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Abstract

Structural Health Monitoring (SHM) of aeronautic structures by means of Lamb waves
opens promising perspectives in terms of maintenance costs reduction and safety increases.
Lamb waves interactions with damages are known to be nonlinear, a property still largely
underexploited in SHM. Difficulties in this context are i) to be able to distinguish between
nonlinearities due to the waves spatial propagation (i.e. material or geometrical nonlinearities)
and those located at the damage position, ii) to handle computational complexity associated
with spatio-temporal nonlinear models, and iii) to be able to physically link recorded signals
with actual damage state. This work proposes to rely on the Green-Volterra formalism to build
up a semi-analytical spatio-temporal framework describing longitudinal waves propagation and
damage interaction able to physically represent both types of nonlinearities, and computation-
ally simple enough to be tractable in real-time for SHM purposes. This approach is detailed
here for longitudinal waves, which corresponds in the low frequency × thickness range to the S0

Lamb wave mode propagating in a damaged beam. A spatio-temporal semi-analytical model of
the nonlinear longitudinal waves propagation is first derived, where the damage is represented
by a polynomial stiffness characteristic acting via boundary conditions at a given position in
the beam. This model is then used to derive the Green-Volterra series describing the nonlinear
input-output relationship of the system. A modal decomposition of the Green-Volterra series
is also provided to ease implementation and reduce computational cost. The proposed spatio-
temporal semi-analytical approach is then successfully compared to state-of-the-art nonlinear
Lamb waves simulation methods based on finite-element models. It is finally shown on a sim-
ulated example and discussed in detail how such a nonlinear framework could potentially be
relevant for SHM purposes.

1 Introduction and problem statement

Structural Health Monitoring (SHM) combines advanced sensor technology with intelligent algo-
rithms in order to autonomously and in real-time interrogate the health condition of monitored
structures. SHM applications are found in civil and mechanical engineering as well as in aerospace
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and aeronautics where it can lead to large reduction of maintenance costs associated with great ben-
efits in safety. Generally speaking, a SHM process entails establishing: (1) the existence of damage
(detection step), (2) the damage location (localization step), (3) the type of damage (classification
step), and (4) the damage severity (quantification step) [1–3].

The focus is put here on aerospace and aeronautic applications where structures to be moni-
tored are aluminum or composite thin and large panels. In order to deploy SHM to such structures,
Lamb waves are very appealing thanks to their long range propagation characteristics [4–6]. The
underlying idea when monitoring structures by means of Lamb waves is to send such waves within
the structures under study and to monitor echoes caused by potential damages apprearing in the
structures. These echoes are then the basis of the damage detection, localization, classification and
quantification steps that are usually carried out in a linear context (see for example [7–11]). This
linear context assumes that the interaction between the incoming Lamb waves is linear in the tem-
poral domain, i.e. that even if mode conversion can occur, there are no temporal nonlinear effects
appearing during the Lamb wave damage interaction (such as higher harmonic generation or mod-
ulation effects for example). However, there are now numerous experimental proofs demonstrating
that the Lamb wave/damage interaction is nonlinear and can thus generate higher harmonic or be
responsible for modulation effects [12–20].

On the basis of the assumption that in many cases damage causes a structure to exhibit nonlinear
dynamical response [21, 22] and that the SHM process can be significantly enhanced if one takes
advantage of these nonlinear effects, several damage monitoring strategies have been proposed in
the literature [23–25]. Starting from a linear framework, some authors [26–28] have shown that
a nonlinear damage will impact the transmissibility functions (i.e. the frequency domain ratio
between two different outputs of the system) and they used such information to detect and locate
the damage. Extending the notion of transmissibility functions to nonlinear systems that can be
described by Volterra series, Lang et. al [29, 30] were able to quantify the decrease of linearity
generated by a nonlinear damage and thus to effectively detect and locate it. However, as such
approaches are focusing on the loss of linearity, they do not seem to be able to deal with systems
that are nonlinear in their healthy states, a fact that is quite common in real life. To overcome
this drawback, several authors attempted to fit a nonlinear model (such as Volterra series [31]) to
the nonlinear structure under study and to compare the actual and predicted outputs, or directly
the model coefficients, under different damage conditions [32–40]. By doing so, they were able to
detect numerically and experimentally a nonlinear damage even in an initially nonlinear structure,
but not to take into account instrisic variablity caused by the environment and experimental noise.
In order to tackle this issue, stochastic [41–43] and adaptive [44,45] versions of Volterra series have
been proposed for damage monitoring purposes. These methods are very encouraging but are all
based on a single domain (either time or frequency) approach of the nonlinear damage monitoring
problem and do not take into account its spatial dimension. Adding the spatial dimension to the
above mentioned approaches, and more precisely to Volterra series [31], could however allow to:

1. naturally distinguish between nonlinearities due to the waves spatial propagation (i.e. material
or geometrical nonlinearities) and those located at the damage position,

2. easily handle computational complexity associated with spatio-temporal nonlinear models,

3. draw a closer physical link between Lamb waves recorded signals and actual damage state as
the nonlinear problem spatial dimension will be considered.
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We thus aim here at providing a spatio-temporal framework with a richer semi-analytical rep-
resentation of nonlinear damages and nonlinear propagation applied to Lamb waves propagation in
composite or aluminum aeronautic complex structures. In order to model nonlinearities, this paper
relies on the Volterra formalism [31]. Volterra series is a model representation that describes the
output signal of a system as an homogeneous series with respect to the input [46]. This approach,
similar to Taylor series approximations for functions, has been shown to be an universal approxima-
tor for any nonlinear dynamical system with fading memory [47]. To correctly take into account the
spatial dependency of the problem under study, this paper uses the Green-Volterra series [48, 49],
which are an extension of the Volterra formalism incorporating the notion of Green’s function. Fur-
thermore, we use the method presented in [49] which allows to easily compute the Green-Volterra
kernels for an inhomogeneous nonlinear partial differential equation where the nonlinearities are put
in a general polynomial form. In addition to the original work on that topic [48, 49], the inclusion
of nonlinear boundary conditions and the derivation of solutions in the form of propagating waves
are here achieved to reach that goal.

Furthermore, it should be noticed that Lamb waves are waves that are propagating in plate-like
structures and waves that are by essence multimodal and dispersive [4–6, 50, 51]. In their lower
frequency range, which is the one targeted by SHM application [8, 9], only two propagating modes
exists. The first symmetrical mode, denoted as S0 mode, mainly corresponds to “longitudinal”
deformations and converges to longitudinal waves when the frequency tends toward zero. The
first asymmetrical mode, denoted as A0 mode, mainly corresponds to “flexural” deformations and
converges to bending waves when the frequency tends toward zero. In practice, the S0 mode is
the one that propagates faster and thus often the easiest to use for damage monitoring in a SHM
context [4, 5]. Furthermore, engineering structures to be monitored are mostly symmetrical with
respect to their mid-plane and consequently the S0 and A0 mode are mathematically decoupled
in such structures and can thus be studied independently from each other. Consequently, as a
first approach to the full SHM problem, it has been chosen here to focus only on the S0 mode
in mono-dimensional structures by studying longitudinal waves propagating in nonlinear damaged
beam-like structures.

In this paper, we thus use the Green-Volterra formalism to find spatio-temporal semi-analytical
solutions for the longitudinal waves nonlinear propagation and nonlinear damage interaction in a
damaged beam. Firstly, the longitudinal waves propagation model used for the damaged beam as
well as the Green-Volterra formalism are presented in Section 2. Section 3 provides two spatio-
temporal solutions for the damaged beam problem: one semi-analytical and one using a modal
decomposition. Simulations are then presented in Section 4, and the proposed approach is sucess-
fully compared to a state-of-the-art method based on finite elements. Section 5 then presents a
method for estimating the stiffness characteristic of the damage which corresponds to both the
damage classification and damage size quantification steps of the SHM process. Finally, the pro-
posed framework advantages and drawbacks are discussed in Section 6 and a conclusion is given in
Section 7.
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Figure 1: Damaged beam under study.
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Figure 2: Simplified model used for approximating a damaged beam, using two sub-beams linked
by a pointwise spring.

2 Longitudinal waves nonlinear propagation in a damaged
beam

2.1 Modelling assumptions

As previously stated, the focus is put here on the longitudinal waves propagation within a nonlinear
damaged beam. The longitudinal waves of a damaged beam under an external force f (x, t) are
denoted u (x, t). We consider a beam of length L and section S, with fixed boundary conditions at
both ends1 and a damage localized at x = d (see Fig. 1), and made of an homogeneous, isotropic
and dissipative material, with Young modulus E, volumic mass ρ and damping factor γ. For sake
of completeness, physical nonlinearity in the propagation is also taken into account, with ϵ and β
respectively the quadratic and cubic nonlinearity coefficients [52].

The damage is represented as an infinitesimally small (i.e. pointwise) nonlinear spring linking
two sub-beams, the left and right-part of the beam under study (see Fig. 2). This modelisation
choice is purely theoretical, but seems reasonably adequate to the authors for some types of damages,
e.g. a crack or a delamination that could open or close with the longitudinal waves, or a local change
in material or geometrical properties leading to a localized variation in mechanical characteristics.
Furthermore, SHM objective is to monitor damage premises, i.e. damages that in practice are
small in comparison with monitored structures representative size, which is in agreement with the
proposed approach.

In order to later use the Volterra formalism, we make the assumption that this nonlinear spring

1The presented approach is also valid for other types of boundary conditions, but for sake of clarity and concision
we restrict here the presentation to this case only.
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Figure 3: Representation of the restoring forces due to the spring acting on boundaries x = d− and
x = d+ in two different cases.

is characterized by a polynomial stiffness relation, i.e. the force FK [x] applied by the spring at its
extremities in response to an elongation x is given in magnitude by:

FK [x] =

+∞∑
n=1

Knx
n . (1)

In the following, for simplicity, lets denote f(d−) = limx→d,x≤d f(x) and f(d+) = limx→d,x≥d f(x)
for any space-dependent function f . The “elongation”2 of the spring is thus given at all time t by
u (d+, t)−u (d−, t) (see Fig. 3). In the following, Ωl = [0, d[ and Ωr = ]d, L] will respectively denote
the left-part and right-part domains, and δ = L− d the length of the right-part beam.

2.2 Constitutive equations

Given the previous assumptions, the longitudinal wave u (x, t) follows the wave equation

ρS ∂2
t u (x, t) + γ ∂tu (x, t) − ES

(
1 − ϵ ∂xu (x, t) + β (∂xu (x, t))

2
)
∂2
xu (x, t) = f (x, t) (2)

for x ∈ Ωl ∪ Ωr.
Furthermore, the fixed extremities at x = 0 and x = L give the boundary conditions

u (0, t) = 0 , (3)

u (L, t) = 0 , (4)

and the damage imposes at boundaries x = d− and x = d+ the conditions

ES ∂xu
(
d−, t

)
= FK

[
u
(
d+, t

)
− u

(
d−, t

)]
, (5)

−ES ∂xu
(
d+, t

)
= −FK

[
u
(
d+, t

)
− u

(
d−, t

)]
. (6)

2We will use the term elongation even if the spring is pointwise.

5



The constitutive equations describing the longitudinal waves propagation in the damaged beam
model are thus given by

Σ :



1

c2L
∂2
t u (x, t) +

γ

F0
∂tu (x, t) −

(
1 − ϵ ∂xu (x, t) + β (∂xu (x, t))

2
)
∂2
xu (x, t) =

1

F0
f (x, t)

for x ∈ Ωl ∪ Ωr

u (0, t) = 0

u (L, t) = 0

∂xu (d−, t) = ∂xu (d+, t) = ∂xu (d, t)

F0 ∂xu (d, t) = FK [u (d+, t) − u (d−, t)]
(7)

with cL =
√

E
ρ the longitudinal wave celerity, and F0 = ES a factor homogeneous to a force.

The longitudinal waves u is thus solution of a non-homogeneous differential equations system
made up of one nonlinear propagation equation on Ωl ∪ Ωr, two homogeneous Dirichlet boundary
conditions at x = 0 and x = L, one homogeneous Cauchy boundary conditions at x = d and one
inhomogeneous Robin boundary conditions at x = d.

2.3 Volterra and Green-Volterra series

The Volterra series is an input-output system representation which has been used for many decades
to model a variety of nonlinear dynamical systems [31, 46]. This model relies on the assumption
that the output signal can be described, around an equilibrium, as an homogeneous series, i.e. that

u =

+∞∑
n=1

un (8)

where each output un is homogeneous of order n w.r.t. the input f , i.e. un ∝ fn.
For the readers not used to the Volterra formalism, the use of an homogeneous series approxi-

mation of a system is related to the principle of the Taylor series approximation of a function. This
idea allows to extend the idea of linear filter to each order of nonlinearity via the introduction of
Volterra kernels, which allows interesting frequency analysis of nonlinear phenomena [53,54]. One
important property of Volterra series is that it can approximate any nonlinear dynamical system
with fading memory [47].

An extension of the Volterra formalism, the Green-Volterra series, has been introduced in [48,49]
to model problems that were also space-dependent. Furthermore, a method was proposed in [49] to
easily compute these Green-Volterra series in the case of a partial differential equations of the form

Lx,t[u](x, t) = f(x, t) + P [u] (x, t) (9)

subject to linear boundary value conditions, where Lx,t is a linear space-time differential operator
and P is a polynomial in u and its derivatives that regroups all nonlinearities of the problem. Using
an approach similar to regular perturbation theory, the authors have shown that, in this case, each
output un respects the following linear differential equations:

Lx,t[u1](x, t) = f(x, t) , (10)

Lx,t[un](x, t) = Pn [u1, . . . , un−1] (x, t) for n ≥ 2 , (11)
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where Pn is a static combination of the um’s and their derivatives, constructed from P (see [49, § 3.1]
for more details about this calculation). Therefore, in order to represent and/or simulate Eq. (9),
it is only needed to know and compute the Green kernel of the operator Lx,t with correct boundary
conditions: this kernel encompasses all the dynamical part of the model, whereas nonlinearities are
solely expressed in the Pn’s (i.e. in the coefficients of P ).

In the following, we will extend this approach to derive semi-analytical solutions for the lon-
gitudinal waves nonlinear propagation in a damaged beam stated in Eq. (7), where nonlinearities
are also present in the boundary conditions. Small improvement with respect to [49] have been
achieved as we extend the method to take into account also nonlinear boundary conditions and
solutions in the form of propagating waves are provided.

2.4 Problem reformulation using Green-Volterra series

Following the approach used in [49], the model equations (7) can be reformulated

Σ :



Lx,t[u] (x, t) =
1

F0
f (x, t) +

(
−ϵ ∂xu (x, t) + β (∂xu (x, t))

2
)
∂2
xu (x, t) for x ∈ Ωl ∪ Ωr

u (0, t) = 0

u (L, t) = 0

∂xu (d−, t) = ∂xu (d+, t) = ∂xu (d, t)

Dx[u] (t) =
∑+∞

n=2 Kn (u (d+, t) − u (d−, t))
n

(12)
with Lx,t the linear differential operator representing the wave propagation in the beam given by

Lx,t[u] (x, t) =
1

c2L
∂2
t u (x, t) +

γ

F0
∂tu (x, t) − ∂2

xu (x, t) , (13)

and Dx the linear part of the inhomogeneous Robin boundary condition at x = d given by

Dx[u] (t) = F0 ∂xu (d, t) −K1u
(
d+, t

)
+ K1u

(
d−, t

)
. (14)

Let’s now make the assumption that the output longitudinal waves can be written as an homoge-
neous series. In order to obtain constitutive equations for each order un, an approach similar to
regular perturbation theory is used: the series form of Eq. (8) is incorporated in the Eq. (7), then
terms are sorted and regrouped by homogeneity order (i.e. terms that are linear w.r.t. input f
are grouped together, then those quadratic w.r.t. f , etc.) in order to give one sub-model for each
homogeneity order n. This gives the following constitutive equations for each order n:

Σn :



Lx,t[un] (x, t) = gn (x, t) for x ∈ Ωl ∪ Ωr

un (0, t) = 0

un (L, t) = 0

∂xun (d−, t) = ∂xun (d+, t) = ∂xun (d, t)

Dx[un] (t) = rn (t)

(15)

with the “input force” gn given by

g1 (x, t) =
1

F0
f (x, t) (16)
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and, for n ≥ 2,

gn (x, t) = ϵ
∑
m∈N2

m1+m2=n

∂xum1 (x, t) ∂2
xum2 (x, t)

− β
∑
m∈N3

m1+m2+m3=n

∂xum1 (x, t) ∂xum2 (x, t) ∂2
xum3 (x, t) ,

(17)

and the “residual force” rn at damage given by

r1 (t) = 0 (18)

and, for n ≥ 2,

rn (t) =

n∑
j=2

Kj

∑
m∈Nj

m1+···+mj=n

j∏
k=1

(
umk

(
d+, t

)
− umk

(
d−, t

))
. (19)

From Eq. (15) and the expression of gn and rn, we can remark that each order un is the solution
of a linear differential problem with mixed boundary conditions, where the “input force” and part
of the boundary condition are function of lower orders um with m < n. Nonlinearities due to the
propagation only appear in gn for n ≥ 2, whereas those due to the damage appears only in rn for
n ≥ 2.

The analysis and resolution of the damaged beam problem for all orders n is equivalent to the
study and analysis of operator Lx,t with corresponding boundary conditions. Furthermore, the
resolution can be made iteratively, i.e. beginning at order n = 1 and going up until a truncation
order N .

3 Spatio-temporal problem resolution

This section presents two different approaches for resolving constitutive equations (15). § 3.1
presents an semi-analytical solution in the Laplace domain, which allows frequency analysis but
has limited possibilities for simulation purposes. § 3.2 presents an approximate solution using
modal decomposition, which allows real-time simulation.

3.1 Semi-analytical solution in the Laplace domain

Consider the expression of (15) in the Laplace domain:

Σn :



Lx,s[Un] (x, s) = Gn (x, s) for x ∈ Ωl ∪ Ωr

Un (0, s) = 0

Un (L, s) = 0

∂xUn (d−, s) = ∂xUn (d+, s) = ∂xUn (d, s)

Dx[Un] (s) = Rn (s)

(20)
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with Lx,s the Laplace version of differential operator Lx,t given by

Lx,s[Un] (x, s) =
(
σ(s)2 − ∂2

x

)
Un (x, s) ,

with

σ(s)2 =
s2

c2L
+

γs

F0
,

and where spatio-frequency signals Un, Gn and Rn are the Laplace transform of spatio-temporal
signal un, gn and rn. The dynamic part of the solution of (20), i.e. ∀s ̸= 0, is given by (see
Appendix A.1 for detailed computation)

Un (x, s) =



K1

2σ(s)Q (s)

L∫
0

Gn(ξ, s)

(
cosh

(
σ(s)(L− |x− ξ|)

)
− cosh

(
σ(s)(L− x− ξ)

))
dξ

for x ∈ Ωl ,
+
F0 cosh

(
σ(s)δ

)
2Q (s)

d∫
0

Gn(ξ, s)

(
sinh

(
σ(s)(d− |x− ξ|)

)
− sinh

(
σ(s)(d− x− ξ)

))
dξ

+
Rn (s)

Q (s)
cosh

(
σ(s)δ

)
sinh

(
σ(s)x

)
K1

2σ(s)Q (s)

L∫
0

Gn(ξ, s)

(
cosh

(
σ(s)(L− |x− ξ|)

)
− cosh

(
σ(s)(L− x− ξ)

))
dξ

for x ∈ Ωr ,
+
F0 cosh

(
σ(s)d

)
2Q (s)

L∫
d

Gn(ξ, s)

(
sinh

(
σ(s)(δ − |x− ξ|)

)
+ sinh

(
σ(s)(L + d− x− ξ)

))
dξ

−Rn (s)

Q (s)
cosh

(
σ(s)d

)
sinh

(
σ(s) (L− x)

)
(21)

where
Q (s) = K1 sinh

(
σ(s)L

)
+ F0 σ(s) cosh

(
σ(s)δ

)
cosh

(
σ(s)d

)
. (22)
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The static part, i.e. for s = 0, is given by (see Appendix A.2 for detailed computation)

Un (x, 0) =



K1L

F0 + K1L

L∫
0

Gn(ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,L] (ξ)x− ξx

L

)
dξ

for x ∈ Ωl ,+
F0

F0 + K1L

d∫
0

Gn(ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,d] (ξ)x

)
+

x

F0 + K1L
Rn (0)

K1L

F0 + K1L

L∫
0

Gn(ξ, 0)

(
1[0,x] (ξ) ξ + 1[x,L] (ξ)x− ξx

L

)
dξ

for x ∈ Ωr .+
F0

F0 + K1L

L∫
d

Gn(ξ, 0)

(
L− 1[d,x] (ξ)x− 1[x,L] (ξ) ξ

)
dξ

− (L− x)

F0 + K1L
Rn (0)

(23)

Left and right part in Eq. (21) share the same first term, which is, to a factor, the longitudinal
waves of a healthy beam of length L fixed at both its boundaries. For the left part (respectively
the right part), the second term is, also to a factor, the longitudinal waves of an healthy beam of
length d (resp. δ = L− d) with fixed-free boundary condition (resp. free-fixed). In both parts, the
third and last term corresponds to the longitudinal waves induced by the inhomogeneous Robin
boundary condition due to the damage.

Furthermore, if K1 = +∞ (i.e. the damage acts as a non deformable link between both left and
right parts), we recover perfectly the case of a fixed-fixed healthy beam of length L. For the linear
term U1, if we consider K1 = 0 (i.e. the damage does not link both parts), we recover perfectly the
equations for two separate healthy beams. The same remarks can be made for the static solution
provided in Eq. (23).

In order to use equations (21−23) for numerical simulation, it will be necessary to perform a
numerical Fourier transform and its inverse. Therefore damping is needed, otherwise discretization
of the frequency domain will cause leaking effects that prevent simulating the transient response3.
This also impedes the simulation from being computed in real-time.

Furthermore, spatial integral appears in Eq. (21−23), which will introduce numerical approxi-
mations. One possible workaround is to only consider point-wise excitation force, i.e. of the form
δ (x− x0)F (s); but even when considering this special type of input, and when nonlinear propa-
gation terms are taken into account (i.e. when ϵ ̸= 0 and β ̸= 0), pseudo-input force Gn for n ≥ 2
will not be point-wise, and the problem of numerical spatial integral remains (if the propagation is
linear, then Gn for n ≥ 2 are always zero).

To alleviate those requirements, the next section presents a modal decomposition that can be
practically used to solve Eq. (15).

3Stationnary response for sinusoidal excitation would still be computable, but a large majority of works in the
SHM domain are interested in transient responses.
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3.2 Approximate solution using a modal decomposition

Because the model described by Eq. (15) is a linear problem (w.r.t. gn and rn), it can be decomposed
onto an orthonormal basis. § 3.2.1 introduces the modal decomposition used, and § 3.2.2 presents
how it is used to compute approximate solutions of Eq. (15).

3.2.1 Modal shapes

For the pth mode, depending whether the damage is positioned on an anti-node or not, its modal
shape ϕp can be of one of two forms (see Appendix B.1 for detailed computations).

General case: Consider first the case where the damage is not positioned on an anti-node (which
is the more general case), i.e. ϕ′

p (d) ̸= 0. Therefore the modal shape ϕp has a discontinuity at
x = d, and its shape is given by

ϕp (x) =


Ap sin (λpx) for x ∈ Ωl ,

−Ap
cosλpd

cosλpδ
sin

(
λp(L− x)

)
for x ∈ Ωr ,

(24)

with

Ap =

√√√√ 2 cos (λpδ)
2

d cos (λpδ)
2
(

1 − sinc (2λpd)
)

+ δ cos (λpd)
2
(

1 − sinc (2λpδ)
) , (25)

and where the wavenumber λp is the pth solution of the transcendental equation

0 =
F0

K1
+

sinc (λd)

cos (λd)
+

sinc (λδ)

cos (λδ)
. (26)

Particular case: If the damage is exactly on an anti-node, i.e. ϕ′
p (d) = 0, the modal shape is

continuous and analogous to a modal shape of a healthy beam of length L. This type of modal
shape is quite rare, and appears only if there exists (n,m) ∈ N2 such that

(n + 1/2)π

d
=

(m + 1/2)π

δ
. (27)

Its shape is then given by

ϕp (x) =

√
2

L
sin

(
(n + m + 1/2)π

L
x

)
. (28)

Figure 4 shows the first modal shapes for a damaged beam. All modes are quite similar in shape
to those of an healthy beam with fixed boundary conditions at both its extremities, except for the
discontinuity at the damage position; the fifth mode, which is a particular case where the damage
position corresponds exactly to the fourth anti-node, is exactly equal to the corresponding healthy
mode.
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Figure 4: The first six modal shapes for a damaged beam (with L = 1 m, F0 = 2.1 · 107 N, d = 0.7 m
and K1 = 0.7 · 109 N/m); the fifth one is a particular case, where the damage position corresponds
to the fourth anti-node.

3.2.2 Modal solution

The modal solution of problem (15) is given by (see Appendix B.3 for detailed computations)

un (x, t) = h (x) rn (t) +

+∞∑
p=1

ϕp (x)un,p (t) , (29)

where h is a spatial shape with null second derivative, added to take into account the inhomogeneous
boundary condition Dx [un] (t) = rn (t), given by

h (x) =


x

F0 + K1L
for x ∈ Ωl ,

− (L− x)

F0 + K1L
for x ∈ Ωr ,

(30)

and where un,p is the temporal evolution of the p-th mode, which follows the ordinary differential
equation

ün,p (t) +
c2Lγ

F0
u̇n,p (t) + λ2

pc
2
Lun,p (t) = c2L⟨gn, ϕp⟩ (t) − ⟨h, ϕp⟩

(c2Lγ
F0

ṙn (t) + r̈n (t)
)
, (31)
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where the notation ⟨a, b⟩ corresponds to the spatial scalar product between a and b, i.e.

⟨a, b⟩ =

∫ L

0

a(x)b(x)d x . (32)

The modal solution of (15) can thus be numerically simulated, for each order n, as follows:

1. compute terms gn and rn from previous orders um, m < n (for n = 1, we have g1(x, t) = f(x, t)
and r1(t) = 0);

2. compute derivatives ṙn and r̈n via numerical derivation;
3. compute factors ⟨h, ϕp⟩ using Eq. (83) and (84);
4. compute signals ⟨gn, ϕp⟩ (t) either using a numerical integral, or using an analytical approach

similar as the one in §4.3 in [49];
5. numerically solve Eq. (31) using any discretization method (Euler method, bilinear transform,

first-order hold, etc);
6. compute the solution using Eq. (29).

Using the modal approach, there are no restrictions on the damping of the system nor on the input
signal (its modal decomposition must either be known in advance or computed using numerical
integrals). Furthermore, this approach could be carried in real-time, if proper precomputation is
done for all the necessary terms.

4 Simulation benchmark comparison of the proposed longi-
tudinal waves nonlinear propagation in a damaged beam

In this section, we will compare results provided by the two solutions of the damaged beam problem
obtained from Eq. (7) (given in § 3.1 and § 3.2) with the same structure simulated by means of
the SDTools Matlab Toolbox [55], a state-of-the-art analysis and simulation toolbox for dynamical
analysis which uses the finite element method (FEM). The objectives of this section are to study the
accuracy and computational efficiency of the proposed semi-analytical spatio-temporal solutions.

4.1 Simulation parameters

The base model is a steel beam of length L = 1 m, with a rectangular section of 20 mm by 5 mm
(so a surface S = 1 cm2), a Young modulus of E = 210.0 GPa, a density of ρ = 7850.0, kg/m3,
and a damping factor of γ = 5.0 · 103 kgm−1s−1. For the simulation, the propagation is supposed
linear, i.e. ϵ = 0 and β = 0.
The damage is taken as a cubic spring, i.e. with a characteristic relation given by

FK [x] = K1x + K3x
3 , (33)

where K1 = 0.7 · 109 N/m and K3 = 5.0 · 1027 N/m3. It is placed at d = 0.7 m.
The input force is taken as sine burst excitation, located at x0 = 0.3 m. It is comprised of three
cycles at f0 = 100 kHz multiplied by a Hann window of unit amplitude, sampled at fs = 5 MHz
(see Figure 5). Output longitudinal waves are simulated for a duration of 1 ms and with a time
step of 5 × 10−7 s .
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Figure 5: Input force signal used for the simulation in (a) time domain and (b) frequency domain
representations.
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Simulation method
Truncation order

N = 7 N = 15 N = 25

Semi-analytical solution 14.1dB 14.1dB 14.1dB

Modal solution (50 modes) 11.8dB 11.8dB 11.8dB

Modal solution (100 modes) 14.1dB 14.1dB 14.1dB

Table 1: RMS value (in dB) of the difference between the FEM results provided by SDTools and
proposed methods for different truncation order N of the Green-Volterra series

For the finite-element model, the elements that are used are standard Bernoulli-Euler beam
elements (12 DOF) based on linear interpolation for traction and torsion and cubic interpolation
for flexion. The solver that is used is a Newmark implicit time integration method with γN = 0.5
and βN = 0.25 (providing an unconditionally stable scheme). The beam was meshed with elements
having a size of 1 mm resulting in a model containing 1000 elements and 1001 nodes.

For both simulation methods presented in this paper, only the N = 15 first orders of the series
are simulated. This truncation order was selected so that precision brought by adding higher-order
terms would be negligible (the 15th order is more than 60dB below the first order in terms of
amplitude). The semi-analytical solution simulation uses a zero-padding of 50000 points to avoid
leaking effects in the Fourier and inverse-Fourier transform. This was selected to ensure that the
longitudinal waves would be totally damped at the end of the analysis window. The modal solution
simulation uses a number of 100 modes and a first-order hold as discretization method. The number
of modes was chosen in order to represent a large enough dynamic range without being too costly
to compute.

4.2 Simulation results

Figure 6 shows the space-time representation of the longitudinal waves simulated using the two
proposed methods and the FEM simulation. We can see that obtained results are qualitatively
similar for all three simulations. This can be further observed in Figure 7 which shows the first
reflections at three positions (between the left boundary and the excitation at x1 = 0.15m, between
the excitation and the damage at x3 = 0.5m, and between the damage and the right boundary at
x3 = 0.85m). It demonstrates that the proposed modelisation and simulations correctly reproduce
the longitudinal waves in the temporal domain.
It can also be seen that the damage acts as a nonlinear semi-reflecting barrier, which creates
harmonic distortion. These distortions are visible in the output spectra, shown in Figure 8 at
the same three positions. It can be seen that the proposed simulations correctly reproduce the
nonlinear dynamical behavior. The error observed above 250kHz in the modal approach is due to
the number of modes used: more modes are needed to represent dynamics for higher frequencies, but
it would impact the computation time. Furthermore, we can quantitatively compare simulations
by computing the RMS value of their difference; those results are given in Table 1, which gives:

� a value of −14dB between the semi-analytical approach and the result given by SDTools;

� a value of −14dB between the modal approach and the result given by SDTools;
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(c) FEM simulation

Figure 6: Space-time plot of the damaged beam using (a) the semi-analytical solution (see § 3.1),
(b) the modal solution (see § 3.2), (c) a FEM toolbox available for Matlab; simulations parameters
are presented in § 4.1.
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Figure 7: First reflections of the longitudinal waves of the beam at three positions: (a) between
the left boundary and the excitation at x1 = 0.15m, (b) between the excitation and the damage at
x3 = 0.5m, (c) between the damage and the right boundary at x3 = 0.85m; simulations parameters
are presented in § 4.1.
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Figure 8: Amplitude spectrum of the longitudinal waves of the beam at three positions: (a) between
the left boundary and the excitation at x1 = 0.15m, (b) between the excitation and the damage at
x3 = 0.5m, (c) between the damage and the right boundary at x3 = 0.85m; simulations parameters
are presented in § 4.1.
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Simulation method
Complete discretization SHM-like discretization

N = 7 N = 15 N = 25 N = 7 N = 15 N = 25

FEM 49.62s

Semi-analytical solution 139.12s 251.37s 446.63s 1.38s 3.17s 4.75s

Modal solution (50 modes) 70.97s 119.36s 214.03s 17.56s 37.97s 56.03s

Modal solution (100 modes) 148.37s 257.27s 446.16s 37.13s 70.27s 116.30s

Table 2: Computation time of the three simulation methods for different truncation order N of the
Green-Volterra series; column “Complete discretization” corresponds to the spatial discretization
used for the FEM simulation, here using 1001 equally spaced points; column “SHM-like discretiza-
tion” corresponds to computing the longitudinal waves only for some position (corresponding to
sensors in a SHM framework), here considering three sensors at x1 = 0.15m, x2 = 0.5m and
x3 = 0.85m.

� a value of −37dB between the modal and semi-analytical approach.

Therefore, the simulations using both proposed approaches and through SDTools obtain qualita-
tively and quantitatively similar results, thus validating the approach.

Table 2 shows the computation time of the three simulation methods in different cases; com-
putations were made on a personal laptop with dual core 2.40GHz processors and 8 gigabytes of
RAM. When the beam is represented using 1001 equally spaced points (left-column of the table),
the FEM approach is significantly faster than the two proposed methods (between 2 to 10 times).
But one advantage of the proposed methods is that it is possible to compute longitudinal waves only
at specified points, which can be interesting in a SHM framework (where only longitudinal waves
at sensors location is needed). In this case (right-column of the table), the two proposed methods
can be significantly faster than a FEM approach, depending on method used and its parameters.
Nonetheless, these comparisons have to be taken with precautions due to the fact that the FEM
simulation used a highly-optimized and efficient Matlab Toolbox, whereas the proposed simulation
methods were implemented in Python, and were not optimized for computation efficiency. Further-
more, it should be noted that the mesh size of the FEM is certainly too fine and can be coarsened
without loosing accuracy. Another point is that high order elements combined with an explicit
solver could also have been more efficient. This would result in a decrease of computational time.
For both proposed simulation methods, the computation time grows almost linearly with the trun-
cation order N ; therefore, it is interesting to compute only the orders needed for a given wanted
precision, i.e. to avoid computing orders that do not contribute significantly to the output longi-
tudinal waves. Furthermore, the semi-analytical solution approach is much faster than the modal
one when few points are needed, but this difference diminishes (or is even inverted) for a large
number of spatial points. This can be explained by the fact that, in the modal approach, most
of the computation is due to the numerical resolution of the ordinary differential equation (31)
(which only depends on time and not on space), whereas in the semi-analytical approach most of
the computation is due to the computation of output spectra from (21) and (23) (which are space
dependent). Finally, we can observe that the computation time of modal simulation evolves almost
linearly with the number of modes; therefore, if no precision is wanted in the high frequency domain,
the number of modes can be kept quite low to reduce the computation time.
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5 Damage parameters estimation

5.1 SHM context and underlying assumptions

SHM rely on smart-structures instrumented by sensors and actuators (piezo-electric elements for
example) that can be considered as local [2,3,5]. Then, the damage monitoring process is classically
performed in four steps:

1. Detection : is there a damage?

2. Localization : where is the damage?

3. Classification : what kind of damage is it?

4. Quantification : how large is the damage?

Damage detection is a topic that has been largely addressed using nonlinear approaches in the
literature [26–28, 32–45]. The damage localization problem has been solved using linear based
approaches [7, 9, 11] as well as using nonlinear based approaches [29, 30]. Consequently, we assume
here that the damage has already been detected and localized and that the objective is now to
classify it and to estimate its severity.

Consequently, this section presents a method for estimating the damage class and severity,
i.e. the values of the coefficients Kn for n up to an chosen order N , in the case where all other
parameters of the problem (geometry and material properties of the beam, and the position of the
damage) are known, or can be estimated with good accuracy. The polynomial shape will provide
information for damage classification whereas the polynomial coefficients values will be useful for
damage quantification purposes. We will consider the case of a linear propagation (i.e. ϵ and β
are null, or equivalently gn is always null for n ≥ 2). Furthermore, we will assume that the input
force can be controlled and is a pointwise excitation located in xi (i.e. f(x, t) = δ(x − xi)f(t)),
and that longitudinal wave was measured in a location xo. As previously stated, those assumptions
correspond to the ones classicaly made in a SHM framework. First the method is presented in § 5.2,
then its potential applicability to SHM for classification and quantification purposes is illustrated
on a simulated system in § 5.3.

5.2 Estimation method

General idea
From Eq. (19), it can be seen that the residual force rn at the damage depends only on the

coefficients Km with m ≤ n. Therefore, access to output orders un would allow an iterative
estimation procedure, i.e. estimate K1 from u1, then estimate K2 from u2 using the previously
estimated K1, etc. Fortunately, it is possible to extract output orders un from measurements using
order separation methods such as described in [56–58].
The proposed method can be separated in three main steps:

1. separate orders un using the approach presented in § 4.2 of [58];
2. estimate K1 from u1 by fitting transfer functions;
3. for each n = 1, . . . , N , estimate Kn from un using a least-squares approach.

These last two steps are now detailed.
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Estimation of K1

First the transfer function H̃ is estimated using input F and the first separated order u1, i.e.

H̃ (j2πfk) =
U1 (xo, j2πfk)

F (xi, j2πfk)
. (34)

Then coefficient K1 is estimated by minimizing the following criteria (e.g. using a gradient descent
method):

K1 = arg min 10 log

∑
fk

(
H̃ (j2πfk) −H (j2πfk)

)2

 , (35)

where the true transfer function H is computed using (21) and (23), with G1(s) = F (s)/F0 and
R1(s) = 0.

Estimation of Kn, n ≥ 2
The expression of the residual force rn, given by equation (19), can be rewritten

rn (t) = roldn (t) + rnewn (t) , (36)

with roldn the part of the residual force that only depends on coefficients Km with m < n, given by

roldn (t) =

n−1∑
j=2

Kj

∑
m∈Nj

m1+···+mj=n

j∏
k=1

(
umk

(
d+, t

)
− umk

(
d−, t

))
, (37)

and rnewn the part of the residual force that depends only on the coefficient Kn to estimate, given
by

rnewn (t) = Kn

(
u1

(
d+, t

)
− u1

(
d−, t

))n

. (38)

Because we have no propagation nonlinearities (i.e. Gn si null), we can see from (21) and (23)
that the output longitudinal waves of order n linearly depends on rn. We can thus define uold

n

(respectively unew
n ) in a similar fashion as for roldn (resp. rnewn ), i.e. the part of the order un that

only depends on coefficients Km with m < n (resp. on coefficient Kn). We can then write

Un (x, s) − Uold
n (x, s) =


Rnew

n (s)

Q (s)
cosh

(
σ(s)δ

)
sinh

(
σ(s)x

)
−Rnew

n (s)

Q (s)
cosh

(
σ(s)d

)
sinh

(
σ(s) (L− x)

) (39)

Un (x, 0) − Uold
n (x, 0) =


x

F0 + K1L
Rnew

n (0)

− (L− x)

F0 + K1L
Rnew

n (0)
(40)

Because Rnew
n linearly depends on Kn, so does Un (x, s) − Uold

n (x, s). It is therefore possible to
estimate Kn using the following approach:

1. compute Uold
n (x, s) using previously estimated coefficients;

2. compute the right-hand part of (39) and (40) taking Kn = 1;
3. estimate Kn using a least-square method between left and right-hand parts of (39) and (40).
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5.3 Estimation results

In this section, the estimation method is tested on the same beam as described in § 4.1. Longi-
tudinal wave responses are simulated using the FEM Matlab Toolbox SDTools, and the method
is tested on three different output positions xo: one at x1 = 0.15m between the left boundary
and the excitation , one at x2 = 0.3m between the excitation and the damage, and the last at
x3 = 0.85m between the damage and the right boundary. The N = 9 first order are separated using
the method presented in § 4.2 of [58], and then the 9 first coefficients Kn are estimated using the
method described previously (see § 5.2).
Figure 9 shows the estimation result for the three output position and for different cases of added
noise. The grey area corresponds to the region of excitation of the damage during the longitudinal
waves propagation, i.e. values given outside this area are extrapolated from the estimated coeffi-
cients but this part of the characteristic was not at play during the longitudinal waves propagation.
The problem encountered here is that a given nonlinear black box model, and by the way any black
box model, cannot be correctly identified out of its excitation range [59]. This can be interpreted
as an intrinsic inability of the estimated model to predict things out of the training range. We can
however see that, in the non-extrapolated region, the damage characteristic is well estimated for
any output data used; outside this region, the estimated characteristic can quickly diverge from the
true value if there is noise present. In noisy environment (SNR = 20dB), the estimation begins to
differ from the true value except for the output position xo = 0.85m; this could be explained by
the fact that, because the damage is situated in between this point and the excitation (which is at
xi = 0.3m), the impact of the damage on the propagation is greater than for the other two points
(which are on the same side of the beam than the excitation).
In order to test how the estimation method can give an idea of the damage severity, we have repeated
the previous experiment but with different cubic coefficient K3 for the damage characteristic

FK [x] = K1x + K3x
3 . (41)

Figure 10 shows the estimation results for three different values of K3. We can observe that, in the
non-extrapolated region, the damage characteristic is well estimated for any damage severity and
for any output position used. The modification of the polynomial coefficients of Eq. (41) can be
interpreted from a SHM point of view as a modification of the damage severity (the more severe
the damage is, the more nonlinear it will be). This numerical experiment thus illustrates how the
proposed estimation can thus potentially be used for damage quantification purposes.
In the SHM community, damage is generally represented using various models like dry friction,
coulomb friction, mechanical slack or bilinear relation (even if it has not been experimentally proven
that these models are more realistic than polynomials). Figure 11 shows the estimation result for
a damage with a dry friction characteristic. We can observe that this type of damage is not
correctly estimated, even for the central linear part. This can be explained by the fact that the
estimation method relies heavily on polynomial approximation, which can not correctly represent
the discontinuities present in the dry friction characteristic. However, some useful information can
still be extracted from these estimation results. For example, the shape of the estimated polynomial
approximation may be representative of a given damage type and thus may be helpful for damage
classification tasks.
Therefore we have shown that, in the case of a damage following a polynomial relation, the proposed
estimation method can robustly estimate the damage characteristic in the displacement range where
it has been excited and that these extracted characteristics potentially convey useful information
for damage classification and quantification.
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Figure 9: Damage characteristic and its estimation for different SNR and different output position
xo; the grey area corresponds to the region of excitation of the damage during the longitudinal
waves propagation.
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(a) K3 = 5.0 · 1027 N/m3.
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(b) K3 = 1.0 · 1028 N/m3.
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(c) K3 = 2.0 · 1028 N/m3.

Figure 10: Damage characteristic and its estimation for different damage severity (characterised by
the cubic coefficient K3) and different output position xo; the grey area corresponds to the region
of excitation of the damage during the longitudinal waves propagation.
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Figure 11: Damage characteristic and its estimation for different output positions xo and with
different SNR; the gray area corresponds to the region of excitation of the damage during the
longitudinal waves propagation.

6 Discussion

The advantages and drawbacks of the proposed framework for longitudinal waves nonlinear prop-
agation in a damaged beam, particularly with respect to its practical value for SHM purposes, are
discussed in this section.

6.1 Modeling wave damage interaction using polynomial decompositions

One of the first concerns that can be raised considering the framework proposed here is that it fully
relies on the assumption that the wave/damage interaction can be modeled using a polynomial
approximation. This section aims at discussing why this is a reasonable choice both from an
applicative and theoretical points of view, even if it is not representative of all the damage cases
that can be encountered in practice and of all the existing nonlinear mathematical functions.

The practical objective is here to provide a tool for SHM purposes where the goal is to mon-
itor damage evolution in an engineering structure at its earliest stage [2, 60]. Consequently, it is
expected in practice that the framework summarized by Eq. (7), and more particularly the fact
that the wave/damage interaction expressed as a polynomial approximation in Eq. (1), are indeed
representative of structures containing damage at an early state. More precisely, the underlying
idea is to monitor the dynamical nonlinearitites generated by the wave/damage interaction as they
are expected to be extremely sensitive to the damage [23–25]. Physically, one can reasonably infer
that small damages or damages at their earliest stage may dynamically behave relatively smoothly,
and that their behavior will become more and more nonlinear as damages are growing up. As a
consequence, if the focus is put only on the beginning of the damage evolution process, it can be
admitted that from a physical perspective the polynomial approximation is sufficient with respect
to the applicative purpose pursued here.

This question can also be considered from a theoretical point of view. Indeed, it has been math-
ematically demonstrated that polynomial developments can approximate any “weakly” nonlinear
function [61, 62]. The vocabulary being used here, more precisely the word “weakly”, is a bit mis-
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leading as it implicitly suggests that it is not a “strong” nonlinearity. However, mathematically,
“weakly” here means that the function to be approximated should be continuous enough and does
not tell how linear or not it should be. For example exponential and arctan functions are truly
nonlinear but extremely continuous and thus can be extremely well approximated by polynomials.
Furthermore the functions under study only need to be approximated locally and not through their
whole definition domain (see Figures 9, 10, and 11 for example) which is also an argument in favor
of polynomial expansions. Functions that are not continuous enough, as shown in Fig. 11 for the
dry friction case which cannot be differentiated at two points, may however hardly be approximated
in practice by such an assumption. Consequently, polynomial expansions appear here as a math-
ematical tool general enough to model a wide variety of nonlinear continuous functions and thus
seems sufficient in practice here.

Another point of interest is related with the nonlinearities induced by the material itself that have
been considered in the theoretical approach but not in the estimation procedure. The estimation
method that was indeed proposed here made the assumption that the propagation is linear. If
the nonlinear propagation parameters ϵ and β are known for the material and geometry under
study, the proposed approach could easily be improved to incorporate nonlinear propagation. This
would mean that, in the third step of the estimation process (i.e. the iterative estimation of the
nonlinear damage coefficients), the part due to propagation would have to be included in roldn . If
the nonlinear propagation parameters are unknown, they would then need to be estimated along
the damage coefficient, which would surely impact the estimation robustness.

6.2 From mono-dimensional beams to bi-dimensional plates

A second concern that can be raised regarding the semi-analytical framework proposed here is that
it targets mono-dimensional wave propagation. In real life applications, engineering structures to
monitor can indeed be mono-dimensional (such as beam-like structures, structures build up of many
beams, etc ...) but can also be bi-dimensional (like aeronautic composite or aluminum structures
for example). An important question is thus if, and how, this framework can handle or be adapted
to handle bi-dimensional structures.

As a first way to deal with this concern, one can notice that in practical SHM cases dealing with
aeronautic composite or aluminum structure, the considered wavelengths are of the order of few cm
to monitor meter scale structures [5, 6, 8–11]. In practice, even if those waves are being generated
by a point-like source, this means that propagation can be considered as plane wave propagation.
Furthermore, the attenuation of such waves is dominated by material attenuation [63] and thus the
mono-dimensional plane wave equations can be considered to hold. Following that approach, even
if the structures within which the waves propagate are 2D, a 1D propagation model thought as a
ray tracing approach can be considered [64]. Consequently, the semi-analytical approach proposed
in Sec. 3.1 can be used in a straightforward manner to address such a problem. However, the modal
one that relies on beam modes and presented in Sec. 3.2 cannot be used as modes are not clearly
defined in such a context. The ray-tracing approach may thus be a practical solution to reduce
the 2D wave propagation problem related to SHM of composite aeronautic structure to a 1D one
that suits the framework proposed here. An important issue regarding such an approach is however
that wave/damage interaction would be poorly described as it remains a punctual interaction. An
advantage of such an approach is that it will be computationally cheap.

In order to extend to 2D the proposed 1D framework, an alternate idea could be to entirely
re-formulate the problem in a cylindrical coordinates system centered on the damage himself. The
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problem at hand could thus be considered as axisymetric and 1D solutions can be found by relying
on Hankel functions instead of exponential functions as elementary solutions of the linear problem.
This approach is very common when addressing linear diffraction of Lamb waves by cylindrical
obstacles [65–67]. Adapting the proposed framework on the basis of this idea may be complicated
to manage in practice but seems however affordable from an analytical point of view. In order to
simplify analytical computations, Hankel functions can furthermore by approximated by exponential
functions after a few wavelengths, which could help. Such an approach to reduce the 2D problem
to a 1D one seems more suitable from a physical point of view that the ray tracing approach but
may lead to more analytical and computational complexities.

6.3 From longitudinal waves to S0 and A0 Lamb wave modes

A third concern is that SHM relies on Lamb waves and not on longitudinal waves as in the proposed
framework. Lamb waves are waves that propagate in plate-like structures and are multimodal
and dispersive [4–6, 50, 51]. In their lower frequency range, which is the one targeted by SHM
application [8, 9], only two propagating modes exists. The first symmetrical mode, denoted as S0

mode, mainly corresponds to “traction/compression” deformations and converges to longitudinal
waves when the frequency tends toward zero. The first asymmetrical mode, denoted as A0 mode,
mainly corresponds to “flexural” deformations and converges to bending waves when the frequency
tends toward zero. Furthermore, engineering structures to be monitored are mostly symmetrical
with respect to their mid-plane and consequently the S0 and A0 mode are mathematically decoupled
in such structures and can thus be studied independently from each other. This section will thus
discuss if the proposed framework can be thought as representative of S0 mode Lamb waves, how it
could be adapted to be representative for A0 mode Lamb waves, and point out one of its limitation
which is that it is unable to represent mode conversion.

In practice, the S0 mode is the one that propagates faster and thus often the easiest to use
for damage monitoring in a SHM context [4, 5]. Consequently, as a first approach to the full SHM
problem, this is why it has been chosen here to focus only on the S0 mode in mono-dimensional
structures by studying longitudinal waves propagating in nonlinear damaged beam-like structures.
In that sense, the proposed framework can be thought as representative of the S0 mode propagation.

The extension of the proposed framework to A0 mode, i.e. to “flexural” waves can also be dis-
cussed. What is representative of longitudinal waves in the proposed formulation is the longitudinal
wave equation provided by Eq. (2). In order to extend the proposed framework to the A0 mode,
it is thus simply necessary to replace this equation describing longitudinal waves by an equation
describing flexural waves propagation like Eq. (42) [68] and to follow the same solutions deriva-
tion procedure as for the longitudinal case. Furthermore, boundary conditions (3) and damage
conditions (5) also have to be replaced by corresponding relations for bending waves.

ρS ∂2
t u (x, t) + γ ∂tu (x, t)− ESh3

12(1 − ν2)

(
1 − ϵ ∂xu (x, t) + β (∂xu (x, t))

2
)
∂4
xu (x, t) = f (x, t) (42)

for x ∈ Ωl ∪ Ωr and with h the thickness and ν the material Poisson ratio.
It is also important to notice that the proposed framework is only able to represent part of the

physical phenomenon happening during wave damage interaction. Indeed, when a S0 mode Lamb
wave interacts with a damage, the reflected and transmitted waves are not only S0 mode Lamb
waves but can also be of the A0 mode type [4–6]. This phenomenon is known as mode conversion
and is not handled by the framework proposed here. Indeed, one assumption retained here is that
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S0 and A0 modes are decoupled from each other as a result of the symmetry of the structure with
respect to its mid-plane. This assumption is true excepting at the damage location where mode
conversion can occur and thus where S0 and A0 modes can be coupled. However, with respect
to practical application this is not a major drawback. Indeed, care is often taken to make sure
that the selected piezoelectric element diameters, geometry and input frequency ensures that one
mode is dominant over the other one [50]. Consequently, even if mode conversion exists, it is not a
major source of perturbation in practice and thus the proposed framework can still be considered
as representative of what happens physically.

6.4 Framework exploitation for SHM purposes

Finally it can be discussed how this framework can be considered as useful for the SHM community.
At least two points related to this can be mentioned and are developed in this section.

The first point is linked with the fact that finite-element simulation of both the nonlinear wave
propagation and the nonlinear wave/damage interaction is something that is extremely hard to
handle in practice. Usually authors from the literature either perform finite element simulations
of nonlinear damages interrogated by waves propagating in a linear medium (see [15] or [18] for
example) or analytical computations of waves propagating in a nonlinear undamaged medium (see
for example [16] or [52]). To the authors knowledge, there are no published work allowing to simulate
both nonlinear wave propagation and nonlinear wave/damage interaction. The proposed framework
can by definition handle simultaneously those two effects at low computational costs. However, due
to its semi-analytical formulation, the allowed geometries are very restricted. Consequently it can
be very useful for the SHM community as a preliminary tool to benchmark nonlinear damage
monitoring algorithms in the presence of nonlinear propagation and for example to assess whether
nonlinear propagating phenomenon can be isolated from nonlinear wave/damage interaction by
those algorithms.

From an applicative perspective, having low-cost and reliable numerical models offers other
opportunities for the SHM community. Indeed, the main difficulties in SHM are to get data in
damage states and to train or validate SHM algorithms [69]. Using the proposed framework, it
is thus possible to get a better physical understanding of the nonlinear wave/damage interaction
(which is actually in practice very poor as damages are very often modeled as density losses [8,9,70])
and thus expect to be able to better test and tune upcoming damage monitoring algorithms by
benefiting of such an understanding. Furthermore, the actual tendency is to rely on machine
learning algorithms fed by meta-models or low-cost simulation models for SHM purposes [71, 72].
The proposed framework also appears as a good candidate to generate data-sets allowing to train
and validate such algorithms.

7 Conclusion

In this study, we have shown how the Green-Volterra formalism can be used to find spatio-temporal
semi-analytical solutions for the longitudinal waves nonlinear propagation and nonlinear damage
interaction in a damaged beam. Furthermore, those solutions can be decomposed onto an ap-
propriate modal basis for simulation purposes. We have shown through a simulation example
that both proposed approaches for simulations gave qualitatively and quantitatively similar results
than a state-of-the-art finite element method. Furthermore, a method for estimating the stiffness
characteristic was proposed and shown to be robust when the damage respects the assumption of
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polynomial approximation. The advantages and drawbacks of this framework as well as its practical
usefulness for SHM purposes have been discussed in details. Such a framework thus paves the road
for several perspectives from both the theoretical and applied point of view.
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A Computation of semi-analytical solution

A.1 Dynamic part (s ̸= 0)

Equation (20-1) admits general solutions of the form

Un (x, s) =



Al(s) cosh
(
σ(s)x

)
+ Bl(s) sinh

(
σ(s)x

)
+

1

σ(s)

x∫
0

Gn(ξ, s) sinh
(
σ(s)(ξ − x)

)
dξ for x ∈ Ωl ,

Ar(s) cosh
(
σ(s) (L− x)

)
+ Br(s) sinh

(
σ(s) (L− x)

)
for x ∈ Ωr .

+
1

σ(s)

x∫
L

Gn(ξ, s) sinh
(
σ(s)(ξ − x)

)
dξ

Boundary conditions (20-2) at x = 0 and (20-3) at x = L imposes

Un (x, s) =


Bl(s) sinh

(
σ(s)x

)
+

1

σ(s)

x∫
0

Gn(ξ, s) sinh
(
σ(s)(ξ − x)

)
dξ for x ∈ Ωl ,

Br(s) sinh
(
σ(s) (L− x)

)
+

1

σ(s)

x∫
L

Gn(ξ, s) sinh
(
σ(s)(ξ − x)

)
dξ for x ∈ Ωr .

(43)
Damage condition (20-4) at x = d imposes

Bl(s) = −Br(s)
cosh (σ(s)δ)

cosh (σ(s)d)
+

1

σ(s)

L∫
0

Gn(ξ, s)
cosh (σ(s)(ξ − d))

cosh (σ(s)d)
dξ .

Damage condition (20-5) at x = d then leads to

Br(s) =
F0

Q (s)

L∫
d

Gn(ξ, s) cosh
(
σ(s)(ξ − d)

)
cosh

(
σ(s)d

)
dξ

+
K1

σ(s)Q (s)

L∫
0

Gn(ξ, s) sinh
(
σ(s)ξ

)
dξ − Rn (s)

Q (s)
cosh

(
σ(s)d

)
,

(44)
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and so

Bl(s) =
F0

Q (s)

d∫
0

Gn(ξ, s) cosh
(
σ(s)δ

)
cosh

(
σ(s)(ξ − d)

)
dξ

+
K1

σ(s)Q (s)

L∫
0

Gn(ξ, s) sinh
(
σ(s) (L− ξ)

)
dξ +

Rn (s)

Q (s)
cosh

(
σ(s)δ

) (45)

Incorporating (45) and (44) into (43) leads to the final result (21).

A.2 Static part (s = 0)

Equation (20-1) admits general solutions of the form

Un (x, 0) =


Al + Blx +

x∫
0

Gn (ξ, 0) (ξ − x) dξ for x ∈ Ωl ,

Ar + Br (L− x) +

x∫
L

Gn (ξ, 0) (ξ − x) dξ for x ∈ Ωr .

(46)

Boundary conditions (20-2) at x = 0 and (20-4) at x = L imposes

Un (x, 0) =


Blx +

x∫
0

Gn (ξ, 0) (ξ − x) dξ for x ∈ Ωl ,

Br (L− x) +

x∫
L

Gn (ξ, 0) (ξ − x) dξ for x ∈ Ωr .

(47)

Damage condition (20-4) at x = d imposes

Bl = −Br +

L∫
0

Gn (ξ, 0) dξ . (48)

Damage condition (20-5) at x = d then leads to

Br =
F0

F0 + K1L

L∫
d

Gn (ξ, 0) dξ +
K1

F0 + K1L

L∫
0

Gn (ξ, 0) ξdξ − Rn (0)

F0 + K1L
, (49)

and so

Bl =
F0

F0 + K1L

d∫
0

Gn (ξ, 0) dξ +
K1

F0 + K1L

L∫
0

Gn (ξ, 0) (L− ξ) dξ +
Rn (0)

F0 + K1L
. (50)

Incorporating (50) and (49) into (47) leads to the final result (23).
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B Computation of modal solution

B.1 Determination of modal shapes

We search an orthonormal family of modes ϕ such that they all respect

ϕ′′ (x) + λ2 ϕ (x) = 0 for x ∈ Ωl ∪ Ωr

ϕ (0) = 0

ϕ (L) = 0

ϕ′ (d−) = ϕ′ (d+) = ϕ′ (d)

F0 ϕ
′ (d) −K1 ϕ (d+) + K1 ϕ (d−) = 0∫ L

0
ϕ2 (x) dx = 1

(51)

Equation (51-1) admits general solutions of the form

ϕ (x) =

{
Al cos (λx) + Bl sin (λx) for x ∈ Ωl ,

Ar cos
(
λ(L− x)

)
+ Br sin

(
λ(L− x)

)
for x ∈ Ωr .

(52)

Boundary conditions (51-2) at x = 0 and (51-3) at x = L imposes

Al = 0 , (53)

Ar = 0 . (54)

Then damage condition (51-4) at x = d imposes

Bl cos (λd) = −Br cos (λδ) , (55)

and damage condition (51-5) at x = d imposes

− F0Brλ cos (λδ) −K1Br sin (λδ) + K1Bl sin (λd) = 0 . (56)

Furthermore, normality condition (51-6) imposes

B2
l

(
d

2
− sin (2λd)

4λ

)
+ B2

r

(
δ

2
− sin (2λδ)

4λ

)
= 1 . (57)

In order to use relation (55), consider two different cases.

General case:
Suppose cos (λd) ̸= 0. Then (55) gives

Bl = −Br
cos (λδ)

cos (λd)
, (58)

and equation (56) thus shows that λ must be solution of the transcendental equation

F0 + K1

(
sinc (λδ)

cos (λδ)
+

sinc (λd)

cos (λd)

)
= 0 . (59)
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Normality condition (57) becomes

Br =

√√√√ 2 cos (λd)
2

d cos (λδ)
2
(

1 − sinc (2λd)
)

+ δ cos (λd)
2
(

1 − sinc (2λδ)
) , (60)

and thus

Bl = −
√√√√ 2 cos (λδ)

2

d cos (λδ)
2
(

1 − sinc (2λd)
)

+ δ cos (λd)
2
(

1 − sinc (2λδ)
) . (61)

Particular case:
Now suppose cos (λd) = 0. Then (55) gives

cos (λδ) = 0 (62)

in order for Br to not be equal to 0. Therefore wavenumber λ follows

λ =
(p + 1/2)π

d
for p ∈ N , (63)

and

λ =
(q + 1/2)π

δ
for q ∈ N . (64)

Thus

λd + λδ =
(p + 1/2)π

d
d +

(q + 1/2)π

δ
δ

⇔λL = (p + 1/2)π + (q + 1/2)π

⇔λ =
(p + q + 1)π

L
.

It is then possible to show that
ϕ (x) = Bl sin (λx) (65)

for x ∈ [0, L]. Normality condition (51-6) thus becomes

Bl =

√
2

L
. (66)

B.2 Modes orthogonality

For any (p, q) ∈ N2, it is possible to decompose the scalar product between modes ϕp and ϕq

according to the left and right parts of the damaged beams as follows:

⟨ϕp, ϕq⟩ = ⟨ϕp, ϕq⟩l + ⟨ϕp, ϕq⟩r . (67)

Because both modes ϕp and ϕq follow the differential equation (51-1) describing longitudinal waves
propagation with their respective wavelengths λp and λq, the following equations can be obtained:

⟨ϕ′′
p , ϕq⟩ + λ2

p⟨ϕp, ϕq⟩ = 0 , (68)

⟨ϕ′′
q , ϕp⟩ + λ2

q⟨ϕq, ϕp⟩ = 0 . (69)
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By combining both equations, it is possible to write that:

(λ2
p − λ2

q)⟨ϕp, ϕq⟩ = ⟨ϕ′′
p , ϕq⟩ − ⟨ϕ′′

q , ϕp⟩ (70)

Through double part integration, one then obtains:

⟨ϕ′′
p , ϕq⟩l = ϕ′

p(d)ϕq(d−) − ϕ′
q(d)ϕp(d−) + ⟨ϕ′′

q , ϕp⟩l , (71)

⟨ϕ′′
p , ϕq⟩r = −ϕ′

p(d)ϕq(d+) + ϕ′
q(d)ϕp(d+) + ⟨ϕ′′

q , ϕp⟩r . (72)

Then, it is possible to write:

⟨ϕ′′
p , ϕq⟩ − ⟨ϕ′′

q , ϕp⟩ = ϕ′
p(d)

(
ϕq(d−) − ϕq(d+)

)
− ϕ′

q(d)

(
ϕp(d−) − ϕp(d+)

)
(73)

And given that according to equation (51-5) for any mode ϕ satisfying Eqs. (51), the following
relations holds:

ϕ(d+) − ϕ(d−) =
F0

K1
ϕ′(d) (74)

It can then be concluded that if p ̸= q and thus λp ̸= λq then:

⟨ϕp, ϕq⟩ = 0 (75)

which demonstrates modes orthogonality.

B.3 Computation of modal solution

Problem (15) contains one inhomogeneous boundary condition (i.e. Dx [un] (t) = un (t)) that cannot
be modelled using the modal shapes given by (51). Therefore the modal solution will be of the form

un (x, t) = u(bc)
n (x, t) +

+∞∑
p=1

ϕp (x)un,p (t) , (76)

where u
(bc)
n is solution of the boundary problem but considering no propagation, i.e.

u
(bc)
n (0, t) = 0

u
(bc)
n (L, t) = 0

∂xu
(bc)
n (d−, t) = ∂xu

(bc)
n (d+, t)

Dx

[
u
(bc)
n

]
(t) = rn (t)

(77)

and where un,p is the time evolution of modal shape ϕp. In order for un to follow the differential
equation (15) (i.e. in order to have Lx,t [un] (x, t) = gn (x, t)), we can show, using linearity of
differential operator Lx,t and the orthonormality of modes ϕ, that we must have, for all mode
number p,

Lx,t

[
⟨u(bc)

n , ϕp⟩
]

(t) +
1

c2L
ün,p (t) +

γ

F0
u̇n,p (t) + λ2

pun,p (t) = ⟨gn, ϕp⟩ (t) , (78)
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where the notation ⟨a, b⟩ corresponds to the spatial scalar product between a and b (see Equa-
tion (32)).

The solution of the boundary problem u
(bc)
n is given by

u(2)
n (x, t) = h (x) rn (t) , (79)

where h follows the equations 
h (0) = 0

h (L) = 0

∂xh (d−) = ∂xh (d+)

Dx [h] = 1

(80)

We take

h (x) =


x

F0 + K1L
for x ∈ Ωl ,

− (L− x)

F0 + K1L
for x ∈ Ωr .

(81)

Therefore

Lx,t

[
u(bc)
n

]
(x, t) = h (x)

( γ

F0
ṙn (t) +

1

c2L
r̈n (t)

)
, (82)

which leads to the ordinary differential equation (31) followed by the time evolutions un,p.
Furthermore, scalar product ⟨h, ϕp⟩ is given by

⟨h, ϕp⟩ =
1

F0 + K1L
× Ap

λ2
p

(
λp (L− 2d) cos (λpδ) − tan (λpL)

)
(83)

in the general case (i.e. when ϕp follows (24)), and

⟨h, ϕp⟩ = 0 (84)

in the particular case (i.e. when ϕp follows (28)),
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[50] Emmanuel Lizé, Marc Rébillat, Nazih Mechbal, and Christian Bolzmacher. Optimal dual-pzt
sizing and network design for baseline-free shm of complex anisotropic composite structures.
Smart Materials and Structures, 27(11):115018, 2018.

[51] Shuanglin Guo, Marc Rebillat, and Nazih Mechbal. Dichotomy property of dispersion equation
of guided waves propagating in anisotropic composite plates. Mechanical Systems and Signal
Processing, 164:108212, 2022.

[52] Dariusz Broda, W.J. Staszewski, A. Martowicz, T. Uhl, and V.V. Silberschmidt. Modelling
of nonlinear crack–wave interactions for damage detection based on ultrasound—a review.
Journal of Sound and Vibration, 333(4):1097–1118, 2014.

[53] Zi Qiang Lang, Stephen A. Billings, R. Yue, and J. Li. Output frequency response function of
nonlinear Volterra systems. Automatica, 43(5):805–816, 2007.

[54] B. Zhang and S.A. Billings. Volterra series truncation and kernel estimation of nonlinear
systems in the frequency domain. Mechanical Systems and Signal Processing, 84:39–57, 2017.

[55] E. Balmes. Structural Dynamics Toolbox (for use with MATLAB). www.sdtools.com.

[56] Stephen Boyd, YS Tang, and Leon Chua. Measuring volterra kernels. IEEE transactions on
circuits and systems, 30(8):571–577, 1983.
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