cp. The DMD modes obtained from the analysis have complex conjugate pairs of
eigenvalues except for the first mode, which has a real eigenvalue. All the DMD modes, except
the first mode, have frequencies that are multiples of the pitching motion frequency. They are
ranked in ascending order of their reduced frequency. The first seven DMD modes are presented
in Table 1 along with their eigenvalues and reduced frequencies. The first mode, having a zero
eigenvalue, is a stationary mode. This mode represents the mean flow it was demonstrated that
it shows excellent correlation to the cp obtained by time-averaging the phase-averaged pressure
snapshots [10]. This indicates the convergence of the DMD analysis. DMD mode 2 has the
same reduced frequency of the prescribed pitching motion (k = 0.1). The next higher modes
can be considered the higher harmonics of the pitching motion. Each of the complex conjugate
pairs associated with each of the modes 2-7, were multiplied with their corresponding complex
conjugate modal amplitudes to obtain real-valued cp values. The process is elaborated in Ref.
[10]. The cp values thus obtained for each DMD mode was integrated to compute the pitching
moment and subsequently the aerodynamic damping associated with them via Eq. 4).

The POD analysis was also performed on the phase-averaged snapshots of the pressure
coefficient cp. All the POD modes have real eigenvalues, eigenvectors and modal amplitudes.
The first mode represents the time-averaged solution of the DDES snapshots. Thus, the first
POD mode shape is identical with the first DMD mode shape. However, the first POD mode is
not a stationary mode unlike DMD mode 1. This can be attributed to the fact that the DMD
modes are orthogonal in time whereas the POD modes are orthogonal in space [15]. Physically
this means that each DMD modes is represented by a single frequency but each POD mode
consists of several frequencies. The modal amplitude of the first six POD modes are shown in
figure 4 showing that each POD mode consists of several frequencies. Since the POD modes
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Table 1 — Eigenvalues and reduced frequency of DMD modes

Mode  Eigenvalue (14)  Reduced frequency (f)

1 1.0 -

2 0.9997 + 0.0209/ 0.1000
3 0.9992 + 0.0420i/ 0.2007
4 0.9983 + 0.0626/ 0.2990
5 0.9961 + 0.0832i 0.3977
6 0.9936 + 0.1049i/ 0.5022
7 0.9921 + 0.1265i 0.6056

are ranked according to energy, the modal amplitude of the POD modes decreases with an
increase in the mode number.
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Figure 4 — POD modal amplitude

Since the DMD and POD analyses were performed on a reduced computational domain
consisting mainly of the upper surface of the airfoil, the cm, ,/c—0 25 was computed with only
the airfoil surface grid points of the reduced computational domain. The aerodynamic damping
for the POD and DMD modes, as well for the DDES snapshots on the reduced domain were
computed using equation 4. The absolute value of the aerodynamic damping coefficients of the
first eight DMD modes, =ppp, normalized by the DDES reduced-domain aerodynamic damping,
=ppEs, are presented in Table 2 (a). These values indicate the contribution of various modes
for the aerodynamic damping of the system. The sign of the aerodynamic damping of the
various modes is also provided to indicate if they contribute positively or negatively to the
stability of the system. It can be observed that since DMD mode 1 is a stationary mode, it
does not have any aerodynamic damping. DMD mode 2 has a negative aerodynamic damping
coefficient. Also, a relative damping coefficient of 0.9958 indicates that it is responsible for
almost all of the negative aerodynamic damping of the system. The contribution of modes
3-8 to the aerodynamic damping is negligible. Thus, the aerodynamic damping of the whole
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dynamic stall phenomenon can be represented by a single DMD mode, DMD mode 2.

A similar analysis performed for the POD modes is presented in Table 2 (b). For the POD
modes, we see that mode 2 contributes to 95% of the damping of the system. Similar to DMD
mode 2, POD mode also provides negative aerodynamic damping. However, POD mode 1 and
POD modes 3-6 also generate a non-negligible amount of aerodynamic damping.

Mode sign(Zpmp) |=pmp/ZppEs| Mode sign(=pop) |=pop/ZppEs]|

1 e 0 1 + 0.0870

2 - 0.9958 2 - 0.9544

3 - 3.1e-04 3 - 0.1106

4 - 0.0061 4 + 0.0103

5 + 0.0053 5 - 0.0479

6 + 0.0013 6 + 0.0322

7 - 0.0052 7 - 0.0025

8 - 0.0078 8 - 0.0035
(a) Normalized cycle aerodynamic damping of (b) Normalized cycle aerodynamic damping of
first eight DMD modes first eight POD modes

Table 2 — Normalized modal aerodynamic damping

The cmy . /c—0.25 computed for the DDES snapshots are shown in Fig. 5 (a). It can be
observed that the cmy /.25 computed for the reduced computational domain shows reason-
able correlation with its counterpart computed for the full domain, presented in Fig. 2 (b).
The cmy «/c—0.25 computed for DMD mode 2 and POD mode 2 are compared to the DDES
reduced-domain cm, ,/c—g05 in Figs. 5 (b) and (c), respectively. It is seen that going from
pitch-up to pitch-down, all the three pitching moment responses have an overall clockwise
nature. This indicates that they are contributing to positive aerodynamic work or negative
aerodynamic damping [6]. However, only the DMD mode 2 has a constant phase as it is a
single-frequency response.
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Figure 5 — Comparison of cm,, /025 obtained for the reduced computational domain
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The DMD mode 2 c¢m, ,/c—o.25 is compared to the pitching moment response computed
via Theodorsen's function for the same pitching oscillation frequency but considering a smaller
mean angle of attack, for a case when the flow would be fully attached. The expression for the
pitching moment response predicted by Theodorsen’s function is calculated from Ref. [3] as,

wk 9 . 8
CMy x/c=0.25,us = Tal 1+ 6_4k sin |wt — arctan K

where the subscript us indicates that is was only calculated for the upper surface to keep
it consistent with DMD calculations. These two pitching moment responses are compared in
figure 6. One can see that for an attached flow condition, using Theodorsen's functions, the
pitching moment response always lags behind the pitching oscillation. In this case, the phase
lag is 88°. This indicates negative aerodynamic work over a cycle, or positive aerodynamic
damping. On the other hand, DMD mode 2 has a phase lead of 137.5°.
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Figure 6 — Comparison of cm,, ,/c—o .5 for separated flow during dynamic stall to attached flow

A constant phase difference between the pitching moment response and the pitching motion
leads to a constant intra-cycle aerodynamic damping coefficient, =4, as expressed in figure 7,
where the intra-cycle damping for the attached flow case, DMD mode 2 and POD mode 2
are compared. For a constant phase difference between the pitching moment response and the
pitching motion, the intra-cycle aerodynamic damping can be directly computed from equation
3, the same equations used for computing cycle-averaged aerodynamic damping. For variable-
frequency case, however, intra-cycle aerodynamic damping is computed via a Hilbert transform
of the pitching moment time response, as demonstrated in Ref. [4]. In the present study, the
Hilbert transform technique was employed to compute the intra-cycle damping for POD mode
2.

For a constant phase difference between the pitching angle and the pitching moment coeffi-
cient, one can relate the cycle aerodynamic damping to the aerodynamic damping distribution
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over the airfoil surface at any phase of the motion as,

— 1_ X ! X c X
- = /o —x/cdz - /O CPx/c (E - Z) dE (5)

where cp, /. is the coefficient of pressure at various locations along the airfoil. The aero-
dynamic damping distribution along the chord for DMD mode 2 and Theodorsen’s functions,
normalized by the absolute value of the total cycle-average aerodynamic damping, is computed
using equation 5, and compared in figure 8. One can see that for an attached flow case, ana-
lyzed via Theodorsen's function, the section of the airfoil ahead of the quarter-chord, leads to
negative damping, whereas, the section behind the quarter-chord leads to a much larger positive
damping. For DMD mode 2 (representing the dynamic stall case), the leading edge and trailing
region generate negative damping. On the other hand, the region around the quarter-chord
contributes to a much smaller positive damping. The distinctly different pitching moment and
aerodynamic damping distribution observed here for DMD 2 compared to an attached flow case,
is caused by the phenomenon of light dynamic stall. Such knowledge of the aerodynamic damp-
ing distribution will be useful for someone interested in flow control, especially for control or
mitigation of stall flutter for the present case. Similar results cannot be obtained for a variable
intra-cycle aerodynamic damping scenario, like POD mode 2, where the aerodynamic damping
distribution will also vary with the phase of the pitching motion. This also makes it difficult
to associate positive or negative damping with any particular dynamic stall flow features or to
target a specific region of the airfoil for flow control.

7 Conclusions

In this study, modal analysis of the dynamic stall phenomena of a pitching NACA 0012 airfoil,
occurring at high, turbulent Reynolds numbers and in the light stall regime, was performed with
the DMD and POD techniques. The DMD and POD techniques were applied to snapshots of
the pressure distribution obtained via delayed detached eddy simulations (DDES). The DMD
technique resulted in a stationary mode and subsequent modes that were represented by the
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frequency of the pitching motion and its higher harmonics. The POD technique ranks modes
based on the energy content of the flow. So, unlike the DMD modes, each POD mode consisted
of a combination of frequencies and there was no stationary mode.

It was observed that DMD mode 2 had negative aerodynamic damping and contributed
to 99.58% damping of the system. All the other DMD modes had negligible aerodynamic
damping. The DDES pitching moment response for the full domain as well as experimental
results also predicted negative aerodynamic damping. This indicated that a single DMD mode,
with the frequency of the prescribed motion, is sufficient to represent the complete aerodynamic
damping associated with the light dynamic stall phenomena. POD mode 2 consisted of 95.44%
of the aerodynamic damping of the system and had a negative sign. However, there were other
POD modes having non-negligible aerodynamic damping values of differing signs.

Since DMD mode 2 consists of a single frequency, it has a constant phase difference with
respect to the pitching oscillation. This is a very favorable attribute as the moment associated
with this modes could be directly compared to the moment response obtained via Theodorsen’s
function, for attached flow conditions (for the same oscillation frequency and amplitude). DMD
mode 2 can also be used to easily compute the aerodynamic damping associated with the
pitching motion at light dynamic stall. The same cannot be achieved for the DDES results
or POD mode 2, which consist of multiple frequencies and have a variable phase difference
between the pitching moment response and the motion of the pitching oscillation.

Analysis of the aerodynamic damping of DMD mode 2 showed that in light dynamic stall the
regions around the leading and trailing edges generate a large amount of negative aerodynamic
damping while the region around the quarter-chord contributes to a much smaller amount of
positive aerodynamic damping. The overall effect is negative aerodynamic damping. This can
be used to target flow control efforts that aim at stabilizing the aeroelastic response due to
light dynamic stall.
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Abstract

The current study presents numerical investigation of the fundamental properties of 3D shock
buffet on a swept wing, studied experimentally in the AVERT project, using fluid modal analysis.
Specifically, the Dynamic Mode Decomposition (DMD) method used in this study enables the
extraction of coherent structures of the flow and the associated dynamic properties. Preliminary
results of the unsteady aerodynamic response of the swept wing to prescribed pitching motion at
shock buffet conditions are presented. The interaction between the prescribed motion and the
developed buffet flow for some excitation parameters results in lock-in of the buffet flow with
the prescribed motion excitation frequency. Other excitation parameters result in an unsteady
response in both the buffet and excitation frequencies.

Keywords: Unsteady Aerodynamics, Shock Buffet, CFD, DMD

1 Introduction

Shock buffet is an aerodynamic instability phenomenon that occurs at transonic flow over
both airfoils and wing configurations. It was extensively investigated, both experimentally and
numerically, for 2D airfoil configurations [3]. However, the literature is much more limited for
the 3D wing shock buffet. Moreover, the study of the interaction between structural motion,
either prescribed or aeroelastic response, and shock buffet is very lacking in the published
literature. Thus, further investigations are required in order to establish the relation between
the buffet mechanism and unsteady aerodynamic response and the aeroelastic response of
flexible structures.

Several experimental studies investigated the 3D shock buffet phenomenon, mostly on swept
wings that are typical of transonic aircraft [2]. The main difference with respect to 2D buffet
is the change in the frequency content of the pressure fluctuations on the wing. The 3D buffet
involves oscillations in a broadband frequency range, which is about one order-of-magnitude
higher than the 2D buffet (St ~ 0.2 — 0.3).

Numerical studies [1, 4] were performed to investigate the 3D buffet. The presence of a sub-
stantial 3D flow phenomenon, that is the propagation of "buffet cells" [4] along the span, was
identified. This flow feature is distinctive of 3D buffet and was also observed and quantified
in experimental studies [2, 7]. Further numerical studies [14, 15] used Unsteady Reynolds-
Averaged Navier-Stokes (URANS) simulations and high-fidelity Delayed Detached-Eddy Simu-
lations (DDES) to investigate the phenomenon for different Angles-of-Attack (AoAs) and Mach
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numbers. The broadband frequency nature of the 3D buffet was simulated in these studies and
the suitability of URANS simulations for buffet prediction and analysis was established.

Recently, several studies focused on fluid modal decomposition methods to investigate the
3D buffet. Ohmichi et al. [11] used incremental POD and DMD to study the shock buffet
over NASA's Common Research Model (CRM). A dominant mode at the buffet frequency
(St ~ 0.4) exhibiting periodic structures resembling the well-known buffet cells propagating
towards the wing tip was identified. Another, low-frequency (St =~ 0.05), mode was also found
in which pressure propagates towards both wing tip and root. Other modes were attributed
to the broadband nature of the buffet. The low-frequency mode may be a reminiscent of a
low-frequency disturbance found experimentally [2]. In a recent study by Masini et al. [9] POD
and DMD were used in an extensive analysis of experimental Dynamic Pressure-Sensitive-Paint
(DPSP) data at buffet onset on the RBC12 wind-tunnel model [8]. Focusing on the DMD
results, both high- and low-frequency dominant modes were found, similarly to the numerical
results in [11].

Only few studies investigated the behavior of a 3D wing at buffet conditions with prescribed
motion. Timme and co-authors [17, 18] investigated the response of a half wing-body configu-
ration to prescribed motion resembling torsional deformation of the wing using CFD simulations.
The prescribed motion was in a broad range of frequencies. As the AoA reached buffet onset,
a distinct peak at St &~ 0.11, similar to the 2D unsteady response to prescribed motion [10],
appeared in the wing frequency response, alongside secondary peaks at St =~ 0.3 —0.7 that cor-
respond to the broadband 3D buffet. Kataras and Timme [5] extended the previous work with
the same torsional excitation and investigated the effect of excitation amplitude and frequency
near buffet onset. It was found that at pre-buffet conditions, as the excitation amplitude in-
creases the lift coefficient response follows the structural excitation completely. Close to buffet
onset, the excitation frequency trace in the lift coefficient response is growing in magnitude as
the excitation amplitude increases; however, lock-in of the buffet flow field to the excitation
frequency, as observed for 2D airfoils [13], was not observed for the investigated 3D wing.

The current study focuses on the analysis of the shock buffet flow field on a typical swept
wing. The baseline, static wing, buffet is studied using both conventional and modal techniques.
Then, preliminary results of the flow field unsteady response at developed buffet conditions for
an oscillating wing are presented and analyzed using conventional methods with the goal to
characterize fluid-structure interactions at buffet conditions.

2 Test Case

The swept wing studied experimentally in the AVERT project [2] was used in this study. The
experimental campaign was performed at ONERA S2MA wind tunnel and included a half body-
wing configuration. The wing cross section is based on the OAT15A airfoil. The model has a
semi span of b = 1.225 [m] and mean-aerodynamic-chord (MAC) of ¢ = 0.3375[m]| with taper
ratio of ¢;/c, = 0.5. The wing is swept by 30° and twisted from root to tip.

Model instrumentation included steady and unsteady pressure measurements and accelerom-
eters. The model was tested at several Mach numbers (0.78-0.86) and several AoAs. The cur-
rent study focuses on a single Mach number of M., = 0.82 with test conditions P,, = 60kPa
and T, = 300K, resulting in Reynold number (based on MAC) of 3.6 M.

Brunet and Deck [1] studied the same configuration using a Z-DES approach, showing good
comparisons with the experimental results and noting the advantage of DES-type computations
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over URANS in capturing the separated region.

In the current study, only the wing was simulated using a symmetry boundary condition.
Fig. 1 shows the computational grids generated for this configuration applying the overset
approach. The main wing (blue mesh in Fig. 1) is meshed using an O-type topology with 311,
65 and 101 grid points in the chordwise, spanwise and perpendicular directions. A cap mesh
(red mesh in Fig. 1) is used for the wing tip and a rectangular world mesh (black mesh in Fig.
1) confines the two wing grids. This computational setup includes a total of 3.6M flow cells.
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Figure 1: Computational meshes of the wing configuration used in this study

3 Computational Setup

In this study, URANS simulations were conducted using the EZAir solver [6]. EZAir is a
finite-volume, structured, multizone, multiblock Euler/Navier-Stokes solver developed by the
Israeli CFD Center. The solver includes an automatic chimera procedure that was used to
assemble the computational domain (Fig. 1). For the convective flux approximation, the
second order in space Harten, Lax, and van-Leer approximated Riemann solver scheme with
contact discontinuity treatment (HLLC) was used. The time-accurate nature of the flow was
simulated using the second order in time dual time stepping (DTS) method. The turbulence
model for all simulations was the SA model with Edwards and Chandra’s modification and
compressibility correction.

The numerical methodology for the static buffet simulations is formed from a steady-state
simulation at a given set of AoA and Mach number, followed by a time-accurate simulation
using a physical time-step of At =1-107>[s].

For the prescribed motion simulations, a sinusoidal pitching angle is prescribed to the wing
grids (within the static world grid) and the numerical computation is continued from the static
buffet simulation until several cycles are obtained (based on the lift coefficient time evolution).
The same time step of At =1-107°[s] is used.

Modal analysis using the Dynamic Mode Decomposition method [16] was performed using
the Python library available online 1. All modal analyses were performed using pressure snap-
shots at equally spaced time steps obtained from the surface flow solution. Dominant modes

https://github.com/cwrowley /dmdtools [retrieved 4 January 2020]
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were extracted using Greedy method as outlined by Ohmichi et al. [11]. Pressure snapshots
are used because the flow modes can be analyzed from a pressure propagation point of view,
thus enabling analysis of the buffet mechanism.

4 Results

4.1 Shock Buffet over Static Swept Wing

In order to characterize the shock buffet phenomenon on realistic swept wing configuration,
two approaches are considered. First, conventional analysis of the lift coefficient and the
pressure distribution of the wing is presented. Then, modal analysis using the Dynamic Mode
Decomposition (DMD) method is performed in order to shed further light on the inherent
dynamics of the phenomenon.

Time accurate flow simulations were performed for several AoA values at M = 0.82. Fig. 2
shows the lift coefficient time history for the simulated AoAs. Buffet onset is between 3.5 deg
(in which no lift oscillations were observed) and 4.0 deg AoA. The experimental buffet onset [2]
was measured at about 3.1 deg AoA. This may indicate that an AoA correction of Aa =~ 0.5
deg is required.

0.665 [~

0.66

0.655
0.15 0.2 0.25 0.3 0.35 0.4

time [sec]

Figure 2: Lift coefficient time-history, M = 0.82

As the AoA increases, the lift time history becomes irregular and its fluctuation amplitude
increases. This corresponds to the pressure coefficient Root-Mean-Square (RMS) distribution
(Fig. 3) that indicates that the pressure fluctuations increase in magnitude and extent over
the wing and advance towards the Leading-Edge (LE) of the wing. Comparing these results
to Brunet and Deck [1], it is noted that the use of high-fidelity simulation resolves higher
pressure fluctuations in the wake region, compared to the URANS simulation. Thus, broad-
band frequency content of pressure fluctuations is not expected to be reproduced by URANS
simulations.

At o = 5.25deg, the pressure fluctuations region shrinks and becomes more curved. Future
work will examine the entire flow field at this AoA and higher AoAs to explain this change of
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trend. Finally, it is noted that some anomalies in the RMS distribution can be observed for
a = 5.25deg. These appear to be mesh-induced discrepancies due to insufficient resolution in
the spanwise direction. This will be investigated in future work.
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Figure 3: Pressure RMS for various AoAs, M = 0.82

Fig. 4 shows pressure coefficient RMS values for several AoAs compared to experimental
results at spanwise station of y/b = 75%. It can be seen that the RMS values are slightly
over-predicted by the CFD approach at the shock wave location. Nevertheless, the trends are
captured well by the computation - as the AoA is increased, the shock wave moves towards the
leading-edge (LE) of the wing. It is noted that the experimental data does not have pressure
measurements at x/c < 0.3.

For all AoAs, the pressure fluctuations on the wing surface are characterized by buffet cells in
the high-RMS region of the pressure fluctuations that are convected towards the wing tip. Fig.
5 depicts a snapshot of the pressure fluctuations for the examined AoAs. The buffet cells are
convected towards the wing tip and synchronize with low-high pressure fluctuations, indicating
alternating separation pattern behind the shock wave ripples. Again, as for the lift coefficient
time history, an evolution of the periodic structures with increasing AoA can be noticed - as
the AoA increases, the periodic structures become less regular and organized. Based on the
pressure fluctuations on the wing, it is observed that for the studied configuration, there is a
strong interaction between the buffet cells and the wing tip flow field. An examination of the
entire flow field is required to shed further light on this interaction.

Concerning the lift coefficient frequency content, Fig. 6 shows the Fourier-Transform (FT)
of the lift coefficient time history for M = 0.82 in terms of Strouhal number defined as St =
f - MAC/Us, where U, is the freestream speed. It can be seen that the frequency content
for the low AoA (close to buffet onset) is periodic with a dominant frequency and higher
harmonics. As the AoA increases, the frequency content is more irregular and broadband at the
typical shock buffet frequency (St ~ 0.2).

Compared to the experimental results (which study the frequency content of the pressure
measurements), the frequency content herein is more narrow-band. The frequency content for
the near-onset AoAs is lower than what was reported in other 3D buffet studies. It is closer to
2D buffet characteristic frequencies. In his experimental study, Dandois [2] noted that at buffet
onset AoA (o = 3deg) the pressure Power Spectral Density is centered at lower St numbers
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Figure 5: Snapshot of pressure coefficient fluctuations (Cp’), M = 0.82

between 0.02 and 0.2 (compared to the St number of 0.26 that was computed for the buffet
AoA of 3.5deg). This range compares well with the frequency content in the present study for
a = 4 — 4.75deg. It may indicate that a wind-tunnel correction is required. No experimental
results are available for other AoAs.

It is noted that other numerical studies, which investigated other swept wing geometries,
did not report this low frequency content close to buffet onset. It may be attributed to different
wing geometries, different spectral analysis approaches or the fact that in the current study a
larger range of AoA was investigated.

DMD analysis based on pressure snapshots was performed for several AoAs. Only the first
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Figure 6: Lift coefficient frequency content (St based on MAC), M = 0.82

30 dominant modes (based on the Greedy method) are analyzed. The dominant DMD modes
have the same frequencies as the lift coefficient. These dominant modal eigen-values lie on the
unit circle and have close-to-zero damping, typical of the linear representation of a neutrally
stable system.

Using 1500 pressure snapshots, equally spaced in time with At,,,, = 10At, Fig. 7 depicts
the main properties of the dominant DMD modes for & = 4.25deg. The frequencies of the
dominant modes depict two branches that grow linearly with the mode order. Based on the
modal amplitude, it appears that the modes at the lower branch (corresponding to sub-harmonic
frequencies) are less important for the flow field reconstruction. Examining the modal amplitude,
it can be seen that the Greedy method retrieves the dominant modes that correspond to highest
modal amplitude. Finally, the reconstruction error is below 5% using the first 15 modes. The
trends of the dominant modes' properties resemble those observed in modal analysis performed
by the authors on 2D airfoil [12]. It is noted, however, that for higher AoA, as a = 5.25deg,
this behavior is altered and becomes less organized. DMD results at higher AoAs resemble the
results obtained by Ohmichi et al. [11] and require further investigation.

Fig. 8 shows the time-space modal history for the first three dominant oscillatory DMD
modes (i.e. excluding the static mode) for &« = 4.25deg. It can be seen that the first oscillatory
mode (at St ~ 0.07) depicts two pressure propagation paths - one towards the wing root which
resembles a straight shock front and another towards the wing tip which depicts large buffet
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Figure 7: DMD Properties, a« = 4.25deg, M = 0.82

cells. The other two modes depict smaller coherent structures within the large buffet cells, also
convected towards the wing tip. Both propagation paths originate from the A-shock triple point

as observed by lovnovich and Raveh [4].

Comparing to previous numerical and experimental modal analyses, some results require
further investigation. Ohmichi et al. [11] and Masini et al. [9] observed two dominant DMD
modes. A low-frequency mode that depicts pressure propagation both inboard and outboard
having a straight shock front pattern and higher frequency modes characteristic of 3D buffet
that depict buffet cells propagation towards wing tip. However, they did not observe buffet

cells pattern in the low-frequency DMD mode.
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4.2 Pitching Swept Wing at Shock Buffet Conditions

In this section, preliminary results of the lift coefficient behavior of a wing undergoing prescribed
pitching motion at buffet conditions are presented. Recently, Kataras and Timme [5] presented
an analysis of a swept wing that is excited with a torsional mode near buffet conditions. In
the present study, the excitation is performed about developed buffet conditions at 5deg AoA.
Also, in the present study, a rigid-body pitching motion is prescribed to the entire wing, rather
than simulating a structural-like torsional motion.

We prescribed pitching motion at a frequency which is twice the buffet frequency and
at several amplitudes (a, = 0.001,0.01, and 1.5deg) about developed buffet flow at o =
5deg. Fig. 9 shows the lift coefficient time history for several prescribed motion cases. The
corresponding frequency content is depicted in Fig. 10.

0.69 —static 0.69 —— static
—prescribed, f 2.0, a, = 0.001° — prescribed, f & 2.0f, a, = 0.01°

025 03 035 04 045 05 025 03 035 04 045 05 025 03 035 04 045 05
time [sec] time [sec] time [sec]

(a) ap =0.001deg (b) ap = 0.01deg (c) ap =1.5deg

Figure 9: Lift coefficient time history at different excitation amplitudes and excitation frequency
of 2.0fbuffet, Qo = 5.0 deg, M =0.82
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Figure 10: Lift coefficient FFT at different excitation amplitudes and excitation frequency of
2.0fbuffet, Qo = 5.0 deg, M =0.82

For the small pitching amplitude of 0.001°, the frequency content of the lift response
resembles that of buffet, with a dominant response at St ~ 0.18. For a, = 0.1° both the
buffet frequency (St =~ 0.18) and the pitching motion frequency (St ~ 0.36) are seen in the
lift response. This is similar to the observation in [5].

For pitching amplitude of 1.5°, the prescribed motion frequency dominates the lift coefficient
response. This is practically a lock-in mechanism for 3D swept wing configuration at developed
buffet conditions, similar to the lock-in mechanism observed in 2D airfoils. The lock-in can be
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attributed to the fact that the lift amplitudes due to buffet (Fig. 2) are small in comparison
to those due to the excitation so that the buffet flow field is suppressed and the flow field is
dominated by shock wave oscillations induced by the prescribed oscillating AoA.

Future investigation is required to explore a larger envelope of prescribed-motion frequencies
and amplitudes. This will be combined with a modal analysis of the excited flow field in order
to assess the effect of prescribed motion on the dominant flow structures as observed for the
static wing.

5 Summary and Future Work

An analysis of the shock buffet flow field on a typical swept wing was presented. The baseline,
static wing, buffet flow was studied using both conventional and modal technique (DMD).
Dominant modes depict the buffet cell structures convected towards the wing tip. Some ob-
served phenomena differ from those reported in other studies in the literature and require further
investigation.

Preliminary results of the unsteady response at developed buffet conditions of an oscillating
wing were presented and analyzed. The interaction between the prescribed motion excitation
and the buffet flow is dependent on the prescribed-motion amplitude. A lock-in mechanism
(similar to the one in 2D airfoils) was observed for large excitation amplitudes and excitation
frequency which was set to twice the buffet frequency. Smaller prescribed-motion amplitudes
result in an unsteady response in both the buffet and the excitation frequency. Future studies
will explore an extended excitation amplitude-frequency envelope applying the DMD method
to assess the effect of prescribed motion on the dominant flow structures as observed for the
static wing.
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Abstract

Aeroelastic systems with non-smooth nonlinearities can exhibit a variety of rich dynamics that
are not commonly observed otherwise. Typical sources of non-smooth nonlinearities in aeroe-
lastic systems arise from either the structure possessing a freeplay or from the flow under-
going separation and typically giving rise to dynamic stall or a combination of both. Hitherto
literature has made a number of interesting observations in aeroelastic systems possessing non-
smooth nonlinearities, ranging from abrupt jump to a new attractor, period doubling and/or
chaos even below the linear flutter boundary, grazing-sliding genre of bifurcations, and even
intermittent time responses. Owing to the richness of the dynamics and its underlying physics,
and its hand-in-hand impact on the structural safety, investigating such nonlinear aeroelastic
systems has gained considerable interest amongst the aeroelastic community. However, one
observes that the treatment of aeroelastic systems have largely focused on a single source of
nonlinearity (either arising from freeplay or from dynamic stall), though coupled non-smooth
nonlinearities can give rise to richer dynamical signatures with perhaps deeper impact on the
structural safety. The present study is devoted to address this specific concern. To that effect,
a pitch-plunge aeroelastic system possessing a freeplay in pitch degree of freedom is consid-
ered. The dynamic stall arising due to large angles is captured using a nonlinear aerodynamic
formulation described through the semi-empirical Leishman Beddoes (LB) model. A system-
atic response analysis is carried out to discern the bifurcation characteristics as the flow speed
changes. The role of structural parameters, freeplay gap size, and the extent of pitch angle on
the bifurcation characteristics is systematically investigated. Finally, insights into the structural
safety are presented in light of the bifurcation analysis undertaken in this study.

Keyword: Dynamics Stall, Freeplay, Leishman Beddoes Model, Bifurcations

1 Introduction

Flexible aeroelastic structures when exposed to on-coming fluid loads results often in a highly
nonlinear flow-structure coupling (Fung, 2008). Such fluid-structure interactions, owing to the
presence of nonlinearities, have the potential to display phenomenologically rich dynamical sig-
natures - for example, sustained limit cycle oscillations (LCOs), chaotic oscillations, abrupt jump
to a new attractor, grazing bifurcations etc to name a few. A key aspect of this fluid-structure
interaction induced dynamical responses is its impact on the safety of the underlying aeroelastic
system. Indeed, sustained oscillations that arise due to the fluid-elastic coupling can lead to
structural failure due to accumulation of fatigue damage or due to overloading. Consequently,
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typical aeroelastic studies resorts to a systematic bifurcation analysis of the aeroelastic system
as a first step towards design of the same (Lee et al., 1999; Q. Ding and D.-L Wang, 2006; D.
Poirel and S.J. Price, 2007).

However, carrying out a bifurcation analysis of aeroelastic systems is not a trivial exercise.
The ubiquitous presence of a variety of nonlinearities pose challenge in identifying and modeling
the same (Lee et al., 1999). Indeed, aeroelastic systems can possess nonlinearities that arise
either from the flow (Fragiskatos, 2000; S.S. Bhat and R.N. Govardhan, 2013; H Devathi and
S. Sarkar, 2016) or from the structure (Haunstein et al., 1992; B. Lee and L. Jiang, 1999)
or a combination of both (D. Tang and E. Dowell, 1992). Further, the nature of nonlinearity
can be either continuous or discontinuous or a combination of both . Examples of the above
scenarios that has demanded attention from the aeroelastic community are as follows. Large
deformations can result in a cubic form (or a similar polynomial approximation) of the structural
stiffness - in turn giving rise to supercritical or subcritical type of Hopf bifurcation (Lee et al.,
1999). The presence of loose hinges or ageing parts in the structure can, however, give rise
to discontinuous forms of nonlinearities such as, freeplay (H Alighanbari, 1996). The presence
of freeplay in the structure can dramatically change the aeroelastic dynamics by shifting the
flutter limit (H Alighanbari, 1996), giving rise to chaotic responses in the pre-flutter responses
(Liu et al., 2002), chaotic transients in the response dynamics (Dai et al., 2014) and even give
rise to discontinuity induced bifurcations (DIB) (U Galvanetto et al., 2008).

Exceeding of the pitch angle over a critical limit (static stall angle), on the other hand, intro-
duces aerodynamic genre of nonlinearities. Marked by a complex series of events spanning from
flow separation to re-attachment, the airfoil undergoes a nonlinear aerodynamic phenomenon
called dynamic stall (McCroskey et al, 1976). Here as well, at a critical flow speed, the airfoil
loses stability and undergoes sustained LCOs marking the onset of stall flutter. Interestingly,
dynamic stall is characterized by a set of events that is discontinuously nonlinear, and therefore
capable of giving rise to DIB. Recent studies (Rajagopal et al., 2019) in the literature have
shown a variety of DIBs possible in an aeroelastic system undergoing dynamic stall.

A distinct feature of DIBs is the abrupt jump in the dynamics to a new attractor. Such
sharp changes often pose considerable impact on the structural safety of aeroelastic systems.
This problem becomes exacerbated when multiple sources of discontinuous nonlinearities are
present. Indeed, the presence of coupled nonlinearities can give rise to radically different dy-
namics (Lee et al, 2006) that are not observed otherwise. A practical example for such coupled
nonlinearities is the presence of freeplay in the stiffness of an airfoil, subjected to dynamic stall.
Here, both the structure and aerodynamics possess discontinuous nonlinearities. Such coupled
discontinuously nonlinear aeroelastic systems have received minimal attention in the hitherto
literature (Kalmar-Nagy et al., 2016). The present study is devoted towards addressing this
concern.

This study focuses on investigating the bifurcations in a pitch-plunge airfoil possessing
freeplay nonlinearity in pitch degree of freedom and subjected to dynamic stall. The nonlinear-
ity in the aerodynamics is captured by using a Leishman Beddoes (LB) formulation. For various
values of freeplay gap, and for different ranges of airfoil angle, response analysis is systemat-
ically carried out with respect to flow speed as a control parameter. The obtained responses
and bifurcation characteristics are corraborated in light of structural safety.

The rest of the paper is organized as follows. Section 2 presents the mathematical model
of the aeroelastic system and its associated aerodynamic forces. The salient findings obtained
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are presented in Section 3 along with relevant discussions. The key findings from this study are
summarized in Section 4.

2 Mathematical Modelling

2.1 Structural Model

A typical pitch-plunge airfoil is used in the present study; see Fig. 1. The airfoil is allowed
to move in vertical direction (plunge &) and rotate about its elastic axis (pitch ). The chord
length of the airfoil is denoted by ¢ and the semi-chord b = ¢/2. The elastic axis is located at

Figure 1: Schematic of a pitch-plunge airfoil.

apb from semi-chord and the center of gravity is located at x, b from elastic axis. The bending
and torsional springs (ke and k,) are attached to the elastic axis along with dampers (¢ and
). The equations of motion in non-dimensional form can be written as (Fung 2008).

w

? 1
>) 60 = -—-an) )

§II+Xa&//+2C€%€/+<

2

T ILr,2

C/\/l(’i').
(2)

Here, w is the ratio of pitch and plunge natural frequencies, (¢ and (, are the viscous damping
ratios of plunge and pitch respectively, U is the flow speed, p represents the reduced mass and
r is the radius of gyration computed about the elastic axis. G(§) and M(«) account for the
non dimensional stiffness in plunge and pitch and are functions of £ and « respectively. The
function used to represent the non-smooth freeplay effects is given as

«

ﬁ " " l / l 2 _ (O'5+ah) -
p 5¢ ta +2§aua + (U) M(«) = TomrE [Ci(T)cos e+ Cp(T)sina] +

a+d if a< -6
M(a) =<0 if =0<a<é (3)
a—0 if a>0
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2.2 Leishman-Beddoes model (LB model)

The aerodynamical forces are modeled using the LB formulation. A brief description of the
same is provided. Interested readers are referred to (Rajagopal et al., 2019) for further details
on the modules of LB model. The LB model in its state space form is described in (Leishman
J.G and Beddoes T.S, 1989). The LB dynamic stall model is defined by a set of first order
ODEs,

x'=f(x,4,q). (4)

Where the & is the effective pitch angle, g is the non-dimensional pitch rate and x =
[x1, %2, ...x12] are the twelve aerodynamic states. The aerodynamic co-efficients are given by,

G =g(xd&q) i=CNM, (5)

where, C, N, M are the chord, normal and moment respectively experienced by the airfoil.

The LB model uses a modified version of the Wagner's function by taking into account the
free stream Mach number (M) and compressibility of the flow. The Wagner function has
two aerodynamic states but the LB model has 8 aerodynamic states under the attached flow
components due to contributions from the added mass effect and the compressibility of flow
(see Eq. 6).

o 2V 227 - - _ ;
X! S b 62 X1 1 %
/ — = b2 6 1
X2 c 1 X2 1 >
X3’ - RyTi X3 10
!/ — A
X4 . K.T X4 0 1| |&
| =diag | "% +11 o (6)
X5/ bs K% T X5 q
X6/ T biKam T X6 1.0
X7 _2v b5 62 X7 0 1
C
Xgl 1 Xg 01
L6 L “ K1, | LC L g

The Wagner function (¢(t)) was modified to account for the compressibility by defining
—by B2 Ut —by B2 Ut

¢(t) = 1 — Aje— 5 — Are 5 . Here, 3 is the compressibility factor and is given by
B = +/1— M? (Dimitriadis, 2017). However, due to dependency of stall flutter onset on flow
separation, computing the trailing edge separation component becomes pertinent. The LB
model captures the same and is explained next.

The LB model accounts for the flow separation at trailing edge and the subsequent drop in
the lift force as well as the moment. The three state space variables xg (delayed normal force),
x12 (dynamic trailing edge separation point) and x;o (delayed version of x,) are given by

, (CN)C+ CNI — Xo

Xg = T (7)
f(i, Oé) — X10
X1o, = e T, (8)
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Figure 2: Cy Variation of LB Model compared against experimental data provided in McCroskey
et al. (1976) (left image) and the aerodynamic load computed using the Wagner Model (right
image).

o f(é\z, Oé) — X12
X2 = 0 63 T4 9

The aerodynamic forces associated with trailing edge separation component are given by
The Vortex shedding component describes the missing aerodynamic state x;; as the lift
produced by the leading edge vortices.

o -2, ifac,/>0and0< 1, <2T,

xp1' = 11 I . " l (10)
-3, otherwise

The coefficient of moment calculated from the LB model is validated against experimental

data found in McCroskey et al. (1976); see Fig. 2(a) and also compared with that obtained

using the Wagner model; see Fig. 2(b). Evidently, as the angle « increases, the LB model

captures the hysteresis rigorously and matches well with the experimental observations.

3 Results and Discussions

The governing equations of motions are solved using an adaptive Runge Kutta method in
MATLAB. The system parameters based on Liu et al. (2002) and are @w = 0.2, r, = 0.5,
i = 100, x, = 0.25, and a, = —0.5. The representative value of freeplay gap considered in
this study, 4 = 0.1. Throughout the findings are presented for either of these two freeplay
gaps, and with the airfoil undergoing dynamic stall. The initial conditions used throughout are
a(0) = 20°, o/(0) = 0°, £(0) = 0° and £'(0) = 0°. The Mach number based parameters
used in this study correspond to a Mach number M = 0.3 and further details can be found in
(Rajagopal et al, 2019).

The initial pitch amplitude is deliberately taken as a high value so as to force the airfoil
into dynamic stall region. As the flow speed U is gently increased, one observes the response
exhibiting a decaying signature as shown in Fig. 3. Further increase in U results in interesting
dynamics as shown in Fig. 4. The aeroelastic response exhibits low amplitude LCOs as presented
in Fig. 4(a). It is worthwhile to note that the birth of LCO is perhaps not due to the effect of
dynamic stall. In other words, the LCOs perhaps do not represent a stall flutter onset. Rather,
the small amplitude LCOs can be attributed to the freeplay in the pitch stiffness. A visual
inspection of the phase space of the response trajectory substantiates this argument; see Fig.
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Figure 3: (a) Time response (b) Phase portrait of the system at U = 0.75.
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Figure 5: (a) Time response (b) Phase portrait (c) FFT at U = 1.1 (before the transition) (d)
Time response (e) Phase portrait (f) FFT at U = 1.15.
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Figure 7: (a) Time response (b) Phase portrait (c) FFT at U = 3.7 (d) Time response (e)
Phase portrait (f) FFT at U = 3.9.

4(b). The amplitudes of the response are bound around —0.1 to 0.1, and in turn coinciding
with the gap size of the freeplay. Further, tracking the flow separation variables, namely xq
and xjg, as shown in Fig. 4(c), we observe that the flow is considerably attached to the airfoil
structure. It is to be remembered that x;o approaches unity for completely attached flows.

When U is increased further (U = 1.1), one observes the low amplitude LCOs to still persist;
see Figs. 5(a)-(c). As U approaches 1.15, the dynamical signature transitions into a period
doubling behavior; see Figs. 5(d)-(f). Note that the phase plot shows that the period addition
is formed along one of the freeplay boundary (here @ =~ —0.1). The trajectories associated
with the additional period appear to form a tangent to the discontinuous boundary and in turn
indicating a possible grazing type bifurcation occuring in the aeroelastic system (Vasconcellos
et al, 2014).

Next, as the flow speed is systematically increased, the response transitions from period
doubling behavior to chaotic behavior as shown in Fig. 6. Here as well, the bifurcations are
largely attributed to the presence of freeplay nonlinearity, than the aerodynamic nonlinearity.
A visual inspection of the flow behaviors via xg and xjo plots reveals the same. The notion
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Figure 8: (a) Time response (b) Phase portrait (c) FFT at U = 5.9 where flow transitions back
into LCO response.

of period doubling route to chaos is typical in aeroelastic systems with freeplay nonlinearity
(Liu et al., 2002) and in the absence of flow separation, it is conjectured that the structural
nonlinearity dictates the present (low flow speed) bifurcation characteristics.

The next considerable change in the dynamics occurs at U = 3.75; see Fig. 7. The response
dynamics now transforms itself into a period doubling signature again. However, the phase plot
(Fig. 7(b)) shows the presence of the additional loop in tangent to the discontinuity boundary
and implying a possible grazing bifurcation in the system. Evidently, the flow is remaining
attached here as well (as observed from the xg and xjo variations). At U = 3.9, the tangency
signature disappears and the response dynamics transforms itself into a single period oscillation;
see Fig. 7(d)-(f). The loss of tangency at the discontinuity boundary itself is an indicator of
grazing bifurcations in the underlying dynamical system (Vasconcellos et al., 2014).

It is worthwhile to note that it is presently unclear on whether the DIBs observed have no
contribution from the aerodynamic nonlinearity. Studies by (G. Dimitriadis and J. Li, 2009)
have shown that while aerodynamically dynamic stall is possible at lower flow speeds, stall
flutter occurs at higher flow speeds. However, in the present study, it would be premature to
comment on the same without rigorous analytical studies or experimental observations.

Once the flow speed reaches sufficiently high values, say, U = 5.9, sustained LCOs are
encountered again. However, the amplitudes of LCOs are considerably higher in comparison to
the ones observed at lower values of flow speed; see Fig. 8. An inspection of the xo and xj
reveals a flow separation along with vortex shedding occurring and suggestive a stall induced
dynamics. Increasing U led to the development of high amplitude period doubling oscillations
as shown in Fig. 9.

Increasing U to 12.5 resulted in the dynamics resembling a period-3 signature; see Fig. 10.
Such period addition signatures are typical of systems possessing strong forms of discontinu-
ous nonlinearities - namely, freeplay in the structure and dynamic stall behavior via the flow
(Rajagopal et al., 2019). It would be interesting to track the dynamics for higher ranges of
flow speeds and is, however, beyond the scope of the present study. It appears that as the flow
speed increases, the aerodynamic nonlinearity (via dynamic stall) dictates the response dynam-
ics in comparison to the structural freeplay. However, without an ensemble of time responses or
analytical /experimental corroboration, attributing the dynamics to specific nonlinearities would
be premature.
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Figure 9: (a) Time response (b) Phase portrait (c) variation of xg and x;o at U = 8.5. Flow
transitions into a high amplitude Period-3 oscillations.
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Figure 10: (a) Time response (b) Phase portrait (c) variation of xg and xjp at U = 12.5. Flow
transitions from Period -3 into a Period-3 with harmonics.

4 Conclusions

The present study focused on investigating the response dynamics of a pitch-plunge airfoil pos-
sessing discontinuous nonlinearities in both structural and aerodynamic fronts. Accordingly, the
airfoil was considered under dynamic stall conditions and the pitch stiffness was assumed to
possess a freeplay nonlinearity. It was observed that at a low flow speed, a Hopf bifurcation
exists, followed by a period doubling cascade that ultimately led to chaotic oscillations. Such
signatures are typical of systems possessing freeplay nonlinearities. The effect of aerodynamic
nonlinearities, tracked using the flow specific state variables, seemed to have insignificant con-
tributions at lower flow speeds. Consequently, the amplitudes of oscillations at low flow speeds
were also observed to be small. As the flow speed increased, the effect of aerodynamic non-
linearity, marked by dynamic stall, becomes pronounced. Nevertheless, rigorous investigations
into the physics of the problem is necessary to obtain deeper insights into the dynamics. The
authors are presently investigating the same.
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Abstract

This paper describes that a new aeroelastic simulation code based on the unstructured CFD
solver is developed. Computations are performed for AGARD 445.6 wing model. The flutter
boundary predicted by the developed code are presented and compared with the experimental
data.

Keyword: Aeroelastic simulation, CFD

1 Introduction

Air traffic in worldwide is predicted to increase considerably over the next decades. By 2034,
both air passenger traffic and air freight traffic are expected to more than double, compared
to 2016. Passenger traffic is expected to reach over 14 trillion PRKs with a growth of 4.5
percent per annum, and freight will expand by 4.2 percent annually over the same time period,
to 466 billion FTKs (ICAO 2016). It is essential to establish technology to realize efficient
and speedy development of Aircraft. JAXA has been promoting a research program to build a
multidisciplinary integrated simulation platform from 2018. This program is aimed at enabling
sophisticated look ahead designs that can be used with full flight envelopes as well as cruise
conditions currently used in aircraft design. In this program, the development of simulation
technology and the acquisition of validation data on the following themes; (1) high/low speed
buffet prediction, (2) flutter prediction, (3) outside aircraft and cabin noise prediction, (4) water
spray prediction, (5) control effectiveness and dynamic stability prediction and (6) Reynolds
number effects prediction.

JAXA has been developing a fast unstructured flow solver FaSTAR (Hashimoto 2012).
FaSTAR solves the full Navier-Stokes equations using a cell-center finite volume method.
The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) method (Burg 2005) used for numerical
flux computations. The special accuracy is second order with the Unstructured Monotonic
Upstream-centered Scheme for Conservation Lows (U-MUSCL) method (Obayashi 1995). The
gradients are computed with GLSQ method (a hybrid method of Green-Gauss and Least-Square)
(Shima 2013) and Hishida's limiter (a Venkatakrishnan-like limiter that is complementary with
difference of neighboring cell size) (Hishida 2011). The viscous terms are evaluated by edge-
normal scheme. For time integration, the Lower/Upper Symmetric Gauss-Seidel (LU-SGS)
implicit method (Men’'shov 1995) with a preconditioning method is used in order to avoid
the stiffness problem associated with solving low Mach number flows using compressible flow
solvers. As for the turbulence mode, Spalart-Allmaras model (SA) (Spalart 1992) and Menter's
shear stress transport k-omega model (SST) (Menter 2003) can be used.
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In recent years, in order to meet the needs for fluid analysis around moving/deforming
body problems, FaSTAR-Move which is an overset unstructured CFD code has been developing
based on FaSTAR. The objectives of developing FaSTAR-Move are to enhanced the current CFD
capability for moving/deforming body problems and to establish basic technologies for aircraft
development. FaSTAR-Move uses the unstructured overset grids to compute a fluid flow and
an equation of motion around complex geometries. Due to the implementation fo Alternating
Digital Tree (ADT) algorithm (Roget 2010) and the parallelization of the hole-cut process, the
computational time for the hole-cut process which was a critical problem in the overset process
could be shorten. FaSTAR-Move has been successfully applied to a store separation problem
and showd reasonable results. This paper presents the modification of FaSTAR-Move for the
aeroelastic simulations and the results of validation.

2 Modification for Aeroelastic Simulation

The aeroelastic equations are needed to solve the dynamic aeroelastic problems. The following
subroutines are added to FaSTAR-Move; (1) read the vibration characteristics, (2) calculate
pressures on the surfaces, (3) solve the aeroelastic equations, (4) move surface grids, (5) move
spatial grids. The subroutine (2) to (5) are used in each time step. The governing aeroelastic
equations of motion are solved using modal approach. These equations of motion are derived
by assuming that the deformation of the body under consideration can be described by a
separation of variables involving the summation of free vibration modes weighted by generalized
displacements. The time integration of the governing equations is employed the Wilson’s theta
method.
The non-dimensional form of aeroelastic equations for modal method is as follows:

1BQs
Gi + 26ikigi + kg = ,37_32 //S(ACP + Ce)ndidS (1)

which g; is generalized coordinates, &; is structural damping, k is reduced frequencies, I is
reference length, Q. is dynamic pressure, m; is generalized mass, a,, is sound of speed, n is
unit vector, ®; is eigenvectors, i is mode number.

When the above equations are solved, new body surface grid points are determined.

mode

Xev =X+ Y qi0; 2)
i=1
The spacial grid points are determined by inverse distance weighted interpolation.
X" = X0 4 wAXs (3)
which X, AXs and w are non deformed grid points, moving distance of nearest grid points

on body surface and weighted function determined according to the distance from the body
surface, respectively.
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3 Results

3.1 AGARD 445.6

AGARD 445.6 wing model (Yates 1989) is used for the validation of modified FaSTAR-Move.
This wing model is widely applied to validate the flutter prediction. This wing is a semispan
model made of the NACA65A004 airfoil that has a quarter-chord sweep angle of 45 degree, a
panel aspect ratio of 1.65, and a taper ratio of 0.66. It was tested in the Transonic Dynamic
Tunnel at NASA Langley Research Center. Figure 1 shows the surface grid which is gener-
ated using HexaGrid (Hashimoto 2010). The number of grid points of around wing grid and
background grid are 1.2 million and 3.4 million.

Figure 1: Computational grid around AGARD 445.6 wing model

The mode shapes are interpolated to the surface grid using Thin Plate Spline method (Smith
2013) from FEM model. The interpolated surface grids are shown in Figure 2. Up to 10th mode
were used for aeroelastic simulations. Figure 3 shows the results of flutter simulation at Mach
number 0.678. The damping ratio is calculated from these results and the flutter boundary is
determined. Figure 4 shows the comparison of simulated and experimental flutter boundary.
The results of the predicted flutter boundary agree well with the wind tunnel experimental
results.

1st: 9.561 Hz 2nd: 37.875 Hz 3rd: 49.636 Hz 4th: 89.478 Hz

Figure 2: Vibration characteristics of AGARD 445.6 wing model
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Figure 4: Flutter boundary of AGARD 445.6 wing model

4 Concluding Remarks

A new aeroelastic simulation code based on FaSTAR-Move is developed and validated using
AGARD 445.6 wing model. The results of the predicted flutter boundary of AGARD 445.6
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agree well with the wind tunnel experimental results. For future, the unsteady aerodynamics
will be validated using the results of Aeroelastic Prediction Workshop and other experimental
results.
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In the past it has been shown that the laminar aerofoil CAST 10-2 exhibits a strong
nonlinear behaviour in its steady and unsteady aerodynamics in the transonic flow regime,
which can be associated with the motion of the laminar to turbulent boundary-layer transition®.
Free transition leads to a decrease of the aeroelastic stability limit compared to the same case
with a fully turbulent boundary layer flow?. In addition, manifestations of various flutter
phenomena could be observed. Among other things, the aeroelastic behaviour of the CAST
10-2 aerofoil is composed of single degree of freedom flutter cases, limit cycle oscillations,
subcritical bifurcations and hystereses®. Those phenomena can be attributed to a complex
unsteady shock-boundary layer interaction®, as it is shown in Fig. 1.

| Gp=m \/ | o—'frr\/ | =3 \./ ‘ b= Im \/

Figure 1: Shock-boundary interaction on the CAST 10-2 aerofoil during limit cycle oscillation®.

Previous extensive investigations on the NLR7301 aerofoil showed comparable nonlinear
effects®. In a recent transonic wind-tunnel flutter test with the NLR7301 aerofoil model, the
aeroelastic behaviour was investigated with a focus on the influence of the laminar to
turbulent boundary-layer transition. Recent results of the flutter test will be presented and
discussed.
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Abstract

This paper studies the designs of the corrugated morphing wings with spanwise continuous
camber change. A three-dimensional static aeroelastic analysis method with drag
estimation is developed using vortex lattice method, two dimensional CFD and finite
element method. Aeroelastic analyses with this method are conducted with various design
parameters such as corrugation angles, the number of actuation mechanisms and their
location. While the corrugation angle is not effective to drag reduction, the number of
actuation systems is proved to have a great influence on the deformation or drag
characteristics of the wing. It is also revealed that to change the actuation location enables
further drag reduction. Considering the drag performance and necessary actuation force,
the suitable design of the corrugated morphing wing is suggested.

Keyword: morphing wing, static aeroelasticity, corrugated structures

1 Introduction

Wing morphing technologies have been attracting much attention from researchers as the
technologies to be implemented in the next-generation aircrafts. Modern aircrafts use stiff
structures made of metals or composites and have high lift devices or control surfaces on
their wings (Weisshaar, 2013). However, there are edges or gaps on the surfaces of the
wings when they are actuated, which leads to the increase of drags or noises. Seamless
and adaptive change of wing shapes not only improves the aerodynamic properties, but
also reduce the weight and noises (Barbarino et al., 2013). Morphing technologies are
expected to contribute to environmentally friendly flights.

The structures of morphing wings are required to be flexible to easily deform and to be
stiff enough to carry the loads. As candidate materials to meet these requirements,
corrugated structures were proposed (Yokozeki et al., 2006). Prototypes were
manufactured using carbon fiber reinforced plastics and tested in the wind tunnel. The
experiments proved that the morphing could be achieved even under air flow, and that the
morphing concept is feasible (Yokozeki et al., 2014; Takahashi et al., 2016).

Previous researches confirmed the feasibility of corrugated morphing wings as
camber morphing wings, but they assumed that the cross sections are constant along the
span. Morphing in spanwise direction could also improve the aerodynamic performances in
terms of induced drags or bending root moments. Variable Camber Continuous Trailing
Edge Flap (VCCTEF) system is one of the concepts for spanwise wing morphing (Nguyen
et al., 2015). In VCCTEF system, multiple flaps are implemented along the span and the
gaps between flaps are filled by flexible materials. Bend-twist coupling structures were also
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suggested to fill the gaps between morphing flaps, which showed higher aerodynamic
performances than those without the transition structures (Woods et al., 2016).

The design tools are also very important in the development of the morphing wings.
Because many concepts of morphing wings use flexible structures or materials, structural
dynamics and aerodynamics should be considered at the same time. In addition to this,
studies related to morphing wings are still in the early stage and need to conduct lots of
analyses. The computational cost is also one of the important elements for the design tools.
A two dimensional aero-structural design tool was developed, where a two-dimensional
flexible beam model and a panel method (XFOIL) were combined (Sato et al., 2017).
Regarding three dimensional aeroelastic framework, Tsushima et al. (2019) developed a
framework combining corotational shell finite element methods and unsteady vortex lattice
method. However, a light three dimensional aeroelastic analysis tool which can estimate
drag performance remains to be developed.

This paper focuses on morphing wings with corrugated structures and analyses their
performance as morphing wings with continuous trailing edge deformations. A static
aeroelastic model using vortex lattice method for aerodynamic simulations and finite
element methods for structural simulations is constructed. A two-dimensional CFD code
UTCart is used to create a database for the estimation of parasite drag. Changing the
design parameters such as the corrugation angle (described in Section 2.3), the number
actuation mechanisms and their location, the suitable designs of corrugated morphing
wings are investigated.

2 Aeroelastic model

2.1 Aerodynamic model

Different fidelity of aerodynamic analysis tools can be used to calculate the 3D aerodynamic
performances: CFD, vortex lattice method (VLM), panel method and others. Users should
choose an appropriate fidelity of solvers with the consideration of computational costs. In
this paper, many cases of aerodynamic analyses will be performed, and therefore an
aerodynamic solver based on VLM is chosen.

An open aerodynamic analysis solver Athena Vortex Lattice (AVL) developed by Drela
and Youngren is implemented in the aerodynamic model. In this solver, multiple chordwise
and spanwise flat panels are created and the strength of the vortex on each panel is
calculated. The model for AVL is shown in Fig. 1. Regarding the modelling, the entire half
wing is modelled, and the other half wing is considered in the mirrored shape.

Because this paper deals with the deformation of corrugated morphing wings, the
deformed camber data from the structural analysis are needed to be input. Airfoil coordinate
data at each station are prepared after the structural analysis and the airfoil data are read
when the aerodynamic analysis starts.

VLM can only calculate the induced drag and it cannot estimate the parasite drag. In
order to calculate this drag, a two-dimensional CFD code UTCart (Imamura et al., 2017;
Tamaki et al., 2017) is utilized. The parasite drag is estimated in the following way. Before
aeroelastic analyses, a database to calculate the parasite drag is prepared. Two
dimensional aerodynamic analyses are performed for the airfoils whose deflection angles
are -1 to 10 deg (every 1 deg) with several angles of attacks, and the results are
interpolated using a radial basis function interpolation using the quintic function. After each
aeroelastic analysis, the parasite drag components for the airfoils at each station are
calculated using the database, and the parasite drag coefficient is obtained by integrating
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Figure 1: The models in the aerodynamic and structural analysis

them along the span.

2.2 Structural model

This paper uses a commercial nonlinear finite element analysis software MSC. Marc
2017.1.0 in the structural analyses. Full models of corrugated structures with shell elements
need much computational time, and therefore this paper treat corrugated structures as
plates with equivalent stiffness. 8-node shell elements are used to model the homogenized
plates.

In the structural model, only the morphing region is modelled, and the main wing
region is treated as rigid. Regarding the displacement boundary conditions, the nodes in
the leading-edge side are all fixed. This simulates the attachment of the morphing region to
the main wing region. In terms of the load boundary conditions, two conditions are applied.
One is to simulate the actuation loads with wires. Details are explained in Section 2.4. The
other is to simulate the aerodynamic forces. The pressures calculated by AVL are applied to
each element.

2.3 Corrugated Structure

A homogenization method for corrugations proposed by previous researches are used (Xia
et al, 2012; Mohammadi et al, 2015). By neglecting the extension-bending coupling
stiffness terms, the constitutive equations are written as

N,] [A, A, 0 0 0 0|
N, A, A, 0 0 0 0|
Ny || 0 0 A 0 0 07, (1)
M, 0o 0 0 D, Db, 0|k
MY 0 O O [_)12 I:_)22 O Ey
My] [0 0 0 0 0 Dyll&y

CANLA .
sz O A‘s,ZZ }/zx

where N, M, Q are the resultant stress, resultant moment, shear force respectively, and ¢, y,
x are the in-plane strain, transverse shear strain, curvature respectively. The overlines
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Figure 2: Corrugated structures: the coordinate for corrugations (left) and the
definition of corrugation angle (right)

mean that the values are homogenized ones. Each element in the stiffness matrices can be
calculated from the material properties and geometric parameters of corrugation.

The variations of the stiffness can have influences on the deformations of the wings. In
this paper, the corrugation angle is considered as a design parameter; this angle is defined
as the angle between the spanwise direction of the wing and the stiff direction of the
corrugation (see Fig. 2). This angle produces an apparent bend-twist coupling effect, which
changes the deformation of the wing or the necessary actuation energy. In the structural
analysis, the effect of the corrugation angle is considered by rotating the stiffness matrices
by the corrugation angle.

2.4 Actuation Mechanism

The actuation mechanism is one of the important elements in the design of morphing wings.
In this paper, a plain actuation system with wires and servomotors are employed. As
mentioned above, this type of actuation mechanism is verified to be feasible in the previous
researches (Yokozeki et al., 2014; Takahashi et al., 2016). One end of the wire is attached
to the corrugation with an offset from the center line. The actuation can be modelled with
three forces: the x and z component of the wire tension force and the moment around the y
axis because of the offset. The magnitude of the applied force is controlled in the structural
analysis to realize the target deflection angle at the target node, which are defined at the

. Actuation Node * Jl
“

A -

A

\ ]

= = / t]
_ Wire Tension Moment =0
T.E.
- [~

Root

v

il

Figure 3: Actuation system with wires
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beginning of the analysis by the user. This actuation model is summarized in Fig. 3.

2.5 Coupling Procedure for Static Aeroelastic Analysis

The aerodynamic and structural models are described above. The aeroelastic analysis in
this research is conducted by carrying out aerodynamic and structural analyses alternately.
The coupling procedure is as following: First carry out a structural analysis without
aerodynamic forces. Next, carry out an aerodynamic analysis and a structural analysis with
aerodynamic forces again. Check the convergence of the deformation of the wing and
repeat each analysis alternately until it is obtained. Finally carry out an aerodynamic
analysis again to calculate aerodynamic properties of the converged wing configuration. At
this step, the parasite drag component is also calculated from the database obtained by
two-dimentional UTCart. The procedure is summarized in Fig. 4.

3 Drag Reduction

3.1 Target Aircraft

This paper deals with an aircraft whose specifications are listed in Tab. 1. The morphing
region is after 65% chord length. Near the trailing edge, the thickness of the airfoil is very
thin, and it is difficult to manufacture corrugations with such small heights. Therefore, the
region where corrugations are inserted ends at 93% chord length, and after that, only the
stiffness of skins are considered. To note, in the region where corrugations are inserted, the
stiffness of skins are neglected. The Young’s modulus and Poisson’s ratio of the material
are 74.0 GPa and 0.34, respectively. The radius of corrugations is 3.5 mm and the
thickness of the material is 0.5 mm.
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Table 1: Specifications of the target aircraft

Span Chord Morphing  Flight Velocity

Base Airfoil [mm] [mm] Region [ms] Lift Coefficient
NACA0012 2400 300 65%c~ 20 0.3
Table 2: Computational conditions for UTCart

Governing equation RANS equation

Minimum cell size 0.0002

Convection scheme SLAU scheme

Time integration LU-SGS

Spatial discretization Cell-centered finite volume method

Turbulence model SA-noft2 + SA based wall function

3.2 Solver Setting

The static aeroelastic analysis tool describe in Section 2 is utilized. For VLM simulations,
aerodynamic models are meshed into 20 and 40 panels in the chordwise and spanwise
direction in the non-morphing region, and 10 and 40 respectively in the morphing region. In
the analyses by UTCart to obtain the database for parasite drag, the setting listed in Tab. 2
is used. The fluid cell number is about 110,000 for each case. For FEM simulation, a
structural model is meshed into 5 and 20 elements.

3.3 Single Actuation near the Root

Here, the node which is located 60 mm (corresponds to the spanwise length of one element,
or 5% of the semi-span length) inside from the root and 21 mm (corresponds to the
chordwise length of one element) forward from the trailing edge is selected as the actuation
node, and the deflection angle at the root is controlled by the actuation method described in
Section 2.4.

The corrugation angles and deflection angles are selected as parameters, and the
ranges for the two parameters are 0 to 10 deg and 1 to 10 deg, respectively. The both
parameters are changed by 1 degree and 110 analysis cases are created in total. For each
parameter setting, the static aeroelastic analysis is conducted and the deformation shapes
and aerodynamic performances are calculated. The analysis results obtained are
interpolated using the radial basis function interpolation. The function used is

é(r)= (I‘/e)2+1 (3)

where ¢ is a tuning parameter and the value is determined by error evaluation processes
using the analysis results with random 20 parameter settings.

The response surfaces are shown in Fig. 5. The direct analysis results at 110 analysis
sets are also plotted in the same figures. It can be observed that the response surfaces
capture the trends of the responses to the parameter changes precisely. Using these
response surfaces, the optimum parameter set for drag reduction is investigated. The
optimization is performed to minimize the induced drag coefficient or the drag coefficient.
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Figure 5: Response surface: drag coefficient (left) and wire tension (right)
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Figure 6: Lift distributions and vertical displacement distributions of the optimum cases

The solver used is GlobalSearch from MATLAB. The optimization shows the following
parameter sets are best to reduce the induced drag or the total drag.

B=0.28, 6,,=144" forminimumC,
B=014", 6, ,=292" for minimumC,

From there results, it can be said that the corrugation angle contributes to the reduction of
the actuation forces, while it does not so much to the reduction of the drag. The lift
distributions and vertical displacement distributions are shown in Fig. 6. In the case of the
minimization of the total drag, the lift distribution is not so close to the elliptic lift distribution,
which is theoretically optimum to reduce the induced drag, as in the case of the
minimization of the induced drag alone. Regarding the deformation, the deflection at the
root is larger when the total drag is minimized than when the induced drag alone is
minimized. This result suggests that to reduce the total drag, the lift should be kept by the
larger deflection angles and a smaller angle of attack than those necessary to minimize the
induced drag alone. In the case of the minimization of the drag coefficient, 0.8% drag
reduction is obtained by this morphing compared to the no-morphing case.
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Table 3: Analysis cases with double actuations
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Figure 7: Lift distribution and vertical displacement distribution of the optimum case with
double actuation systems

3.4 Double Actuations

In this subsection, the number of the actuation systems is increased from one to two.
Considering the results in Section 3.3, the corrugation angle is set 0 degrees. The two
actuation systems are located at 5% semi-span length (near root) and 95% semi-span
length, and the magnitudes of the actuation forces are calculated referring to the deflection
angles at the root 6, and those at the tip 6, , respectively.

Here, a constraint that 6, is always equal to or larger than 6, is applied. The
difference between the two angles is denoted by A#. The analysis cases summarized in

Tab. 3 are performed. Among the cases, the best actuation method in terms of drag is

6,

root

=5, 6,

tip

=3, (A9=2°)

In this case, the drag coefficient is 0.017969 and 2.1% of drag reduction is achieved. It is
revealed that the increase of actuation systems enables further drag reduction compared to
the cases with single actuation system. On the other hand, the lift distribution and vertical
displacement distribution of the case are shown in Fig. 7. It can be seen that the middle
region does not deform so much as the root or tip, where the actuation mechanisms are
installed. This phenomenon implies that the locations of actuation systems have great
influences on the entire deformation of the morphing wing and further control of deformation
shapes could be achieved by changing the actuation locations.

Next, the influences of actuation locations on the total deformation are investigated.
Here, the actuation location near the root (5% semi-span length) is fixed, and the actuation
location near the tip (95% semi-span length) is changed from 60% semi-span length to 95%
semi-span length by 5% semi-span length. Here the analysis case is named after the
actuation locations. For example, the case in Fig. 7 is named as “R05T95".

The deformation shapes are shown in Fig. 8. This shows that the deformation shapes
of the entire wings can be controlled by changing the actuation locations. The drag
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coefficients and wire tensions for each case are shown in Fig. 9. Note that the red square
corresponds to the no-morphing configuration, and black circles are obtained using the
response surfaces in Section 3.3. The drag is reduced as the tip-side actuation location is
moved towards the root. In the case R05T60, the drag coefficient is 3.0% reduced
compared to the no-morphing case. On the other hand, as the entire deformation becomes
larger, the necessary actuation forces increase. In terms of the effectiveness of actuation
forces against drag reduction, the case RO5T80 is the most effective design point with this
actuation method.

4 Conclusion

This paper focused on the design of corrugated morphing wings for continuous
trailing-edge deflections. Three dimensional static aeroelastic analysis tool where VLM and
FEM are combined was developed. a two-dimensional CFD solver UTCart was also utilized
to obtain the database to estimate parasite drag. Parametric studies were conducted with
varying corrugation angles and root deflection angles with single actuation mechanism near
the root. The results showed that the corrugation angle has influences on reducing the
necessary actuation forces, while the parameter is not effective on the reduction of the drag.
The analyses with double actuation systems are also performed and it is shown that
morphing with two actuation systems can further improve the drag performance of the wing.
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The actuation location is also proved to be an important design parameter and the best
design point considering the drag performance and the necessary actuation force is
suggested.
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A highly flexible continuous wing model has been built to study either coupled-mode flutter
or stall flutter in a wind tunnel. This model utilizes a composite cantilever beam arrangement
that provides the bending and torsional stiffness, cladding segments representing a NACA0012
geometry and an added slender body allowing for the control of the ratio of the torsional and
flapwise natural frequencies (Fig. 1a). In the present paper we will focus on a series of stall
flutter experiments, tracking the motion of the tip of the wing to capture post-critical oscillation
modes (Fig. 1b). A bifurcation diagram showing the evolution of the tip LCO amplitude in
torsion versus the wind velocity is shown in (Fig. 1c). Following the work of Tang Dowel', the
associated nonlinear post-critical behavior, due to both dynamic stall and static deflection, will
also be studied using a continuous model including the ONERA dynamic stall formulation? for
the unsteady aerodynamics.
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Figure 1: The flexible continuous wing model (a); an example of the trajectory of the tip of
the wing (b); tip LCO amplitude in pitch versus wind velocity (c).

! Tang, D., & Dowell, E. (2001). Experimental and theoretical study on aeroelastic response of high
aspect-ratio wings. AIAA Journal, 39, 1430-1441.

2 Tran, C. T., Petot, D. (1981). Semi-Empirical Model for the Dynamic Stall of Airfoils in View to
the Application to the Calculation of Responses of a Helicopter Blade in Forward Flight. Vertica, 5(1),
35-53.
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the aircraft certification with application to A400M T-Tail flutter
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Abstract

This paper describes the AIRBUS Defence and Space (AIRBUS-DS) methods for
predicting flutter with high-fidelity unsteady Computational Fluid Dynamics (CFD), using a
partitioned approach with MSC.Nastran as Computational Structural Mechanics (CSM)
code, ANSYS-Fluent as CFD code, and AIRBUS-DS in-house DYNRESP software as
dynamic solver. The methodology is applied to aircraft empennages with T-tail configuration,
where the standard Doublet-Lattice Method (DLM) exhibits certain inherent limitations
because of non-included effects. These limitations have been successfully overcome in the
past by using the so-called augmented DLM, a procedure that AIRBUS-DS developed to
support Heavy Military Transport aircraft certification. This paper is focused on using a T-tail
configuration with experimental flutter-related data as test case for assessing the capability
of the CFD-based codes on predicting such complex unsteady aerodynamic effects.

Keyword: Flutter, Aircraft Certification, T-Tail, CFD

1 Introduction to CFD-based unsteady aerodynamics to solve T-tail flutter

The classical aerodynamic methods used in aeroelastic applications are based on
linearized potential theories. One of these methods, the Doublet-Lattice Method (Albano
and Rodden, 1969) is still a reference in aeroelastic analyses at an industrial environment,
both for flutter clearance and gust response. The benefits of the method justify this
long-time success: it is fast and robust, easy to implement and permits to perform a wide
range of parametric sensitivity analyses. In addition, it has to be maintained to support
legacy products and is widely accepted by the Airworthiness Authorities.

Classical aerodynamic methods, however, have some limitations. The limit imposed by
transonic flow for linear potential theories is especially relevant. When transonic effects
appear, the aerodynamic behavior becomes inherently nonlinear. The presence of mixed
subsonic and supersonic flow regions, with physically complex phenomena such as shock
waves moving and interacting with the boundary layer, plays a fundamental role in
transonic aeroelastic phenomena (Bendiksen, 2011).

Another limitation of the standard Doublet-Lattice Method concerns T-tail type aircraft
empennages. Among the list of particularities of T-tail flutter (Murua et al., 2014), the steady
loading and in-plane dynamics of the horizontal tail-plane are of special relevance. The
dynamics caused by the interaction of these effects, not included in the standard DLM
method, can be described according to Jennings and Berry (1977):

e The motion in roll of the horizontal tail-plane (HTP) rotates the line of action of the
vertical steady force distribution [(y) an angle ¢(t) and, therefore, produces a
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side component of the force, Af, (see Fig. 1(a)).

e The in-plane motion of the horizontal tail-plane has a double effect on incremental
aerodynamic forces: first, the motion in yaw (t), caused by fin torsion, and lateral
ny, caused by fin bending, produces an additional distribution of lift due to the
variation of steady lift with sideslip angle dl(y)/df (see Fig. 1(b1) and Fig. 1(b2));
second, symmetric and antisymmetric chordwise motion modifies the relative
airspeed and thus the dynamic pressure (see Fig. 1(c1) and Fig. 1(c2)).

a) Horizontal tail-plane roll

b2) Sideslip motion c2) Antisymmetric Fore-Aft

ol 7 3 — yi
M0 = -l$O MO0 = %(M +Z—y<t)> 81,0, 8) = —21 =IO

Figure 1: In-plane dynamic effects of the horizontal tail-plane in T-tail configurations

Different methodologies based on potential-flow have been developed to overcome these
natural limitations of the standard Doublet-Lattice Method. Murua et al. (2014) describe in
detail some of these methods. In particular, the addition of supplementary T-tail effects as
additional terms to the Doublet-Lattice Method aerodynamics was successfully applied to
the case of Heavy Military Transport aircraft (Fig. 2), where T-Tail effects were measured in

flight using tests from a wake-vortex encounter campaign. ]
14.7m ’

I 424m

.

e

Figure 2: Heavy Military Transport aircraft views and dimensions
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These previous considerations reveal the T-tail as an appropriate test case to explore the
advantages of novel advanced-aerodynamics computational codes. In fact, the objective of
this paper is to demonstrate that flutter calculations based on high-fidelity Computational
Fluid Dynamics (CFD) can capture accurately T-tail effects by default without the need of
any special treatment. To this end, Section 2 describes the methodologies and tools
developed by AIRBUS-DS to integrate CFD in aeroelastic calculations. Section 3 includes a
description of the aeroelastic T-tail model presented in van Zyl and Mathews (2011), and
compares the experimental flutter speed with the results obtained using the augmented
Doublet-Lattice Method and unsteady CFD aerodynamics.

2 AIRBUS-DS flutter procedures based on unsteady CFD aerodynamics

2.1 Introduction to the two procedures: Uncoupled and Coupled analyses.

The aeroelastic framework developed by AIRBUS-DS to integrate unsteady CFD
aerodynamics is based on the partitioned approach to solve Fluid Structure Interaction
(FSI) problems. In partitioned analyses, each discipline, structure and aerodynamics, is
computed individually using specific methods widely tested and validated:

e The structure is modelled using the Finite Element Method (FEM) technique as
Computational Structural Mechanics (CSM) code implemented in MSC.Nastran to
obtain the normal modes of the aircratft.

e The unsteady aerodynamic flow is solved by the Euler and Navier-Stokes
Computational Fluid Dynamic (CFD) code ANSYS-FLUENT.

e The CSM and the CFD codes are coupled in the frequency- or time-domain with
DYNRESP software (Karpel, 2019a).

Since structural and aerodynamic meshes are usually dissimilar, the transference of
information between these disciplines is a key aspect in partitioned FSI methods. The
displacements are interpolated from Finite Element grids to the aerodynamic surface grids
by the equation:

D} = [Grgl{xg}, )
where {x,} is the vector with displacements in the aerodynamic vertices; {xg}, the
displacements at the structural Degrees-Of-Freedom and [G,,], the interpolation matrix.
The interpolation options need to be selective by aircraft component (fuselage, wing,
empennage, engines, etc.) and a special treatment to maintain the continuity and
smoothness of the mesh in the interface of different component surfaces is required.

Aeroservoelastic response and stability analyses can be solved using uncoupled and
coupled schemes. In the case of uncoupled analyses, the linear unsteady aerodynamic
forces are obtained by a CFD simulation forcing a prescribed structural motion according to
a mode shape. The unsteady forces are then post-processed to obtain generalized
aerodynamic forces (GAFs) in the frequency domain, which are the input to linear flutter
methods. These analyses are also called one-way because the information is exclusively
transferred from the structural side to the aerodynamic solver (see the solution flowchart in
Fig. 3). On the contrary, in coupled analyses the structural and aerodynamic solvers
interchange information in every time step to compute the time response of the aircraft to
an initial excitation (see Fig. 4). Since the aerodynamic forces computed are not linearized,
these simulations can retain aerodynamic non-linearities. The initial excitation is applied as
a one-minus-cosine generalized force to excite a specific range of frequencies.
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Figure 4. Coupled Fluid-Structure Interaction scheme flowchart

The following sections present each solution method in detail.

2.2 Uncoupled analysis: Generalized aerodynamic matrices

The procedure for calculating the generalized aerodynamic matrices (also known as [Qnx])

using unsteady aerodynamics based on CFD is (see Fig. 3):

1.

The flutter equation is solved using the classical aeroelastic model with
Doublet-Lattice aerodynamics. The flutter mechanism to be studied is isolated to
select the relevant normal modes and range of reduced frequencies, k = wL/2U,,
where w is the natural frequency in [rad/s], L is a reference length (typically the
mean aerodynamic chord), and U, is the flight speed.

For each normal mode j and reduced frequencies k selected in the previous step,
a prescribed harmonic motion is imposed to the structure:

{&®)}; =10..010...0]" sin(wt), (2)

where ¢ is the vector with the generalized coordinates. The structure is deformed
thru the relation {xg}j = [@#,4]{¢},, where {xg}j is a vector with the Finite Element
structural grids displacements and [@,,]is a matrix with the normal modes as

columns. The natural frequency is given by the relation w = 2o,
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3. The structural displacements are interpolated into the aerodynamic surface mesh:

{xk(t)}j = [Gkg][q)gg]{f(t)}j- ®3)
4. The aerodynamic solver updates the fluid volume and calculates the unsteady
pressure distribution at the wet surface at each time step. Typically, the simulation
converges after a total of three periods.
5. When the simulation is completed, the forces are projected onto all the normal
modes (sub-index i) to compute the time-histories of the generalized aerodynamic
forces (GAFs):

N¢

1
0y(®) = 17— ) [peAcln ] (B @
§PU00 =1

where p. is the pressure, A., the area, {n.}, the unitary normal vector of the
aerodynamic face (moving according to normal mode j) and {¢.};, the modal
displacements in normal mode i. The sub-index ¢ indicates the centroid of the face.

6. The Fast Fourier Transform is performed to the last period of the time-domain GAFs
to calculate the frequency-domain GAFs:

Qij(w) = FFT (Qij(t))- ©))

7. When all modes and reduced frequencies are calculated, the generalized
aerodynamic matrix [Qp,] is assembled with the columns computed:

[ o Qo ]
i v , ©
Qnj

8. The flutter equation is solved using the aerodynamic matrix [Q,] obtained with
unsteady CFD aerodynamics.

While the linear generalized aerodynamic forces [Qp,] depend exclusively on the Mach
number M, and the reduced frequency k, the CFD simulations are based on physical
variables: flight speed U, frequency f, temperature T and density p. This translation of
variables is done by selecting a flight level, H (ft), which leads to the airspeed as
Ur = axwMy, Where a,, is the speed of sound, which only depends on the flight level H.
The excitation frequency is obtained by the relation f = kU, /TL.

2.3 Coupled analysis: Time-marching simulation

The uncoupled frequency-domain analyses described in previous section 2.2 are valid as
long as the linear approach (aero-forces proportional to the generalized coordinates) for
solving the flutter equation remains valid.

Nevertheless, for those flight conditions which can require considering non-linear
aerodynamics, the structural and aerodynamic disciplines need to interact using a
time-marching coupling scheme where the information is interchanged at each time-step.
This section describes the procedure developed by AIRBUS-DS to couple the CSM and
CFD codes thru an interface software, in this case the aero-servo-elastic solver
implemented in DYNRESP software, developed by Karpel Dynamic Consulting Ltd. (Karpel,
2019a).
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Figure 5: Increased Order Modelling (IOM) block diagram (from Karpel et al. 2020).

DYNRESP is based on the Increased Order Modelling method (Karpel, 2019b), which is
schematically depicted in Fig. 5, and it has been used in numerous dynamic applications
such as morphing configurations (Karpel et al., 2015) or wake encounter simulation
(Claverias et al., 2014). This method is based on a main linear block that is stable when
disconnected from the nonlinear elements, and a nonlinear block that expresses all the
nonlinearities as feedback loops. The response calculations are performed in 3 stages: (a)
Frequency-Domain response of the linear block with the nonlinear block disconnected; (b)
addition of nonlinear effects using Time-Domain nonlinear elements and convolution
integrals; and (c) complementary Frequency-Domain response of the linear block to inputs
from the nonlinear block to generate the final output.

In the case of the integration of DYNRESP with unsteady CFD aerodynamics, the process
is performed following the list of sequential steps:

1. The simulation starts by applying a predefined excitation to the aircraft, for example,
a one-minus-cosine generalized force is applied on one normal mode.

2. The linear block is solved in the frequency-domain to obtain the generalized
displacements at the time step i, {&.(t;)}, where the sub index L indicates output
from the linear block. The linear model can include linear aerodynamics to improve
the approximation to the final non-linear displacements.

3. The generalized displacements obtained in the linear block, {&.(t;)} are
interpolated to obtain the displacements in the aerodynamic mesh:

{xe ()} = [Gkg][cbgg]{f(ti)}’ (7)
4. The aerodynamic solver updates the fluid flow mesh and calculates the unsteady
pressure distribution at the current time step 1.
5. The pressure distribution is integrated and projected onto all the normal modes
(sub-index i) to compute the generalized aerodynamic forces (GAFs):
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Nc¢
Qi(t) = Z pcAc{nc}T{d)c}i- (8)
c=1

6. The non-linear generalized forces {Q;(t)} are introduced as feed-back forces to
obtain, by convolution integrals, the final non-linear displacements at time i,
{&n(t))}, where the sub index NL indicates the output from non-linear analysis.

7. The time step advances to i + 1 and back to step 2 until the end of the simulation.

Both CFD-based frequency- and time-domain procedures have been successfully applied
to test wing models (Karpel et al., 2020) and to AIRBUS-DS aircraft components, such as
the radome of an AWACS configuration (Arévalo et al. 2017). Next section applies this
methodology on the T-tail configuration, which has been proven in the introduction as an
excellent reference to test the goodness and limitations of CFD-based methods and tools.

3 Application to the flutter instability prediction of a T-tail model

This section presents the application to the T-tail empennage presented in van Zyl and
Mathews (2011), where the flutter onset airspeed was measured experimentally for different
incidence angles (or trimmed angles) of the horizontal tail-plane.

3.1 T-tail experimental model

The wind-tunnel T-tail model was constructed from steel and aluminium and covered with
balsa wood and plastic film. The vertical tail-plane is a swept-back untapered surface, with
a height of 0.497 m, a chord of 0.425 m and a swept back angle of 33.1 degrees. Mounted
on top, there is a unswept fairing with a height of 0.098 m and a constant-on-span chord of
0.528 m.

The horizontal tail-plane, attached at the mid-height of the fairing, has no dihedral, a root
chord of 0.363 m, a semispan of 0.625 m, a taper ratio of 0.276 and a leading-edge sweep
angle of 36.5 degrees, with a NACA 23015 airfoil section. The pitch axis (rotation center to
change the incidence angle) is parallel to the y-axis and passes through the 74.1% of the
HTP root chord and the 60.6% of the fin tip fairing chord.

Figure 6: Setup of wind-tunnel T-tail model. From van Zyl and Mathews (2011)

The high-stiffness construction of the horizontal tail-plane was designed to remove the
uncertainty of the stabilizer dihedral induced by static load. Therefore, the flexibility of the
model was limited to the vertical tail-plane and the roll degree-of-freedom in the mounting.
The measured first fin bending mode has a frequency of 2.62 Hz and a damping ratio of
0.6% and the fin torsion mode, a frequency of 4.64 Hz and a damping ratio of 2.1%.
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3.2 T-tail aeroelastic mathematical model

The structural model is built by beams to represent the stiffness, and lumped masses in
MSC.Nastran, as depicted in Fig. 7(a). The geometry and properties can be consulted in
Murua et al. (2014). The three first normal mode frequencies of the structure computed with
Lanczos method are shown in Tab. 1:

Table 1: Normal modes analysis using MSC.Nastran SOL103 (Lanczos method)

Mode 1% VTP bending 15" VTP torsion 2" VTP bending

Frequency (Hz) 2.62 4.64 13.68

The aerodynamic Doublet-Lattice model is the simplified one employed in Murua et al.
(2014), with a homogenous spatial discretization of 12x12 in the vertical tail-plane, 20x10 in
horizontal tail-plane and 14x4 in tip fairing (see Fig. 7(b)). The convergence studies
presented by van Zyl and Mathews (2011) show a relatively low sensitivity to the panel size.

The unsteady CFD aerodynamic mesh (wet surface shown in Fig. 7(c)), suitable for inviscid
Euler solver, is composed of 3.6 million tetrahedral elements with a fluid domain extended
10 chords upwards and 30 chords downwards. The structural displacements are
transferred to the aerodynamic surface by radial-basis interpolation functions of the type
Thin-Plate Spline (TPS), described in Rendall and Allen (2008). Dedicated efforts have
been made to guarantee the continuity of the mesh in the interface between VTP, HTP and
tip fairing surfaces. The smoothing diffusion method, implemented in the CFD code, adjusts
the aerodynamic cells to the mesh deformation in order to guarantee the level of quality in
the fluid domain during the entire simulation.

(a) Finite Element model (b) Doublet-Lattice model (c) CFD-Euler wet surface
Figure 7: Numerical aeroelastic model

3.3 T-Tail Flutter results

Flutter airspeed results are shown in Fig. 9 comparing the experimental, augmented
Doublet-Lattice Method and CFD-Euler-based (frequency-domain with Qp, approach)
results as a function of the angle of incidence of the horizontal tail-plane. The uncertainty
range of the experimental measurements is below 2 m/s in all cases, which is around the
4% of the nominal flutter airspeed at zero incidence.

The flutter onset in all cases is caused by a classical VTP bending-torsion mechanism at
low frequency (3.6 Hz). Since the flutter airspeed can be reproduced exactly with only the
two first modes, the analyses only retain these modes. The zero-speed structural damping
ratio corresponds to the value measured experimentally.
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Experimental results show that positive aerodynamic loading on a swept-back horizontal
tailplane deteriorates the T-tail flutter behavior, leading to a lower flutter onset speed when
compared with the zero incidence (zero aerodynamic loading) case. The non-corrected
standard Doublet-Lattice method (black line) predicts constant flutter airspeed because the
method does not account for unsteady aerodynamic effects derived from the horizontal
tailplane load. However, both augmented DLM and CFD predictions are aligned with the
experimental results.

In particular, the augmented Doublet-Lattice Method, which constitutes the current practice
method at AIRBUS-DS, reproduces closely the experimental results with a constant
conservative biasing, and therefore proving evidence of its accuracy and robustness. For its
part, the results based on CFD-Euler unsteady aerodynamics computed in
frequency-domain accurately predict the nominal flutter airspeed at zero incidence, giving a
value inside the range of uncertainty of the experimental measurements. In addition, the
method proves to be capable of capturing naturally the tendency of flutter speed with the
incidence angle, even though there is a slight under-prediction of the effects of steady loads
on the flutter speed at positive values of the incidence angle (less critical case).
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Figure 10: T-tail model flutter airspeed and coupled analyses results.

These results have been complemented with fully coupled simulations in time-domain
performed at two airspeeds for the nominal zero-incidence case. The dynamic evolution of
the structure as a consequence of the initial excitation one-minus-cosine generalized force
(0.3 s duration) acting on the first fin torsion mode is computed. Fig. 10 shows the evolution
of generalized displacements, where the normalization is to unitary mass matrix. In the first
case (airspeed 43 m/s, below flutter onset) the dynamic system shows a damped behavior,
while in the second (airspeed 47 m/s, above flutter onset) the oscillation amplitude
increases in time until the deformation exceeds the limits imposed by the aerodynamic
mesh.
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4 Conclusions

This paper presents the latest developments of Airbus Defence and Space (AIRBUS-DS) in
Fluid-Structure Interaction (FSI) for aeroelastic applications. In particular, two different
methodologies to integrate unsteady Computational Fluid Dynamics (CFD) aerodynamics
in aeroelastic calculations have been described: first, the uncoupled approach, where the
linear generalized aerodynamic forces in the frequency domain are obtained to be the input
to traditional linear flutter solvers; second, the coupled approach with DYNRESP software,
where the structural and aerodynamic solvers interchange data in a time-marching manner.

The flutter airspeed of a T-tail model in low subsonic regime is computed and compared to
experimental results. Since the phenomenon of flutter in T-tail structures is highly
dependent on the steady loads on the horizontal tail-plane, the applicability of the standard
Doublet-Lattice Method is limited. The current practice in AIRBUS-DS, the augmented
Doublet Lattice, adds those particular forces in T-Tail as complementary effects to the
generalized forces computed by the Doublet-Lattice Method, giving results closely matched
to the experimental measurements. In the case of unsteady aerodynamics based on CFD
computations, the nominal flutter at zero incidence is accurately predicted, and the
tendency of flutter speed with the incidence angle is naturally captured. There is, however,
a slight under-prediction of the effect of the steady loading on flutter speed for positive
incidence angles, suggesting that further work is needed to determine the source of this
difference: improve the structure-aerodynamic interpolation, adding turbulence modelling
(RANS equations) and including quadratic modes (as described in Murua et. al., 2014).
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Abstract

This paper examines the aeroelastic stability of a flexible high aspect-ratio wing-like structure
imperfectly-supported at one end and free at the other. The equations of motion are obtained
within the extended Hamilton's principle framework. The bending and torsional dynamics of
the wing are approximated using the Euler-Bernoulli beam theory. The aerodynamic lift and
pitching moment are modelled using the unsteady aerodynamics for arbitrary motion of a two-
dimensional airfoil section extended by the strip flow theory. The imperfect support is modelled
as a linear torsional spring the effect of which is included directly in the equation of motion.
The Galerkin method is used for the spatial discretization. The numerical results show that
both divergence and flutter speeds are sensitive to the support imperfection. The sensitivity
may be great or insignificant depending on the end-spring stiffness. Some unusual dynamical
behaviour have also been observed, which are discussed in detail.

Keyword: imperfect end-support, aeroelastic stability, flexible wing, unsteady aerodynamics
1 Introduction

Structures with airfoil cross-section are found in many engineering systems; fixed- and rotary-
wing aircraft, wind turbines, compressors and gas turbines, just to name a few. Aeroelastic
stability analysis is an essential step in the design process of such systems. In an aircraft, all
the lifting surfaces, such as the wing, tails, high-lift devices and control surfaces have to be
flutter-free. Analytical models may be used to predict flutter speed of a wing-like structure,
where the wing is commonly considered to be clamped (or fixed) at one end and free at the
other. There are ample examples of such studies; for example, see Patil et al. (2001); Qin and
Librescu (2003).

However, in reality no structure or attachment is perfect. Imperfections may be created, for
example, during manufacturing, because of structural fatigue (tear and wear), and/or during
installation, and they may be in various forms (e.g. geometric, and material) and locations (e.g.
end-supports). Studies have indicated the importance of monitoring imperfections and defects
to ensure the good health of wing-like structures. For instance, blades “root attachment prob-
lems” are a common cause of vibration and failures in axial compressors (Meher-Homji et al.,
1998). In a civil aircraft airframe, fatigue may cause cracks to quickly spread in susceptible
structural elements, such as the over-wing fuselage attachment (see Munns and Kent, 2000 for
more details). This seems particularly crucial as composite materials are becoming increasingly
widespread in aerospace and wind energy applications. Although some research has been con-
ducted in the past to examine the effects of structural damage, such as surface cracks, on the
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Figure 1 — Cross-sectional view of the wing, where h and 6 represent bending and torsional
dynamics, respectively. Points Q, C, and P represent, respectively, the aerodynamic centre,
the centre of gravity, and the elastic axis; also, b = 2c is the semi-chord, and e and a are
dimensionless variables (Hodges and Pierce, 2011).

aeroelastic behaviour of wings, the effects of imperfect end-supports on the aeroelastic stability
are still unknown. The objective of the present paper is to explore such effects by modelling
the support imperfection by linear translational and torsional springs.

2 Theoretical model

The high-aspect ratio flexible wing is structurally-modelled as an Euler-Bernoulli beam with
spanwise bending and torsion dynamics; see Fig. 1. The equation of motion is obtained within
the extended Hamilton's principle framework in a similar fashion set in Hodges and Pierce
(2011). The imperfect end-support is modelled as a linear torsional spring. Following the
approach introduced by Kheiri et al. (2014), the effects of the end-spring are considered in the
equation of motion rather than the boundary conditions.

Furthermore, the indicial aerodynamic theory based on the Wagner function is used to
represent the unsteady aerodynamic force and moment in the time domain for small arbitrary
motion of the wing. The two-dimensional formulation given in Lee et al. (1999) is extended
to the three-dimensional using the strip flow theory, and the virtual work due to aerodynamic
forces and moments are added to the Lagrangian of the system. It is noted that since the
wing is assumed to be of high aspect-ratio, the three-dimensionality of the flow and tip vortices
effects are neglected.

The equation of motion may be written as

L U\, U\? d*h

L A A 920 -
/0 (—lp (E) 0" + mbxy (3) h +GJa—y2+./\/l+K6(5(y) 90 dy =0,

where m is the mass per unit length of the wing, y is the spanwise coordinate, L is the length of
the wing, and b is the semi-chord (i.e. ¢ = 2b, where ¢ being the chord length); xo = e — a; E/
and GJ are the bending and torsional rigidities, respectively; /, is the mass moment of inertia,
U is the flow velocity, h and @ are the bending and torsional displacements, respectively, and

(1)
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dh and 06 are their corresponding virtual displacements; also, K is the torsional spring stiffness
(to model the imperfect support), and () = 9/07, where 7 = t/Ub is the non-dimensional
time; £ and M represent the lift and pitching moment, respectively; §(y) denotes the Dirac
delta function.

According to Wagner's problem of the step change in angle of attack, lift may be written
as (refer to Fung, 2002; Bisplinghoff et al., 1996)

L=L+Ly+ Ls, (2)
in which
" dws;a(0)
ﬁl = 27prU W3/4(0)¢ (7') +/ T(f)(T—O’) do )
0
Ly =mpU? (' — aba”), (3)
L3 = mpbU?d/;
pitching moment may also be written as
1 1
M= (5 + a) bﬁl + ab£2 — (5 — a) b£3 + Ma, (4)
where )
M, = —gﬂpb2 U%a”. (5)

The well-known approximation for the Wagner function, ¢(7), may be written as:

¢(r) =1—me ™" —ye ™, (6)
where v; = 0.165, 7, = 0.335, ¢; = 0.0455, and ¢, = 0.3.
By substituting Eq. 6 into the expression for £; (see Eq. 3), we obtain:

c —27r,obU2{ 60)+ O (3 — 2)]a + o0& )+ (D) + 6O

+ 22: [%'81'(1 — (% —a)e;)Aj — %‘5/2%} -7 [@ i (% - a)a(O)} } .

where A; and H; (j = 1,2) are:

A= [ e aloyso, H= [ et n)do ®)
0 0

Galerkin's method is utilized to discretize the equation of motion in space by letting h =
TN ®i(y)ni(t) and = ZY_ Ok (y)Ck(t), where ®;(y) and ©,(y) are, respectively, the bending
and torsional mode shapes, and 7;(t) and (x(t) are their corresponding generalized coordinates;
also, N is the number of modes, which is assumed to be the same for bending and torsion.
In this study, clamped-free mode shapes for bending and free-free mode shapes for torsion are
used. Thus, the final form of the equation of motion becomes:

MX" + CX'+ KX =0, (9)

where X = [hl..., hN, 01..., 0/\/, All, ---Ale A21, . AQN, Hll, "'HlN' H21...H2N]T; also, M, C, and
K are, respectively, the mass, damping and stiffness matrices.
Next, Eq. 9 is transformed to the state-space form to be used for eigenvalue solutions.
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Table 1 — Parameters of a high aspect ratio wing adopted from Patil et al. (2001).

Parameter Value
Half span, L 16 m
Chord, ¢ = 2b 1m
Mass per unit length, m 0.75 kg/m
Moment of inertia (50% chord), / 0.1 kg.m
Spanwise elastic axis, (1 + a)b 50% chord
Center of gravity, (1 + e)b 50% chord
Bending rigidity, E/ 2 x 10* N.m?
Torsional rigidity, GJ 1 x 10* N.m?
Density of air, p 0.0889 kg/m®

Table 2 — Comparison between present study results and those from Patil et al. (2001).

Parameter Present study | Patil et al. (2001) | Difference
Flutter Speed, Uy (m/s) 33.36 32.21 3.5%
Flutter Frequency, Qf (rad/s) 22.02 22.61 2.6%
Divergence Speed, U,y (m/s) 37.15 37.29 0.4%

Table 3 — Numerical solution convergence study using different number of mode shapes. Pa-
rameters are the same as those in Tab. 1 with x = 0.6487 for the end-support stiffness.

Parameter N =5 N =10 N =15 N =20
Flutter Speed, Uy (m/s) 25.26 (0.1%) | 25.23 (0.2%) | 25.18 (0.0%) | 25.18
Flutter Frequency, Qf (rad/s) | 13.25 (3.2%) | 12.83 (0.8%) | 12.73 (0.5%) | 12.66
Divergence Speed, Uy (m/s) | 24.41 (1.2%) | 24.11 (0.4%) | 24.02 (0.1%) | 23.99

3 Results and discussion
3.1 Validation and convergence of numerical solutions

Prior to proceeding with the investigation of the effects of imperfect end-support on the
dynamics and stability of the system, we present some numerical results to serve as a verification
of the present aeroelastic model. The parameters listed in Tab. 1 are adopted from Patil et al.
(2001) for a clamped-free wing (i.e. perfectly-supported wing or when K — 00). As seen from
Tab. 2, the values of critical flow velocities for flutter (U.) and divergence (U.y) as well as the
flutter frequency (€2r) predicted by the present aeroelastic model are in very good agreement
with those reported by Patil et al. (2001).

Moreover, in order to find the minimum number of mode shapes required for obtaining
accurate numerical results, we obtained the values of U, U,y and Qf for different number of
mode shapes used in the Galerkin approximation for an imperfectly-supported wing. The design
parameters of the wing are the same as those in Tab. 1, with kK = 0.6487, where k = 4KL/72GJ
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Figure 2 — Variation of the negative, dimensionless modal damping as a function of the flow
velocity: (a) divergence occurs at U,y = 4.71 m/s when x = 0.01293, and (b) flutter occurs
at Us = 5.11 m/s when k = 0.01744 — the type of instability changes from divergence to
flutter.

is the dimensionless counterpart of K. As seen from Tab. 3, with 15 modes for bending and
torsional dynamics, the results are within an acceptable range (< 0.5%) with respect to those
with 20 modes; thus, N = 15 is used for the rest of numerical solutions in this paper.

3.2 Stability Analysis

Numerical studies show that the dynamics of a flexible wing-like structure with an imperfect
end-support is very complex. Depending on the design parameters of the structure, such as the
bending-to-torsional rigidity ratio (E//GJ), mass ratio (u = m/mpb?), and the dimensionless
radius of gyration (r? = I,/mb?) and as the dimensionless stiffness of the torsional end-spring
(k) is varied, flutter or divergence may occur. Four different types of dynamical behaviour (by
considering only the first instability), which we call type-1, type-2 and so on, were identified in
the course of a large numerical investigation campaign. In type-1, divergence is the only form
of instability, regardless of the value of . In type-2, divergence occurs at low values of x, but
it switches to a flutter instability from moderate values of . In type-3, flutter is prevalent for
low values of k; however, divergence occurs at moderate values of x, which switches back at
slightly higher values of x to flutter that remains operative up to large values of «. Finally, in
type-4, switching between divergence and flutter occurs frequently as  is varied from low to
high values: divergence at low values of k; flutter at moderate values of x; then, divergence
for slightly higher values of the torsional stiffness, and eventually flutter for high values of .

As an example of the type-4 dynamical behaviour, Fig. 2 shows the change from divergence
(Fig. 2a) to flutter (Fig. 2b) as x is varied from 0.01293 to 0.01744. In the figures, the
variation of the negative, dimensionless modal damping, (—I"/wy), is shown as a function of the
dimensional flow velocity. A branch of solution crossing the half-plane from negative values of
(=T /wy) to positive values indicate an instability. In the figures, ‘branch (a)’ and ‘branch (b)’
refer to the divergence and flutter solution branches, respectively. On the other hand, Fig. 3
shows the change in the type of instability from flutter to divergence, again, for a system with
the type-4 dynamics. Flutter occurs as the first instability at Uy = 6.81 m/s for k = 0.0293,
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Figure 3 — Variation of the negative, dimensionless modal damping as a function of the flow
velocity: (a) flutter occurs at U = 6.81 m/s when x = 0.02931, and (b) Uy = 20.45 m/s
when x = 0.3237 — the type of instability changes from flutter to divergence.

while the same wing with x = 0.3236 undergoes divergence first at U,y = 20.45 m/s.
3.3 Divergence

One way to find the divergence speed is to solve the static version of the equation of motion
by ignoring all terms with a time derivative. In other words, Eq. 9 reduces to KX = 0. By
letting the determinant of the stiffness matrix to zero, a polynomial is obtained as a function
of the flow velocity, where the non-negative real roots correspond to divergence speeds. Using
only two modes for bending and two modes for torsion, the following closed form equation is
obtained for the dimensionless critical flow velocity for divergence, ucy:

Ueg = F(K) , (10)

1/2

where F(x) = 0.31831( 19.7392 + 14.8044x — +/219.17x2 + 194.8182x + 389.6363

Fig. 4 shows the variation of u.y as a function of x obtained from Eq. 10 (circle markers) as
well as the solution using N = 15 (star markers). As seen, as  is decreased — the end-support
becomes more imperfect — u.y decreases, meaning that the system becomes more unstable.
The reduction in u.y is gradual for large values of x; however, it becomes dramatic for moderate
to low values of k. It is also worth mentioning that for k < 0.5 Eq. 10 predicts u.y with a
fairly good agreement with the value obtained using N = 15 modes; however, as « is increased
to higher values, it is advisable to use more and more number of modes for the solution.

Eq. 10 indicates that u.y is linearly dependent on the dimensionless radius of gyration,
while it is increasing with the square root of the mass ratio. In addition, moving the elastic axis
more towards the trailing edge — increasing a — makes the system statically more unstable. It
is also very interesting to see that the expression given in Eq. 10 is very similar to the equation
derived for divergence speed of a typical airfoil section with pitching and plunging degrees-of-

freedom, i.e. ucg = \/r?u/(1 + 2a); see Hodges and Pierce (2011) for more details. It is also
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Figure 4 — Variation of the dimensionless critical flow velocity for divergence, u.y, as a function
of the dimensionless end-spring stiffness, x. The circle markers (orange, online) show the
numerical values obtained from Eq. 10, while the star markers (blue, online) show the solution
obtained via N = 15.

interesting to draw the reader’s attention to the similarity between the divergence problem of
a wing (i.e. cross-flow problem) and that of a pipe conveying fluid or a cylinder in axial flow.
In both of these situations, the dimensional divergence speed, Uy, is inversely proportional to
the square-root of the fluid mass per unit length.

3.4 Flutter

Figs. 5a,b show the variation of the dimensionless critical flow velocity for flutter, u., and
the dimensionless flutter frequency, wy, as a function of the dimensionless end-spring stiffness,
K, respectively, for four different values of the mass ratio: =5, 10, 15, and 20. The rest of
parameters are: E//GJ = 3 and r? = 0.3. Generally speaking, both u.s and wr decrease as x
is decreased, that is when the end-support becomes less perfect. More precisely, three different
regions may be observed in a u; — K curve as we move from a perfectly-supported case (i.e.
high x) towards to an imperfectly-supported one (i.e. low k).

For moderate to large values of x, the curve plateaus, and v, changes only slightly as the
end-support becomes less perfect — region |. As k is decreased further, u. also decreases;
however, within a small range of moderate to low values of x which marks region Il (0.5 <
k < 1.5), surprisingly, ucs increases as k is decreased, meaning that the system becomes more
stable as the stiffness of the end-spring is reduced. Such an unusual behaviour has also been
observed for other systems involving fluid-structure interactions, such as imperfectly-supported
pipes conveying fluid; e.g., refer to Kheiri et al. (2014). Finally, for relatively loosely-supported
wings (i.e. k < 0.5), the change of u. with & is very dramatic, and u.s decreases sharply as x
is decreased — region Ill. On the other hand, wr is decreasing, with a lower rate in region | and
a higher rate in region lll, as x is decreased. Except for an abrupt transition between region |
and region Il at higher values of 1, no unusual behaviour is observed in region Il of k-values
in the frequency plot.

As also seen from Fig. 5a, u.r is increased as the mass ratio is increased. This is expected
as a high mass ratio may be interpreted as a lower density fluid flow and thus weaker fluid-
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Figure 5 — Variation of (a) the dimensionless critical flow velocity for flutter, us, and (b) the
dimensionless flutter frequency, wy, as a function of the dimensionless end-spring stiffness, x,
for different values of the mass ratio: u =5, 10, 15, and 20; also, E//GJ =3 and r*> = 0.3.
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Figure 6 — Argand diagrams showing the evolution of first four eigenfrequencies of the system
as a function of dimensionless flow velocity: (a) x = 0.803, and (b) x = 1.64. The rest of
system parameters are: p = 20, E//GJ = 3, and r> = 0.3.

dynamic forces which needs to be compensated by a higher flow velocity at the onset of flutter.
In addition, region || becomes more pronounced at higher values of ;1. Moreover, the difference
between u.s values for different p values becomes wider at larger values of k. On the other
hand, as seen from Fig. 5b, wr is weakly dependent on the mass ratio, and it slightly decreases
in region | as y is increased.

The unusual behaviour observed in the 0.5 < i < 1.5 range in Fig. 5a may be explained
further by examining the evolution of solution modes (or branches) in Argand diagrams. In the
Argand diagrams shown in Figs. 6a,b, the evolution of first four complex eigenfrequencies of
the system has been shown as a function of u for k ~ 0.8 (region Il) and xk ~ 1.6 (region |),
respectively. The x— and y—axes in the Argand diagrams show the real part (i.e. dimension-
less frequency) and imaginary part (i.e. negative dimensionless damping) of eigenfrequencies,
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Figure 7 — Variation of (a) the dimensionless critical flow velocity for flutter, us, and (b) the
dimensionless flutter frequency, wy, as a function of the dimensionless end-spring stiffness, x,
for different values of the dimensionless radius of gyration: r> = 0.1, 0.2, and 0.3; also, iz = 20
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Figure 8 — Variation of (a) the dimensionless critical flow velocity for flutter, us, and (b) the
dimensionless flutter frequency, wy, as a function of the dimensionless end-spring stiffness, &, for
different values of the bending-to-torsional rigidity ratio: E//GJ =2, 2.5,and 3; also, u = 20
and r> =0.3.

respectively. As seen from Fig. 6a, for k ~ 0.8, flutter occurs in the third mode which also
crosses the 4th mode locus. At k =~ 1.6, however, the third mode remains stable, and flutter
occurs in the 4th mode. This appears as an example of the so-called ‘role reversal’ or ‘mode
exchange,” which often results into an unexpected dynamical behaviour, and that is also a well-
known feature of the dynamics of flexible pipes conveying fluid (for more details, please refer
to Paidoussis, 2014).

Figs. 7a,b show, respectively, the variation of u. and wy as a function of « for three different
values of the dimensionless radius of gyration: r> = 0.1, 0.2, and 0.3. The rest of system
parameters are: E//GJ = 3 and p = 20. Similar trends and regions as those observed in Fig.
5 are also seen from the plots in Fig. 7 with the exception that wy is strongly dependent on r2.
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One interesting aspect of the frequency curve, which is more noticeable in Fig. 7b than Fig.
5b, is the sharp fall in the wr value in region Il.

Figs. 8a,b show, respectively, the variation of u.s and wy as a function of the dimensionless
end-spring stiffness (used for modelling the imperfect support) for E//GJ =2, 2.5, and 3; the
rest of system parameters are: 1 = 20 and r? = 0.3. A similar trend for the variation of u.s and
wr to that seen in Figs. 5 and 7 is also observed here. It is interesting to see that the E//GJ
magnitude is affecting us and wy, mostly in regions Il and Il (moderately- to loosely-supported
systems), and it is minimally changing them in region | (strongly-supported systems).

4 Concluding remarks

The numerical results presented in this paper show that the end-support imperfection for a
flexible wing-like structure may considerably reduce the critical flow velocities for divergence and
flutter. The sensitivity of the aeroelastic stability to the imperfection was found to be different
depending to the degree of imperfection (i.e. end-support stiffness). An unusual dynamical
behaviour was observed in a finite range of the end-support stiffness, where by increasing the
stiffness, the dimensionless flutter speed decreased.
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Nonlinear flutter instability with laminar flow model
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The evaluation of the flutter risk often consists in determining the critical flutter velocity,
that is, the wind velocity above which the steady-state with the fixed wing becomes linearly
unstable, due to fluid-structure coupling. It has been pointed out by many researchers® that,
depending on the nonlinearities of the system, flutter may occur below the critical velocity,
thus making the latter an irrelevant stability criteria. A large part of the research focused
on the effect of nonlinearities coming from the structure!. More recently, fluid nonlinearities
like shocks in transonic flows? or transitional effects® have been considered. In this talk, we
numerically investigate the role of the fluid nonlinearities at play in laminar (102 < Re < 10%)
incompressible flows.

We consider a two-dimensional setup, similar to the one experimentally studied by Amandolése
et al*, which consists in a thin rigid plate, mounted on fully linear heaving and pitching springs.
The fluid is modeled by the incompressible 2D Navier-Stokes equations. As a first step, the
linear stability of the coupled system is assessed in order to retrieve the linear flutter thresholds
in the (mass ratio, Reynolds number) parameter space. Then, a weakly nonlinear analysis is
performed, allowing us to derive the normal form associated to the flutter Hopf bifurcation (Fig
(a)). From there, two scenarios are encountered : (i) a supercritical Hopf bifurcation leading to
smoothly increasing, low-amplitude, LCO solutions, above the critical velocity (Fig (b)) or (ii)
a subcritical Hopf bifurcation allowing high-amplitude LCO's, even below the critical velocity

(Fig (c)).
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Numerical and wind tunnel studies of highly flexible composite
plates for HALE wing aeroelastic tailoring applications
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Abstract

This paper is dedicated to aeroelastic tailoring of very flexible aircraft (VFA) both from the
numerical and the experimental point of view. The first objective of this work is to present an
open source simulation tool called GEBTAero devoted to this kind of application and based on
low order models. Because of the limited availability of experimental data about very flexible
wing, the second objective is to propose a wind tunnel test campaign to identify the aeroelastic
critical speed of highly flexible isotropic and anisotropic plates in order to validate the simulation
tool. Aside from the good agreement between numerical and experimental critical speed and
frequency, this campaign highlights the typical hysteresis phenomenon and limit cycle oscillations
related to high aspect ratio flexible wing.

Keyword: aeroelastic tailoring, HALE UAV, wind tunnel, low order method.

1 Introduction

Recent progress made in the field of solar cells, energy storage and composite materials pave the
way for a new aircraft concept, namely High Altitude Long Endurance (HALE) Unmanned Aerial
Vehicle (UAV) whose goal is to reach an endurance almost infinite. To achieve this far-reaching
goal, aerodynamic and structural performances are stretched to their limits. As a consequence,
HALE wings are extremely vulnerable to aerolastic static divergence and flutter (e.g. NASA's
Helios mishap). A way to improve composite wing performance versus theses instabilities is
the aeroelastic tailoring concept. It consists in using laminate layup without mirror symmetry
and/or unbalanced layup. The emerging structural coupling induced on the aerodynamic side a
coupling between the bending, due to lift forces, and the twisting of the wing which determines
the local Angle of Attack (AoA) and consequently an impact on aeroelastic behavior.

The computational cost of high fidelity aeroelastic simulation on Very Flexible Aircraft (VFA)
is still prohibitive, prompting the need for suitable reduced order model. Many reduced or-
der model tools have been developed during the last decades as for example, NATASHA
[Patil and Hodges, 2006], SHARP [Murua et al., 2012], UM/NAST [Shearer and Cesnik, 2007]
or Aeroflex [Ribeiro et al., 2012]. Recently, an open source simulation tool called GEBTAero has
been developed by the authors, well fitted for the computationally intensive task of aeroelastic
tailoring optimization [Kirsch et al., 2020].

On the experimental side, there is only little data available in the literature concerning flexible
wings. We could mention the wind tunnel test conducted in [Tang and Dowell, 2016] on a
flexible wing made of a steel flat plate with a balsa wing skin. Although this experiment gives
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Figure 1: Structural definition in GEBTAero

interesting results, notably in terms of Limit Cycle Oscillation (LCO) studies, the aeroelastic
tailoring effect is not taken into account on this isotropic wing.

This paper concerns a wind tunnel test campaign conducted on flexible flat plates, both metallic
and composites in order to obtain validation data for aeroelastic tailoring purpose. First,
GEBTAero used for simulation is presented. Then, after a short presentation of the experimental
setup, the flutter speed and frequency of an aluminum flat plate are evaluated depending on
the half-span. Finally, experimental results on different laminates producing bending-twisting
coupling are provided.

2 Aeroelastic reduced order model

The main objective of GEBTAero is to define a fast implementation of a proper reduced or-
der aeroelastic model well fitted for the computationally intensive task of aeroelastic tailor-
ing optimization. The high-aspect-ratio wing assumption gives us the opportunity to neglect
three-dimensional effects and thus to use a strip theory which can be easily linked to a beam
formulation. A tight coupling is chosen, done by integrating aerodynamic loads directly into the
weak formulation of the beam theory. It permits the determination of the aeroelastic modes of
the wing about a geometrically non linear steady state, namely frequencies, modal shapes and
damping factors.

On the structural side (Fig 1), to ensure a proper modeling of the laminate anisotropy and
geometrical non linearity, the choice fell on an open source tool named GEBT (Geometrically
Exact Beam Theory) developed by Yu and Blair [Yu and Blair, 2012] designed for composite
slender structures under large deflections and rotations, assuming the strains to be small. This
tool coded in Fortran 90/95 implements a mixed variational formulation based on exact intrinsic
equations for dynamics of moving beams developed by Hodges [Hodges, 1990]. The cross sec-
tion parameters of the anisotropic beam are determined using an homogenization tool following
a method developed by Cartraud and Messager [Cartraud and Messager, 2006]. It consists in
a three-dimensional finite element calculation realized with the open source solver CalculiX
on a Representative Volume Element (RVE) of the beam using periodic boundary conditions
along beam axis direction [Kirsch et al., 2018]. The RVE is a 3D mesh written in Abaqus input
format.

On the aerodynamic side, the unsteady two-dimensional finite state approximation model devel-
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Table 1: Patil wing flutter speed and frequency [Kirsch et al., 2020].

Undeformed wing  Deformed wing

program speed frequency speed frequency
m/s rad/s m/s rad/s
present (N = 10; Ns = 6) 32.2 22.6 23.3 11.9
NATASHA [Patil, 1999] 322 226 - -
UM/NAST [Shearer and Cesnik, 2007]  32.2 22.6 23.2 10.3
Aeroflex [Ribeiro et al., 2012] 32.6 22.3 23.4 12.2

oped by Peters et al. [Peters et al., 1995] is used and directly introduced in the weak formulation
in order to obtain a tightly coupled aeroelastic model.

The resulting formulation permits different applications both in time domain and frequency
domain. The capabilities of the resulting program are summarized in figure 2. A particular
aspect of this computation code is its capability to quickly compute critical speeds, thanks
notably to a modal resolution strategy based on the computation of only a few modes of
interest using Arpack modal solver, and the use of sparse matrix .
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Figure 2: GEBTAero computation features [Kirsch et al., 2020].

The validation of the code has been carried out on two cases. The first one is the Goland
wing, which is widely used in the literature but which is not representative of VFA. The Patil
wing [Patil, 1999] proposes a more suitable test case to assess the impact of geometrical non
linearities on VFA behavior, but still with an isotropic wing. GEBTAero gives successful results
for both cases as it can be seen for the Patil wing in the Tab. 1 in comparison with other
simulation tools. Fig. 3 shows an illustration of a temporal simulation.

169



Second International Symposium on Flutter and its Application, 2020

4.1e-01

035
—025

02

—

0.15

|
L S

0.0e+00

rotations Magnitude

Figure 3: Real time flutter instability of the Patil wing; altitude = 20 km; velocity = 38 m/s
[Kirsch et al., 2020].

3  Wind tunnel tests and comparison with simulation

3.1 Experimental setup

The experimental campaign is conducted in a wind tunnel with a test section of 450 x 450 x
700mm and a speed range from 5 to 45m/s. The flat plate is mounted using a 3D printed
device linked to the side wall of the wind tunnel. The AoA is adjustable using a rotating disk
mounted on an axis (Fig. 4). Thereafter, all the tests are done with an AoA set to zero. The
mean flow speed is measured using a differential pressure sensor between the inlet and the
outlet of the nozzle placed upstream of the test section. In order to evaluate the accuracy of
flutter speeds computed by GEBTAero, this experiment focuses on the flutter boundary without
the need of studying LCO. In this regard, flat plates could be a good choice. Indeed, provided
that the relative thickness is small enough to avoid the need for a milled leading edge and
trailing edge, flat plates are good candidates for test cases because of their simplicity. The
elastic, inertial and geometrical parameters are easy to determine and the shape is adapted to
aerodynamic model as long as the angle of attack remains small.

Concerning measurements, the large displacement and rotation of the plate, the flexibility
and the small weight of such a plate make it difficult to choose a proper type of sensors to
assess flutter speed and frequency. To tackle those constraints, two micro-accelerometers are
used. They are little intrusive and allow to retrieve speed and displacement data through signal
integration. They are positioned side by side at 300 mm from the wing tip in order to obtain the
vertical acceleration (mean values of the two signals) and the angular acceleration (difference
between the two signals scaled by the lever arm). The global setup is shown in Fig. 4.

Figure 4: Aluminum plate experimental setup with micro-accelerometers on the lower surface.
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3.2 Flexible aluminum plates

In [Kirsch et al., 2019], a study is proposed to find the ideal metallic plate to be representative
of VFA aeroelasticity considering wind tunnel capabilities. The choice fells on the aluminum
plate, with a chord of 30mm, a thickness of 0.5mm, and a length of 450 mm ensuring a
compromise between the Reynolds number and aspect ratio.

First of all, for a half-span of 450 mm, we could mention a large flow speed hysteresis: instability
starts between 11 and 11.5m/s and stops below 7m/s. Then, the order of magnitude difference
between stable and unstable domain is large, allowing us to easily set the frontier. We can also
see two harmonics typical of a non linear instability [Kirsch et al., 2019]. To assess the flutter
speed and frequency correlation with numerical simulation in a more general manner, the same
experiment is done for various half-span ranging from 380 mm to 450 mm. Flutter instability
for half-span smaller than 380 mm is too violent and damages the plate. One measurement is
made for the fundamental frequency and is compared to the second and third mode simulated
by GEBTAero (figure 5a). According to the simulation, the unstable mode is the third one (in
green) which corresponds, without flow, to the first twisting mode. However, the correlation
with the second mode (in orange) which correspond, without flow, to the second bending mode,
seems to be better.
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Figure 5: Comparison between experimental and numerical frequencies (a) and flutter speed
(b) for a flexible aluminium plate with a section of 0.5 mm x 30 mm and a variable length.

39 40

Concerning the flutter speed, the measurements are made on three different plates with the
same dimension to assess repeatability (figure 5b). As we can see, the flutter speed is slightly
underestimated for the largest values of half-span. It could be an effect of the pressure losses
due to the side effect of the wind tunnel. Overall, the agreement between simulation and
experiment is quite good. The repeatability is correct, however, especially for largest speeds,
a very slow bending mode tends to modify the static deflection of the plate, which is a key
parameter of the flutter speed.

3.3 Flexible composite plates

In order to evaluate the anisotropic capability of GEBTAero, the same type of experiment is
conducted on flexible laminate plates with bending/twisting coupling. The UniDirectional (UD)
prepreg used is a UD150/CHS/MI0R, its characteristics are given in [Kirsch et al., 2019].
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Figure 6: a) Flutter speed, frequency, divergence speed and flexibility of a 420 mm half-span
composite plate with a central ply oriented at 0° and two external plies with various orientation ;
b) Laminate static deflection, from left to right : [90, 0, 90], [60, 0, 60], [45, 0, 45], [30, —30, 30],
[30,0,30] and [15,0, 15].

In the same way as for metallic plates, simple solutions are seeking to produce relevant test cases.
A laminate layup is defined by the orientation of its plies [61, ..., 8,]. According to the Classical
Laminate Theory (CLT), a laminate without mirror symmetry, i.e. without symmetrical plies
to the middle plan with the same orientation, has a traction/twisting coupling. This coupling
could be exploited in a wing box configuration, providing that the bending of the wing produces
a traction or a compression of the upper side and lower side. Thin plates exploit another type of
coupling, generated by unbalanced layup, i.e. without a balance between positive and negative
orientation. For example, for a balanced layup, every 45° oriented ply is compensated by a
—45° ply.

The simplest unbalanced layup consists in a laminate with a single orientation. Although it
permits to produce a bending/twisting coupling, such a flexible plate is too fragile and may
break between two fibers. The next configuration in terms of complexity is a two-ply laminate
with two different fiber orientations. In that case, because mirror symmetry is not respected, the
large difference between longitudinal and transverse coefficient of thermal expansion produces
an undesired twisting of the plate during the cool down. Then, the simplest usable layup consists
in a three-ply laminate with external plies oriented in the same direction. To obtain the proper
static deflection and for sturdiness purposes, the central ply is oriented at 0°. The divergence
and flutter speed, the flutter frequency and the flexibility matrix coefficients simulated by
GEBTAero for different external plies orientations are plotted in figure 6a. The half-span is set
to 420 mm in order to alleviate wind tunnel test section side effect.

According to the simulation, five layups are produced : [15,0,15], [30,0,30], [45,0,45],
[60,0,60] and [90,0,90], allowing to simulate various aeroelastic behaviors. A sixth one is
produced to evaluate another central ply orientation, namely [30, —30,30]. Theoretically, it
gives us five more layup by returning the plate ([15,0, 15] becomes [—15,0, —15]). In fact,
negative external plies orientation implies a very low divergence speed with massive stall and
is therefore unusable. To illustrate the structural coupling of this laminates, static deflection
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of plates are shown in figure 6b. Beyond the obvious discrepancy in term of bending flexibility,
it shows us the structural coupling between the bending due to weight and the twisting of
the cross section (except from the uncoupled [90, 0, 90] laminate). To produce a spectrogram,
the flow speed is slowly increased until flutter instability and then decreased. The mean flow
speed is plotted in the spectrogram. The results for the layups [30, 0, 30] and [30, —30, 30] are
plotted in figure 7 and 8, compared to the aeroelastic modes plotted by GEBTAero. However,
because the vacuum was not perfectly controlled during the cure process, a discrepancy exist in
the laminate thickness (measured from 0.48 mm to 0.55 mm instead of the nominal 0.48 mm),
while it is a key parameter in terms of aeroelastic behavior sensitivity, according to CLT, a
thickness correction has been applied on the results.
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Figure 7: 420 mm half-span [30, 0, 30] laminate test result: a) vertical acceleration spectrogram,
b) angular acceleration spectrogram, c¢) GEBTAero aeroelastic modes plot.

First of all, it can be noticed that flow speed appeared in the spectrogram and can be directly
linked to the rotational frequency of the fan. Secondly, the blue band area corresponding to
the stable domain. A good correlation is obtain between the simulated frequencies and the
experimental ones. It depends mainly on the type of mode: bending mode, torsional mode or
coupled mode (e.g. mode 1 and 2 in Fig. 7 a)-b) and mode 4 only in b) ; idem in Fig. 8).
Note that energy is relatively low in these modes because the excitation is only due to the
motor vibrations and the airflow turbulence. Thirdly, the green/red band area corresponds to
the flutter domain. This part exhibit a much more complex aeroelastic behavior. For example,
Fig. 7 shows a LCO with several harmonics while Fig. 8 shows a chaotic motion. We also
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Figure 8: 420 mm half-span [30, —30, 30] laminate test result: a) vertical acceleration spectro-
gram, b) angular acceleration spectrogram, ¢) GEBTAero aeroelastic modes plot.

could mention a large flutter speed hysteresis. For the [30,0,30] plate (Fig. 7), instability
starts around 14 m/s and stops around 9 m/s. To illustrate that complexity of high amplitude
motion, phase portrait of the vertical degree of freedom (dof) is proposed for various laminates
and speeds (Fig. 9).

Finally, flutter speeds (figure 10) are compared to the values simulated by GEBTAero for the
five layups with a central ply oriented at 0°. Regarding frequencies, the first four modes are
also plotted. On the one hand, for the flutter speed, the simulation tends to overestimate the
value. The other remarkable point is that the bending/twisting coupling tends to compensate
the effect of the large deflection due to gravity in terms of flutter speed. [90, 0, 90] laminate is
the only one impacted by this static deflection.

4 Conclusion

Design challenges induced by HAPS in terms of aeroelastic performances show the need for an
accurate reduced order model able to simulate non linear behavior of an anisotropic high-aspect-
ratio wing. The present work presents a solution based of the geometrically exact beam theory
coupled with a two-dimensional unsteady finite state aerodynamic model implemented into an
open source solver. In addition, to emphasize geometrical non linearities and anisotropic capa-
bilities, a wind tunnel campaign is conducted. For the sake of simplicity, flexible metallic and
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Figure 9: LCO of 420 mm half-span composite plate for various laminates and speeds: a)
[15,0,15] at 9.9m/s 550s; b) [15,0,15] at 12m/s ; c) [90,0,90] at 5.3m/s ; d) [60, 0, 60] at
6m/s.

composite flat plates are tested, the latter with the simplest layup exhibiting bending/twisting
coupling, namely a three-ply laminate with external plies oriented in the same direction. Exper-
imental results show a good agreement, especially for metallic plates. Furthermore, composite
plate experiments highlight the complex behavior of such anisotropic flexible wings, with highly
coupled aeroelastic modes leading to various kind of LCO and large flutter speed hysteresis.
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Figure 10: Flutter speed of a 420 mm half-span [#, 0, §] carbon epoxy laminate: computation
versus experimental wind tunnel tests
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Abstract

Flow fields in 2-blade and 4-blade half-ducted propeller fans for the outdoor units of air
conditioners were calculated with finite element method-based large eddy simulation with
the aim of investigating what influence of tip vortex had on aerodynamic noise in this study.
Increase of aerodynamic noise is an indication of blade vibration. Prediction and
understanding mechanism of aerodynamic noise are therefore useful knowledge for
suppression of vibration induced by tip vortex. The aerodynamic noise of 2-blade propeller
fan was smaller than that of the 4-blade. We already confirmed that the tip vortex (TV) had
a great influence on half-ducted propeller fans in the previous paper. In this study, we
confirmed that the minimum distance between the TV and the adjacent blade or the bell
mouth, and the vorticity at the point were dominant parameters in the aerodynamic noise.

Keyword: propeller fan, tip vortex, aerodynamic noise, large eddy simulation

1 Introduction

Development of silent air conditioners is one of the most important problems in
recent changes of life-styles. Aerodynamic noise from fans contributes to a large percentage
of the overall noise from air conditioners. Therefore, the development of silent fans would
contribute to reducing the noise levels of air conditioners. Moreover, increase of
aerodynamic noise is an indication of blade vibration. Prediction and understanding
mechanism of aerodynamic noise are therefore useful knowledge for suppression of
vibration induced by tip vortex. Under this demand, we have developed the silent fan by
decreasing the blade number from 4-blade to 2-blade (Funabashi et al., 2004). The noise
level of the 2-blade propeller fan was smaller than that of the 4-blade propeller fan
experimentally at an operating flow rate.

The fans in many air conditioners with outdoor units have a casing that only covers
the near region of the propeller tips. As a result, part of the blade tip near its leading edge is
open to the upstream. These propeller fans are called half-ducted propeller fans. They have
a very complicated flow field near the propeller tips.

Half-ducted propeller fans have been mainly developed by using experimental
methods. Predictions of aerodynamic noise were based on estimates from static flow field
characteristics and experimental coefficients (Hakamaya et al., 1999). However, it is difficult
to develop radically silent fans by using traditional methods. We therefore need new
methods of predicting aerodynamic noise for understanding the mechanism and developing
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silent fans. Computational Fluid Dynamics (CFD) is a powerful tool for solving these needs.
Many researchers have studied flow fields by using Large Eddy Simulation (LES) (Kato et
al., 2003; Yamade et al., 2006; Reese et al., 2007; Jang et al., 2001).

Many researchers have also studied the development of silent fans. Beiler et
al.(1999) analyzed blade-to-blade flow fields by using CFD and hot wire, and they developed
a silent fan with skewed blades. Okamoto et al.(2009) proposed an optimized blade shape
for a propeller fan by using an inverse design method and CFD. Sugio(2003) optimized blade
number of propeller fan. Ito et al.(2009) investigated influences of blade tip clearance,
treatment of outlet roundness, and spoke skew for small axial fan. However, there were few
studies about detail investigation on the relationship between tip vortex and aerodynamic
noise.

The final goal of our study was aimed at designing silent fans. Authors (Iwase et al.,
2017) already investigated the influence of blade number on aerodynamic noise of half
ducted propeller fan. In this study, further investigations were therefore implemented to
analyze the influence of tip vortex on aerodynamic noise.

2 Methods of numerical simulations

2.1 Testfan

This study was carried out on the half-ducted propeller fans used in the outdoor
units of air conditioners. 2-blade and 4-blade propeller fans were intended as same as the
previous paper (lwase et al., 2017). Figure 1 shows configuration of the propeller fan and
the bell mouth. The propeller tip diameter was 644 mm. The tip clearance was 10 mm. The
noise level of the 2-blade propeller fan was smaller than that of the 4-blade propeller fan
experimentally at an operating flow rate.

Bell mouth

Propeller
(a)2-blade propeller fan (b)4-blade propeller fan

Figure 1: Configuration of propeller fan and bell mouth.
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2.2 Large eddy simulation and computational conditions

The numerical simulation code we employed throughout the LES was
FrontFlow/blue (FFB) as same as the previous paper (lwase, et al., 2017). The FFB was
developed by Kato et al.(2003, 2005). The FFB has been successfully used for simulating
several axial flow fans (lwase, et al., 2017; Yamade et al., 2006; Reese et al., 2007). The
governing equations are the spatially filtered continuity equation and the Navier Stokes
equation for the flow of an incompressible fluid. The effects of eddies that are not resolved
by the grid (sub-grid scale eddies) are modeled by the dynamic Smagorinsky model
(Germano et al., 1991; Lilly, 1992).

Figure 3 shows computational models. The computational model was the same as
the previous paper. The number of grid elements was 10,619,900 in the 2-blade propeller
fan. The number of grid elements was 10,888,908 in the 4-blade propeller fan. Each
computational model consists of three parts, i.e., the inlet, propeller, and outlet parts. The
propeller part is in the rotating frame of reference. The inlet and the outlet parts are in the
stationary frames. The grid is composed of hexahedral elements. The calculated flow rate
was 100 m®/min, which was operating flow rate. The rotational speed was 550 rpm. The time
steps per a single revolution of propeller was 4,096.

The previous paper described the specification in detail.

Outlet part

2-blade

propeller fan

Inlet part Propeller part

4-blade propeller fan
(a) Construction of computational parts (b) Grids of blade and bell mouth surfaces

Figure 2: Computational models.
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3 Results and discussions

3.1 Relationship between tip vortex and adjacent blade

In the previous paper (lwase, et al., 2017), we already confirmed that the calculated
static pressure rise and the shaft power reasonably agreed with the experimental results,
and the tendency of the aerodynamic noise could calculated qualitatively. We also confirmed
that tip vortex(TV) had a great influence on flow structure in the half ducted propeller fans.
The influence on aerodynamic noise on the tip vortex was therefore investigated by
analyzing further the calculated results.

Figure 3 shows vortex cores colored with normalized helicity and streamline around
TV colored with vorticity. The trajectory of the vortex center was identified with a semi-
analytic method, which was based on critical-point theory, to enable the complicated flow
field in the propeller fans to be better understood. It was possible to visualize the vortex core
according to this method. Normalized helicity H, was evaluated along the vortex cores to
quantitatively analyze the nature of the vortex. The normalized helicity corresponds to the
cosine of the angle between absolute vorticity and relative velocity. If H, = 1, this indicates
there is a vortex core for the longitudinal vortex in the region. These visualizations of the
vortex core and normalized helicity are useful tools for investigating the flow field of
turbomachinery. Jang et al.(2001) and Kusano et al.(2011) give detail information of the
visualization methods. The vorticity was normalized by the tip speed and density.

The tip vortex (TV) rolled up from the tip near the leading edge. Streamlines are
displayed by showing around one of the TVs. The normalized helicity along the TV
maintained almost H, = +1.0, and the TV passed through the blade-to-blade passage. These
TVs flow structures are typical flow fields in the half ducted propeller fan. The length of the
TV trajectory and the blade pitch for the 2-blade propeller fan were longer than those for the
4-blade propeller fan. The vorticity strength of the TV near the adjacent blade for the 2-blade
propeller fan was weaker than that for the 4-blade propeller fan. Because the vorticity
strength of the TV for the 2-blade propeller fan decayed greatly as the flow went downstream.

Figure 4 shows a comparison of static pressure fluctuations on the pressure surface.
The pressure fluctuations are normalized by the tip speed and the density. The pressure
fluctuation near the tip of the trailing edge of the 2-blade propeller fan was weaker than that
of the 4-blade propeller fan. Because the weaker TV vorticity strength and the longer
distance were suppressed the interaction between the TV and the adjacent blade in the 2-
blade propeller fan. Aerodynamic noise was related to unsteady force according to Curle’s
equation defined by equation (1) (Howe, 2003).

~ ki @( _M)
Pa * 41CH X% dt t Co (1)

Here, pq is the dipole sound pressure, ¢y is the sound speed, x; is the observation
point, tis the time, and F;is the unsteady force exerted on the fluid by the body. In this study,
the body was the impeller. The aerodynamic noise was calculated at the same point as the
measured one, 1 m away from the impeller on the rotating axis. The unsteady force was
caused by the pressure fluctuations. Weaker pressure fluctuations made the 2-blade
propeller fan more silent than the 4-blade propeller fan.

Figure 5 shows a comparison of distance between the TV and the adjacent blade.
La indicates the distance shown in Figure 3. Horizontal axis indicates a tangential coordinate,
the product of radius R and angle 6. The distance has a minimum value in each propeller fan.
The minimum value in the 2-blade propeller fan was four times longer than that in the 4-
blade propeller fan.
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Figure 6 shows a relationship between the minimum distance of the TV and the
adjacent blade, the vorticity at the minimum distance point, and the aerodynamic noise. The
aerodynamic noise showed the experimental results. The distance was so far that the
aerodynamic noise was small. Moreover, the vorticity was so small that the aerodynamic
noise was also small. As a result, the minimum distance between the TV and the adjacent
blade, and the vorticity at the point were dominant parameters in the aerodynamic noise.

Normalized
Rotating direction / Streamline around TV hellCItY Hn

-
o

Vorticity
2000

(a)2-blade propeller fan (b)4-blade propeller fan

Figure 3: Vortex cores colored with normalized helicity
and streamline around TV colored with vorticity.

Increase of pressure fluctuation

Trailing
edge

Pressure
fluctuation

0.05

(a)2-blade propeller fan (b)4-blade propeller fan

Figure 4: Comparison of static pressure fluctuations on pressure surface.
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Figure 6: Relationship between minimum distance of TV and adjacent blade, vorticity at
the minimum distance point, and aerodynamic noise.
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3.2 Relationship between tip vortex and bell mouth

Figure 7 shows relationship between TV colored with vorticity and bell mouth. A
blade length of the 2-blade propeller fan was longer than that of the 4-blade propeller fan.
The point at which TV rolled up was therefore far from the inlet of the bell mouth in the 2-
blade propeller fan. The vorticity strength of the TV near the inlet of the bell mouth of the 2-
blade propeller fan was weaker than that of the 4-blade propeller fan. Because the vorticity
strength of the TV decayed greatly as the flow went downstream. Circle A was the region in
the minimum distance between the TV and the bell mouth.

Figure 8 shows a relationship between the minimum distance of the TV and the bell
mouth, the vorticity at the minimum distance point, and the aerodynamic noise. L, indicates
the distance shown in Figure 7. As with the relationship between the TV and the adjacent
blade, the distance was so far that the aerodynamic noise was small. Moreover, the vorticity
was so small that the aerodynamic noise was also small. As a result, the minimum distance
between the TV and the bell mouth, and the vorticity at the point were dominant parameters
in the aerodynamic noise.

Vorticity
2000

Bell mouth

(a)2-blade propeller fan (b)4-blade propeller fan

Figure 7: Relationship between TV colored with vorticity and bell mouth.
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Figure 8: Relationship between minimum distance of TV and bell mouth, vorticity at the
minimum distance point, and aerodynamic noise.

4 Conclusions

Flow fields in the half-ducted propeller fans for the outdoor units of air conditioners
were calculated with Large Eddy Simulation based on finite element method with the aim of
investigating the influence of tip vortex on aerodynamic noise in this study. Flow structure
and aerodynamic noise of 2-blade and 4-blade propeller fans were studied. The three main
results can be summarized as follows:

(1) The minimum distance between the tip vortex and the adjacent blade, and the vorticity
at the point were dominant parameters in the aerodynamic noise.

(2) The minimum distance between the tip vortex and the bell mouth, and the vorticity at
the point were also dominant parameters in the aerodynamic noise.
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Blade flutter is one of the main issues that designers of modern gas-turbine engines and
steam turbines encounter. As a rule, blade flutter is analysed using simplified empirical
criteria obtained based on the experience of design and testing of engines.

In this paper we study the effect of several design parameters on prediction of blade
flutter in compressors of gas-turbine engines: the radial gap between the blade and the
casing, the axial gap between the guide vane and the blade, the guide vane angle, the inlet
pressure non-uniformity, and the mounting tension force in the blade shroud. Simplified
empirical and probabilistic criteria are not applicable to evaluation of these parameters, which
is why a numerical algorithm for flutter prediction based on the energy method is used.

The numerical algorithm is as follows [1]. We assume that the influence of the airflow on
the blade natural modes is insignificant and leads only to aerodynamic damping, positive or
negative; a condition that is almost always met for compressor blades. Therefore we can
compute natural mode shapes and frequencies using standard methods and then simulate
unsteady flow at given oscillations of the blade. As a result, the work done by unsteady
pressure over one oscillation cycle is calculated (Eq. 1):

to+T

W= fto fs p(x,y,z,t)n(x,y,zt)v (x,y,z t)dsdt, 1)

where T is the oscillation period of the blade, S is the blade surface, p is the pressure, n is the
normal to the blade surface, and v is the velocity of the blade points. We neglect the viscous
stresses in the air, because they usually do not affect the flutter boundaries. With this
approach the flutter criterion is the sign of the work W.

The airflow model consists of three successive blade passages of one wheel. To
calculate the transient airflow, the initial and boundary conditions are set from the steady flow
calculated for the whole compressor and verified by full-scale engine tests. Mesh
displacement in the form of travelling wave corresponding to the wheel natural mode with a
specified number of nodal diameters is applied to each blade surface.

It is shown that the inter-blade tension has a significant influence on the flutter
boundaries, while the effect of other design parameters under investigation is minor. The
results can be used for efficient flutter suppression in compressor and turbine blades.

The work is supported by RFBR grants 18-01-00404 and 18-31-20057.

1. Vasily V. Vedeneev, Mikhail Kolotnikov, Pavel Makarov. Experimental validation of numerical blade
flutter prediction// Journal of propulsion and power. 2015. Vol. 31. No. 5. P. 1281-1291.
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Coupled-mode flutter in wind turbine blades has been investigated theoretically, with
evidence suggesting that it can occur in wind turbine blades when the third flapwise and the
first torsional modes are coupled.! Despite this prediction, coupled-mode flutter has not been
observed experimentally in full-scale or small-scale wind turbine blades. Here, we present
experimental evidence of coupled-mode flutter in a parked wind turbine blade, which is a
scaled down version of the NREL 5 MW wind turbine blade. The original NREL 5 MW design
has a length of ~61 meters, and the scaled down version that we have built for the present
tests had a length of ~2 meters. The length of the blade was dictated by the size of the test
section in the wind tunnel where we conducted the tests. While the two-meter blade is much
smaller than the original NREL 5 MW blade, it is still considered rather large-scale for typical
small-scale experiments. We designed and built the model blade such that the ratios of its
flapwise natural frequencies to the first torsional natural frequency remained the same as
those of the original blade. The blade was placed in the test section of the Wall of Wind’s wind
tunnel (located at the Florida International University) with a test section of 4.3 m x 6 m and a
maximum wind speed of 60 m/s. The blade was clamped at its root and could not rotate,
resembling a wind turbine blade that is parked in anticipation of severe weather.

The response of the blade was measured through two bending and one torsion strain
gauges along the length of the blade and two accelerometers at the tip of the blade measuring
accelerations in the flapwise and edgewise directions. Argand diagrams were produced from
the strain gauge data for wind speeds before the onset of instability and it was observed that
the third bending and the first torsional frequencies moved toward each other as the wind
speed was increased and merged at a critical wind speed, giving rise to coupled mode flutter.
Amplitude plots showed increasing displacement amplitudes for increasing wind speeds for
wind speeds larger than the critical one. Oscillations were observed through the length of the
blade, where a combination of flapwise and torsional motions was visible in the response. For
very large wind speeds, oscillations purely in the torsional direction were observed, suggesting
the possibility of stall flutter at these wind speeds.

1. Pourazarm, P., Modarres-Sadeghi, Y., & Lackner, M. (2016). A parametric study of coupled-mode
flutter for MW-size. Wind Energy, 19, 497-514.
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Due to large diameter and 3D design, modern jet engines fan blades are more prone to
flutter. Two contributions drive stall flutter events: (i) the variation of incidence due to reflected
acoustic waves upstream of the fan, which can be modelled by 1D acoustic model and (ii) the
competition of shock-waves, pressure waves and boundary layer separation due to the blade’s
vibration. This work contributes to the understanding of this second contribution.

An Unsteady Reynolds-Averaged Navier-Stokes (URANS) compressible solver with moving
grid is used to compute the unsteady flow around a vibrating fan blade over a large range of
rotational speeds. Harmonic displacement of the blade is imposed in first flap mode with two
nodal diameters.

Aerodynamic damping coefficient is plotted along mass-flow in Fig. 1 for different rotational
speeds. All the rotational speeds exhibit positive aerodynamic damping close to design speed,
which denotes aeroelastic stability, and negative damping close to stall, in the flutter bite
region. Insights on the onset of flutter are obtained by analysing the local work distribution
and by decomposing the modeshape in the radial direction. At high-speed (M, = 1.13),
the destabilising shock-wave contribution decreases with mass-flow, reaches a minimum and
increases. The source of this non-monotonic behaviour is the phase variation of the pressure
waves generated at the trailing edge (two-dimensional mechanism). At part-speed (M, =
0.91), pressure wave generated below the shock-wave migrate radially toward the tip, where
they trigger an unstable oscillation of the shock-wave (three-dimensional mechanism). Our work
suggest that unstable events encountered in the same flutter bite can have different onsets.

0.10

0.05+

M,,=1.13
0.00 == B gk e
flutter region

0.9 1.0 1.1 1.2
normalised mass-flow [-]

damping [-]

—0.05-

Figure 1: Aerodynamic damping along mass-flow for different rotational speed.
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The continuous trend to reduce the weight characteristics of aircraft engines leads to an
increase in their vibration loading on the blades and contributes to the emergence of dangerous
aero-elastic processes (flutter, rotating stall, resonant oscillations of the blades, surge). The
pressure increasing in the stage and using blisks is characteristically for aircraft engines of the
5th and subsequent generations of engines, but this increases the aerodynamic load and reduces
the vibration damping of the structure.

The aeroelastic processes in gas turbine engines are characterized by a complex interaction
of gas flow and oscillating blades. The modern methods of designing gas turbine engines do
not completely eliminate the emergence of dangerous aeroelastic oscillations in them due to
the difficulty of predicting unsteady aerodynamic strength acting on the blades. The dangerous
oscillations of the blades can occur depending on the action of unsteady aerodynamic strength
and a combination of input and dissipated energy. Aeroelastic vibrations can occur under any
mode of operation of an aircraft engine under certain conditions. Therefore, reliable early
diagnosis of their occurrence and diagnosis of the type of oscillations in experimental research
are an urgent problem.

The experts of department "Dynamics and Strength" (CIAM) have extensive experience
in experimental studies of aeroelastic processes in gas turbine engines on CIAM stands and
industrial plants using new technologies for processing and analyzing dynamic signals. In par-
ticular, methods for diagnosing blades flutter and other types of blade oscillations as part of an
axial turbomachine were developed and patented, which are currently being successfully used in
experimental studies of the dynamic strength of engine blades for various applications on CIAM
stands and industrial plants.

The development of measurement and computational technologies over the past decade
has given impetus to the development of new technologies for processing, analyzing and three-
dimensional representation of the aeroelastic processes research results in gas turbine engines
using algorithms based on fast Fourier transform, wavelet transforms and probabilistic-statistical
methods.

At present, the computational capabilities of modern measuring equipment make it possible
to carry out a spectral-correlation analysis of blades oscillations with a 3D display of relative
spectral-phase and correlation characteristics in the research of the aircraft GTE parts dynamic
strength.

The applying of modern technologies for processing and analyzing dynamic signals to study
dangerous aeroelastic processes in gas turbine engines makes it possible to more effectively
identify diagnostic evidence of flutter, rotating stall, surge and resonant oscillations of blades
at an early stage, and, consequently, increase the reliability of gas turbine engines.
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The laminar to turbulent transition occurring on marine propeller blades is known to be crit-
ical for the body performance and its structural integrity. Previous experimental laboratory re-
searches have shown that under relatively high Reynolds numbers (Re = 300, 000 to 800, 000),
highly transitional flows are observed on laminar propeller section, which induces important
structural vibrations with low damping, that can in some case get close to the resonance[1].
However, these experiments are mainly based on wall pressure and vibration measurements,
and hence the interaction process has not been clearly identified and understood, and requires
numerical and/or experimental observation of the boundary layer flow. The objective of this
paper is to numerically investigate the behaviour of Laminar Separation Bubble(LSB) induced
vibration on a NACA66 hydrofoil section. For this, a massively parallelized open source DNS
code NEK5000[2] is used to solve the boundary layer flow. As shown by figure 1, the DNS
domain is reduced to the near wall region, and velocity profiles are taken from the URANS
calculation, implemented at the boundaries to reproduce the adverse pressure gradient inducing
laminar separation. To study the transition induced vibration, a one degree of freedom system
(1DOF) is considered at the elastic axis of the hydrofoil in order to reproduce the motion of
a section, induced by the natural torsional mode. As a consequence, an equation of motion
which consists of Inertia, stiffness and damper and the hydrodynamic loads(torque) computed
by DNS is implemented inside Nek5000 . Hence, this numerical setup will allow to investigate
the interaction between highly transitional flow and the pitching vibrating mode of a hydrofoil.

| 8c

R j?e‘riodic
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»it
>

RANS domain |.Z.

Figure 1: The simulation domain with classic support of the hydrofoil on translational and rotational
spring-damper system.
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Prior to the FSI case, two forced pitching cases are studied on NACA66 hydrofoil at
Re=450,000. The hydroil foil is forced according to experimentally observed frequency and
amplitude of vibration to study the effect of vibrations on wall pressure fluctuations and tran-
sition mechanism .
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(a) Comparison of wall pressure spectra(b) Comparison of coefficient of pressure be-
between the pitching and static cases attween flexible and static foils at an instant.
x/c=0.8

Figure 2: Simulation results of NACA66 at Re=45,0000.
1 A. Ducoin, J.A. Astolfi, M.L Gobert (2012). An experimental study of boundary -layer transition
induced vibrations on a hydrofoil, Journal of Fluids and Structres,32 , 37-51.

2 P. Fishcer, M. Schmitt, and A. Tomboulides (2017). Recent developments in spectral element
simulations of moving-domain problems, 213-244.
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Since the late 1990’s, introduction of wind turbines became active in Japan and their
application has become more popular because of the environment-friendly characteristics in
producing electricity. Traditionally, wind turbines with circular cross-section tower have been
used', but weaknesses of circular cross-section tower have been pointed out recently as
upsizing of wind turbines. The main weaknesses of circular cross-section tower include the
problems related with manufacturing, decrease in strength and problems related with land
transportations.

For the problems mentioned above, the concept of modular towers which will be
assembled in the site was proposed. For most modular towers, the cross-sectional shapes
are polygon such as octagon and/or tetradecagon, not simply circle, but their wind-resistant
performance have not been clearly investigated.

In the present paper, the effect of cross-section of tower was investigated using wind
tunnel test for 5SMW wind turbine as shown in Fig. 1 and seven polygonal cross-sections
were used and shown in Fig. 2, including square helical shape (not shown in Fig. 2). During
the tests, pitch angle, wind direction and azimuth angle were considered as test parameters
as well as cross-sectional shapes. Specifications of wind turbine were summarized in Tab. 1.

(o o)

I Figure 2: Cross-sectional shape (e is pressure tap).

Table 1. Specification of wind turbine.

K
Y K Rated power 5MW

| | \ Rotor orientation Upwind
A Configuration 3 blades
Control Pitch
Hub height 90m
Rotor / blade 124m / 60m
Overhang 5m
Figure 1: Wind turbine model. Shaft tile 5°

1. Totsuka, Y., Imamura H., & Yde, A. (2016). Dynamic behaviour of parked wind turbine at extreme
wind speed. First International Symposium on Flutter and its Application, Tokyo, Japan, 575-584.
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Flutter in axial flow (panel, pipe, flag)
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Abstract

It is well known that the nonlinear response of a (beam or) plate is sensitive to the assumptions
made about the in-plane boundary constraints. This is true for any static or dynamic loading
and especially for aerodynamic loadings that may lead to a dynamic instability (flutter) and
limit cycle oscillations. In the prior literature the two limiting cases of complete constraints
(zero displacement) and no constraint (zero stresses) at the boundary have been considered.
In this work, a mathematical and computational model for the more general case has been
created to allow for the full range of in-plane boundary constraints to be considered. This is
of fundamental interest, but also of considerable practical interest in that physical structures
usually fall somewhere between the two limiting cases. Comparisons between the present and
prior models provide new insights into these issues.

Keyword: structural dynamics, fluid-structure interaction, panel flutter, hypersonic, piston
theory.

1 Introduction

Nonlinear fluid-structure interaction of plates in hypersonic and supersonic flows has been an
active field of research in the past 60 years [Mei et al., 1999, McNamara and Friedmann, 2011].
The coupling of fluid and structure in this flow regime challenges the existing structural models
with complicated pressure and thermal loads, while the interaction of shock-wave, boundary-
layer and structure complicates the problem even further [Clemens and Narayanaswamy, 2014].
Experimental, theoretical and computational studies have been conducted to better under-
stand panel flutter in hypersonic flow and make it possible to accurately predict the onset of
flutter and properties of limit cycle oscillations at post-flutter conditions utilizing linear and
nonlinear models [Bismarck-Nasr, 1996, Mei et al., 1999]. Flutter onset condition and LCO
properties were found to be sensitive to several effects studied extensively in prior literature.
Among those are panel curvature [Dowell, 1969], orthotropicity [Eslami and Ibrahim, 1986,
Nydick et al., 1995], in-plane loads [Yuen and Lau, 1991, Hess, 1970], transverse boundary
conditions, temperature differential (and its distribution) [Nydick et al., 1995], static pressure
differential [Ventres and Dowell, 1970, Kappus et al., 1971], and the plate’s interaction with a
cavity [Dowell, 1963]. In this work, we focus on the in-plane boundary constraints and its role
in the nonlinear statics and dynamics by deriving a general model for an arbitrary distribution
of elastic in-plane stiffness constraint at the edges of a flat, rectangular plate.
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[Bolotin, 1963] was one of the earliest to propose a theoretical model that considered the
effect of different in-plane boundary constraints in the context of nonlinear supersonic fluid-
structure stability (flutter and buckling). Bolotin coupled the Von Karman plate equations with a
linearized aerodynamic model to analyze the stability of plates and shells in supersonic flow. The
structural model was formulated in terms of transverse displacement and the Airy stress function
eliminating the need for two tangent displacement components, but at the same time making it
challenging (or impossible) to impose constraints on the in-plane motion. The model was solved
by the Galerkin method and with an appropriate choice of modal basis function for the Airy
stress, the boundary condition for zero in-plane stress was satisfied exactly. The more physically
accurate case of elastic edge constraint was introduced by averaging the normal component of
the tensile force on each pair of opposite edges and equating it to the mean average displacement
of the respective tangent component multiplied by the effective edge stiffness. The importance
of in-plane constraints modeling was clearly noted in Bolotin’s work, but the formulation of
the structural equations in terms of Airy stress instead of tangent displacement components
required simplifications and approximations to impose edge constraints which naturally reduced
the accuracy of the model.

Dowell utilized and expanded Bolotin’s model in theoretical and experimental studies. The
effect of a cavity on one side of the plate was modeled by coupling the unsteady compress-
ible potential flow equation with the plate dynamics [Dowell, 1963]. Flutter onset boundaries
and natural modes of vibration (with and without cavity) were correlated with experiments
in a wide range of supersonic Mach numbers [Dowell and Voss, 1965]. [Dowell, 1969] quan-
tified the effect of curvature on two and three-dimensional plate’s nonlinear dynamics in post
flutter conditions (and on flutter onset). [Ventres and Dowell, 1970] utilized the nonlinear
model in the Airy stress form to include static transverse and in-plane loads in flutter, limit
cycle oscillation and natural modes of vibration analyses. They demonstrated by theory and
experiment the sensitivity of the natural frequencies to a uniform static pressure differential
across the plate for two limiting cases of in-plane boundary restraints: zero stress and zero
displacement (as approximated by Bolotin). A comprehensive theory and experiment mono-
graph on the topic is given by [Dowell, 1974]. Theoretical and experimental results obtained in
[Dowell and Voss, 1965, Ventres and Dowell, 1970] are used for comparison in this work.

Recent experimental studies focused on shock-wave boundary-layer and structure interac-
tion demonstrated the importance of nonlinear structural dynamics of flat plates in hypersonic
flow. [Whalen et al., 2019] measured the deformed shape of an all-clamped plate installed
on a compression ramp in a free stream flow of Mach number 5.8 at varying ramp angles.
Variation of natural frequencies of the plate with ramp angle was measured and attributed
to the combined effects of aerodynamic heating, static pressure differential and fluid-structure
coupling [Freydin et al., 2019b]. [Spottswood et al., 2019] measured the plate’s response to
turbulent, heated flow with a static pressure differential load. Time series of the plate's de-
formation captured flutter onset, reaching high amplitude limit cycle oscillation and buckling
due to aerodynamic heating in the transient process of wind tunnel start. Shock wave im-
pinging on elastic plates in supersonic flow was considered by [Willems, S. et al., 2013] and
[Beberniss et al., 2017]. Measurements obtained in these experimental studies demonstrate
how the complicated aerodynamic loads, both static and dynamic, lead to a highly nonlinear
structural response, prior and after flutter onset.

In this work, a theoretical computational model is derived which more accurately captures the
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nature of the problem than was previously possible. In the following sections, model derivation
is outlined and calculations made with the model are analyzed and compared with results from
prior literature.

2 Theoretical Model

The structural model derivation consists of formulating the elastic and kinetic energies of a flat
plate with general in-plane stiffness distribution at the edges in terms of three displacement
components (in contrast to prior literature where the Airy stress function and a single transverse
displacement are employed). Eq. 1 describes the stretching and bending elastic energies, and
Eq. 2 is the elastic energy of in-plane stiffness distributed along the plate’s edges (which may
generally vary in space and time). Eq. 3 is the transverse kinetic energy.

Eh 1 1
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Next, the problem is transformed to modal structural coordinates in all three components.
The elastic and kinetic energies (where the in-plane inertia was neglected but is addressed in
[Freydin and Dowell, 2019]) in Eq. 1, 2 and 3 are transformed and the Lagrangian is formulated
in modal coordinates. Finally, Lagrange’s Equations are used to obtain the equations of motion
(with aerodynamic and static pressure differential loads added as non-conservative work).
Neglecting the in-plane inertia leads to algebraic equations for the v and v displacement
components which allows the reduction of the system of equations to a form shown in Eq. 4.
The effect of in-plane edge constraint is expressed through the linear structural stiffness matrix
G,Si) and the nonlinear structural stiffness tensor D) Fig. 1 and 2 show schematic views of

nkrs*
the problem.
Mo + A Wi + Ay Wi + G + DS + Q° —0 (4)
nk Wi Wk Wk Whnk Wli nk Wk nkrs Wk WrWs n -
vV
—_——
PT aerodynamics NL structural stiffness  static pressure differential

Eq. 4 describes the fluid-structure system of equations of motion in modal coordinates with
important terms underlined. The system is either solved as an eigenvalue problem following a
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dynamic linearization about a nonlinear statically deformed plate or by direct time integration
of the full dynamically nonlinear model. Each approach has advantages and provides different
information about the fluid-structure system. Fast computation times make the eigenvalue
approach suitable for design while direct time integration provides insight into nonlinear behavior
of the system in post flutter conditions and LCO.

1
1
: y Plate boundary : a
i Tsupport I 2 Mo, Poo, T
1 —l
1 H w(t,x,y)
1 Moo, Poo, T x T(x,) 1 ol x | utxy K
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- i

Figure 2 — Side view of a clamped panel with
in-plane stiffness at the edges in a free stream
flow and a cavity with stationary fluid. Cross
section at —b/2 <y < +b/2.

Figure 1 — Top view of a clamped panel in a
free stream flow with static pressure and
temperature differentials.

The full derivation is provided by [Freydin and Dowell, 2019] (see Acknowledgement), in-
cluding first order Piston Theory (PT) aerodynamics and a simplified cavity model which only
includes the added stiffness effect and neglects added mass. Previous work considered the simpli-
fied models for zero-stress boundary conditions [Freydin et al., 2019b] and the one-dimensional
problem with arbitrary in-plane stiffness at the edges [Freydin et al., 2019a] for experiment data
analysis and experiment design, respectively.

3 Results Including Comparison With Previous Literature

3.1 Buckling Due to Uniform Temperature Differential

When compressive stresses due to temperature differential become large enough, the panel
buckles. Physically, it is reasonable that for larger in-plane edge stiffness values, the panel
should buckle for smaller temperature differentials because in that case a larger portion of the
compressive stress will be counteracted by the panel, and not the springs at the edges. Fig. 3
shows how the uniformly distributed temperature differential A Tg for buckling varies with in-
plane stiffness. For non-dimensional values of in-plane stress larger than 100, the temperature
for buckling approaches a value of ATg = 34.48K predicted by the zero in-plane displacement
model. As g approaches closer to zero, ATg grows rapidly. According to results in Fig. 3, a
clamped panel which is free to slide in-plane is not likely to buckle. These results agree with
the physical intuition and quantify the influence of in-plane stiffness.

3.2 Comparison with Bolotin Model for Zero Displacement Boundary Condition using Spatially
Averaged Boundary Conditions

The proposed theoretical model for an arbitrary in-plane stiffness is compared with the nu-
merical and experimental works of [Ventres and Dowell, 1970] and [Dowell and Voss, 1965].
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Figure 3 — Uniformly distributed temperature differential for buckling vs normalized in-plane
stiffness, a = 88.3mm, b = 88.9mm, h = 0.977mm, AIS| 4140 steel plate

Theoretical models used in these works are the [Bolotin, 1963] model for exact zero in-plane
stress and spatially averaged zero in-plane displacement. The former represents the ideal case
of K — 0, i.e. completely free to move in-plane, and the later serves as an approximated
model for K — oo. Several different comparisons are made to investigate the nonlinear effects
of in-plane boundary conditions on limit cycle amplitude past flutter onset condition, natural
frequencies increase due to static pressure differential and flutter onset condition change due
to static pressure differential.

In Fig. 4 and 5 is shown the limit cycle amplitude variation with normalized free stream
dynamic pressure for plates with edge length to width ratios of a/b = 1 and a/b = 2. The
figures were created by time marching the system in Eq. 4 with a very small initial condition in
the first modal displacement until a constant amplitude response was reached. The effect of a
cavity was not included in this calculation. The agreement in flutter onset dynamic pressure is
good in both cases of length to width ratios. This result is consistent with the fact that in-plane
boundary conditions do not affect the linear stability of the fluid-structure system. Slightly after
flutter onset dynamic pressure, the new model with extreme values of K agrees well with the
idealized and approximated models of zero stress and zero displacement. But, as dynamic
pressure increases, the difference between the models grows. Note that the spatially averaged
zero displacement model predicts larger amplitudes at high A values than the Ka/Eh = 100
case. This is physically consistent because the later model is more restricted in in-plane motion
than the former. Smaller and larger values for Ka/Eh in the considered range of A did not show
significantly different amplitudes of limit cycle.

Fig. 6, 7 and 8 show natural frequency variation with static pressure differential of three
modes. The calculations were conducted by linearizing Eq. 4 about a static nonlinear de-
formation of the plate and solving the eigenvalue problem with zero thermal stress, no fluid
interaction and no cavity effect. A ratio of a/b = 2 was used in the calculations. Good agree-
ment is shown in Fig. 6 and 8 between the theoretical models and experiment. As was noted
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Figure 4 — Flutter amplitude at x/a = 0.75
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Figure 5 — Flutter amplitude at x/a = 0.75
vs dynamic pressure for a/b =2, /M = 0.05

by [Ventres and Dowell, 1970], the experimental results lie closer to the zero stress case, i.e.
small Ka/Eh values. A value of Ka/Eh = 0.05 shows very good agreement between theory and
experiment in Fig. 6. The large and small values of Ka/Eh agree well with the idealized and
approximate models. Fig. 7 shows larger differences between the models and theory, but still

within a 10% difference margin.
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Fig. 9 and 10 show flutter onset vs static pressure differential for two plate length ratios.
Plate naming convention follows definitions in [Dowell and Voss, 1965]. For example, the 20 —
10 — 25 plate has length of 20", width of 10" and thickness of 0.025”. Due to panel installation,
the effective structural dimensions of both plates were 18.5” x 8.5”, making the considered
ratios a/b = 0.46 and a/b = 2.18. Fig. 9 and 10 were obtained using the eigenvalue analysis
previously described but with the addition of Piston Theory aerodynamics, a simplified cavity
model (added stiffness), and zero thermal stress. The cavity static pressure was calculated
based on external flow static pressure and the static pressure differential. Additionally, the
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structural linear stiffness matrix of the nominal plate was calibrated based on experimental data
in Tab. 1. Good agreement is shown in Fig. 9 between the new model with a small Ka/Eh
value and the experiment results. On the other hand, Fig. 10 shows that theory overestimates
the flutter onset dynamic pressure while the different models agree well in the general trends.
An interesting behavior is predicted, as was noted by [Ventres and Dowell, 1970], that for
completely restrained edges the panel might flutter at a smaller dynamic pressure with the
increase of static pressure differential. This unexpected result disappears in this case when the
effect of the cavity is removed from calculations.

Lastly, Table 1 shows the natural frequencies of the two plates considered in Fig. 9 and
10 as measured in experiments and predictions obtained using the current model with and
without considering the effect of a cavity. The cavity effect was added in two different levels of
accuracy. The first method utilized a simplified model which only considers the volume change
in the cavity due to panel deformation. It was used to match the approach applied in the
studies used for comparison [Ventres and Dowell, 1970, Dowell and Voss, 1965]. The second
method is described in [Dowell, 1974] and provides a more accurate cavity model by considering
the wave equation for the cavity pressure field and imposing boundary condition at the moving
wall using Green's Theorem. For both "with cavity" columns, the nominal structural stiffness
matrix was calibrated to match the values in the "Exp. No Cavity" column. In the simplified
cavity model, natural frequencies of symmetric modes have increased while the antisymmetric
remained without change. This is because, as noted in [Dowell et al., 1977], the simplified
cavity model neglects the effect of added mass but does include added stiffness or compliance
of the fluid in the cavity. On the other hand, the full cavity model predicts changes in all modes
accounting for both effects which produces better agreement with experiment.

4 Conclusion

In this work, a theoretical and computational nonlinear structural (and linear aerodynamic)
model was derived in terms of single transverse and two in-plane components of displacement.
Physical effects typical to hypersonic fluid-structure interaction problems were modeled among
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Table 1 — Plate Natural Frequencies, theory and experiments [Dowell and Voss, 1965,
Ventres and Dowell, 1970]

Plate  Mode Shape Frequencies (Hz)
Theory Theory
(L-w-h) ir? Eier) NoE()j(g\-/it WitEXcF:)évit Nzhg:;?’t With Cavity | With Cavity
Y y y y Simplified | Acoustic Eqn.
11 60 66 165
1,2 89 84 82 89 70
10-20-20 13 116 98 111 107 101
1,4 158 152 158 148
2,1 161 140 173 161 150
11 75 82 118 115
2,1 94 83 102 94 77
20-10-25 3,1 130 113 138
4,1 181 190
1,2 201 216
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Figure 9 — Flutter dynamic pressure vs Figure 10 — Flutter dynamic pressure vs
static pressure differential for the static pressure differential for the
10-20-20 plate, a/b = 0.46 20-10-25 plate, a/b = 2.18

which are the static pressure and temperature differentials. Linear eigenvalue and nonlinear time
integration analyses were conducted. The linear eigenvalue method for stability and modal
analysis was emphasized and developed to include the effect of added stiffness due to large
initial deformation which can originate from thermal and static loads.

Results obtained with the new model were compared to those found in prior literature, which
was based on approximated formulations of in-plane boundary conditions. Comparison between
the new model with small and large values of in-plane stiffness produced good agreement with
the limiting cases found in the literature.

The new model provides a more accurate tool for design and theoretical-experimental corre-
lation and data analysis. Where previous works relied on approximations and limiting cases for
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the in-plane edge constraints, future researchers may calibrate the in-plane boundary stiffness of
their model by correlation of measured and computed natural frequencies with the plate under
a static pressure load. The accuracy of in-plane edge stiffness modeling is important whenever
nonlinear response, static or dynamic, is of interest. As shown throughout this work, accounting
for in-plane boundary conditions is an integral part of fluid-structure interaction in hypersonic
and supersonic flow.
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Nonlinear flutter analysis of a rectangular sheet in uniform flow
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Abstract

Flexible sheets are used in many industrial applications. During the manufacturing
processes of the sheets, flutter occurs due to the coupling of the sheet motion and airflow.
The flutter causes severe quality defects, such as scratches and scattering of coated liquid.
To avoid these serious defects, a detailed understanding of the fluttering mechanisms and
characteristics is essential. In this paper, a nonlinear flutter analysis of a cantilevered
rectangular sheet in uniform flow is performed. Post-critical behavior was examined by
numerical simulation, and experiments were conducted to validate the model.

Keyword: sheet flutter, self-excited vibration, nonlinear analysis, Doublet-point Method

1 Introduction

Flexible sheets(thin elastic plates) are used in many industrial applications such as
polarizing films for liquid crystal displays (LCD). These sheets are made through many
engineering processes, such as coating and drying. Under the processes, it is reported that
flutter occurs to the sheet due to the interaction between the motion of the sheet and fluid
flow, when the flow velocity of drying air flow becomes high. The flutter can causes severe
damage to the sheet surface, including the scattering of coating liquids and scratches on
the sheet surface. To avoid these serious defects, a detailed understanding of the fluttering
mechanisms and characteristics is essential.

Up to the present time, many theoretical studies analyzing the linear stability of the
rectangular sheet in uniform flow are reported. These studies are divided into two
categories : two-dimensional and three-dimensional analysis. For analysis of stability of the
sheet which has large aspect ratio, many two-dimensional models assuming infinite span
are developed (Huang ,1995), (Yamaguchi et al., 2000), (Watanabe et al., 2002). In addition,
several three-dimensional studies targeted finite-span sheet have been reported (Eloy et al.,
2007), (Gibbs et al., 2012), (Hiroaki et al., 2015).

On the other hand, several nonlinear studies are reported. Tang and Paidoussis (Tang and
Paidoussis, 2007) and Chen et al. (Chen et al., 2014) performed nonlinear analysis utilizing
a two-dimensional discrete vortex method. Tang et al. (Tang et al., 2003) have carried out
analysis of a LCO (Limit Cycle Oscillation) response utilizing a three-dimensional linear
vortex lattice method and nonlinear structural model. Moreover, Sawada and Hisada
(Sawada and Hisada, 2007) developed a two-dimensional numerical model(Navier-Stokes
solver) utilizing ALE finite element method. In the study, flow field around the fluttering sheet
is analyzed in detail through the CFD simulation. Nevertheless, detailed characteristics of
post-critical behavior and mechanism of the LCO are not sufficiently clarified.

To a deeper understanding of these phenomena, this paper focuses on the development
of a nonlinear fluid-stricture interaction model that includes nonlinear fluid frictional and
damping forces. Flutter amplitude and frequency, and the work done by the fluid force
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acting on the sheet surface were examined through the nonlinear analysis to understand
the sustaining mechanism of the LCO. The validation of the developed model was
performed by comparison with experimental results.

2 Nonlinear flutter modeling and numerical methodology

2.1 Analytical model of the sheet

Fig.1 shows a schematic of a sheet in axial fluid flow. The upstream edge of the sheet is
clamped and the others are free. The sheet is modeled as a cantilevered beam assuming a
two-dimensional deformation (lateral deformation) of the sheet. The sheet has chord L,
span b, thickness h and density ps. The sheet is divided by quadrangular elements into N (=
NxxN, ) in order to calculate fluid force acting on the sheet surface, where Ny is division
number of x-direction and Ny is division number of y-direction. The fluid around the sheet is
incompressible with density pr and flowing in the x-direction with constant velocity U.
Moreover, ¢ denotes curvature coordinate along the sheet.

- ht

Figure 1: Schematic of the analytical model of a sheet in uniform flow.

2.2 Equation of motion of the sheet

To take into account large deformation of the sheet, an appropriate nonlinear equation of
motion of the sheet is developed shown in Eq.(1) using the Von Karman nonlinear beam
theory based on the Hamilton’s principle (Tang and Paidoussis, 2007). The left hand side of
the eqg. (1) is nonlinear equation of motion of the sheet, where a is coefficient of material
damping(assuming Kelvin-Voight type damping model) and D is bending stiffness D =
Eh®[12(1 - V%], where E and v are Young’s modulus and the Poisson ratio, respectively.
The right hand side represents the fluid force acting on the sheet surface. Note that the
structural model is based on the inextensibility condition of axial direction. Unsteady fluid
force acting on the sheet surface Ap is calculated by the Doublet-point Method (DPM)
(Ueda and Dowell, 1982), (Ueda, 1987) based on three dimensional potential flow.
Moreover, nonlinear fluid frictional force p; and nonlinear fluid damping force pq are
introduced to include the effect of the fluid viscosity (fluid friction due to boundary layer on
the sheet surface/flow separation).
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2.3 Calculation of fluid force acting on the sheet surface

The unsteady fluid force acting on the sheet surface is derived from unsteady lifting theory
and discretized utilizing DPM. The complex amplitude of pressure jump distributions on the
oscillating sheet surface 4p' and complex amplitude of up-wash velocity o' are related by
the following Kussner’s singular integral equation, which is based on three-dimensional
potential flow (Kussner, 1941).

T (4, Y) = [ [, AP (&) K (33 dif @

S'denotes the region of the sheet surface and the kernel function K(xo’, yo) is given by

sV

KOG y5)=e B, nX), Bs.nX) = [ ot dv 3
X=x;=x-&, r=|y|=|y'~7] (4)

where s is the Laplace variable. Trailing vortex affects the up-wash distribution. Thus the
up-wash induced between the two trailing lines of the horseshoe vortex is hidden in the r?
singularity of the kernel function K(xo’, yo) . Therefore, the effect of wake is taken into
account in the kernel function K(xo, ¥o). The prime symbols in Egs. (3) and (4) denote
dimensionless variables, are defined as follows by using velocity U and span length b.

X'=x/b, y'=ylb, Z=2/b, &=EIb, ' =nlb, '=C1b, W =0/U, 45 =A51(p, U2) (5)

For the calculation of the unsteady fluid forces using DPM, doublet and up-wash points are
located at the coordinates (&', /) and (x/,y/) of the divided elements respectively,
and according to the 1/4~3/4 chord rule, as shown Fig. 2. With respect to Kutta condition at
the trailing edge, as well as in the vortex lattice method, the 1/4~3/4 chord rule allows to not
imposing directly the Kutta condition on the pressure distribution. Fluid force distribution on
the divided elements is concentrated at the doublet point (&', 77/) . This means doublet
sources of the strength 4p'(&/, /) are set at the doublet points, in which the elements
have the areaAj. The kernel function K corresponds to an up-wash velocity field that is
produced by a point doublet of the acceleration potential located at (&, /), and the point
(x/,y/) Is taken as representative for the whole up-wash distribution on an element
surface. These assumptions make it possible to discretize the integral Eqg. (2) into linear
algebraic equations. The discretized fluid force is given by the following Eq. (6).

AP =C(s)T (i,j=1--N) (6)

A’
u'={u(x;, y)},4p'={4p'(&;, 7;)}, D(s) =[d;;]1=[ 4”’K (x{=&, ¥i=1))1,C(s) =D(s)™ (7)

Here, the up-wash velocity W' is calculated from a given oscillatory mode shape of the
sheet w(x’,y’,t). W' is the complex amplitude of oscillatory normal displacement of the
sheet obtained by Galerkin decomposition.

0 sb
— ’ ’ V4 ’ ’ Yvd ’ ’
T(x, y)=—W(x, y)+—wW(x,y) (8)
OX U
Air flow /y\ n’ y.n'
U, py w6, %)
Aﬁ;'(&' nt T N 0] oo PR
i (&) — N o | ® Doublet-point (&}, 7))
N ﬁP/ i ‘ o Upwash-point (x/, y/)
T/f sio [474] L44]
- I,
1 2 X & i < &
Sheet surface i th-element

Figure 2: Location of doublet and upwash point for calculation of fluid force.

208



Second International Symposium on Flutter and its Application, 2020

2.4 Modal approximation

Galerkin decomposition is applied to the Eq.(1). The lateral deflection of the sheet w can
be written as

W(Ce,t) =D (€)0, (1) ()

where ¢, denotes the mode function of the cantilever beam in vacuo, q,, is generalized
coordinate and N, is number of Galerkin decomposition. Substituting Eq.(9) into Eq.(1) and
multiplying by ¢, and integrating from ¢ = 0 to L(chord direction) and from y = 0 to b(span
direction), gives following nonlinear equation on the generalized coordinate g. In the
equation, structural terms M, K., My. and Ky are shown in previous paper (Tang et al.,
2003).

Nm Nm Nm Nm Nm Nm Nm

Npy
M bd, + K bg, + > G,,bg, —ZZZGNqunqoqp = Gohbg + D> > My, b(@,9,6, +9,d,4,)
m=1 o=1 p=1 m=1

n=1 o=1 p=1

Nn N N Nn N N

m m m m m

El

+ (KNqunqoqp) + ZZZQKNLb(qnqoqp + anoqp + qnqoq) (10)
n=1 o=1 p=1 n=1 o=1 p=1
Ny Ny Ny
UQ+ F;ba, 0,0, — pfc b [ Z¢ d, Zmb
n=1 o=1 p=1
IR A 0*¢n(c)
G, = pshgz jo #(©) =2 =de. G, =p, “de,
Ny N m No a¢ (C) a¢ (c) o° Py (c) (1)
=—p.h L-
ps 02,22, (-1 (@) 2
N, N, N
2 VOO (L 8¢(C)8¢(C)5¢(C)
_3 u*C L-
2PUCi22 0 J (L-oppe) =2 == =
b oL Ny NN S 3 (12)
Q=[, [ Acy)-dpdedy=)">"> c,(s)-4(&m)-s -[U¢r(x,-,y,-)+§¢, |jq
r=1 i=1 j=1
er
Fluid force matrix Q and generalized coordinate vector q are defined as follows:
Q) =[Q,] (13)
ga=[a 9 - q - ql (14)

Then, fluid force matrix Q shown in Eq.(13) belongs to the Laplace domain. Therefore, it is
need to switch to the time domain in order to carry out time history response analysis. The
fluid force matrix is approximated to a quadratic polynomial on Laplace parameter s shown
in EqQ.(15) by least-squares method.

Q(8)g = (Qyo +Qus +Q.,5°)q (15)
QsO = [QSOH']’ Qsl = [Qsllr]' Qsz = [QSZIr] (16)

Finally, the fluid force matrix shown in Eq.(13) is switched to the time domain as Eq.(17) by
inverse Laplace transformation.

Qq = Qsoq + Qslq + Qszq (17)
2.5 Numerical method (time integration scheme)

To carry out time integration, the Houbolt method (Semler et al., 1996) is adopted because
the governing equation Eq.(1) contains nonlinear inertia term. Adopting finite difference
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approximation by the Houbolt method, time derivative of generalized coordinate g** and
g*® are expressed by Eq.(18). Note that the Houbolt method is forth order backward
scheme and concluded that the method is efficient time integration scheme for dynamic
analysis of flexible structures such as plastic films (Semler et al., 1996). Moreover,
coefficients z{kﬂ) and 2% are determined using the solutions of the previous time step

1 1
~'(k+l) _ (k- Z) (k-1) 3 (k) + k+l) (k+l) . ﬁk—Z) +4 Fk—l) _5 (k) +2 .(k+l) 18
i At ( q| q| q| 6 ) (At)Z ( ql (jll) ql qI ) ( )
ﬂfik K &

Substituting Eq.(18) into Eq.(10) a set of nonlinear equations for g, which are the

unknown generalized coordinate at time step k + 1 are derived. Then, the nonlinear
simultaneous equations (I = 1 - N,) are solved by iterative calculation using the
Newton-Raphson method.

Nm N Np

(M bq|(k+l)+|\/| ﬂ(kﬂ))_i_K bqf“HZG bq(k+1) ZGNqu(kH) (k+1) (k+1) ZG bq(k+1)
m=1 n=1 o=1 p=1
Ny Np Np
+ (K bq(k+1) (k+1) (k+l))
n=1 0:1; N
Ny Np Np
+a KNLb(_q(k+l)q£k+1)qEJk+l) +ﬂ,5k+1)qgk+l)qgk+l) +q£k+l)l(k+l)q;k+l) +q(k+1)q(()k+l)ﬂ(k+1))
n=1 o=1 p=1
ShShy QgD glenglion 1
+ M b +1 +1 +1 + +1 +lﬂ +1
n:lép:l NL ((Al) qo qp qn )
tn, Sy N 11 121 (19)
" M. b (k+1)l(k+1)/1(k+l)+ (k+D) 5 (k+1) (k+) (K+1) q (k+1) k+1)+ (K+1) oy (K+1)  (K+1)
>, 1,; wb(a; qn L AL By ™ %%
1 2¢ = (i | L (k+1) (k+1)
:Epfu |ZQSOIrqr + prU zQsllr qr + S ZQsllrﬂ‘l
1 k+1) 1 2 k+1, KL k+1, K+1; k+1;
+- pr SZQSZH’ 2 £+ _pr SizQszlr (r+)+zzz|: bq(+) (+)qé+)
2 ) 2 =1 n=1 o=1 p=1
1 + + + +
~5PCab], ¢|{Z¢ (L + ”)} AP+ 2Ll do

2.6 Work done by fluid force acting on the sheet surface

To investigate the sustaining mechanism of the LCO, the local work done by fluid force
acting on the sheet surface is determined by following equation. In the equation, Pg,, Prand
P4 denote work done by fluid force determined by the DPM, work done by fluid friction and
work done by fluid drag, respectively.

E, = [ W fdt=[ (- dp, +is - p, + i, p, )l (20)
— — —

Pap P; Py

3 Experimental setup

Fig.3 shows a photograph and a schematic of the experimental setup. Experiments were
carried out in a vertical wind-tunnel to validate the results of the numerical simulation. A
rectangular test sheet whose material is polyethylene is set in upstream side of the wind
tunnel. The upstream edge of the sheet is clamped by two rigid support plates. The support
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plates used in the clamped section are made of SUS304. The clamped section is
processed into thin aerofoil to suppress flow turbulence.

The vibration displacement of the sheet was measured by using a laser displacement
sensor installed at the test section. During the experiment, the vibration displacement of the
sheet was measured while gradually increasing the flow velocity of air. Then flow velocity U
was measured using hot-wire probe. The flow velocity at which the flutter occurs is
determined as a flutter velocity U; and then dominant frequency f; is defined as a flutter
frequency. Moreover, vibration modes of the fluttering sheet were visualized with a
high-speed digital camera and a strobe light.

Airflow \ /
l Wind-tunnel
o

l l lAir Flovlv

Laser disp.
sensor

—

Laser disp.
sensor

Figure 3: Photograph and schematic of the experimental setup.

4 Calculation parameters

Table 1 lists the parameters used in calculation. The division number of x and y directions
were set to 15 and 13, respectively and number of Galerkin decomposition N, was set in 4.
These values are sufficiently convergent number. Additionally, three different values of C¢
and C4 were used. Note that a C4= 1.8 corresponds to a measurement value of a statically
deformed sheet in air flow (Buchak, 2010).

Table 1: Parameters used in calculation

L [mm] 120 Cs 0.025, 0.05, 0.1
b [mm] 60 Cq 15,18,25
h [mm] 0.2 g [m%/s] 9.81
Es[GPa] 3.2 At [9] 1.0x10™

Vs 0.4 Ny 15

s [kg/m?] 1380 Ny 13

a 1.0x10° N 4

or [kg/m?] 1.2

5 Experimental results

Fig.4 shows RMS displacement wgys and flutter frequency f; of the sheet with changing
flow velocity. In the figures, two results are shown: the first is the result which is gradually
increasing flow velocity from 6.0m/s to 9.0m/s (shown in open circle) and the second is the

211



Second International Symposium on Flutter and its Application, 2020

results which is decreasing flow velocity from 9.0m/s to 6.0m/s (shown in open triangle).
Displacement was measured at a position which is 25mm from the trailing edge of the sheet.
From the Fig.4(a), The amplitude of the sheet suddenly increased when flow velocity
reached 7.5 m/s and continued increasing with increasing flow velocity. Then, there is no
remarkable change of amplitude in the case of decreasing flow velocity. Therefore, the
hysteretic behavior reported in previous study (Tang et al., 2003) is not observed in the
present experiment. Moreover, flutter frequency increases monotonically with increasing
flow velocity.

20

Increasing —o—
Decreasing ——

0.03r

aauaa“aaua
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Flutter frequency f; [Hz]
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Increasing o
Decreasing 2

T 8 9 6 7 8 9
Flow velocity U [m/s] Flow velocity U [m/s]

Figure 4 : RMS displacement(a) and flutter frequency(b) with changing flow velocity.
6 Analytical results and discussion

6.1 Time history and spectrum of vibration displacement

Time histories(a), spectrum(b) and modal amplitude(c) are shown in Fig.5 at flow velocities
is 10.0m/s (30% higher than critical velocity). From time histories (Fig.5(a)), amplitude
gradually increases and finally reaches limit cycle. Then, it is seen that single frequency is
dominant from spectrum (see Fig.5(b)). In addition, a higher harmonic wave is weakly
observed. Moreover, from Fig.5(c), the first two modal numbers significantly contribute to
flutter amplitude, while the higher modes show little contribution.

= 006 x : o T
= o004 (2) . (b) : ©
= 0.02F E 0.03 g
5 5 5
e 0 1 2002 Eos
8 -002f g .
g oo L s i B
[a] L N | 5]

-0.06 Z o

0 05 1 15 % 20 40 60 80 100 I
Time t[s] Frequency f[Hz] Modal No.

Figure 5 : Time histories(a), spectrum(b) and modal amplitude(c).

6.2 Influence of coefficient of fluid drag C4 and friction C;

Fig.6 shows RMS flutter amplitude and frequency with changing flow velocity for various
Cq and C:. In the previous study, it is reported that Cy4 and C; depend on upwash
velocity(normal flow velocity) induced on the sheet surface (Ehrenstein et al., 2014).
Therefore, influence of C4 and C; on flutter characteristics was investigated. From these
figures, increasing of Cqand C; decreases flutter amplitude. Then, critical velocity and flutter
amplitude are in good agreement with experimental results shown in Fig.4. On the other
hand, the order of flutter frequency is almost same value, but change tendency of frequency
toward flow velocity has difference between analysis and experiment. The reason may be
because the nonlinearity of the fluid force is not sufficiently considered in the present
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analytical model : in the present model, the nonlinearity of fluid force is simply summarized
in nonlinear fluid drag and frictional terms.
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Figure 6 : Influence of Cq4 (al), (a2) and C;(b1), (b2) on flutter amplitude and frequency.

6.3 Flutter modes

Fig.7 shows photographs of observed flutter motion in experiment and calculation results.
These visualizations of flutter modes were carried out at critical velocity and higher flow
velocity (30% higher than critical velocity). From these results, experiment and theoretical
predictions are in good agreement. Traveling-wave type modes are observed from both of
experiment and analysis.

Clamped

!

(@) U = Us(Critical velocity) (b) U=1.3U,

Figure 7 : Flutter modes visualized in experiment and predicted by analysis.
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6.4 Local work done by fluid force acting on the sheet surface

Fig.8 shows the local work done by the fluid force at each position ((a):x = 0.028m,
(b):x=0.062m, (c):x = 0.114m) on the sheet surface derived by the theoretical calculation in
the case of U = 10.0m/s (27% higher than critical velocity). From the Fig.8(b1), the local
work done is positive around the midstream region on the sheet. On the other hands,
around the trailing edge of the sheet, the local work is negative (Fig.8(c1)). Moreover, the
amount of work around the leading edge (Fig.8(al)) is small compared to other positions.
Thus, LCO is sustained by balancing of positive work around the midstream region and
negative work around the trailing edge of the sheet. In regard to work done by fluid drag,
negative work is dominant around the trailing edge (Fig.8(c4)) and largely contribute to
sustaining of LCO. In addition, negative work by fluid friction is dominant at the middle of
the sheet (Fig.8(b3)) which has high curvature.
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Figure 8 : Work done by fluid force acting on the sheet surface at different positions (x).

7 Conclusions

In the present paper, we performed a nonlinear flutter analysis of a cantilevered sheet in
uniform fluid flow. The analytical and experimental results are in good agreements for the
flutter amplitude and mode. Moreover, the local work done by the fluid force acting on the
sheet surface was determined. The results obtained in present study are summarized as
follows:

(1) The first two modal numbers significantly contribute to increasing flutter amplitude, while

214



Second International Symposium on Flutter and its Application, 2020

the higher modes show little contribution.

(2) Increasing of coefficient of fluid drag C4and coefficient of fluid friction C;decrease flutter
amplitude.

(3) LCO is sustained by balancing of positive work around the midstream region and
negative work around the trailing edge of the sheet.
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When both ends of an elastic sheet are clamped with shorter distance between the ends
than its length, the sheet has a buckled shape. By using various external energy inputs such
as point load?, capillary force? and viscous flow force in a channel?, rapid transition from the
one buckled shape to the other buckled shape can be induced, which is called as “snap-
through” motion.

Here, we investigate the dynamics of the snap-through motion using an elastic sheet and
a uniform flow. Periodic snap-through is observed beyond a specific critical free-stream
velocity. The critical velocity can be obtained theoretically using the quasi-steady aerodynamic
force model and the elastic beam model. Unlike the typical flag configuration which has one
clamped end and one free end, in this configuration, compressive force should be considered
additionally to maintain a balance between bending force and aerodynamic force.

From scaling analysis, we found that dimensionless critical free-stream velocity derived
from the equation of the motion was inversely proportional to length ratio to the power of a
specific value, where the length ratio is a ratio of distance between two clamped points to
sheet length. Additionally, we confirmed that the effect of mass ratio, relative magnitude of
sheet mass against fluid mass, on the critical velocity was negligible, which indicates that
snap-through instability is divergence instability.

Flow

Figure 1: Flow-induced snap-through motion
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Abstract

The experiments described in this paper aim to examine the global dynamics of inverted
flags and to explore the impact of periodic vortex shedding from the leading and trailing edges
thereon. The effect of vortex shedding from both leading and trailing edges was investigated.
It is shown that suppression of the leading and trailing edge vortices, and also inhibition of
the interaction between the two counter-rotating vortices (if they exist), resulted in relatively
small quantitative changes in the critical flow velocity, amplitude and frequency; but, the overall
dynamics of the system remain intact. More importantly, the large-amplitude flapping persisted
for all flags tested in the experiments.

Force measurements provide some insights into the relationship between vortex shedding
and large-amplitude flapping; a difference between the dominant frequency of the lift and that
of flapping was observed for some cases. Moreover, for heavier inverted flags, additional peaks
appear in the frequency spectrum of the lift signal, with amplitudes comparable to that matching
the dominant frequency of flapping.

The experimental results suggest that fluidelastic instability is the underlying mechanism for
the flapping motion of heavy inverted flags. The near-identical qualitative behaviour of normal
inverted flags and serrated ones with a splitter plate at the trailing edge suggests that the global
(or qualitative) dynamics of heavy inverted flags is independent of unsteady vortex shedding
from the leading and trailing edges; i.e., periodic vortex shedding is not the cause but an effect
of large-amplitude flapping.

Keyword: fluid-structure interactions, inverted flags, large-amplitude flapping, fluidelastic
instability, flutter

1 Introduction

This paper focuses the fluid-structure interaction (FSI) of a flexible thin plate in axial flow: a
cantilevered thin plate (or flag) of length L and height H subjected to a fluid flowing axially
with velocity U and directed from the free end towards the clamped one, otherwise known as an
‘inverted flag; see figure 1.

Inverted flags are known to exhibit large-amplitude periodic flapping around the undeflected
equilibrium. A number of studies on the dynamics of inverted flags suggest that the physical
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Figure 1 — Inverted flag in large-amplitude Figure 2 — Experimental set-up for a serrated
regime, shedding leading-edge vortices (LEV) inverted flag with the rigid splitter plate, show-
and trailing-edge vortices (TEV) in the wake. ing the measured forces at the flagpole, uti-

lizing a force balance.

mechanism underlying large-amplitude flapping may be Vortex-Induced Vibration (VIV) (e.g.,
Sader et al. 2016). In these studies, the flapping phenomenon is attributed to the periodic
formation and synchronized shedding of trailing-edge vortices (TEV) and leading-edge vortices
(LEV), which is a characteristic of VIV (see figure 1).

Although several aspects of the dynamics may be explained through the VIV mechanism,
there are some circumstances where vortex shedding, which plays a central role in VIV, may not
occur for a flapping inverted flag, hence posing a challenge to the credence of the VIV mechanism.
For instance, in an experimental study, Pazhani and Acharya (2019) investigated the effect of
leading-edge serrations. They found that the serrated flag does display large-amplitude flapping,
even though vortex formation and shedding from the leading edge was not observed. Moreover,
via a scaling analysis, Sader et al. (2016) predicted that VIV cannot occur for heavy flags or small
mass ratios!, yet large-amplitude flapping does. Goza et al. (2018) explored computationally
the physical mechanisms for large-amplitude flapping of inverted flags, concluding that for a
specific set of system parameters, large-amplitude flapping cannot be attributed to classical
VIV, and also for small-amplitude flapping. Finally, Gurugubelli and Jaiman (2019) performed
simulations in which a rigid splitter plate was attached to the flag trailing edge, thus suppressing
trailing-edge vortex shedding; they found that inverted flags undergo large-amplitude flapping
even though the interactions between vortices detached from the leading-edge at the cycle
extremities were eliminated — a prediction not yet verified experimentally, which is one of the
objectives of the present experiments.

The primary purpose of experiments described in this paper is to explore the correlation
between vortex shedding and the flapping mechanism; specifically, the qualitative and quantitative
effects of suppression of both LEV and TEV on the onset, frequency, and amplitude of flapping.

The paper is organized as follows. First, experiments with a rigid splitter plate attached
to the trailing-edge of the inverted flag are described (see Figure 2), aiming to evaluate the
importance of the existence of TEV and to examine the effects of forced disconnection between
counter-rotating LEV on large-amplitude flapping. Second, experiments with inverted flags with

1The fluid-to-plate mass ratio is defined as = p¢L/pph; pr and p, being the mass density of the fluid and
plate, respectively, and h is the thickness of the plate. Small p is associated with “heavy flags".
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Figure 3 — Experimental set-up for the inverted flag (a) without and (b) with the rigid splitter
plate.

a serrated leading-edge, similar to those used by Pazhani and Acharya (2019), are described.
These experiments explore the effects of simultaneous suppression of LEV and TEV. Finally, the
synchronization of lift and displacement and phase dynamics are studied.

2 Rigid splitter plate

The experiments were conducted in a subsonic wind tunnel with a fairly large test-section. The
flow velocity in the test-section was incremented in small steps, and the flag motion was recorded
via a high-speed camera at each step. An image processing technique was then utilized to
extract the time history of oscillations. Brass plates, i.e. ‘flags’ (H = 101 mm, L = 198 mm,
and thickness h = 0.38 mm), as well as polycarbonate flags with different dimensions (see
Table 1) were used in the experiments. Experiments have been conducted with and without a
rigid splitter plate. The splitter plate was made from a plywood sheet of thickness h; = 10 mm,
height H; = 610 mm, and length Ly = 1800 mm, and was secured firmly to the walls of the
test-section (see figure 3); no significant motion of the splitter plate was observed during the
experiment, even at very high wind speeds.

Figure 4(a) shows bifurcation diagrams for the tip rotation of 160 x 160 mm polycarbonate
flags C (circles) and flag D (diamonds), with the rigid splitter plate (filled symbols) and without
it (empty symbols). A slight reduction is seen for the flapping amplitude of the flag with
a splitter plate. This may be explained using observations made by Gurugubelli and Jaiman
(2019). In their computational study, the inverted flag with the splitter plate exhibits only two
counter-rotating vortices shed from the leading edge over the flapping cycle. The absence of the
trailing edge vortices, and the inhibition of vortex-vortex interaction leads to a larger pressure
distribution at the trailing edge and to a slightly smaller drag at the leading edge. This results
in a smaller bending moment, which in turn leads to a reduction in the curvature along the flag.

The frequency of oscillation is also reduced slightly when the splitter plate is introduced, see
Figure 4(b). For instance, the maximum reduction in flapping frequency for the h = 1.02 mm
flagis at U == 20 m/s, where the frequency is reduced by almost 8%. This may also be associated
with loss of the trailing edge vortices, caused by the rigid splitter plate. More specifically, the
trailing edge vortex formation and shedding accelerates the drop in the pressure distribution
over the flag, which consequently leads to a faster transition from maximum deflection from
one side to the other, hence to a higher frequency (see Gurugubelli and Jaiman (2019)).
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Figure 4 — Experimental results for inverted flags with L = H = 160 mm and [®] h = 0.76 mm,
[¢] h = 1.02mm; (a) bifurcation diagram (b) variation of the dominant frequency in PSD with
the flow speed. The empty and filled markers correspond to the flags with and without the
splitter plate, respectively; the black and red symbols correspond to the wind speed sweep up
and down, respectively.

Figure 5 shows that the onset of large-amplitude flapping for all flags tested (except for flag
B) is delayed when the splitter plate is added. This may be linked to the pressure reduction close
to the leading edge of the inverted flag due to the splitter plate: the presence of the splitter
plate introduces a small additional damping to the dynamical system; consequently, the critical
flow velocity for large-amplitude flapping increases, and the flapping amplitude and frequency
become smaller at the onset of large-amplitude flapping.

However, all these differences are very minimal. The main and most significant conclusion
is that introducing a splitter plate has a minimal influence on the critical flow velocity for
large-amplitude flapping, its amplitude and frequency.

Ui(m/s)

Flag Material L x H(mm) h(mm)
A Polycarbonate 150 x 225 1.02 5
B Polycarbonate 150 x 600 0.76 A B C D E
C  Polycarbonate 160 x 160 0.76 Inverted flags
D  Polycarbonate 160 x 160 1.02
E Brass 198 x 101 0.38 Figure 5 — Critical flow speed for the onset of

Table 1 — Labels and dimensions of pairs of
inverted flags tested in experiments with and
without the rigid splitter plate.

220

large-amplitude flapping of different inverted
flags with sweeping up the wind speed; [ Il |
with and [ Il ] without the rigid splitter
plate.



Second International Symposium on Flutter and its Application, 2020

3 Serrated inverted flags

In order to further understand the effect of vortex shedding on the global dynamics of inverted
flags, a serrated leading-edge geometry (chevron) with height H; = 10 mm and width W, =
10 mm was introduced to polycarbonate flags of different aspect ratios, see Figure 6(a).

Using flow visualization techniques, Pazhani and Acharya (2019) have shown that this serrated
geometry produces small counter-rotating pairs of vortices, which suppresses the formation and
periodic shedding of vortices from the leading edge.

The Pazhani and Acharya (2019) experiments with serrated flags have been repeated in the
present study, with wider flags — to minimize three-dimensionality of the flow caused by the side
edges — also introducing a rigid splitter plate at the trailing edge of the flag to interrupt the
communication of the separated shear layers. Mainly, qualitative experiments were conducted.
Insofar as the onset and amplitude of large-amplitude flapping is concerned, the responses are
similar to those of normal inverted flags. For instance, the experimental results for flags of
AR = 3.0 in figure 6(b) show no notable differences in the critical values of flow velocity and the
amplitude of oscillation, with and without the splitter plate and serrations.
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Figure 6 — Experiments with serrated inverted flags: (a) specimens used in the experiments with
a similar serration geometry but different flag dimensions, (b) bifurcation diagram for an inverted
flag with flat leading edge and no splitter plate (filled circles) and a serrated flag with the splitter
plate at the trailing edge (empty circles); both flags are of /R = 3.0. The black and red symbols
correspond to the wind speed sweep up and down, respectively.

The observed behaviour shows that, for the range of parameters investigated in these
experiments, the dynamical characteristics of inverted flags are not very sensitive to (i) the
formation and periodic shedding of vortices from the leading and trailing edges, and (ii) vortex-
vortex interaction (if any exists). Hence, another mechanism must be the cause of large-amplitude
flapping; namely, it may be a fluidelastic self-excited flutter.

4 Synchronization of lift and displacement and phase dynamics

Several experiments were conducted to measure simultaneously the forces acting on the flag
(i.e. lift and drag) and its motion. The phase difference between the time traces of the fluid
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Table 2 — Stainless-steel inverted flags with U
H = 75mm, h = 0.08 mm, and varying length

utilized in experiments.

Fz

Flag L(mm) u R
A 100 0.21 0.75 Fx
B 70 0.15 1.07
C 50 0.10 1.50
D 35 0.07 214

Figure 7 — Measured forces at the flagpole,
utilizing a force balance.

forces and flag displacements were examined. Moreover, the dominant frequencies of the fluid
forces were obtained.

These experiments were motivated by the observation made by Goza et al. (2018) for
large-amplitude flapping of heavy inverted flags. They reported that, compared to light flags,
several additional vortices are shed per cycle for heavy (low 1) ones, resulting in additional peaks
in the frequency spectrum of the lift signal. Moreover, the frequency associated with the largest
peak in the lift spectrum was different from that of the displacement spectrum. This led Goza
(2019) to refer to the large-amplitude flapping of massive flags as “not-classical VIV".

In order to investigate experimentally the existence of synchronization between the lift force
and displacement for heavy inverted flags, stainless steel flags of varying length (hence, varying
mass ratio) were tested (see Table 2). The transverse (lift) and streamwise (drag) components
of the fluid flow force were simultaneously measured at the flagpole, utilizing an in-house built
aerodynamic balance (A Mini45-E Array Technology Incorporated Inc). Time traces of the lift,
F7(0,t), and the drag, Fx(0,t), components (see Figure 7) were collected at 1000 Hz; the
sampling rate for the tip transverse displacement, w(L, t), was 160 — 280 Hz.

4.1 Frequency characteristics

Figure 8 shows the time traces and PSDs of w(L, t) and the lift signals for a stainless-steel
inverted flag with L = 100mm. In the PSD plots for the lift signal, the peaks are labeled
sequentially as fi;, fio etc. from lower to higher frequencies. As seen from figures 8(b,d),
higher harmonics of nearly the same magnitude as the main frequency, f;, appear in the PSD
of the lift, while the motion is periodic, supporting the Goza et al. observations discussed
above. By increasing the flow velocity, motion becomes chaotic-like at U = 8.3 m/s; the loss of
synchronization with departure from a periodic behaviour can be seen in figures 8(e,f).

The spectrograms of the displacement and lift signals are presented in figures 8 (g) and (h),
respectively, showing an increase in dynamic activity and the presence of additional frequency
peaks in the lift dynamics with increasing U. The increase in number and the strength of higher
harmonics in the lift frequency spectrum suggests that the conjectured VIV-associated oscillation
is gradually replaced by another mechanism.

Figure 9 shows the time traces and PSDs for flags with (a,b) L = 70mm, (c,d) L =50 mm,
and (e,f) L = 35mm, respectively. Strikingly, the PSDs of lift and displacement show the same
frequency peaks (i.e., fiy = f1), with the lift showing harmonics nearly equal or larger than the
dominant frequency of the motion. For example, the frequency associated with the dominant
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Figure 8 — (a,c,e) tip transverse displacement [==] and the normalized lift [—] at U = 5.7m/s,
U=77m/s, and U =8.3m/s; (b,d,f) associated PSDs for a stainless-steel inverted flag with

= 100 mm; (g-h) experimental spectrograms for the flag motion and lift, respectively — the
magnitude of the power spectrum is measured in dB.

peak in the displacement PSD plot shown in figure 9(d) for L = 50 mm flag at U = 14.4m/s
is fi = 18 Hz, while the dominant peak in the lift PSD plot occurs at fi, = 2f; = 36 Hz, and
subdominant peaks occur at fi; = f; = 18Hz, fi3 = 3f; = 54Hz, and fi4 = 5f; = 90 Hz,
whereas the contribution of these harmonics in the flag oscillation is very weak. This indicates
that vortex shedding may be synchronized to a higher displacement frequency; in the present case,
the vortex shedding frequency is twice the flapping frequency, giving rise to a 1:2 synchronization.

4.2 Phase dynamics

It is known that in the case of VIV-driven motion of a circular cylinder in cross-flow, sharp
changes occur in the phase angle between the fluid forces and cylinder motion at resonance,
as the flow velocity is varied. In particular, the phase between the cross-flow force and the
transverse displacement of the cylinder jumps from near 0 to near 7 (refer to Khalak and
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Figure 9 — (Left) tip transverse displacement [==] and the normalized lift [—] for stainless-steel
inverted flags with (a) L =70mm at U =7.4m/s, with (c¢) L =50mm at U = 14.4m/s, and
with (e) L =35mm at U = 19.0m/s; (right) their associated PSDs.

Williamson 1999, Zhao et al. 2014, Seyed-Aghazadeh et al. 2017).

Here, the instantaneous phase difference between the time series obtained for the transverse
displacement of the flag and the lift are calculated using the Hilbert transform (Khalak and
Williamson 1999, Konstantinidis et al. 2019). The instantaneous phase is defined as ¢,,(t) =
atan[w(L, t)/w(L, t)] and ¢¢(t) = atan[FL(0, t)/FL(0, t)], where w(L, t) and F_(0, t) are the
Hilbert transforms of w(L, t) and F_(0, t), respectively. Next, the instantaneous phase lag,
¢d(t), between the lift and the displacement is calculated as ¢4(t) = ¢r(t) — du(t).

Figure 10 shows the variation of the time-averaged phase lag, denoted by ¢4, as a function
of the dimensionless flow velocity for flags A-D (table 2). In all cases, the time-averaged phase
difference never crosses 90° and remains bounded in the [0 50] range over the large-amplitude
flapping regime. The different values of the phase difference may well be due to the effect of
different values of structural damping for the different flags. Similar observations have been
made by Seyed-Aghazadeh et al. (2017) for triangular prisms in cross-flow, reporting that the
jump from ~ 0 to ~ 180° in phase difference between flow forces and the body motion did not
occur, and hence the oscillation was concluded to be of the galloping type.

The above observations suggest that flag motion and vortex shedding influence each other
reciprocally; however, vortex shedding does not appear to be the cause for flapping. The
large-amplitude flapping of short inverted flags accompanied by high-frequency vortex shedding
suggests that a fluidelastic excitation mechanism may be involved, and hence time-averaged
aerodynamic forces govern the motion. A similar conclusion has been reached for slender prismatic
bodies with bluff cross-section and sufficiently long afterbody by Nemes et al. (2012), Zhao
et al. (2014) and Seyed-Aghazadeh et al. (2017), among others.
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Figure 10 — Phase difference between transverse force (lift) and transverse displacement for
stainless steel inverted flags with [W] L = 100mm, [@] L = 70mm, [¢] L = 50mm, and [a]
L = 35 mm over the periodic large-amplitude flapping regime.

Additionally, these observations agree well with computational predictions of Goza et al.
(2018), reporting that the dominant frequency of lift (largest peak in the PSD plot) is higher
than that of the tip displacement, suggesting that the motion is not “classical VIV".

5 Conclusions

Some experiments were described in this paper, aiming at examining the global dynamics of
inverted flags and, in particular, at probing the impact of periodic vortex shedding from the
leading and trailing edges thereon.

The effect of vortex shedding from both leading and trailing edges was investigated. It
was shown that suppression of the leading and trailing edge vortices, and also inhibition of
the interaction between the two counter-rotating vortices (if any exists), results in only minor
changes in the critical velocity, amplitude and frequency. The overall dynamics and features of
the system remained intact, and the large-amplitude flapping persisted for all flags tested in the
experiments, with TEV and LEV present or suppressed.

Force measurements provided some insights into the relationship between vortex shedding
and large-amplitude flapping; a difference between the dominant (peak) frequencies of the lift
and flapping was found in some cases. Moreover, it was shown that for heavier inverted flags,
additional frequency peaks appear in the lift frequency spectrum, with power as great as or larger
than that matching the motion dominant frequency. In addition, the lift and tip displacements
were found to be desynchronised in the chaotic-like flow regime for lighter flags.

The experimental results presented in Sections 2-4 suggest that a fluidelastic instability may
be the underlying mechanism for the flapping motion of heavy inverted flags. The near-identical
qualitative behaviour of normal inverted flags and those with a serrated leading edge and a
splitter plate at the trailing edge suggests that the global (qualitative) dynamical characteristics
of heavy inverted flags are not governed by the unsteady vortex shedding from the leading
and trailing edges. In other words, periodic vortex shedding is not the cause, but an effect of
large-amplitude flapping.

It is stressed that flow visualization was not carried out in the experiments with serrated flags
and the splitter plate. The wake behind the flag may display three-dimensional characteristics;

225



Second International Symposium on Flutter and its Application, 2020

yet, as reported by Pazhani and Acharya (2019), the dominant vortical features in the near wake
is broken down and the coherent formation and shedding of vortices is disrupted.

There are definitely potential connections, yet to be discovered in the future, between
the phase dynamics and the underlying mechanism for large-amplitude flapping. Further
investigations would be desirable to better clarify the distinction between VIV and the underlying
mechanism for large-amplitude flapping of heavy flags.
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Abstract

Numerical simulations were carried out for determining the flutter instabilities of a flag.
The flag is modeled as a Euler-Bernoulli beam and is coupled with the flow physics. The
detailed governing equations and the validation results are discussed in detail elsewhere!. The
dependence of flutter instability on the Reynolds number is studied in detail with respect to
flutter mode shape, flutter boundary, phase relations between foil shape and differential pressure.
With decrease in Reynolds number, the region in which flutter occurs decreases. There exists
a critical Reynolds number for a given mass ratio where the flag is immune to flutter. As
the mass ratio increases, the flutter mode changes. Near the region of flutter mode shift,
the flutter velocity, frequency, and amplitude change drastically. The effect of mass ratio and
Reynolds number on the envelope, mode shape, and vorticity flow contours is analyzed in detail
to understand the instability behavior.

Keyword: flutter, incompressible flow, DNS.

1 Introduction

The fluttering flag serves as a fundamental model for studying fluid-elastic interactions. Appli-
cations range from oro-nasal snoring, flutter of grasses and leaves, energy harvesting, to high
speed printing on paper. Typically, the fluid flow is low speed and therefore assumed incompress-
ible. The Reynolds number too is low and therefore laminar. The flag itself is either assumed
infinite span and fluid flow two-dimensional, or finite span and fluid flow three-dimensional.

One of the earliest experimental investigations on flag flutter was reported by Taneda (1968).
Flags were made from different material with different chord and span length. Some of the
key findings include: flutter frequency increases almost linearly with flow speed; the Strouhal
number of the fluttering flag oscillation frequency decreases as —1/2% power of the Reynolds
number; and that the critical Reynolds number at which the flag flutters is independent of the
mass ratio.

Potential flow analysis has been used to address flutter mechanism and flutter boundary in
literature(Alben and Shelley, 2008; Argentina and Mahadevan, 2005; Huang, 1995; Michelin,
Smith, and Glover, 2008; Watanabe et al., 2002a). The experimental studies on fluttering
flag are reported by Huang, 1995; Shelley, Vandenberghe, and Zhang, 2005; Watanabe et al.,
2002b; Zhang et al., 2000. Huang (1995) analyzed the flexible flat plate in relation to oro-nasal
snoring. The fluid loads were evaluated using Theodorsen's classical solution and is coupled to
linear beam theory for analysis of flutter. The numerical results obtained using potential flow
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model matched well with experiments. Zhang et al. (2000) examined the stability of a filament
in a flow using a soap film experiment. They observed hysteresis effect from stationary state to
the flapping state by varying the length of the filament. They observed a von Karman vortex
sheet for the stationary state and also that there exists a critical length where the filament
flaps in a sinusoidal motion giving rise to wake resembling Kelvin-Helmholtz instability. The
Reynolds number is of order 10*. Watanabe et al. (2002a,b) studied the flutter of paper both
experimentally and numerically respectively. They too observed hysteresis.

Argentina and Mahadevan (2005) used incompressible potential flow for the fluid model
and linear bending theory for the flat plate to predict flutter boundaries of a flag. In this model
they introduced the tension of the plate, boundary layer effect, and three dimensional effects,
which were found to increase the stability of the system. Shelley, Vandenberghe, and Zhang
(2005) experimentally investigated the fluttering of flags. They too report hysteresis effect in
flutter. Alben and Shelley (2008) computationally investigated the flutter of a flag within an
inviscid fluid model. They captured hysteresis in the onset of flutter as reported in experiments
(Shelley, Vandenberghe, and Zhang, 2005; Zhang et al., 2000). The necking of the flutter
boundary is reported by Eloy et al. (2008) and Michelin, Smith, and Glover (2008). Eloy et al.
(2008) conducted experiments and Michelin, Smith, and Glover (2008) carried potential flow
based numerical experiments on a fluttering foil. Maitre, Scanlan, and Knio (2003) used an
incompressible Navier-Stokes equations for flutter analysis of spring mounted NACA0012 airfoil.
They focused on the effect of Reynolds number and airfoil thickness on the flutter derivatives.
They observed that Reynolds number has insignificant effect on flutter boundary.

In this study, we consider a one dimensional flag in a two dimensional viscous incompressible
flow, and investigate the variation in flow velocity at which flutter occurs in as a function of
mass ratio. We have done this simulations at three different Reynolds numbers. Below a
Reynolds number of 200 the occurrence of flutter is rather rare. Moreover, as the Reynolds
number is lowered, the wave length of the shear layers shed from the oscillating flexible foil
changes; and there is considerably lower roll-up of the shear layers. The nature of the vorticity
contours are a function of the flutter velocity, frequency, amplitude, and Reynolds number.

2  Fluid-elastic model

The fluid model is a two-dimensional incompressible flow and the solid is a Bernoulli-Euler one-
dimensional model of flexure. The numerical implementation of the fluid dynamics is using a
sharp-interface immersed boundary technique and the Bernoulli-Euler solid model is discretized
using finite elements. Their dynamics are coupled using a predictor-corrector algorithm.

The equation of motion of the flexible foil is the Bernoulli-Euler model of a one-dimensional
elastic solid in flexure (Clough and Penzein, 1993)

0?h(x,t)  ®h(x,t) I*h(x, t)
m +c —_—

ot? otox* ox*
The boundary conditions for the cantilever beam are the no-displacement and no-slope
condition at the fixed end and no-shear force and no-bending moment at the free end. Each
term in Equation (1) has the dimensions of pressure since we are considering a section of the
elastic foil to comply with the assumption of two-dimension fluid dynamics. h(x, t) is the elastic
transverse deflection of the beam in flexure. The amplitude, slope, curvature , and frequency

+ El, = Ap(x, t)i-k; 0<x<L (1)
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Figure 1: Fluttering foil in a fluid flow

of the foil in oscillation are restricted by the assumptions inherent in the Bernoulli-Euler beam
theory. The parameters that define the flexural motion of the foil are: m is the mass per unit
length per unit span of the foil. El,, is the flexural rigidity per unit span of the foil with E
denoting Young's modulus of the material of the foil and /,, is its sectional second moment of
area per unit span about the y axis of the coordinate system attached to the beam. c is the
damping coefficient per unit span of the material of the beam based on a model wherein the
damping force induced in the material of the beam due to vibration is proportional to the strain
rate. Ap(x,t) is the pressure differential across the top and bottom surface of the foil due to
the unsteady fluid flow on the beam. fi is the vector denoting the normal to the neutral axis of
the foil.

The pressure Ap(x, t) over the foil is computed using an incompressible Navier-Stokes solver
using a sharp interface immersed boundary technique (Mittal et al., 2008). The coupled elasto-
dynamic Equation (1) is solved using standard Euler-Bernoulli flexure finite elements. The
pressure calculated from the viscous flow solver is used in the finite element based structural
solver. At a given instant of time, the Lagrangian center point of the finite element of the
foil is surrounded by Eulerian grid points in the fluid. At every time step, after the flow solver
computes the pressure at the Eulerian nodes, the pressure at the Lagrangian center point of the
finite element is interpolated from the values of the pressure at the surrounding nodes of the
Eulerian grid. This value of pressure calculated at the center of the finite element is assumed to
be constant along the finite element. The details of the finite element and immersed boundary
method with validation examples, together with numerical implementation is given in (Mysa
and Venkatraman, 2016). The Reynolds number is defined with reference to the length of the
foil L; simulations were carried out at three different Reynolds numbers—1000, 400, and 200.

3 Results and discussion

We have arranged the results broadly as flutter onset characteristics, envelope shapes, and
vorticity contours. These simulations were conducted at three Reynolds numbers, namely,
1000, 400, and 200. The non-dimensional parameters used are the mass ratio u = m/pL;
the oscillation frequency ratio @ = w/w. where w, is the characteristic frequency or dynamic
stiffness; the fluid velocity U = U/Lw,; the reduced frequency of oscillation of the flag k =
fl/U; and the amplitude ratio A = A/L. Note that the Strouhal number can be expressed in
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terms of the reduced frequency of oscillation and the amplitude ratio Sr = Ak.

3.1 Flutter characteristics

Figure 2(a) shows the free stream velocity UL/w. at which flutter onset occurs at a given
mass ratio. At a given value of mass ratio, for fluid free stream velocities below the curve, the
fluid-elastic system is stable or the response to an initial condition is decaying, and above the
curve the fluid-elastic system is unstable. Note that for Re = 1000, Re = 400, and 200 the
stability boundaries are almost the same with peaks occurring at almost the same mass ratio
and the flutter onset velocity displaced lower as the Reynolds number increases. However at
Re = 200 note that the flutter velocity shows a rather abrupt increase as we change the mass
ratio 4 from 1 to 1.5, whereas at the other two Reynolds numbers, this abrupt increase occurs
as one goes from a mass ration of 1.5 to 2. As we see later, these abrupt changes occur with
transitions in flutter modes of displacement.

The non-dimensional amplitude A/L at flutter onset as function of mass ratio is shown in
Figure 2(d). These curves too follow the same trend as in the case of the flutter velocity except
that for a Reynolds number of 200 the amplitude peaks slightly earlier at a mass ratio of 1.5
rather than around 2 as in the case of Re = 1000 and Re = 400.

Figure 2(b) shows the frequency ratio at flutter onset f/w.. For Re = 1000 the flutter
frequency peaks first at u = 2.5; for Re = 400 the first peak occurs at ;1 = 4.3; and for
Re = 200 the first peak in the flutter frequency occurs much later between =2 and © = 3.
So, the observation here is that local maxima in flutter frequency do not coincide with the local
maxima for flutter velocity or flutter amplitude. Further note that as the Reynolds number
changes from 1000 to 400 there is no change in the frequency ratio curve. However, as we
move to a lower Reynolds number of 200 there is a definite change in the frequency at which
flutter occurs.

We discuss the reduced frequency at flutter onset fL/U first, as shown in Figure 2(c). The
reduced goes through a minima at those mass ratios where the flutter velocity has a maxima.

The Strouhal number fA/U is the product of the reduced frequency fL/U and the amplitude
ratio A/L. In fact we have place this Figure 2(e) just below that for the amplitude Figure 2(d)
to show that the Strouhal number maxima coincide very closely with those of the amplitude
ratio.

We also carried out simulations at Reynolds number of 100. We did not observe flutte