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Abstract: This paper deals with the predefined-time synchronization for a class of nonlinear multi-
agent systems. The notion of passivity is exploited to design the controller for predefined-time
synchronization of a nonlinear multi-agent system, where the time of synchronization can be preas-
signed. Developed control can be used to synchronize large-scale, higher-order multi-agent systems
as passivity is an important property in designing control for complex control systems, where the
control inputs and outputs are considered in determining the stability of the system in contrast to
other approaches, such as state-based Control We introduced the notion of predefined-time passivity
and as an application of the exposed stability analysis, static and adaptive predefined-time control
algorithms are designed to study the average consensus problem for nonlinear leaderless multiagent
systems in predefined-time. We provide a detailed mathematical analysis of the proposed protocol,
including convergence proof and stability analysis. We discussed the tracking problem for a single
agent, and designed state feedback and adaptive state feedback control scheme to make tracking
error predefined-time passive and then showed that in the absence of external input, tracking error
reduces to zero in predefined-time. Furthermore, we extended this concept for a nonlinear multi-
agent system and designed state feedback and adaptive state feedback control scheme which ensure
synchronization of all the agents in predefined-time. To further strengthen the idea, we applied our
control scheme to a nonlinear multi-agent system by taking the example of Chua’s circuit. Finally, we
compared the result of our developed predefined-time synchronization framework with finite-time
synchronization scheme available in literature for the Kuramoto model.

Keywords: finite-time stability; passivity; multi-agent systems; predefined-time stability

1. Introduction

A multi-agent system (MAS) is a complex system made up of several agents col-
laborating to accomplish a single objective. The synchronization problem of MAS has
drawn the attention of many researchers in past few years due to its possible application
in various areas such as the cooperation of unmanned air vehicles [1], mobile robots [2],
cooperative attack of missiles [3], formation of satellites [4], exploration [5], surveillance
and rescue tasks [6–9] among others. Additionally, in various literature, MAS has found
possible application in the formation of satellites [4], air traffic control [10], flocking [11,12],
and rendezvous [13,14]. These applications can be broadly grouped based on the nature of
the problem being investigated under consensus, trajectory tracking, formation control, co-
ordination, or synchronization [15–19]. MAS synchronization can be analyzed broadly into
two categories: leaderless MAS synchronization and leader-follower MAS synchronization.
In this paper, we have followed leaderless MAS synchronization, where the final consensus
is dependent on the initial conditions of all the agents whereas in leader-follower MAS
synchronization, the final consensus depends upon the state of the leader.
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Synchronization is a widely investigated problem in nonlinear multi-agent systems.
In [20] the author addressed the synchronous control of homogeneous autonomous lin-
ear systems, as in the case of an underwater robot swarm. In [21], the author presented
the autonomous organization of an aerial robot swarm. In [22], the authors investigated
the path planning and control cluster of unmanned aerial vehicles under the hazardous
environmental situation. In [23], the authors proposed the synchronous motion of a two-
group aerial swarm using particle swarm optimization. Su et al. [24] considered MAS as
having unknown nonlinearities and using distributed control scheme. In [25], the authors
addressed synchronization problems that involve nonlinear couplings among agents and
proposed an event-triggered control scheme to mitigate them. In [26], authors investigated
the consensus problem of MAS with nonlinear controller output using event-triggered
control for digital communication networks. Similarly, in [27] the authors considered the
problem of MAS with periodic event-triggered synchronization for linear systems in the
presence of communication delay. In [28], the authors considered discrete-time MAS having
network topology with varying time delay, and two different synchronization criteria were
investigated. In the same paper, two types of communication networks are investigated for
state synchronization: full-state coupling and partial-state coupling. In paper [29], the au-
thors considered homogenous MAS having partial state coupling and solvability conditions
were derived considering directed and weighted network topology. In paper [30] the author
has arrived at necessary and sufficient condition for consensusability of linear MAS.

Convergence speed and the actual time of convergence are very important parameters
for MAS synchronization. In all the above-mentioned literature, the formulated problem
was to synchronize agents asymptotically. However, for all practical purposes, it is expected
that agents’ synchronization should take place in finite time, which motivated researchers to
explore the possibility of agents synchronization in finite time. In papers [31–33], finite-time
consensus algorithms were proposed for first-order MAS. In [34], authors have formulated
the problem of MAS having second-order dynamics, where agents’ synchronization is
achieved using output feedback control. In [35], authors discussed finite time synchroniza-
tion problems for a nonlinear MAS, with uncertainties and delay. In paper [36], authors
studied the finite-time consensus problem of MAS having disturbance, and using the
Hölder Lyapunov function, sufficient conditions were derived for finite-time consensus.
In paper [37], authors investigated the finite-time consensus of nonlinear MAS under com-
munication constraints, where a distributed discontinuous control algorithm was proposed.
Other works for the realization of finite-time synchronization of MAS were investigated
in [38–45].

As per the notion of passivity, if a system is passive, then it possesses stability in the
absence of any external input. In [46], passivity theory was first used for circuit analysis.
Later, passivity was successfully applied to stability [47], chaos control, synchronization [48].
It was found that passivity is a useful tool to investigate the stabilization [49] and tracking
of nonlinear dynamical systems. In the passivity framework, we describe the stored energy
of the system using storage function. The storage function can also be used as a Lyapunov
candidate, if the external input to the system is considered to be zero. Passivity has an
elegant feature that it is preserved under state feedback and parallel interconnections.
Hence, the passivity framework is a suitable tool to stabilize large-scale interconnected
systems, such as MAS.

The passive system has an elegant property that the stored energy of the system goes
to zero as time goes to infinity, in the absence of an external supply. However, for many
practical purposes, it is expected that the stored energy should go to zero in some finite
time. In [39], the author investigated the attitude control problem of a rigid body using
the finite-time control notion which is based on the passivity property of a linear system.
Also, the same authors have laid down the framework of finite-time passivity. Later,
in [40], the authors redefined the notion of finite-time passivity, and it was shown that if
two passive systems are joined in feedback or in parallel, the combined system remains
passive. This fact was further used for the development of the passivity framework for
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MAS in connection with finite-time control theory to develop the notion of finite-time
passivity (FTP). Further, in [50,51], the authors used the FTP notion to solve the finite-time
synchronization problem of multi-agent systems.

In the case of FTP, the prime limitation was that the convergence time is governed
by the system’s initial conditions, resulting in different convergence times for different
initial conditions, which sets restrictions on its real-time applications as, for major practical
purposes, the system’s initial condition used to be unknown. fixed time stability [52].
In further extension to this, fixed-time stability was proposed, where the settling time
function is the upper bound of all the convergence times, and it is independent of its initial
conditions. In [53,54], authors have used the fixed-time stability notion to synchronize MAS.
In [55], the notion of fixed-time passivity (FXTP) is used for interconnected memristive
neural networks. For the case of fixed-time passive systems, the convergence time depends
on the system’s parameters. The above-stated restrictions were addressed by using the
notion of predefined-time stability [56,57] and the prescribed finite time notion [58]. In the
paper [58], the authors successfully overcame the constraints of fixed-time stability by
assuring the settling time function is independent of initial conditions and other design
parameters. However, in paper [56], a new method for designing controllers is proposed,
where the time of convergence can be fixed a priori and is independent of initial conditions.
The idea of predefined-time stability [56] find its use in various real-life applications [59,60].

In the present paper, we have combined the notion of predefined-time stability [56]
with passivity to develop a predefined-time passivity framework. The developed frame-
work is later used to synchronize trajectories of nonlinear MAS, where we are synchronizing
agents of nonlinear MAS in a predefined time, specified a priori. Earlier work on predefined-
time convergence for MAS is based on sliding mode control [61], however, we have used
a passivity framework, which can be used to synchronize large-scale multi-agent system
as passivity is an important property in designing control for complex control systems, it
remains preserved under feedback and parallel interconnection. In passivity based con-
trol, the control inputs, and outputs are considered to be the most important variables in
determining the stability of the system. This is in contrast to other approaches, such as
state-based control, where the internal states of the system are the primary focus. Also, our
proposed control is applicable to higher order MAS, as presented in the example of Chua’s
circuit, whereas in [61], predefined-time synchronization is discussed for second-order
systems. Additionally, the proposed control scheme provides the exact time of convergence
of the agents, which can be chosen a priori. Hence, the predefined-time passivity frame-
work allows the convergence time to be chosen a priori for large-scale multi-agent systems,
which can be useful in many practical applications where the desired convergence time
may vary.

Firstly, we have developed a tracking problem for a single agent, using a framework
of predefined-time passivity and designed control laws as state feedback and adaptive
state feedback to make error dynamics to be predefined-time passive. Also, in the absence
of external input we have shown that tracking error reduces to zero in a predefined time.
Later we designed state feedback and adaptive state feedback control laws for nonlinear
MAS for synchronization at a predefined time. To further demonstrate the findings, we
have shown an example of Chua’s circuit. We have shown that synchronization of agents
with respect to each other occurs at a predefined time, which is specified a priori.

The further part of the paper goes ahead as follows. The mathematical notions
and preliminary results are mentioned in Section 2. Section 3 provides the main results.
Examples with simulation results are illustrated in Section 4. Finally, a brief conclusion
ends the paper.

2. Methods and Materials

In this section, we will discuss those terminologies and notions important for the
development of the rest of the paper. R is used to denote the set of real numbers and R+
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denotes the set of non-negative real numbers. Rn represents n-tuple vector. To represent
the least eigenvalue of a matrix C, λs(C) is used. I represents the identity matrix.

2.1. Graph Theory

Some graph theory [62] notions are now discussed. We represent multi-agent system
by a graph O = (U ,D,J ). Here, the vertices of the graph is represented by
U = {v1, v2 · · · , vn}. The set of edges is denoted by D ⊆ U × U . J = [aij]n×n is the
adjacency matrix satisfying aij = 1 if vi, vj ∈ D else aij = 0. We represent the degree
matrix as B = diag(b(ηi)) ∈ Rn×n, where b(ηi) denotes number of nodes linked to node ηi.
For the graph O, the Laplacian matrix satisfies the relation P = J − B ∈ Rn×n.

2.2. K-Class Function

A strictly increasing and continuous function g : R+ → R+ with g(0) = 0 is called as
K-class function [63].

2.3. Kronecker Product

The Kronecker product is denoted by the symbol ⊗. If X is a p× q matrix and Y is an
l × n matrix, then X⊗Y gives the lp× nq block matrix.

We use the following two systems for the purpose of validation of our proposed
controller.

2.4. Chua’s Circuit

Chua’s circuit is one of the simplest electronic circuits that exhibits chaotic behavior
and real-world applications typically use synchronized chaotic circuits. We consider a
nonlinear MAS consisting of four Chua’s circuits where each circuit’s dynamics is given byη̇k1(t)

η̇k2(t)
η̇k3(t)

 =

10(−ηk1(t) + ηk2(t) + g(ηk1(t))
ηk1(t)− 2ηk2(t) + ηk3(t)

−14.87ηk3(t)

+ µk(t) (1)

for k = 1, 2, 3, 4, where ηk = [ηk1, ηk2, ηk3]
> is the state vector and µk = [µk1, µk2, µk3]

> is the
control vector, yk(t) = ηk(t) = [yk1, yk2, yk3]

> is the output vector and
g(ηk1(t)) = −0.68ηk1(t) + 0.5(−1.27 + 0.68)(|ηk1(t) + 1)| − |ηk1(t)− 1|).

2.5. Kuramoto Model

Another important phase oscillator is the Kuramoto model, where each oscillator
has its own intrinsic natural frequency. We have considered 6 such oscillators with the
following dynamics of each oscillator.

η̇k(t) = ω +
A
6

6

∑
q=1

sin(ηq(t)− ηk(t)) + µk(t)

yk(t) = ηk(t)

(2)

where k = 1, · · · , 6, the phase of the k-th oscillator is represented by ηk ∈ R, oscillators
have the natural frequency ω and A denotes the coupling gain. µk and yk denotes the input
and output respectively, of the agent k.

The following definitions are needed for the further development Predefined-time
passivity framework

Refer to the following forced system

η̇ = G(t, η, µ, ρ), η(t0) = η0 ∈ M ⊂ Rn (3)
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here η ∈ M ⊂ Rn denotes the states, ρ ∈ Rk is the system parameters, the control input
is µ ∈ Rm, G : R+ ×M×Rm ×R → Rn is a nonlinear function such that F(t, 0, 0, ρ) = 0,
i.e., the equilibrium point of (3) is η(t) = 0, and t0 ∈ R+ denotes the initial time.

Definition 1 ([64]). The system (3) is said to be FTS (Finite Time Stable) about the origin if

• η(t, t0, η0, µ, ρ) = 0 is asymptotically stable, and
• η(t, t0, η0, µ, ρ) = 0 ∀ t ≥ t0 + T(t0, η0, µ, ρ), with T : R+ ×M×Rm ×Rk → R+ as the

time of convergence.

Definition 2 ([56,58]). The system (3) with control µ := µ(t, η, tF, c), tF ∈ R+, c ∈ R, is said to
be predefined-time stable about the origin if

• it is finite-time stable,
• there exists time tF > 0, c > n, which is independent of any initial conditions and system

parameters and can be chosen a priori, and
• tF ≥ tA ∀ η0 ∈ M, where tA denotes the actual time of convergence to the origin of the

system’s state trajectories.

The origin of system (3) is said to be globally predefined-time stable ifM = Rn,

Next, consider a time-varying dynamical system

η̇ = −ψ(t, η) :=


−c(eη−1)
eη(τf−t) , if t ∈ [t0, τf )

0, otherwise

where η ∈ R denotes the state, c > 1, t0 ∈ R+ denotes the initial time such that τf = tF + t0,
with tF as the predefined-time. Above differential equation denotes the predefined-time
dynamics as both η(t) and η̇(t) are zero for all t ≥ τf .

Lemma 1 ([56]). Take the system (3) with a domainM ⊂ Rn having the origin. Assume f1(η)
and f2(η) be two continuous positive definite functions on M. If there exist a continuously
differentiable function W : Is ×M→ R+ (Is = [t0, ∞)) and c > 1 :

• f1(η) ≤W(t, η) ≤ f2(η), ∀ t ∈ Is, ∀ η ∈ M\ {0}
• W(t, 0) = 0, ∀ t ∈ Is

• Ẇ(t, η) ≤


−c(eW(t,η)−1)
eW(t,η)(τf−t)

, if t ∈ [t0, τf )

0, otherwise

for W 6= 0, then the origin will be predefined-time stable and tF = τf − t0 ≥ tA. IfM = Rn and
W is radially unbounded, then η(t) = 0 is said to be globally predefined-time stable. As already
mentioned in [63], in context of passivity, the energy dissipation guarantees the closed-loop stability
irrespective of the system nonlinearities, and therefore we provide here the notion of passivity in
order to establish our main results.

Refer to the following forced system

X :

{
η̇ = G(η, ζ), η(t0) = η0 ∈ Rn

y = H(η, ζ)
(4)

here η ∈ Rn denotes the state vector, the external input is ζ ∈ Rk and y ∈ Rk denotes the output
of the system. G : Rn ×Rk → Rn is assumed to be locally Lipschitz and H : Rn ×Rk → Rk is
considered to be a continuous function.

Definition 3 ([63]). A system X having output y ∈ Rk and external input ζ ∈ Rk is called
passive if there exists a smooth function V : Rn → R+ satisfying: V̇ ≤ ζ>y.
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3. Results and Findings

Here we introduce the notion of predefined-time passivity and subsequently utilize it
for agents’ synchronization in predefined-time.

3.1. Predefined-Time Passivity

Refer to the following forced system

∆ :

{
η̇ = G(t, η, ζ), η(t0) = η0 ∈ M ⊂ Rn

y = H(t, η, ζ),
(5)

with η ∈ M ⊂ Rn as the states, ζ ∈ Rk be the external input, and y ∈ Rk as the output. G :
R+ ×M×Rk → Rn is a locally Lipschitz nonlinear function and H : R+ ×M×Rk → Rk

is a nonlinear continuous function. Assuming (t, 0, 0) as the equilibrium point of system (5),
the notion of predefined-time passivity is given below.

Definition 4. System ∆ having output y ∈ Rk and external input ζ ∈ Rk is said to be passive in
predefined-time when ∃ a positive smooth function V :M→ R+:

V̇ ≤ ζ>y− cg(V)(eg(V) − 1)
eg(V)(τf − t)

for t ∈ [t0, τf ) (6)

and
V̇ ≤ ζ>y for t > τf , (7)

where τf = tF + t0, with tF as the predefined-time, c > 1 and g(·) is a class K function.

Remark 1. There is a close relationship between stability and the passivity-based framework.
Lyapunov function can be chosen as a candidate for a storage function in passive systems. Along with
stability, there is an interesting property associated with passivity for MAS. If 2 passive systems are
joined in feedback/parallel, the overall system remains passive, this passivity preservation property
allows component-wise analysis of the complex large-scale system which reduces effort in designing
and analyzing large-scale systems like MAS. This is the motivation to develop a passivity-based
framework for MAS in combination with a predefined-time notion.

Remark 2. Finite-time notion and passivity framework together as a finite-time passivity has
been exploited for many years for synchronization of nonlinear MAS [50,65]. From all practical
viewpoints, for the synchronization problem, the time of convergence is crucial, and it is beneficial
if the time of convergence can be fixed a priori which is the case of predefined-time passivity. Also,
in the case of predefined-time passivity, convergence time is independent of initial conditions and
system parameters. This encourages us to investigate and use the idea of predefined-time passivity
for nonlinear MAS.

3.2. Predefined-Time Passivity along with Tracking of Single Agent in Predefined-Time

Consider a nonlinear MAS with L agents. Each agent has the following dynamics:

η̇k(t) = φ(ηk(t)) + µk(t), yk(t) = ηk(t) (8)

for k = 1, · · · , L, with φ(·) as the nonlinear function, ηk(t) = [ηk1(t), ηk2(t), · · · , ηkn(t)]> ∈
M ⊂ Rn denotes the state vector for the k−th agent. µk(t) = [µk1(t), µk2(t), · · · , µkn(t)]> ∈
Rn is the control input and yk(t) = [yk1(t), yk2(t), · · · , ykn(t)]> ∈ Rn is the output for the
k-th agent. Considering function φ(·) to be Lipschitz i.e.,

‖φ(x1)− φ(x2)‖ ≤ l‖x1 − x2‖ (9)

for x1, x2 ∈ M ⊂ Rn, 0 < l ∈ R. Suppose a reference trajectory
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η̄k(t) =[η̄k1(t), η̄k2(t), · · · , η̄kn(t)]> ∈ M ⊂ Rn

which is the solution to the system below.

˙̄ηk(t) = φ(η̄k(t)) (10)

Taking rk(t) = ηk(t)− η̄k(t) = [rk1(t), rk2(t), · · · , rkn(t)]> ∈ M ⊂ Rn as the vector of
tracking error, then:

ṙk(t) = φ(ηk(t))− φ(η̄k(t)) + µk(t)

y′k(t) = rk(t)
(11)

for k = 1, · · · , L, with y′k(t) = yk(t) − η̄k(t). Now, to establish error dynamics (11) to be
predefined-time passive (PTP) using the developed controller, we present the following result.

Theorem 1. Refer to the system (11) and let the developed state-feedback control be

µk(t) =

{
ζk(t)− Srk(t)− ψk(t, rk(t)), if t ∈ [t0, τf )

ζk(t)− Srk(t), otherwise
(12)

here ζk(t) = [ζk1(t), ζk2(t), · · · , ζkn(t)]> ∈ Rn is the external input to the agent k, ψk(t, rk(t)) =

[ c(erk1(t)−1)
erk1(t)(τf−t)

, c(erk2(t)−1)
erk2(t)(τf−t)

, · · · , c(erkn(t)−1)
erkn(t)(τf−t)

]>, 0 < S ∈ R and c > 1. If S > l, where 0 < l ∈ R,

then, the system (11) achieves predefined-time passivity.

Proof. Let’s take a following storage function

V =
1
2

r>k (t)rk(t) (13)

We give derivative of V along the trajectories of system (11) for t ∈ [t0, τf ) by

V̇ = r>k (t)ṙk(t) (14)

= r>k (t)(φ(ηk(t))− φ(η̄k(t)) + µk(t)) (15)

= r>k (t)(φ(ηk(t))− φ(η̄k(t))) + r>k (t)ζk(t)− Sr>k (t)rk(t)

− c
n

∑
q=1

rkq(t)
(erkq(t) − 1)

erkq(t)(τf − t)
. (16)

Since φ(·) is assumed to be Lipschitz function,

r>k (φ(ηk(t))− φ(η̄k(t))) ≤ lr>k (ηk(t)− η̄k(t)) (17)

Using (13), we can write

V ≥ 1
2

r2
k1 =⇒

√
2V ≥ rk1,V ≥ 1

2
r2

k2 =⇒
√

2V ≥ rk2

Similarly,

V ≥ 1
2

r2
k3 =⇒

√
2V ≥ rk3, · · · ,

√
2V ≥ rkn

Then, V̇ becomes

V̇ ≤(l − S)r>k rk − c
n

∑
q=1
|rkq|

(e|rkq | − 1)

e|rkq |(τf − t)
+ r>k ζk (18)
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As V = 1
2 (r

2
k1 + r2

k2 + · · · , r2
kn), then V ≤ n

2 (max{|rk1|, |rk2|, · · · , |rkn|})2. At a partic-
ular instant of time, the max function produces one variable, suppose it gives |rk1|, then√

2V
n ≤ |rk1|. Then,

−c|rk1|
(e|rk1| − 1)

e|rk1|(τf − t)
≤ −c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

(19)

Now, (18) becomes

V̇ ≤ (l − S)r>k rk − c

√
2V
n

(e
√

2V
n − 1)

e
√

S
n (τf − t)

+ r>k ζk (20)

When S > l, then

V̇ ≤ −c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+ r>k ζk (21)

After t > τf , one can observe that with the proposed control (12) the V̇ becomes

V̇ ≤ r>k ζk (22)

Hence, the system (11) becomes PTP under the output rk and external input ζk ,

with g(V) =
√

2V
n , and c > 1.

Corollary 1. For the system (11) consider the control (12) with ζk(t) = 0, then we say the origin
of the dynamics of the error (11) to be stable in predefined-time.

Proof. The proof is analogous to Theorem 1 but with ζk(t) = 0. In that case, for t ∈ [t0, τf )
the inequality (21) becomes

V̇ ≤ − c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

(23)

Let Λ =
√

2V
n , then Λ̇ = V̇√

n
√

2V , thus the above dynamics (23) becomes the dynamics

of predefined time, i.e.,

Λ̇ = −c′
(eΛ − 1)

eΛ(τf − t)
(24)

here c′ = c
n , and for t > τf , V̇ ≤ 0. Therefore, from Lemma 1, the error (11) reaches zero in

the predefined time. In addition, in order to get rid-off from the Lipschitzness condition of
the function φ(·), following result is given using the developed adaptive state-feedback
control.

Theorem 2. Consider the dynamics (11). Let the adaptive control be

µk(t) =

{
ζk(t)− S(t)rk(t)− ψk(t, rk(t)), if t ∈ [t0, τf )

ζk(t)− S(t)rk, otherwise
(25)
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and

Ṡ(t) = ar>k (t)rk(t) + b (26)

where all the variables remain the same as in (12), a > 0 ∈ R, b > 0 ∈ R and 0 < S(0) ∈ R. Then
using the control (25), the system (11) can achieve predefined-time passivity.

Proof. From (18), one can write V̇ along the trajectories of system (11) for t ∈ [t0, τf ) as

V̇ ≤(l − S(t))r>k rk − c
n

∑
q=1
|rkq|

(e|rkq | − 1)

e|rkq |(τf − t)
+ r>k ζk (27)

From (26), one can find a 0 < t0 ∈ R satisfying S(t) ≥ l for all t ≥ t0.
Hence, for t0 ≤ t < τf , we have

V̇ ≤ −c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+ r>k ζk (28)

After time t > τf , it is evident that dynamics of V̇ is,

V̇ ≤ r>k ζk (29)

with the proposed control (25). Hence, the system (11) is said to be PTP using (28) and (29),
considering rk and ζk as the output and external input, respectively, to the k-th agent,

g(V) =
√

2V
n , and c > 1.

In a similar way as proved in Corollary 1, the origin of the dynamics of tracking
error (11) is predefined-time stable with the controller (25) if the external input ζk(t) = 0.

3.3. Predefined Time Synchronization of MAS Using Passivity

Definition 5. The MAS (8) undergoes synchronization in predefined-time if

‖ηk(t)−
1
L

L

∑
r=1

ηr(t)‖ = 0 in t ≤ τf (30)

and τf is the predefined time.
Let us define the error as: r̃k(t) = ηk(t)− η̄(t) = [r̃k1(t), r̃k2(t) · · · , r̃kn(t)]> ∈ N ⊂ Rn,

and η̄(t) = 1
L ∑L

r=1 ηr(t). Error dynamics can be written as

˙̃rk(t) = φ(ηk(t))−
1
L

L

∑
r=1

φ(ηr(t)) + µk(t)−
1
L

L

∑
r=1

µr(t)

ỹk(t) = r̃k(t)

(31)

for k = 1, · · · , L, and ỹk(t) = yk(t)− η̄(t).

Theorem 3. Consider the MAS (8) having the following coupling control

µk =

{
ζk + ∑L

q=1 PkqQr̃k − Sr̃k − ψk(t, r̃k), if t ∈ [t0, τf )

ζk + ∑L
q=1 PkqQr̃k − Sr̃k, otherwise

(32)

where ζk(t) = [ζk1(t), ζk2(t), · · · , ζkn(t)]> ∈ Rn is the external input to the agent

k, ψk(t, r̃k(t)) = [ c(er̃k1(t)−1)
er̃k1(t)(τf−t)

, c(er̃k2(t)−1)
er̃k2(t)(τf−t)

, · · · , c(er̃kn(t)−1)
er̃kn(t)(τf−t)

]>, c > 1, 0 < S ∈ R, Pkq ∈ RL×L is
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Laplacian of graph O defined such that: Pkq = Pqk ∈ R > 0 when an edge exists between agent k
and q (q 6= k), else Pkq = Pqk = 0 (q 6= k), and

Pkk = −
L

∑
q=1 q 6=k

Pkq (33)

and further Q ∈ Rn×n > 0. Hence, the MAS (8) is PTP whose agents undergo synchronization in
predefined-time if ζ(t) = 0, with ζ(t) = [ζ>1 (t), ζ>2 (t), · · · , ζ>L (t)]

>.

Proof. Consider the storage function as

V =
1
2

L

∑
k=1

r̃>k (t)r̃k(t) (34)

Thus, the derivative of V along the system trajectories (31) for t ∈ [t0, τf ) can be
written as

V̇ =
L

∑
k=1

r̃>k (t) ˙̃rk(t) (35)

=
L

∑
k=1

r̃>k (t)
(

φ(ηk(t))− φ(η̄(t)) + φ(η̄(t)) + ζk(t)

− 1
L

L

∑
r=1

φ(ηr(t)) +
L

∑
q=1
PkqQr̃k(t)− Sr̃k(t)

− ψk(t, r̃k(t))−
1
L

L

∑
r=1

µr(t)
)

(36)

Since

L

∑
k=1

r̃>k (t)
(

φ(η̄(t))− 1
L

L

∑
r=1

φ(ηr(t))
)
= 0

L

∑
k=1

r̃>k (t)
( 1

L

L

∑
r=1

µr(t)
)
= 0

(37)

Using the Lipschitzness of φ(·), we write

r̃>k (t)(φ(ηk(t))− φ(η̄(t))) ≤ Sr̃>k (t)r̃k(t), 0 < S ∈ R (38)

Incorporating (37) and (38), V̇ becomes
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V̇ ≤
L

∑
k=1

r̃>k (t)
(

ζk(t) +
L

∑
q=1
PkqQr̃k(t)− ψk(t, r̃k(t))

)
(39)

=
L

∑
k=1

L

∑
q=1
Pkq r̃>k (t)Qr̃k(t) +

L

∑
k=1

r̃>k (t)ζk(t)

− c
L

∑
k=1

n

∑
j=1

r̃kj(t)
(er̃kj(t) − 1)

er̃kj(t)(τf − t)
(40)

= r̃>(t)(P ⊗Q)r̃(t)−
L

∑
k=1

n

∑
j=1

r̃kj(t)
(er̃kj(t) − 1)

er̃kj(t)(τf − t)

+ r̃>(t)ζ(t) (41)

≤ − c
L

∑
k=1

n

∑
j=1
|r̃kj(t)|

(e|r̃kj(t)| − 1)

e|r̃kj(t)|(τf − t)
+ r̃>(t)ζ(t) (42)

with ζ(t) = [ζ>1 (t), ζ>2 (t), · · · , ζ>L (t)]
> and r̃>(t) = [r̃>1 (t), r̃>2 (t), · · · , r̃>L (t)]

>.
Similarly as in Theorem 1, we can write

V̇ ≤ −c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+ r̃>(t)ζ(t) (43)

Similarly, with the coupling control (32), for t > τf we can see that: V̇ ≤ r̃>(t)ζ(t).
Therefore, the MAS (8) becomes PTP using control (32) with output r̃(t) and external

input ζ(t). If ζ(t) = 0, and using Corollary 1, the MAS (8) undergoes synchronization in a
predefined time, which completes the proof.

Now, in order to get rid of the Lipschitzness condition of the function φ(·), the
following result is developed for MAS (8) to be PTP, along with agents’ synchronization in
a predefined time using the developed adaptive state-feedback control.

Theorem 4. Consider the MAS (8) with the following adaptive state-feedback coupling control

µk =

{
ζk + ∑L

q=1 Pkq(t)Qr̃k − ψk(t, r̃k), if t ∈ [t0, τf )

ζk + ∑L
q=1 Pkq(t)Qr̃k, otherwise

(44)

and

Ṗkq(t) = mkq(r̃k − r̃q)
>Q(r̃k − r̃q) + 2mkq (45)

where mkq = mqk > 0 ∈ R, Q ∈ Rn×n > 0, and Pkq(t) ∈ RL×L is a time-varying Laplacian of
graph O, defined such that: Pkq(t) = Pqk(t) ∈ R > 0 when an edge exists between agent k and q
(q 6= k), otherwise Pkq(t) = Pqk(t) = 0 (q 6= k), and

Pkk(t) = −
L

∑
q=1 q 6=k

Pkq(t). (46)

Then, the MAS (8) will be PTP and if ζ(t) = 0, then it undergoes synchronization in
predefined-time, where ζ(t) = [ζ>1 (t), ζ>2 (t), · · · , ζ>l (t)]>.
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Proof. Consider V = 1
2 ∑L

k=1 r̃>k (t)r̃k(t) and V ′ = ∑L
k=1 ∑q∈Nk

(Pkq(t)−αkq)
2

4mkq
. Let us consider

a positive storage function

V1 = V + V ′ (47)

V1 =
1
2

L

∑
k=1

r̃>k (t)r̃k(t) +
L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq)
2

4mkq
(48)

where αkq = αqk ≥ 0 ∈ R (q 6= k) is a constant to be selected later with αkq = 0 if Pkq(t) = 0,
and αkk = −∑L

q=1 q 6=k αkq, and Nk is the set of agents connected to the agent k. Thus,
the derivative of the storage function along the system trajectories (31) for t ∈ [t0, τf ) is
given by

V̇1 =
L

∑
k=1

r̃>k (t) ˙̃rk(t) +
L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq)

2mkq
Ṗkq(t) (49)

=
L

∑
k=1

L

∑
q=1
Pkq(t)r̃>k (t)Qr̃k(t) +

L

∑
k=1

r̃>k (t)ζk(t)

− c
L

∑
k=1

n

∑
j=1

r̃kj(t)
(er̃kj(t) − 1)

er̃kj(t)(τf − t)
+ l

L

∑
k=1

r̃>k (t)r̃k(t)

+
1
2

L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq)(r̃k − r̃q)
>Q(r̃k − r̃q)

+
L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq) (50)

Since

L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq)(r̃k − r̃q)
>Q(r̃k − r̃q) (51)

= −2
L

∑
k=1

L

∑
q=1

(Pkq(t)− αkq)r̃>k (t)Qr̃q(t)

Now V̇ dynamics becomes

V̇1 ≤
L

∑
k=1

L

∑
q=1

αkq r̃>k Qr̃q − c
L

∑
k=1

n

∑
j=1
|r̃kj|

(e|r̃kj | − 1)

e|r̃kj |(τf − t)

+ l
L

∑
k=1

r̃>k r̃k +
L

∑
k=1

r̃>k ζk +
L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq) (52)

≤ r̃>(α⊗Q + l IL×n)r̃ + r̃>ζ − c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+
L

∑
k=1

∑
q∈Nk

(Pkq(t)− αkq) (53)
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where α = [αkq] ∈ RL×L and ζ = [ζ>1 , ζ>2 , · · · , ζ>L ]
>. The further part of the proof is

as same as done in the paper [51]. Let us recall it. Let there exist a unitary matrix
U = (u1, u2, · · · , uL) ∈ RL×L such that U>αU = P = diag(p1, p2, · · · , pL) ∈ RL×L

where 0 = p1 > p2 ≥ p3 ≥ · · · ≥ pL. Let D(t) = [d>1 (t), d>2 (t), · · · , d>L (t)]
>

= (U> ⊗ In)r̃(t). Since, u1 = 1√
L
[1, 1, · · · , 1]>, one can say that d1(t) = (u>1 ⊗ In)r̃(t) = 0.

Then,

r̃>(t)(α⊗Q + l IL×n)r̃(t)

= r̃>(t)[(U ⊗ In)(P⊗Q)(U> ⊗ In)]r̃(t) + ηr̃>(t)r̃(t) (54)

= D>(t)(P⊗Q)D(t) + lr̃>(t)r̃(t) (55)

≤ p2D>(t)(Il ⊗Q)D(t) + lr̃>(t)r̃(t) (56)

= r̃>(t)(p2 Il ⊗Q + l Il×n)r̃(t). (57)

We choose αkq sufficiently large such that k2λs(Q) + l ≤ 0 and a time 0 < t0 ∈ R that
satisfies Pkq(t) ≥ αkq for all (k, q) ∈ D and t ≥ t0. Hence, V̇ dynamics becomes for all
t0 ≤ t < τf

V̇ ≤ r̃>(t)[(P(t)− α)⊗Q + α⊗Q + l IL×n]r̃(t)

− c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+ r̃>ζ (58)

≤ − c

√
2V
n

(e
√

2V
n − 1)

e
√

2V
n (τf − t)

+ r̃>ζ (59)

Applying adaptive coupling control (44), one can observe that the dynamics V̇ be-
comes: V̇ ≤ r̃>(t)ζ(t) for t > τf . Hence, with control (44) the MAS (8), under external
input ζ(t) and output r̃(t), is passive. Additionally, the MAS (8) undergoes predefined-
time synchronization if the external input ζ(t) = 0. The proposed theoretical results are
validated through the following examples.

Example 1. Consider the system of Chua’s circuit (1). The function φ(·) satisfies the Lipschitz
condition

‖φ(x1)− φ(x2)‖ ≤ l‖x1 − x2‖ (60)

for x1, x2 ∈ R3, where l = 29. Thus, from Theorem 3, the MAS (1) (with ζ(t) = 0) undergoes
predefined-time synchronization using state-feedback coupling controller (32). Figure 1 shows the
simulation results using Q = diag(4.5, 6.7, 8.9), S = 40, c = 2.8 and

P =


−0.8 0.4 0.4 0
0.2 −0.6 0.2 0.2
0.2 0.2 −0.5 0.1
0.2 0.2 0.1 −0.5


From Figure 1, one can visualize that the states of the agents converge with respect to each

other in τf = 0.04 sec and τf = 0.1 sec, which is predefined. Further, the MAS (1) undergoes
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synchronization using the adaptive state-feedback controller (44) (when ζ(t) = 0) in predefined-time
considering Q = diag(7.5, 4.2, 6.9), c = 2.8, mkq = 1 and

P(0) =


−0.05 0.05 0 0
0.05 −0.03 −0.02 0

0 −0.02 −0.06 0.08
0 0 0.08 −0.08



(a) (b)

(c) (d)

(e) (f)

Figure 1. Synchronization of the states of MAS (1) using the control (32) (with ζ(t) = 0) in predefined-
time τf = 0.04 s (a,c,e) and τf = 0.1 s (b,d,f).
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The simulation results are shown in Figure 2.
Simulation outcomes validate that agents’ synchronization with respect to each other occurs in

the predefined time τf . Figure 3 shows the evolution of Pkq with time.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Synchronization of the states of MAS (1) using the adaptive control (32) and (44) (with
ζ(t) = 0) in predefined-time τf = 0.02 s (a,c,e) and τf = 0.05 s (b,d,f).
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Figure 3. Evolution of Pkq(t) with time.

Example 2. Consider the Kuramoto model (2). From Theorem 4, the MAS (2) undergoes syn-
chronization using the adaptive state-feedback control (44) (when ζ(t) = 0) in predefined-time
considering ω = 0.4, A = 0.5, Q = 1, c = 2, mpq = 3 and

P(0) =



−5 1 1 1 1 1
1 −5 1 1 1 1
1 1 −5 1 1 1
1 1 1 −5 1 1
1 1 1 1 −5 1
1 1 1 1 1 −5


The simulation results are shown in Figure 4 for τf = 0.5 sec as the predefined time. Simulation

results confirm that the state of the oscillators synchronizes with respect to each other in the predefined
time, i.e., τf . Figure 5 shows the evolution of Pkq(t) with time.

Figure 4. Synchronization of system (2) states with the adaptive state-feedback control (44) (ζ(t) = 0)
in time τf = 0.5 s.
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Figure 5. Evolution of Pkq(t) with time.

Furthermore, a comparison is made with the finite-time state-feedback controller designed
in [51] considering this Kuramoto model. Simulation results in Figure 6a,c shows the finite-time
synchronization of the agents where the time of convergence (convergence time) changes with the
change in the initial conditions. As in Figure 6a, the initial conditions of the 6 agents of Kuramoto
model (2) are [0.1,−0.2, 0.3,−0.4, 0.5,−0.6] respectively, and the time of convergence using the
state feedback controller in [51] is around 0.9 s. Whereas in Figure 6c, as the initial conditions of the
agents are changed to [2,−0.45,−0.01,−0.75,−2, 0.6], convergence time changes to 1.2 s. While
in Figure 6b,d, using the controller (32), with the predefined-time chosen as 0.2 s, synchronization
occurs at 0.2 s (predefined-time chosen a priori), irrespective of the change in initial conditions.
The initial conditions chosen for simulation in Figure 6a,b are [0.1,−0.2, 0.3,−0.4, 0.5,−0.6] and
for Figure 6c and Figure 6d are [2,−0.45,−0.01,−0.75,−2, 0.6] respectively for agents 1 to 6 of
Kuramoto model (2). Thus, one can say that the proposed technique provides better results than
finite-time techniques existing in the literature in the sense that the convergence time in the former
case can be chosen in advance, while the convergence time in the latter case changes with the change
in the initial conditions and cannot be chosen a priori.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. State evolutions of system (2) with time using the finite-time state-feedback controller
designed in [51] with variations in the initial conditions (Finite-time synchronization) (a,c) and
predefined-time state-feedback controller (32) with τf = 0.2 s with variation in initial conditions (b,d).

4. Conclusions

In the present paper, we have developed a predefined-time passivity notion, based
on predefined-time stability, which is exploited for synchronization of nonlinear MAS. We
have studied the tracking problem for a single agent and it is shown that tracking error
dynamics is predefined-time passive using the designed control law (i) state feedback and
(ii) adaptive state feedback, and later we have shown that tracking error goes to zero in the
predefined time (which is chosen in advance), in the absence of external input. Further, we
have extended it for nonlinear MAS where we have designed state feedback and adaptive
state feedback protocols for synchronization of agents in the predefined time. A few
examples were illustrated to show the validity of the theoretical results and a comparison
with the finite-time passivity-based control scheme for MAS synchronization is shown.

As part of future work, it is proposed to do robustness analysis by considering uncer-
tainty in the consensus of leader-follower-based problems. The proposed control scheme
focuses on a completely connected graph, whereas it can be explored for directed graphs,
switching graphs, etc. The paper mainly focuses on theoretical analysis and simulation
results. Future work could explore the practical implementation of the proposed method in
real-world systems and conduct experiments to validate its effectiveness. Also, developed
notions can be explored to solve more realistic consensus problems with delay.

The proposed method assumes that all agents have the same dynamics and use the
same control law, future work could investigate the extension of the proposed method
to more general settings, such as agents with different dynamics or agents with different
control laws. The paper compares the proposed method with existing synchronization
methods based on their convergence rate and performance. However, it would be inter-
esting to explore the proposed method for analyzing communication overhead, and fault
tolerance related problems.
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