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We compare several old and recent methods for clustering a set of qualitative
and quantitative variables.
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The simultaneous treatment of a mixture of J quantitative variables xj and Q qualitative
variables x̃q with mq categories, whether in factorial analysis or clustering, is often based
on the determination of one or more global or local (i.e. per class) synthetic variables
optimizing the following criterion introduced in 1977 by Tenenhaus [6], reused by Escofier
(1979), then Saporta [5], Kiers (1991) under the name of PCAMIX, and Pagès (2004):

max
c

 J∑
j=1

r2 (c,xj) +
Q∑

q=1

η2 (c, x̃q)

 (1)

where r2 is the squared Pearson correlation coefficient between two quantitative variables
and η2 the squared correlation ratio between a quantitative and a qualitative variable.
Both coefficients are equal to the proportion of variance of a dependent variable explained
by an independent one.
The ClustOfVar algorithm [1] uses criterion (1) to perform a clustering of a set of variables
of different nature around latent components in each group, extending the method of
Vigneau and Qannari [7] introduced for exclusively quantitative variables.
Clustering variables around components is an interesting alternative to direct algorithms
that start from the table of similarities, dissimilarities or distances between all variables,
because it simultaneously optimizes the clustering and the representation of classes by a
component as in a clusterwise approach.
A key issue is to use consistent and comparable similarity measures in the three cases :
a pair of quantitative variables, a pair of categorical variables and a pair consisting in a
quantitative variable and a categorical one. The association coefficients r2 and η2 are in
common use, while various solutions have been proposed for the case of two categorical
variables: chi-squared and its derivatives such as T 2, which is the square of the Tschuprow
coefficient, or the largest eigenvalue of the Correspondence Analysis matrix derived from
the cross-tabulation of two categorical variables [1].

mailto:ndeye.niang_keita@cnam.fr
mailto:ouattara.mory@usp.edu.ci
mailto:gilbert.saporta@cnam.fr


Coefficients associated with categorical variables are not, however, comparable with each
other or with r2 because their distributions depend on their number of categories. In crite-
rion (1) a qualitative variable plays a greater role the higher its number of categories mq.
The Escoufier RV coefficients [4] between tables generated by each quantitative variable
and tables of indicators of the categories of the qualitative variables make it possible to
define Euclidean similarities equal, according to the cases, to r2, η2√

mq−1
or T 2 [3].

We can then perform hierarchical clustering with Ward’s algorithm or k-means partitioning,
either directly on the similarity matrix, or on the coordinates obtained by the Torgerson
formula. This elegant but somewhat forgotten solution still suffers from a flaw: dividing
by the square root of the degree of freedom does not completely correct the effect of the
number of categories. For this, it may be wise to use as dissimilarity the p-value of the
independence test in the spirit of the likelihood linkage algorithm [2]. However Euclidean
properties are lost.
In addition, when the number of observations is very large, all p-values are close to zero
(paradox of large samples) and are no longer usable. We propose to replace them by the
corresponding fractiles of the standard normal distribution in the spirit of the test values
used in the SPAD software. The larger the fractile, the greater the association between
two variables. These different approaches are compared on real data sets.
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