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Abstract

An embedded atommethod potential has been developed for copper–zinc alloys
valid from 0% to 37% zinc content (dedicated to describe the α fcc phase). It
has been fit to a set of first-principles data for the fcc copper, the fcc Cu3Zn
DO23 phase and Zn on a fcc lattice. Elastic anisotropies, the lattice parameter,
cohesive energy are used as input. Ponctual defects, surface energies, intrinsic
stacking fault and phonon spectrum have been computed and compare well
with experimental trends. This potential has been used to study dislocation
dissociation and dislocation emission at a crack tip up to 30% Zn. Dislocation
emission at the crack tip is correctly described compared with recent paramet-
rization including the surface energy. It is found that with alloying, dislocation
emission becomes easier following the decrease of the unstable stacking fault
energy with Zn concentration, a non-trivial finding. This potential is therefore
well suited to carry out basic studies of plasticity and fracture in α-brass alloys.

Keywords: embedded atom method, copper alloys, dislocation emission,
generalized stacking fault energy

(Some figures may appear in colour only in the online journal)

1. Introduction

Among the copper rich binary alloys, merely nine of them show significant solubility in
the solid state face centred cubic α-phase at room temperature (one considers those with a
threshold notably above a few at%). These stable solid solution alloys are Cu–Al, Cu–Au,
Cu–Ga, Cu–Ge, Cu–Li, Cu–Mn, Cu–Pd, Cu–Pt and Cu–Zn. The other possible binaries can be
classified either as metastable alloys (Cu–Ni, Cu–Zr or Cu–Sn for example) or are immiscible
to a large extend (Cu–Ag, Cu–W or Cu–Pb for example) [1]. Among the ‘highly soluble’
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couples, Cu–Au, Cu–Pd and Cu–Pt alloys serve as a test bed for order-disorder phase transition
studies given that the entire composition domain falls on a fcc type lattice. Embedded atom
method (EAM) potentials have indeed been developed for these systems since the early time
of use of this approach [2–4]. This is eased first by the fact that the alloying elements of these
later couples have also a fcc structural ground state, and second because the fcc ground state
is stable over the entire composition range. In order to reasonably describe these alloys from
a thermodynamical point of view the different ordered phases are then usually included in
the potential development (leaving out the issue of a correct short range order description). A
common functional form for the interaction cutoff, which is highly desirable for modelling an
alloy [5], can then be defined.

Out of the six remaining, Cu–Zn brass alloys stand out as being particularly interesting
being a widely used structural materials or a model system for environmental fracture (stress
corrosion cracking and liquid metal embrittlement [6–8]) and plasticity [9]. A major challenge
is that the ground state of Zn is hcp with a c/a ratio of 1.856. The definition of a suitable EAM
potential for a hcp element cannot be achieved if the c/a ratio is above the ideal packing
ratio

√
(8/3)∼ 1.63 [10]. The Cu–Zn system is also a classical example with Hume-Rothery

phases whose shifts in structural lattice ground states are driven by the valence electron/atom
ratio (inducing α, β, γ and then ϵ phases). Therefore it is probably out of reach to develop an
EAM potential describing such type of alloy over the entire range of composition because the
EAM framework does not address this particular alloying physics. Nevertheless, one would
still like to be able to carry out plasticity and fracture study via an atomistic type modelling,
a goal one can achieve by restricting the description to the α solid solution range (the fcc
ground state) thereby relaxing the constraint on the hcp zinc ground state and replacing it with
a fcc one.

This would add to the currently available set of EAM potentials for fcc alloys (Al–Mg or
Ni–Al [11, 12]) that has become popular to study solid solution hardening for concentrated
alloys [13, 14]. This is highly desirable as these two systems have the drawback of a limited
solubility (respectively 5 at% and 15 at%). Using the Cu–Zn system, one can explore and
compare with experiment in an extended composition range up to nearly 37% without dealing
with intermetallic formation in a different structural ground state (one notes that other solid
solution binaries such as Cu–Al or Cu–Ga systems have a cc beta phase above 20%). Being a
model alloy where experimental data on basic mechanical properties such as critical resolved
shear stress (CRSS) are available at low temperature, α-brass is therefore an interesting target
for EAM modelling of mechanical properties.

In order to proceed with Zn within the EAM framework as an alloying element in copper,
it is paramount to choose not to describe its hcp ground state but to choose a fcc one, fitted
on density functional theory (DFT) results, as this has already been done for a Mg–Al–Zn
alloy MEAM potential [10]. This choice restricts the domain range in the binary phase dia-
gram where the potential matches experiment and should be used (0–37 at% in this case). An
intrinsic value of this approach is then that by fitting the potential relative to DFT computed
properties (here for copper, then theD023 compound of Cu3Zn and fcc Zn), it enables the poten-
tial to be easily used within a quantum mechanical/molecular modelling (QM/MM) frame-
work. Elastic coupling corrections are thenminimized at the domain’s interface with the neces-
sarily smaller quantum domain. The goal of this article is therefore to report on the definition
of such an EAMpotential for the Cu–Zn binary system in the alpha-brass range paving the way
to studies of plasticity and fracture issues in these fcc alloys over a large composition range.

As an application of using the potential about to be described, the edge dislocation prop-
erties and the dislocation emission process at the crack tip of Cu–Zn alloys is investigated in
this work and confronted to the Peierls-Nabarro gamma surface theory as developed by Rice
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[15], then Sun and Beltz [16] and recently adapted by Andric and Curtin [17] with the surface
effects for the emission of a heading partial Shockley dislocation at a crack tip. The behaviour
of the crystal is studied by computing the critical stress intensity factors (SIFs) for dislocation
emission (KIe) and fracture (KIc) with both theory and simulations. The brittle fracture versus
dislocation emission processes at the crack tip of Cu–Zn alloys are then compared in an aniso-
tropic elastic setup following the classical approach of the brittle versus ductile behaviour.
The results show that a ductile behaviour is predicted at 0 K in good agreement with exist-
ing experimental data at 4.2 K. The potential is then validated to be able to capture correctly
the physics for both plastic and fracture behaviour and paves the way to modelling ductile as
well as environmental fracture potentially also within a mixed quantum mechanics/molecular
mechanics approaches (QM/MM) framework.

2. Cu–Zn EAM potential

2.1. EAM framework

The EAM framework for interatomic potential was originally developed by Daw and Baskes
[18]. The total energy of the crystal computed with EAM is composed of a pair-wise term
and an effective mean field embedding term emulating multi-body interactions that depends
on the local electronic density created by the surrounding atomic environment. The EAM total
energy then reads:

E=
∑
i

Fi(ρi)+
1
2

∑
(i, j),i̸=j

ϕij(rij) (1)

with ϕij(rij) the two-body interaction term for two atoms at a distance rij within a maximum
interaction range (taken here to include up to the fifth fcc shell) and Fi(ρi) the embedding
energy function of atom i at the electronic density ρi on the corresponding atomic site (the sum
i runs over all atoms of the crystal). The electronic density felt at a given site i is computed by
the superposition of electronic densities set by neighbouring atoms. It is expressed as:

ρi =
∑
j, j̸=i

fj(rij) (2)

with fj(rij) the electronic density induced by an atom j at a distance rij from site i within the
maximum interaction range. Following Daw and Baskes [18], the electronic density function
also depends on the type of atom jwhich contributes to the electronic cloud. For an alloy A–B,
three functions (ϕt,t, f t, Ft), t ∈ {a,b} are needed for each element (A, B) as well as a cross-
function for the interaction between A and B. The approach developed by Wadley et al [5] for
the EAM potential of fcc alloys is followed here: in order to deal with alloys an element type
specific cutoff distance (also called normalized cutoff) is used. The pair interaction function is
a modified Morse potential with a short-range repulsive term and a long-range attractive one.
The electronic density function is rescaled from the long-range part of the pair interaction
term. The two first functions then reads:

ϕt,t(r) =
Ae

−α
(

r
r te
−1

)

1+
(
r
r te
−κ

)20 −
Be

−β
(

r
r te
−1

)

1+
(
r
r te
−λ

)20 (3)

ft(r) =
f tee

−β
(

r
r te
−1

)

1+
(
r
r te
−λ

)20 , t ∈ {a,b}. (4)
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In these functions (3) and (4), A, B, α, β, κ, λ are adjustable parameters set for each element
(the t index has been dropped for clarity). κ and λ define the element’s specific normalized
cutoff. The constant r te is set to the distance to the first neighbour fcc shell (depending on the
element’s type t ∈ {a,b}), f te is the ratio of the element’s cohesive energy and a characteristic

atomic distance ( f te =
E t
c

Ω
1/3
t

with Ωt the atomic volume of the pure element and t ∈ {a,b}).
The embedding energy function is defined following Barnerjea and Smith [19] so that it

reproduces the universal binding-electron relation energy for high electronic density (or equi-
valently for smaller distance between atoms). Close to the equilibrium electronic density how-
ever and for the long range interaction, a third order polynomial development of the deviation
from the equilibrium density is used instead to avoid known issues with the pressure depend-
ence of the bulk modulus [5]. The piecewise embedding function therefore reads:

Ft(ρ) =


∑3

l=0F
t
nl

(
ρ
ρn

− 1
)l

for ρ < ρn with ρn = 0.85ρ te (long range part)∑3
l=0F

t
l

(
ρ
ρe
− 1

)l
for ρn ⩽ ρ < ρ0 with ρ0 = 1.15ρ te (near equilibrium)

F t
e

[
1− ln( ρ

ρ t
e
)η

t
](

ρ
ρ t
e

)η t

for ρ0 ⩽ ρ (repulsive core)

. (5)

Here F t
e, η

t, F t
nl and the F

t
l are adjustable parameters sets of the polynomials for each element

(t ∈ {a,b}). ρ te is the equilibrium electronic density (214.2 eV nm−1 for copper, 68.4 eV nm−1

for zinc, evaluated from DFT). The three forms are to be matched at the density junctions in
value, slope and concavity to yield a completely smooth embedding function thus defining a
set of constraints on the parameter fit.

An established procedure for defining the EAM interaction term for the alloying part relies
on the observation that one can keep the EAM energy invariant upon a linear shift in density
affecting both the pair-wise and the embedding terms [20, 21]. It can be shown that enforcing
this invariance leads to the following functional form for the cross-function [20]:

ϕa,b(r) =
1
2

[
fb(r)
fa(r)

ϕa,a(r)+
fa(r)
fb(r)

ϕb,b(r)

]
. (6)

However, this parameter cross-function did not give satisfying results for the ordered Cu3Zn
compound used to fit the potential in α-brass Cu–Zn alloys for the cohesive energy and the
lattice parameter. Indeed, the equilibrium lattice parameter for L12 ordering would be found at
0.3781 nm and 0.3777 forD023 ordering for our best trial, when DFT-GGA computations give
respectively 0.3684 and 0.3683 nm. The cohesive energywould also be largely off with respect-
ively −2.720 and −2.723 eV atom−1 instead of the DFT-GGA value of −3.140 and −3.142
eV atom−1. Since this invariant condition is not mandatory, the choice was made instead to
use a slightly different mixing term following Gola and Pastewka [22]:

ϕa,b(r) = αaϕa,a(r)+αbϕb,b(r). (7)

The function is still a linear combination of ϕa,a and ϕb,b but with constants coefficients αa
and αb. The L12 lattice is a fcc ordering where one site is occupied by one type of atom and
the three other sites by an other type of atom as shown on figure 1(a). The D023 lattice is a L12
type ordering combined with an antiphase boundary every 2 unit cells as seen on figure 1(b),
where black atoms are substitutional elements (here zinc) and white atoms are the matrix
ones (here copper). It was studied by Turchi et al [23] in a Korringa-Kohn-Rostoker-Coherent
Potential Approximation ab-initio pair-interaction approach and byMüller and Zunger [24] by
DFT within the LDA approximation. Both approach differ for long range ordering of Cu3Zn
(Müller and Zunger [24], the ground state is a D023 ordering whereas for Turchi et al [23] it
is a L12). The question of the Cu3Zn ground state is investigated here within the DFT-GGA
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Figure 1. Cu3Zn unit cells: (a) L12 long range ordering. (b) D023 long range ordering.

approximation. As a results the D023 defined compound at 25% is chosen (Cu3Zn) as will be
shown in a later part.

The next step in the potential setup procedure is to fit the EAMmodel parameters on desired
target properties. Being mostly interested in mechanical properties, the lattice parameters, the
cohesive energies, the elastic anisotropies, the bulk modulus and the vacancy formation ener-
gies were chosen. For copper the energy difference between the fcc ground state and the hcp
state as well as the hcp lattice parameter were selected as well. These two constraints were
found crucial if one is to describe reasonably the stacking fault energy of copper. Concerning
zinc, the choice is made here to fit the potential on a fcc rather than a hcp ground state. This
obviously induces a strong limitation on the zinc potential as it is only suitable for zinc in solid
solution in a fcc solvent. As there is of course no experimental data on fcc zinc, one has to rely
entirely on ab-initio computations by DFT for the properties of the elements. This implies that
we give herein a new DFT-GGA fitted EAM potential for copper along with one usable for
copper–zinc alpha brass alloys only.

We are unaware of a pre-existing EAM copper potential fitted on DFT-GGA, therefore it
was deemed interesting to develop a new one compared with existing copper EAM potentials
in view of using it within a QM/MM framework for plasticity and fracture modelling. Such a
potential for copper and copper–zinc fcc alloys therefore opens the way to multi-scale mod-
elling with this model material for various processes (with the restriction of using DFT-GGA
for the QM part).

3. EAM potential fitting procedure

3.1. Ab-initio calculations

The ab-initio calculations required for the two pure elements and the ordered Cu3Zn, DO23

compound included in the fit were performed using VASP software (version 5.4) [25–28]. For
both copper and zinc, a GGA/PBE [29, 30] approximation for the exchange and correlation
energywas usedwith the PAW [31, 32] pseudo-potentials provided byVASP (with respectively
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Table 1. DFT Lattice parameters and cohesive energy for D023 and L12 ordering.

Ordering
Lattice parameter

(nm)
Cohesive energy
(eV atom−1)

Formation enthalpy
(meV atom−1)

D023 0.3683 −3.142 −73.5
L12 0.3684 −3.140 −71.5

11 and 12 valence electrons). A 700 eV energy cutoff was used in all calculations. The lattice
parameter of each element were converged relative to the number of k-points in reciprocal
space using a Monkhorst-Pack grid of 15 × 15 × 15 points sampling throughout all struc-
tural calculations. The properties computed using VASP are the lattice parameter, the cohesive
energy, the anisotropic elastic constants (C11, C12, C44), the bulk modulus, the vacancy forma-
tion energy for both copper and zinc while the hcp lattice parameter and the energy difference
between hcp and fcc were computed only for copper. The elastic constant were obtained via the
second derivative of the energy of a crystal while straining it around its equilibrium position
using VASP.

For fcc zinc, DFT calculations result in a negative C44. This can be explained by the fact
that DFT does not predict fcc for the ground state of zinc and that a shear deformation of a
cubic cell would drive the unstable fcc cell towards the hcp symmetry. The C44 from DFT for
zinc on a fcc lattice was therefore not used as target in the EAM potential fit.

The long range ordered L12 and D023 crystals of alpha-brass alloy with 25% of zinc were
computed within DFT to study the equilibrium lattice parameter, the cohesive energy and the
formation enthalpy. For L12, a 15 × 15 × 15 k-points grid was still used while a 24 × 24 × 6
k-points grid was used for D023. The results are reported in table 1.

The cell used for the D023 is a L12 chemical ordering with an antiphase boundary every
2 unit cells for a total of 36 atoms as seen on figure 1(b). The equilibrium lattice parameter
and the cohesive energy of the 25% Zn alloy are found respectively at 0.3683 nm and −3.142
eV atom−1. As can be seen in table 1, the D023 ordering presents a lower formation enthalpy
than the L12 one. This results is in agreement with LDA results obtained byMüller and Zunger
[24]. With LDA, the formation enthalpy is found at −88.1 meV atom−1 for D023 and −87.4
meV atom−1 for L12. There is a difference of 0.7 meV atom−1 for LDAwith theD023 ordering
as the fundamental state. With GGA, the difference is of 2 meV atom−1, with also the D023
ordering as the ground state. This justifies here that theD023 ordering for Cu3Zn alloy is being
used as a target for the cross-term in the EAM potential.

In addition to the afore mentioned properties to be used as target in the fit, surface energetics
and interstitials formation energetics were calculated to serve as a test bed for the EAM poten-
tial prediction. Surface energies (111), (110) and (100) were computed using a 1 × 1 × 12
supercell (respectively 0.257 × 0.445 × 3.1, 0.3635 × 0.257 × 4.96 and 0.3635 × 0.3635
× 3.635 nm3) with respectively 24, 24 and 42 atoms. The vacuum in the supercell along the
surfaces normal is set to 1 nm. The three layers closer to the surface were relaxed while the
ones at the centre of the bulk were kept fixed at the equilibrium lattice parameter. The relaxa-
tion criterion was set to 0.01 meV for the cell energy. The k-points mesh was a 15 × 15 × 1
automatic Monkhorst-Pack grid (with 1 k-point along the surface’s normal direction).

3.2. EAM potential constraints

To determine the thirty four parameters of the EAM functional, the following fitting procedure
described was pursued:
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• When developing their different potentials, Wadley et al [5] found out that some parameters
follow strict relationships for every potential. We applied, for each of their potentials, the
following two constraints:α= 1.875 ∗β and λ= 2 ∗κ. They also setFt1 to 0 for every poten-
tial they developed. This comes from the need to keep a symmetric curve in compression
or in tension around the equilibrium density, relegating anharmonic effect as a third order
correction. These relations were implemented in the optimization algorithm (this reduces
the number of independent parameters to only 28).

• Constraints on the piecewise embedding energy function were initially set to impose con-
tinuity on the embedding function, its first and second derivatives (slope and concavity). An
additional constraint comes from the requirement to have no interaction at infinity. Deriving
these constraints on the two junctions of the three piecewise embedding function results in
the following seven equations:

F0 = Fe ∗ (1− η ∗ ln(1.15)) ∗ 1.15η −F2 ∗ 0.0225−F3 ∗ 0.003375 (continuity)
0.3 ∗F2 =−Fe ∗ η2 ∗ 1.15η−1 ∗ ln(1.15)− 3 ∗F3 ∗ 1.152 (1st derivative continuity)
F3 =

Fe∗η2

0.45 ∗ 1.15η−2 ∗ (ln(1.15) ∗
(
1.15
0.15 − η+ 1

)
− 1) (2nd derivative continuity)

Fn0 = F0 + 0.0225 ∗F2 − 0.003375 ∗F3 (continuity)
Fn1 = 0.85 ∗ (−0.3 ∗F2 + 0.0675 ∗F3) (1st derivative continuity)

Fn2 = 0.7225 ∗ (F2 − 0.45 ∗F3) (2nd derivative continuity)
Fn3 = Fn0 +Fn2 −Fn1 (no interation at∞)

.

(8)

• The target function to minimize was defined as a weighted mean-square error function
between the physical constant calculated in DFT and the same characteristic calculated with
the EAM potential to be optimized. This function was then first minimized using a simplex
algorithm (the Nelder-Mead algorithm [33]). The weights of the target function were then
adjusted so as to constraint the algorithm to converge priorily on the least accurate part of the
potential. This two-step process was iterated until the algorithm reached a minimum for the
χ2 function. A total of a few tens of iterations (around 50) was enough to obtain a reasonable
fit.

The constraints on the piecewise embedding function could however not all be simultan-
eously fullfilled strictly. To cope with this issue, the constraint derived from the continuity of

the second derivative (F3 =
Fe∗η2

0.45 ∗ 1.15η−2 ∗ (ln(1.15) ∗ ( 1.150.15 − η+ 1)− 1) of the embedding
energy function was removed. For copper and zinc, there is therefore a cusp at ρ= 1.15ρe with
a mismatch of the second derivative of 0.145 eV for Cu and 0.125 eV at high density in the
embedding term. The fact that this condition is not satisfied will trigger odd behaviour of the
potential only at extremely large compression which is deemed not important in the context
of our planned applications of these potentials for plasticity and fracture.

The best fit for the parameters found with this procedure for the EAM potential is given in
table 2. The potential fitting procedure was made with a builtin cutoff of 2.5 times the highest
lattice parameter (2.5 × 0.3935 nm). To choose this cutoff, we compute every contribution of
the neighbouring atoms and no longer take it into account when the contribution is deemed
negligible (roughly less than 2 meV atom−1). This corresponds to approximatively five neigh-
bouring shells.

At last, the cross-term function (equation (7)) parameters were fitted with a simple min-
imization algorithm (Nelder-Mead [33]) to the cohesive energy and lattice parameter of the
D023 ordered state of Cu3Zn compound. The objective function was computed as a simple
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Table 2. Parameters for copper and zinc for the EAM potential (F1 set to 0) for both
element.

Parameters Copper Zinc

α 9.891 407 5.949 160
β 5.275 417 3.171 034
A (eV) 0.256 897 0.221 878
B (eV) 0.418 186 0.248 483
κ 0.433 274 0.406 005
λ 0.866 547 0.811 215
Fn0 (eV) −2.508 147 −0.482 090
Fn1 (eV) −0.098 405 −0.260 091
Fn2 (eV) 0.276 606 0.725 983
Fn3 (eV) −2.133 136 0.503 984
F0 (eV) −2.516 853 −0.505 153
F2 (eV) 0.388 957 1.035 112
F3 (eV) 0.013 583 0.067 316
Fe (eV) −2.513 −0.485
η 0.439 728 0.811 336

mean-square error function. The parameters obtained by this procedure are αa = 0.89502 and
αb = 0.39372.

The potential files were produced using the ase framework [34] as interpolated spline tables.

3.3. EAM potential basics computations

The potentials are used in this section to first predict interstitial formation energy and surfaces
energies. The results from these EAM calculations and their counterparts computed by DFT
are presented in table 3 along the physical quantities used in the fit.

One can note that apart from the hcp-fcc energy difference for copper and the vacancy form-
ation energy for zinc, the lattice parameter, cohesive energy, elastic anisotropy, bulk modulus
and vacancy formation energy reported in table 3 are well fitted relative to the Ab-Initio com-
putations (less than 1%). Even if there is a mismatch for the energy difference between hcp and
fcc, the difference is large enough to ensure that the crystal does not transform too easily into
a hcp state upon straining. For copper, the correct ordering of surface energies as predicted by
DFT (γ(111) < γ(100) < γ(110)) is obtained with this EAM potential. For zinc, the (111) surface
energy is too high as already mentioned and the ordering of surface energy between (100) and
(110) is not correct. The EAM framework is not particulary suited for reproducing them, a
MEAM (Modified EAM) potential that takes into account an angular term would perform bet-
ter as used by Dickel et al [10]. The lattice parameter, cohesive energy, elastic anisotropy and
bulk modulus for alpha-brass with 25% of zinc were computed with the EAM potential and
DFT. AD023 fully ordered alloys was setup on a fcc basis cell with 36 atoms (27 of copper and
9 of zinc) as shown on figure 1(b) with a size of 0.3683× 0.3683× 1.4732 nm3. A L12 ordered
alloy cell as seen on figure 1(a) was also used with a size of 0.3684 × 0.3684 × 0.3684 nm3.
The elastic properties were computed both by DFT and with the EAM potential. For the latter
scheme, 1000 different random configurations at the equilibrium lattice size were generated to
simulate a random alloy with a 10× 10× 10 lattice cell (about 4× 4× 4 nm3) and the results
for computed physical properties were averaged. The results from these calculations and their
DFT counterparts, when calculated, are presented in table 4. Since the D023 ordering presents
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Table 3. Results of DFT-GGAwith PAW calculations for copper and zinc. The one used
for the fitting of the potential are grayed. The others are predictions.

Physical Characteristics

Copper Zinc

DFT EAM DFT EAM

Lattice parameter (nm) 0.3635 0.3634 0.3935 0.3935
Cohesive energy (eV atom−1) −3.729 −3.719 −1.087 −1.087
C11 (GPa) 180.5 180.9 138 138
C12 (GPa) 119.7 120.0 82.9 82.9
C44 (GPa) 83.36 83.57 −3.36 35.9
Bulk modulus (GPa) 140.0 140.3 101 101
Vacancy formation energy (eV) 1.216 1.206 0.602 0.547
Lattice parameter hcp (nm) 0.2558 0.2570 0.2615 0.274
Energy difference hcp-fcc (eV atom−1) 0.010 0.005 −0.223 0.015
Surface energy (111) (mJm−2) 1295 1097 486 801
Surface energy (110) (mJm−2) 1536 1329 730 840
Surface energy (100) (mJm−2) 1444 1201 879 802
Interstitial formation energy (eV) 3.67 3.30 1.50 1.25

Table 4. Results of DFT-GGAwith PAW computations for Cu3Zn alpha-brass (fcc) and
their matching EAM values. The ones used for fitting of the potential are coloured in
gray. The others are EAM predictions.

Physical
Characteristics

Cu3Zn alpha-brass alloy

DFT-GGA
(D023)

DFT-GGA
(L12)

EAM
(D023)

EAM
(L12)

EAM
(Random
alloy)

a0 (nm) 0.3683 0.3684 0.3684 0.3685 0.3683
EC (eV at−1) −3.1416 −3.1400 −3.1257 −3.1244 −3.1235
∆Hf (eV at−1) −0.0735 −0.0715 −0.0647 −0.0634 −0.0625
C11 (GPa) 157 (157) 158 180.4

(181.7)
181.7 152.6

C12 (GPa) 116 (115) 120 126.7
(127.3)

125.6 103.7

C44 (GPa) 74.1 (74.8) 74.8 71.09
(70.71)

71.40 67.27

B (GPa) 130 132 144.9 144.3 120.0

a loss of symmetry in the c direction, the elastic constants are differents in that direction. The
values for this direction are presented in parenthesis in table 4.

The lattice parameter for the D023 fully ordered Cu3Zn alpha-brass is well reproduced and
the corresponding DFT cohesive energy is matched by EAM within 1%. The EAM potential
reproduces well the D023 ground state compared to the L12 long range ordering. The EAM
predictions for the anisotropic elastic constants of the ordered alloy Cu3Zn as well as the bulk
modulus are predicted within 5% of their DFT values except for the C11 value (see table 4).
This matching level for the elastic anisotropies is deemed sufficient for the potential to be
useful in elasto-plastic modelling.
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Table 5. Comparison for copper: DFT, this work, Mishin and Foiles potentials,
experiments.

DFT-GGA
EAM this
work (0 K)

Experiment
(0 K) [36]

Experiment
(300 K) [36]

Mishin
et al [3]

Foiles
et al [35]

a0 (nm) 0.3635 0.3635 0.3602 [37] 0.361 0.3615 0.3615
EC (eV at−1) −3.729 −3.719 −3.49 −3.54 −3.54
B (GPa) 140.0 140.3 142 137 138.3 138.5
C11 (GPa) 180.5 180.9 176.2 168.4 169.9 167.3
C12 (GPa) 119.7 120.0 124.9 121.4 122.6 124.2
C44 (GPa) 83.36 83.57 81.8 75.4 76.2 76.45

3.4. Pure copper: comparison with other potentials

The potential developed here for copper is compared to other already available ones (Mishin
et al [3] and Foiles et al [35]). DFT and EAM computations from this work and experimental
results at 0 K [36] are reported in table 5 for the lattice parameter, the cohesive energy and
the elastic constants. While, of course, the new proposed EAM potential is within 1% of the
DFT results, the Mishin et al [3] and Foiles et al [35] potentials significantly diverge for the
lattice parameter, the cohesive energy and the C44 elastic constant. This is not surprising since
these potentials were developed to reproduce the measured experimental quantities at room
temperature. The experimental values at 300 K do indeed compare well with their predictions
for these two potentials as can be seen in table 5. It is known that DFT-GGA approximation
underbinds, a lattice parameter greater with GGA calculations thanwith experience is logically
found. As already stated, the EAM potential reproduces well the elastic constants obtained
with DFT-GGA calculations and in addition it also compares well with the 0 K experimental
results [36].

The phonon spectrum for copper was also computed at various point in the Brillouin cell
with the new EAM potential to be compared to previous DFT computations [38]. It was com-
puted using the Phonon library from ASE [34], using the small displacement method as imple-
mented by Alfè [39]. As can be seen on figure 2, the EAM and experimental phonon spectra
at 80 K from [40] match reasonably well. It implies that this new EAM potential can be used
with confidence in molecular dynamics at low finite temperature.

3.5. CuZn-α alloys: lattice parameter and mixing enthalpy

The lattice parameter and the mixing enthalpy evolution with the zinc concentration have
been computed for the alpha-brasses up to 35% of zinc. It was computed using LAMMPS
framework [41] with 100 supercells of 10 × 10 × 10 fcc cells at fixed concentration but ran-
dom configurations. Each supercell was relaxed down until convergence. The lattice parameter
and the mixing enthalpy for each concentration were then averaged.

The mixing enthalpy is negative all the way to 35% of zinc in the alloy as shown in figure 3.
It shows as expected from the phase diagram that the EAM Cu–Zn potential predicts a stable
solid solution for the alpha-brass alloys. That is in agreement with experiment and the DFT
computations of Muller and Zunger for Cu3Zn [24]. As seen on figure 3, theD023 is the lowest
energy state of 25% zinc alloys in DFT calculations relative to a random alloy. Long range
ordering is therefore more favourable. Moreover, the results obtained with the new potential
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Figure 2. Phonon Spectrum computed in EAM (black lines) and experimental spectrum
at 80 K (black dots).

Figure 3. Mixing enthalpy as a function of zinc concentration.

follows well the one from previous ab-initio results [23, 24] as well as experimental ones
[42, 43] along all the concentration range.

The lattice parameter evolution as a function of the zinc concentration is shown in figure 4.
One can note that it almost follows a Vegard’s law (linearly mixing law). According to Rao
experiments [44], the α-brass lattice parameter follows a Vegard’s law with a slight deviation
already noticed by Johnson et al [45] for brasses. The agreement is nevertheless within 1%.
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Figure 4. Lattice parameter (at 0 K for EAM and 4.2 K for texperimental [44]) as a
function of zinc concentration.

Figure 5. Elastic Constants depending on the concentration of zinc in an alpha-brass
alloy [46].

3.6. CuZn-α alloys: elastic constants

Anisotropic elastic properties for the α-brass alloys depending on zinc concentration were
studied with the new EAM potential. The cubic anisotropic elastic constants (C11, C12, C44)
and the bulk modulus were computed at 0 K by averaging over a thousand random config-
urations for each zinc concentrations. The measured experimental values at 4.2 K [46] are
also reported on figure 5. The results are consistent with the experimental ones at low zinc
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Figure 6. Ratio B(c)∗a(c)
Ec(c)

depending on the concentration of zinc in an α-brass alloy.

concentration. A slight discrepancy (around 10%) occurs mostly for C12 for the largest zinc
content. Overall, one observes a decrease of elastic constants with increasing zinc concentra-
tion consistent with the increase in lattice parameter mimicking the experimental trend. The
decrease of elastic constants with the concentration is indicative of the elastic softening of the
crystal when substituting copper with zinc.

According to Pettifor [47] the band filling physics of cohesion for 3d elements implies that
the ratio B(c)∗a(c)

Ec(c)
with B the bulk modulus, a the lattice parameter and Ec the cohesive energy

should be a constant. Figure 6 provides this ratio as a function of zinc concentration. One can
observe that this rule is nearly followed as a function of zinc concentration using our new
potential indicating interestingly that our mixing scheme of EAM captures qualitatively well
this trait of 3d elements bonding.

4. Study of the edge dislocation in Cu–Zn alloys

As an application of the use of the new EAM potential in copper–zinc α-alloys, a detailed
study of the edge dislocation is presented here. The first step is a characterization of the differ-
ent stacking fault energies along with the equilibrium dissociation length. Second, the Peierls
stress will also be evaluated for copper. A comparisonwith DFT results for the edge dislocation
in copper is carried out when available from the literature.

4.1. Stacking fault energies

In a fcc crystal, a perfect edge dislocation dissociates in two Shockley partial
dislocations( 12 ⟨110⟩ →

1
6 ⟨112̄⟩+

1
6 ⟨112⟩). Between these two partial dislocations, a stack-

ing fault forms which size is controlled by the stacking fault energetics. Upon shearing along
a burgers vector in the ⟨112⟩ direction, the head partial dislocation experiences an energy
barrier to overcome: the unstable stacking fault (USF) energy from which one can extract the
Peierls stress. In order to compute the different stacking fault energies, a shear displacement
up to a Burger’s vector is imposed on a single crystal along the corresponding direction: ⟨112⟩
for USF and intrinsic stacking fault (ISF) and ⟨110⟩ for generalized stacking fault. Mapping
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Figure 7. Stacking fault energy map depending on displacement along ⟨110⟩ and ⟨112⟩
directions.

displacements in both directions, a generalized γ surface can be computed and is presented in
figure 7. Different barriers can be seen on this figure. Along the ⟨112⟩ direction, there are two
barriers: the first one correspond to the USF energy, for the creation of a dissociated Shockley
dislocation along ⟨112⟩. The first minimum along that direction corresponds to the ISF which
is the energy of the stacking fault induced by half a burgers vector displacement. The curve
in figure 8, which corresponds to the variation of energy of a fully relaxed crystal when its
upper-half is displaced by a fraction of the Burgers vector, compares the energy barrier com-
puted with EAM, DFT and results found with previously available potentials for copper [3]
[48]. The sheared crystal is relaxed down to 10−10 eV at each step with a conjugate-gradient
algorithm with the LAMMPS MD code. Results for both the unstable and ISF are compared
to ab-initio computations and experimental results found in the literature [3, 48–51].

Concerning copper, the EAM potential matches closely the DFT curve obtained byWu et al
[51] except when the displacement reaches a burger’s vector for the ISF energy (28 mJ m−2

for the EAM potential and 43 mJ m−2 for DFT results). Previous potentials [3, 48] were
closer to experimental (respectively 44 and 47 mJ m−2 compared to 40 mJ m−2 [49, 50]) as
seen on figure 8. The USF (governing dislocation emission) is nevertheless well reproduced
(175 mJ m−2 by DFT for Wu et al [51], 177 mJ m−2 for this work, 158 mJ m−2 by EAM for
Mishin et al [3] and 184 mJ m−2 by EAM for Li et al [48]). When an ISF is created, an hcp
stacking plane appears instead of a fcc plane. Its energy creation depends then partly on the
energy difference between fcc and hcp. It is then no surprise that the results are not in line with
the DFT results since, as seen on table 3, the energy difference between fcc and hcp with the
newly developed EAM potential is far off by 30%. However, this difference in USF energy
will mostly affect the dissociation length and has limited effect on the emission process.

Concerning the α-brass alloys, the drop in ISF is not predicted to be as steep than the one
experiment measures. We note that the EAM potential for zinc gives a positive hcp-fcc energy
difference (table 3) which might not favour lowering ISF at high zinc concentrations as much
as required to match closely experiment. The prospect of performing better for this physical
quantity might lie into the inclusion of the zinc hcp ground state that would be a challenge for
EAM type potential.
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Figure 8. Comparison of stacking fault energy in EAM, DFT and literature [3, 48].

Figure 9. ISF energy depending on zinc concentration.

The ISF for α-brass as a function of zinc concentration is presented thereafter. To deal
with configurational changes in the solid solution, the results of 100 different configurations
were averaged to smooth the effect of fluctuations of local concentration. The results were
compared to experimental results by Howie and Swann [49] and Gallagher [50] (for the ISF).
The experimental trend for the ISF as a function of Zn concentration is a marked decrease
by a factor of 4. The EAM potential predicts also a significant decrease of the ISF as the
concentration of zinc increases (figure 9). While for copper there is a 25% lower value for the
ISF, the ones predicted for the CuZn alloys are higher at the highest zinc concentration.
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Figure 10. USF energy depending on zinc concentration compared with ab-initio
EMTO results [48].

The results for USF energies were also compared to previous results in the literature [48]
(ab-initio EMTO) on figure 10. As already stated, the results of the EAM potential compare
well with the ab-initio results for the USF energy for copper. For α-brass, the USF values
obtained were averaged over 100 configurations as for the ISF. The trend is similar to the
one for ISF energy: the energy is decreasing with the addition of zinc in the alloy. As seen
on figure 10, the values compares well to the estimate by ab-initio EMTO (Exact Muffin-Tin
Orbital) of Li et al [48]. Since the USF energy drives the dislocation emission at a crack tip,
one can infer that the potential would give a trend close to the behaviour that ab-initio EMTO
calculation would predict albeit with a significantly lower slope.

4.2. Dissociation length of dislocations

The ISF energy is linked to the dissociation length of a perfect dislocation into two partial
Shockley dislocations (( 12 ⟨110⟩ →

1
6 ⟨112̄⟩+

1
6 ⟨112⟩ in fcc). Indeed, the linear elastic theory

relates the dissociation distance to the inverse of the ISF energy [52]. Since the new potential
reproduces well the ISF energy of the CuZn alloy, one should have reliable predictions of the
distance of dissociation as well.

In order to study the dissociation length of the edge dislocation, a perfect ⟨110⟩ dislocation
was introduced in anα-brass crystal of dimension 25× 60× 45 nm3 with the axis along ⟨11̄0⟩,
⟨111⟩ and ⟨112̄⟩ with a given zinc concentration in a random configuration. This crystal was
relaxed at 0 K and the dislocation partial line adopts a wavy shape thereby minimizing ener-
getic cost at the core figure 11. The distance of dissociation of the resulting partial dislocations
was computed by averaging along the transverse direction. As seen in figure 12, the dissoci-
ation distance increases with the zinc concentration and correlates with the decrease of the ISF
energy. Moreover, the distance obtained was compared to previous literature results [53, 54]
and with the elastic theory. The result with the new potential fits very closely with Aslanides
and Pontikis [54] results for copper. The dissociation distance lying at 5.2 nm for both poten-
tials. One note that both predicted distances are higher than the experimentally measured one
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Figure 11. Dislocation dissociation length in α-brass depending on zinc concentration.

[53]. When adding the alloying effect, the dissociation distance is close to the one computed
from elastic theory incorporating the ISF as given in Hirth and Lothe [52].

4.3. Peierls stress for copper

The Peierls stress for copper was computed with the new potential. It is the stress needed for
a dislocation to begin to move in its glide plane. It is usually computed at 0 K. The Peierls
stress was taken as the shear stress needed to move a Shockley partial dislocation by one
Burger’s vector. The box used to study the Peierls stress was a 25 × 30 × 4 nm3 box with
the axis along ⟨11̄0⟩, ⟨111⟩ and ⟨112̄⟩ directions. The dislocation moved in the (⟨11̄0⟩, ⟨112̄⟩)
plane and its line was along the ⟨112̄⟩ direction. The size of the box along the ⟨112̄⟩ axis
was increased until the results no longer depended on the box size. The crystal containing the
dislocations was sheared with increasing displacement of the external atom layers along ⟨112̄⟩
for the upper part and along ⟨1̄1̄2⟩ for the lower part. The resulting stress in the crystal was
computed using the virial stress implemented in LAMMPS and the Peierls stress was equated
to the one reached when the dislocation moved from one Peierls valley to the next one. The
critical stress is read at 0.3 MPa. This estimate is close to the experimental extrapolation at 0
K by Kamimura et al [55].

5. Application to dislocation emission at a crack tip in CuZn α-alloys

A study of dislocation emission at crack tip is presented here. This work is devoted to the
impact of the alloying element on dislocation emission. The dislocation emission will be com-
pared with Peierls-Nabarro theoretical modelling of dislocation emission [16, 17] and with
Griffith fracture [56].
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Figure 12. Wavy dislocation stacking fault for a relaxed configuration in a 5% α-brass.

5.1. Methodology

Aparallelopidedonmonocrystal with ⟨ ¯110⟩, ⟨111⟩ and ⟨112̄⟩ axis is used in this study. Periodic
boundaries are applied along the transverse ⟨112̄⟩ direction. To create the crack tip, the same
procedure as Andric and Curtin [17] was followed. Three atomic (111) layers were deleted
across half of the crystal. The crack plane was chosen to contain the surface of lowest energy
(for copper (111)). The simulated box has a transverse thickness of 2 nm for pure copper but a
much larger in-plane size so that one may qualify it as a quasi-2D modelling setup. As one is
interested in dislocation emission with a well defined SIF in an anisotropic setup, it is import-
ant to apply confined plasticity boundary conditions on the simulation box. The crystal was
strained with confined plasticity conditions at the crack tip imposed by a anisotropic displace-
ment boundary conditions contour for a mode I loading state (see appendix A for a detailed
derivation). This contour is shown on figure 13 where it is labelled boundary conditions zone.
In order to be able to follow multiple dislocation emission events and to fully capture inter-
mediate states, a large in-plane box is required. Moreover, the box has to be large enough to
suppress unwanted surfaces interactions at the crack tip. Due to the mode I stress concentra-
tion at the crack tip, a dislocation after emission will move in an inclined (111) plane until the
local applied shear stress falls below the Peierls stress of 0.3 MPa (see previous section). This
defines a dislocation free zone (DFZ) whose size defines the minimum simulation box size that
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Figure 13. Cracked cell of copper for the simulation of dislocation emission at crack tip
with details of the crack tip configuration.

will be taken. The size of the DFZ was computed with elastic theory in anisotropic media [57]
(resolved shear component lower than the Peierls threshold) and reads about 20 nm for pure
copper. The simulation box containing the crystal of copper was taken greater than the size
of the DFZ to enable emitted dislocations to remain with this criterium within the simulation
box.

The simulation sequence is then the following: the displacement on the outer boundary
contour is applied corresponding to a given SIF. Each increment of the crack tip opening dis-
placement corresponds to an increment of the SIF ∆KI of 0.01 MPa·

√
m (see appendix A).

Once the atoms inside the boundary condition zone (called external atoms) are displaced aniso-
tropically, the other (called internal) are relaxed using a minimization algorithm in LAMMPS
[41]. The convergence of the results was studied with two minimization algorithms available
in LAMMPS (Conjugate Gradient and Fire) up to the desired precision. A CG algorithm was
chosen with a threshold of 10−10 for these simulations. After the external atoms of the bound-
ary condition zone were displaced according to the anisotropic profile, they are frozen and the
rest of the crystal is relaxed with the CG minimization algorithm. The reason for that proced-
ure is that usually, the part held frozen is the external boundary of the crystal [17]. However if
only this procedure is followed, only one dislocation can be emitted before the crystal breaks
at the boundary interface where every external atoms are frozen in place under the local stress
concentration of the emitted dislocation. To avoid this problem that limits the number of dis-
location emissions that one can study, every few steps the atoms inside the crystal (the internal
atoms) were frozen and the external atoms were relaxed, so that the dislocations can exit the
crystal. This creates a step at the outer boundary surface when exiting the crystal. This has
allowed the simulations to go up to a large crack tip opening. The crack tip position is recal-
culated between each SIF increment to account for its change for the next computation of the
anisotropic external displacement.

The behaviour at the crack tip is very dependent on the local configuration for an alloy.
For the same concentration of zinc but a different alloy configuration, one obtains different
results depending on the new crack tip solute configuration and local concentration. In this
case, one could rely on a statistical approach by testing a large number of solute configura-
tions. To reduce drastically the computational challenge, one can instead use the technique
of a mean potential following Varvenne et al [58]. The mean potential is an EAM potential
in which we consider only one type of atom for an alloy. The atomic potential is then a mix
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Figure 14. KIe for alpha-brass depending on zinc concentration.

(at the right composition) of the atoms potential in proportion of the alloy concentration. This
type of potential allows one to run a simulation in which the result compares well with the
mean of the results one would observe by running sufficient simulation at a given composition
with different configurations as shown by Varvenne et al [58]. The use of this potential was
first tested on already computed quantities such as elastic constants, stacking fault energies,
lattice parameters and surface energies. The results found were sufficiently close to the mean
of our numerous simulations enabling us to reduce drastically the computational burden of
estimating the critical SIF for dislocation emission at the crack tip (more details can be found
in appendix C).

5.2. Results

The SIFs for dislocation emission were simulated for α-brasses with zinc concentration up to
30% with the use of mean potential. They are shown on figure 14 along with the SIFs obtained
with the theoretical calculations using the Peierls-Nabarro approach and adapted for the brass
alloys introduced by Rice [15], and Andric and Curtin [17]. In addition the theoretical SIF
for fracture as defined by Griffith [56] is given. In equation (B.3), the SIF depends on the
energy release rate for a monocrystal GIe and a geometrical factor. Like Rice formulation,
Andric formulation takes into account the USF energy, γusf . However, a surface energy term
γs extending Schoeck’s work [59] is included, taking into account that a surface step is created
at the crack tip when a dislocation is emitted [17, 59].

The first point that can be observed from figure 14, is that the dislocation emission crit-
ical SIF is always below the Griffith fracture critical SIF. Dislocation emission conditions are
reached before fracture. The new potential then predict a ductile behaviour of alpha-brass at
every zinc concentration in this orientation in the traditional wisdom of a brittle to ductile
transition driven by the crack tip emission of a dislocation. This behaviour is of course in line
with the generic experimental ductile behaviour of α-brass. As stated in appendix B, there are

20



two different ways to compute the SIF for the first dislocation emission. The Rice approach
in an anisotropic setup [15] or the Andric one [17] with a surface correction term induced by
the dislocation emission. As can be seen on figure 14, where the data using both equations
have been plotted, the Andric parametrization reproduces well the atomic simulations. This
indicates that this parametrization incorporates correctly the effect of the creation of a surface
step and can be used in other system than initially designed for in order to predict dislocation
emission SIF. It fits very well the behaviour of the dislocation emission at the crack tip under
anisotropic displacement conditions for our new CuZn alloy potential. As seen in figure 10,
γusf is decreasing with the zinc concentration. Consequently, KIe decreases with the zinc con-
centration. That behaviour is well reproduced using the mean potential (as seen on figure 14).

5.3. Discussion

The results presented here show that the dislocation emission follows the relationship found
by Andric et al for fcc pure elements (here for copper) [17] with a parametric dependance on
the USF energy γusf and the surface energy γs. It is interesting to compare the new potential
for copper for dislocation emission with the Mishin one. The γusf are different and the result-
ing KIe are different too. Nevertheless, the empirical relationship for KIe proposed by Andric
et al captures equally well the variation both in γusf and γs. It was also applied by Andric
et al to an alloy (Fe1-xNi1-xCr2x) using the same relationship. In the FeNiCr alloy, there is a
peak in the lattice parameter at 10%Cr. This peak is then repercuted in the γusf evolution with
solvent concentration [60]. The atomic simulations for the KIe reflects this change around
10%Cr with first an increase of the KIe with the concentration followed by a decrease beyond
that threshold. The trend is different in our case where the misfit in lattice parameter due to
solutes gives a strictly decreasing γusf (seen on figure 10), which in turn concours to produce
a strictly decreasing KIe. Andric et al relationship works correctly in our case as well for the
Cu–Zn alloy. Concerning the decrease of KIe with alloying, we note the apparent contradiction
between solid solution hardening and the lowering of KIe with alloying. One would not expect
this behaviour since the α-brass alloy shows a solid solution hardening behaviour [61], mean-
ing that the CRSS increases with the zinc concentration. However, this is in direct correlation
with the decrease of the γusf with the zinc concentration. This shows that dislocation emission
could be eased by alloying element showing a counterintuituve effect for dislocation emission
at a crack tip in opposition to solute hardening. One can understand this effect by recalling that
after emission while inside the bulk, the dislocation will be pinned to solute areas, introducing
barriers for the movement of the dislocation requiring higher shear stresses to overcome. A
resulting wavy conformation will appear giving rise to a line tension contribution all in all
leading to hardening. The dislocation emission at a crack tip per se seems not to follow the
solid solution hardening rule such that it appears as totally different processes. Further studies
are planned on this point.

6. Conclusion

A new EAM potential was developed for copper and copper–zinc alloys that is meant to be
used with α-brass up to 37% of zinc. It gives a good description for basic physical proper-
ties based on DFT such as cohesion (lattice constant and cohesive energy), elasticity (elastic
constants) and plasticity (stacking faults, dislocation emission). For the CuZn alloy potential,
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it was fitted to the D023 (Cu3Zn) ground state (D023 for Cu3Zn) for the alpha-brass and it
correctly describes lattices constants and cohesive energies (mixing enthalpy) as a function
of zinc concentration up to 30%. A basic study of the edge dislocation was carried out by
computing the stacking fault energies (unstable and intrinsic) and the dissociation length. The
atomic simulations reproduce well the elastic theory for the dislocation dissociation length.
Moreover, the dislocation emission at a crack tip has been studied for different compositions
of zinc. The results show good agreement with the theory incorporating a surface step cre-
ation at the crack tip when a dislocation is emitted. The emission of a dislocation at a crack
tip is easier with alloying (decrease of the critical SIF with a greater concentration of zinc). It
means that for a CuZn alloy, a dislocation is more easily emitted at the crack tip while it is to
be pinned by solute elements leading to solid solution hardening. This is to be contrasted with
the fact that for pure element the dislocation is emitted at a greater SIF but glide more easily in
the crystal.

The Peierls stress for copper is comparable with experimental results, a detailed study of
solid solution hardening versus dislocation emission process in α-CuZn alloys is left for a
future study.

This EAM potential is shown to be well suited to model plasticity and fracture in α-brass
alloys. This new EAM potential, since fitted on DFT results, can be used in a QM/MM frame-
work based on DFT-GGA, with little correction required, increasing the possibilities of such
simulations. In such framework, onemaymodel with DFT the core of the defect (dislocation or
crack tip) while the surroundingMMmuch larger volume is to bemodelled with an interatomic
potential (here EAM) [62]. Such a potential for copper and copper–zinc fcc alloys therefore
opens the way to multi-scale modelling with this model material for various processes, such
as studies of plasticity and fracture.
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Appendix A. Anisotropic boundary conditions

The stress intensity factors (SIFs) are computed with anisotropic boundary conditions. The
crack is loaded by imposing a displacement on outer atoms in the crystal. These displacements
are calculated using anisotropic fields based on the Stroh formalism [57]. Since we examine the
crack tip dislocation emission in pure mode I, the increment of displacement is an increment
in the SIF of this mode and is given by:
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In equation (A.1), p1, p2, q1, q2 are given by the following set of equations:
p1 = Sp11a

2
1 + Sp12 − Sp16a1

p2 = Sp11a
2
2 + Sp12 − Sp16a2

q1 = Sp12a1 +
Sp22
a1

− Sp26

q2 = Sp12a2 +
Sp22
a2

− Sp26a2.

(A.2)

With a1 and a2 the roots with a positive imaginary part of the following equation:

Sp11a
4 − 2Sp16a

3 +(2Sp12 + Sp66)a
2 − 2Sp26a+ Sp22 = 0. (A.3)

With Spij = Sij− Si3S3j
S33

with S the compliance matrix. The other roots are the complex con-
jugate of a1 and a2.

With this imposed displacement, the stress imposed in the crystal in polar coordinates then
reads: 
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with KI ∈ R.

Appendix B. Anisotropic geometric factors

The theoretical values of the first partial dislocation emission have been calculated with Rice
criterion [15]:

KIe =

√
2µγusf
1− ν

1

cos2 θ
2 sin

θ
2

(B.1)

but modified by Sun and Beltz [16] for anisotropic crystals:

KIe =
√
γusfo(θ,ϕ)

1
F12(θ)

(B.2)

and further modified by Andric and Curtin [17] to take into account the small step created by
the emission of the dislocation:

KIe =
√
GIeo(θ,ϕ)

1
F12(θ)

. (B.3)

Here GIe = 0.145γs+ 0.5γusf, θ is the angle between the crack tip and the slip plane and ϕ the
angle between the dislocation Burgers vector and the crack front direction. The F12 factor is a
geometrical factor that depends only on the angle θ and the compliance matrix of the material.

The Fij are calculated using the stress field induced by an anisotropic displacement at an
angle θ between the crack tip and the slip plane of the dislocation.
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Figure B1. Fij for copper with the new potential.

ThematrixF is the angular distribution of the stress at the crack tip [17]. It can be written as:

F=Ω(θ)σΩT(θ) (B.4)

with Ω the rotation matrix

Ω(θ) =

[
cosθ sinθ
−sinθ cosθ

]
and σ the stress matrix with σ11, σ12 and σ22 as defined in equation (A.4)

σ =

[
σ11 σ12

σ12 σ22

]
.

These Fij were computed depending on the theta angle for copper with this potential and
they are plotted on figure B1. The Fij correspond to different coefficients for mode I and II or
mixed loading. In mode I loading, one is interested into F12.

Appendix C. Mean potential

The EAM potential was meaned as in [58] in view of using it for the dislocation emission
process at a crack tip for CuZn alloys. In order to validate the approach in our case, it was
compared to the EAM potential used for different configurations. It was compared for elastic
constants in figure C1 and stacking fault energies in figure C2. As can be seen in figure C1,
the elastic constants computed with the mean EAM potential compare well (up to 20%) with
the atomic Cu–Zn EAM potential used with different configurations. A discrepancy appears
above 25% but the disagreement remains below 10% for the elastic constants.

It was then used to compute the stacking fault energies (both unstable and intrinsic). As can
be seen on figure C2, the stacking fault energies computed with the mean potential stays in the
error margin of the stacking fault energies computed with 100 configurations with the EAM
potential.

As seen on both figures, the mean EAM potential reproduces well the interactions repro-
duced by the EAMpotential. However it cannot be used for dislocation glide studies inα-brass.
The α-brass alloy CRSS is supposed to increase with the zinc concentration due to pinning the
dislocation by solute atoms while here the USF decreases with alloying. With the mean EAM
potential, there are no more varying local concentration of solute atoms so while the source
of an increase of CRSS stems from the wavy local shape of the dislocation core, this process
cannot be modelled using meaned potentials because the core remains straight.
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Figure C1. Elastic constants in alpha-brasses with the new EAM potential and the mean
one.

Figure C2. Stacking fault energies in alpha-brasses with the new EAM potential and
the mean one.
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