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Introduction

The ability to simulate aerodynamic flows using Computational Fluid Dynamics (CFD) has progressed rapidly during the last decades owing to the growth of the computational power and the increasing accuracy and robustness of CFD solvers [START_REF] Tucker | Aerodynamics, computers and the environment[END_REF]. While Reynolds Averaged Navier-Stokes (RANS) simulations are the current workhorse of the aerospace industry, the understanding concrete relevance. Indeed, the two solvers used in their study (which are highly simplified and unreflective of LES solvers) were developed by different teams and do not rely on the same HPC core thereby biasing the outcome. Besides, comparative studies on industrial-level LES applications can also hardly be used to draw informed conclusions. In the literature, a large variety of configurations were studied such as landing gears [START_REF] Manoha | Summary of the LAGOON solutions from the benchmark problems for airframe noise computations-III workshop[END_REF][START_REF] Hou | Lattice-boltzmann and navier-stokes simulations of the partially dressed, cavity-closed nose landing gear benchmark case[END_REF][START_REF] Barad | Lattice boltzmann and navier-stokes cartesian CFD approaches for airframe noise predictions[END_REF], automotive models [START_REF] Aultman | Evaluation of CFD methodologies for prediction of flows around simplified and complex automotive models[END_REF], swirled flows typical of aeronautical combustion chambers [START_REF] Aniello | Comparison of a finite volume and two Lattice Boltzmann solvers for swirled confined flows[END_REF], linear cascade configuration [START_REF] Fiore | Influence of cavity flow on turbine aerodynamics[END_REF], and reactive flows [START_REF] Boivin | Benchmarking a lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?[END_REF]. One the whole, these surveys are in favor of the LBM indicating speedups up to 10 with respect to Navier-Stokes solvers while providing accurate results. Albeit interesting, these conclusions should be taken with caution as they do not compare competing approaches. Indeed, most of these studies are based on comparisons among results obtained by different teams around the globe using different solvers and running options. For instance, it makes little sense to compare the performance of structured and unstructured solvers or the accuracy of wall-modeled and wallresolved computations as each of these choices leads to major differences in throughput which are expected to dramatically change the outcome of the aforementioned comparisons.

In this context, the aim of the present study is to perform a comprehensive and fair one-to-one comparison of the lattice Boltzmann and Navier-Stokes methods for aerodynamic and aeroacoustic applications. To this end, schemes of practical relevance are investigated and great care is taken such as to avoid all possible sources of bias when comparing both numerical methods. Moreover, rather than targeting complex industrial-like configurations, the focus is made on low Mach number canonical test cases representative of LES requirements for which an analytical solution is known and therefore for which the error levels can be precisely quantified. For all these reasons, only the core capabilities of each method (i.e. their ability to propagate acoustic waves, wakes or to simulate turbulent flows) are of interest here, which means that the present comparison does not cover configurations involving walls. Indeed, such computations introduce numerous skews which are found to be independent of the numerical methods, especially when discussing the way the wall is numerically handled since most of practical flows around obstacles require the use of wall models whose error outweighs the one of the scheme in the near wall region [START_REF] Piomelli | Wall-Layer models for Large-Eddy Simulations[END_REF][START_REF] Piomelli | Wall-layer models for large-eddy simulations[END_REF]. In addition, it is very cumbersome to establish precise error metrics for such flows given the different levels of validation of unsteady data issued from CFD (see the hierarchy proposed in [START_REF] Sagaut | Large eddy simulation for aerodynamics: status and perspectives[END_REF]).

The contribution of the present study is threefold and covers all the aspects of the numerical methods by: (1) investigating their intrinsic dispersive and dissipative properties, (2) thoroughly discussing their computational cost and parallel scalability, and (3) expressing their efficiency in carrying out practical simulations through a "time to solution" metric. Thus, notwithstanding the conscious choice not to deal with wall bounded flows, general and rigorous decision support on the suitability of one particular CFD method over the other are provided for canonical aeroacoustic and free shear flow problems commonly encountered in Large Eddy Simulations.

The paper is organised as follows. Section 2 is devoted to the presentation of the lattice Boltzmann and Navier-Stokes methods. Then, the theoretical dispersion and dissipation errors of both methods are discussed in Section 3 through an extended von Neumann analysis. Section 4 compares both methods in terms of their intrinsic HPC capabilities. Finally, the methods are further compared thanks to representative aerodynamic and aeroacoustic test cases in Section 5.

Numerical framework

The comparison between the lattice Boltzmann and Navier-Stokes methods is performed in the framework of ONERA's Cassiopée/FAST CFD environment [START_REF] Benoit | Cassiopee: A CFD pre-and post-processing tool[END_REF]19,20]. This consists in a set of efficient and interoperable CFD modules sharing the same code architecture, data structure and parallel processing functions. This framework is a perfect candidate for method-to-method comparisons since it avoids the heterogeneities and the computational overhead of independent CFD codes implementing one single numerical method and optimized with different standards.

Finite-volume Navier-Stokes method

The three-dimensional compressible Navier-Stokes (NS) equations are solved using ONERA's FastS solver dedicated to multi-block structured grids. Starting from the conservative form of the Navier-Stokes equations:

∂ ∂t U + ∇ • F(U) -∇ • F ν (U) = 0, (1) 
where U = (ρ, ρu x , ρu y , ρu z , ρE) t , F(U) and F ν (U) are the flow variable vector, the inviscid, and the viscous fluxes, respectively. The cell-centered finite volume method is obtained by splitting the computational domain Ω into N non-overlapping cells Ω ijk . The integration of Equation (1) over every cell of the mesh leads to a semi-discrete form as:

d dt U ijk + 1 |Ω ijk | R ijk (U) = 0, (2) 
where U ijk is now the mean flow variable vector evaluated at the center of Ω ijk , |Ω ijk | the volume of Ω ijk , and R ijk the residual of the discretised convective and viscous terms.

The convective fluxes are approximated by a second-order accurate spatial scheme proposed by Mary & Sagaut [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF] which relies on a modification of the AUSM+(P) scheme (Advection Upstream Splitting Method where "+(P)" denotes the addition of a modified pressure contribution to the interface mass flux for low-speed flows, see Edwards & Liou [START_REF] Edwards | Low-diffusion flux-splitting methods for flows at all speeds[END_REF]). The viscous fluxes are discretised using a second-order accurate centered scheme. Two different time-stepping schemes are implemented in FastS and discussed hereafter: an explicit 3 rd -order accurate low-storage Runge-Kutta scheme [START_REF] Lowery | Numerical simulation of a spatially-developping, forced, plane mixing layer[END_REF] and an implicit 2 nd -order accurate backward scheme of Gear with local Newton subiterations [START_REF] Daude | Self-Adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows[END_REF]. In the latter case, the Jacobians are approximated following the procedure presented in [START_REF] Jameson | Lower-upper implicit schemes with multiple grids for the Euler equations[END_REF][START_REF] Coakley | Implicit upwind methods for the compressible Navier-Stokes equations[END_REF] and the linear system is solved by the LU-SGS factorisation [START_REF] Jameson | Lower-upper implicit schemes with multiple grids for the Euler equations[END_REF].

Modified AUSM scheme. Several modifications have been introduced to the standard AUSM+(P) scheme of Edwards & Liou [START_REF] Edwards | Low-diffusion flux-splitting methods for flows at all speeds[END_REF] to enhance its accuracy and lower its computational cost in the low Mach number range. By discarding the shock-capturing part, the convective fluxes on a face l of Ω ijk are expressed as:

F l = U l U L + U R 2 -|U dis | U L -U R 2 + P l , (3) 
where L/R denotes the left and right third-order MUSCL (Monotone Upstream-centered Schemes for Conservation Laws [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF]) interpolated states. The pressure term P l is given by (p L + p R )/2 • (0, n • e x , n • e y , n • e z , 0) t where n is the normal vector to the face l. U l denotes the interface fluid velocity and is defined as:

U l = n • u L + u R 2 -c 2 (p R -p L ). (4) 
U dis , which has the dimension of a velocity, characterises the numerical dissipation acting on the velocity components through:

U dis = max(|U l |, c 1 ). (5) 
Both c 1 and c 2 are constant parameters chosen as small as possible to minimize the numerical dissipation. In [START_REF] Mary | Méthode de Newton approchée pour le calcul d'écoulements instationnaires comportant des zones à très faible nombre de Mach[END_REF], an optimal value of 0.04 has been determined. Without a loss in comprehension or generality this upwind scheme will henceforth be referred to as AUSM.

In order to further reduce the numerical dissipation of the AUSM scheme for LES-type computations, a hybrid centered/decentered modification of the AUSM scheme was proposed in [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF] and extended by Laurent [START_REF] Laurent | Étude d'écoulements transitionnels et hors-équilibre par des approches DNS et RANS[END_REF]. It relies on a binary sensor function Φ l , which only depends on the smoothness of the primitive variables ψ = (ρ, u x , u y , u z , p) t , acting on the dissipative terms in Equation ( 3):

F l = U l U L + U R 2 -|U dis | × Φ l × U L -U R 2 + P l , (6) 
where the dissipative term appearing in the definition of U l becomes:

U l = n • u L + u R 2 -c 2 (p R -p L ) × Φ l . (7) 
If no spurious oscillations are detected on ψ in the vicinity of cell Ω ijk , then Φ l = 0 and the convective flux of Equation ( 6) degenerates to a fully centered approximation. The latter scheme will be denoted as "Sensor" in the following.

The FastS solver has been extensively used and validated for both academic and industrial unsteady flow simulations such as transitional separation bubble [START_REF] Laurent | DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation[END_REF], airfoils in near-stall configurations [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF][START_REF] Alferez | Study of Stall Development Around an Airfoil by Means of High Fidelity Large Eddy Simulation[END_REF] and laminar transonic buffet [START_REF] Dandois | Large-eddy simulation of laminar transonic buffet[END_REF].

Lattice Boltzmann method

The lattice Boltzmann method [START_REF] Krueger | The Lattice Boltzmann Method: Principles and Practice[END_REF][START_REF] Qian | Lattice BGK Models for Navier-Stokes Equation[END_REF] does not directly rely on the resolution of the Navier-Stokes equations. In fact, it originates from a very specific discretisation of the Boltzmann equation describing the evolution of gases in terms of distribution functions f i (x, t) which represent the probability density of finding fictitious particles at a location x and time t being advected at a given discrete velocity ξ i . In the absence of a body-force term, the discrete velocity Boltzmann equation (DVBE) is given by:

∂ ∂t f i (x, t) + ξ i • ∂ ∂x f i (x, t) = Ω i (x, t) i ∈ 1 ; q , ( 8 
)
where q is the number of discrete velocities. The right-hand side term Ω i (x, t) models the time evolution of the distribution functions due to collisions between particles. The latter can be approximated through the BGK collision operator [START_REF] Bhatnagar | A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[END_REF] which describes the average collisions effect by a relaxation process towards a local equilibrium f eq i with a single relaxation time τ :

Ω i (x, t) = - 1 τ f i (x, t) -f eq i (x, t) . (9) 
The macroscopic quantities of interest such as the density ρ and the velocity field u are computed from the set of discrete distribution functions by taking their first two statistical moments:

ρ(x, t) = q i=1 f i (x, t) and ρu(x, t) = q i=1 ξ i f i (x, t). (10) 
The number, norm and orientation of the discrete velocities {ξ i } i∈ 1;q must follow particular rules that depend on the macroscopic behavior of interest. It can be shown through a Chapman-

Enskog expansion [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases[END_REF] that the underlying physics at a macroscopic level are linked to the statistical moments of the equilibrium distribution functions f eq i defined as:

m (n) eq = q i=1 ξ n i f eq i , (11) 
where ξ n i is the n-rank tensor built by n tensor products of ξ i . Therefore, in order to retrieve the Navier-Stokes dynamics, the set of discrete velocities {ξ i } i∈ 1;q has to ensure the equality between the discrete moments of the discrete equilibria {f eq i } i∈ 1;q defined by Equation ( 11) and the continuous ones, at least up to a given order N [START_REF] Shan | Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[END_REF]:

q i=1 ξ n i f eq i = ξ n f eq for n ∈ 0 ; N -1 , (12) 
where f eq is the continuous Maxwell-Boltzmann distribution:

f eq (x, ξ, t) = ρ(x, t) (2πRT ) d/2 exp - ||ξ -u(x, t)|| 2RT . (13) 
This is usually ensured thanks to a Gauss-Hermite quadrature associated with a Hermite polynomial expansion of the equilibrium distribution function [START_REF] Shan | Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[END_REF]. The nodes of the corresponding Gauss-Hermite quadrature then provide the discrete velocities as well as their associated weights.

Naturally, the higher the order of the quadrature (i.e. the more discrete velocities), the more faithfully the physics of the Navier-Stokes equations will be reproduced.

The most common sets of discrete velocities {ξ i } i∈ 1;q are often referred to as a DdQq lattices, where d is the spatial dimension and q the number of discrete velocities. Needless to say, the choice of the velocity set is usually a compromise between efficiency and accuracy. To this end, the most notorious lattices (D3Q19 and D3Q27) have an order of quadrature Q = 5. In this case, some discrepancies with respect to the classical Navier-Stokes equations [START_REF] Shan | Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[END_REF] arise. While the mass conservation equation is recovered without any error, a O(Ma 3 ) error appears is the momentum equation. In addition, the lack of discrete velocities leads to an incorrect evaluation of the convective and diffusive parts of the energy equation. Therefore, an athermal assumption is made by setting T = T 0 where T 0 is a constant reference temperature and the equation of state reduces to p = ρ(c ath 0 ) 2 where c ath 0 = √ RT 0 is the athermal speed of sound. Consequently, the lattice Boltzmann method is said to be restricted to isothermal and weakly compressible flows.

For this study, and as it is usually the case for practical computations, the D3Q19 lattice depicted in Figure 1 is considered in the following. This lattice is often preferred to the D3Q27 

ξ i (0,0,0) (0, ±1, 0) (±1, 0, ±1) (0, 0, ±1) (0, ±1, ±1) w i 1/3 1/18 1/36
Figure 1: D3Q19 velocity set. The cube, drawn in solid lines, has an edge length of 2∆x. For the sake of clarity, the rest velocity ξ 1 = 0 is not represented as it lies at the center of the cube. Each discrete velocity ξi is expressed in its non-dimensional form. cs is the lattice constant and corresponds to the lattice speed of sound.

since it requires about 40% less memory and computing power. Yet, in the light of recent studies [START_REF] White | Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice[END_REF][START_REF] Kang | The effect of lattice models within the lattice Boltzmann method in the simulation of wall-bounded turbulent flows[END_REF][START_REF] Silva | Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method[END_REF][START_REF] Geier | The cumulant lattice Boltzmann equation in three dimensions: Theory and validation[END_REF] it becomes clear that the D3Q27 velocity set has to be preferred when computing high Reynolds number axisymmetric flows. However, for the flows studied in Section 5, the use of a D3Q19 instead of a D3Q27 lattice is found to have very negligible effects on the numerical solution and thereby on the conclusions of the present study.

The lattice Boltzmann scheme is obtained by discretising the space and time variables of the DVBE [START_REF] Manoha | Summary of the LAGOON solutions from the benchmark problems for airframe noise computations-III workshop[END_REF]. The left-hand side (LHS) linear convection term of Equation ( 8) is integrated along the ξ i characteristic ensuring an exact advection step and a direct link between the grid and time step through ∆x = |ξ i |∆t. On the other hand, a trapezoidal integration rule (Crank-Nicolson scheme)

is employed for the right-hand side (RHS) collision term [START_REF] Dellar | An interpretation and derivation of the lattice Boltzmann method using Strang splitting[END_REF]. This strategy, leads to:

g i (x + ξ i ∆t, t + ∆t) = g i (x, t) + ∆tΩ i (x, t), (14) 
where {g i } i∈ 1;q are the modified distribution functions so as to ensure an explicit formulation of the algorithm [START_REF] He | A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit[END_REF]. They are related to the original distribution functions f i (x, t) through the

relation g i (x, t) = f i (x, t) -∆t 2 Ω i (x, t) which implies g eq i (x, t) = f eq i (x, t).
In the case of the BGK collision model, the relaxation time also becomes τ = τ + ∆t 2 .

The lattice Boltzmann method is classically applied in a non-dimensional form. Therefore, the time-step ∆t (resp. the grid-step ∆x) is chosen as the characteristic time (resp. characteristic length) for the non-dimensionalization. This leads to the lattice Boltzmann scheme: 

g i (x + ξ i , t + 1) = g i (x, t) + Ω i (x, t), (15) 
c LBM 0 = c 0 = c s ∆x ∆t and ν = (c LBM 0 ) 2 τ - 1 2 , ( 16 
)
where c s = 1/ √ 3 is the D3Q19 lattice constant. The acoustic scaling is equivalent to setting the LBM fictitious temperature to γT 0 where γ is the heat capacity ratio of the fluid to be simulated.

Based on these parameters, the LBM recovers the athermal and weakly-compressible Navier-Stokes dynamics with a second-order accuracy in both space and time [START_REF] Dellar | An interpretation and derivation of the lattice Boltzmann method using Strang splitting[END_REF].

The lattice Boltzmann method with the BGK collision model is known to suffer from stability issues especially at high Reynolds number [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF] preventing it from being used in practical computations. These issues have been attributed to interactions between so called "ghost-modes" arising from the space and time discretisation of Equation ( 8) [START_REF] Dellar | Bulk and shear viscosities in lattice Boltzmann equations[END_REF][START_REF] Wissocq | An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues[END_REF]. To alleviate the lack of stability, numerous advanced collision models have been proposed for the LBM in the recent years by increasing the number of free parameters (or relaxation rates) in the model [START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[END_REF][START_REF] Geier | The cumulant lattice Boltzmann equation in three dimensions: Theory and validation[END_REF][START_REF] Humières | Multiple-relaxation-time lattice Boltzmann models in three dimensions[END_REF]. In this context, the cumulant model introduced by Geier et al. [START_REF] Geier | The cumulant lattice Boltzmann equation in three dimensions: Theory and validation[END_REF] is noteworthy owing to its ability to resolve acoustics and turbulent flows [START_REF] Feuchter | Direct aeroacoustic simulation with a cumulant Lattice-Boltzmann model[END_REF][START_REF] Geier | Under-resolved and large eddy simulations of a decaying Taylor-Green vortex with the cumulant lattice Boltzmann method[END_REF] with very little additional numerical dissipation w.r.t. the BGK model while remaining stable. For this reason, and for the sake of generality of the proposed study, the BGK model will still be studied in the following despite its low stability since all the new proposed collision models seek to approximate its low numerical dissipation while ensuring stability.

Thus, the conclusions of this study obtained for the BGK model represent, by omitting for a while the question of stability, the optimal performance one can expect of the LBM.

In addition to the BGK model, regularised collision kernels [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF][START_REF] Jacob | A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation[END_REF] are also considered hereafter.

This choice is motivated by the fact that their implementation only requires very slight modifications with regard to the simple BGK collision operator. Moreover, regularised kernels drastically reduce the number of possible free parameters in the model which greatly favors their adoption on an industrial scale [START_REF] Hou | Lattice-boltzmann and navier-stokes simulations of the partially dressed, cavity-closed nose landing gear benchmark case[END_REF][START_REF] Degrigny | Towards the Computational Prediction of Low-Speed Buffet: Improved Wall Modeling for the Lattice Boltzmann Method[END_REF] by simplifying user's intervention. The next two section are therefore devoted to the introduction of regularised collision models.

Recursive regularised collision model

The regularised collision models are based on the fact that a Chapman-Enskog expansion up to the first order in Knudsen number is sufficient to recover the Navier-Stokes behavior at a macroscopic level. Hence, before each collision step, the distribution functions are reconstructed as:

g reg i = g eq i + g (1),reg i , (17) 
where g eq i = f eq i is the equilibrium distribution function and g

(1),reg i the regularised contribution.

On the basis of the BGK collision model, the collision step can be rewritten as:

Ω i = g eq i + 1 - 1 τ g (1),reg i . ( 18 
)
The first-order contribution g

(1),reg i is expanded on the basis of Hermite polynomials as it is the case for the equilibrium distribution function. Consequently, one has:

g (1),reg i = w i Nr n=2 1 c 2n s n! a (n) 1 : H (n) i , (19) 
where a

(n) 1

is the nth-order off-equilibrium Hermite coefficient. For n = 2, the coefficient is computed by projecting the off-equilibrium distribution functions on the basis second-order tensor H

i :

a (2) 1 = q i=1 H (2) 
i (g ig eq i ) .

Malaspinas [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF] proposed a technique to reconstruct as many off-equilibrium Hermite coefficients a (n) 1 as possible, or at least up to a given order N r . Thanks to a Chapman-Enskog expansion and some algebra, a recursive relation between the off-equilibrium coefficients is determined:

a (n) 1,α 1 ...αn = u αn a (n-1) 1,α 1 ...α n-1 + n-1 i=1 u α 1 ...u α n-2 a (2)
1,α i αn for n ≥ 3.

The recursive relation is initialised by Equation (20). In the following, this model will be referred to as the recursive regularised collision model at order N r (RRN r ) where N r = 3.

Hybrid recursive regularised collision model

The Hybrid Recursive Regularised (HRR) collision operator [START_REF] Jacob | A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation[END_REF] has been proposed to further enhance the stability of the RR model. The very essence of the HRR collision operator lies in the way the second-order off-equilibrium coefficient a

(2)

1 is computed [START_REF] Jacob | A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation[END_REF]. In the HRR framework, this tensor is hybridised. It is decomposed into a linear combination of a projected part (see Equation (20)) and a finite difference part (FD). Indeed, the Chapman-Enskog expansion links the first-order off-equilibrium distribution to the deviatoric stress tensor S = 1 2 ∇u + (∇u) T . Thereby, the off-equilibrium coefficient a

1 is given by:

a (2) 1 = σ q i=1 H (2) i g i -g eq i + ψ i 2 + (1 -σ) -ρτ c 2 s ∇u + (∇u) T , (22) 
where 0 ≤ σ ≤ 1 is a user-tuned parameter to control the amount of hyper-viscosity added to the model [START_REF] Jacob | A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation[END_REF]. ψ i is a corrective term required to recover a Galilean invariant shear stress tensor and also to stabilise the HRR collision operator [START_REF] Wissocq | Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows[END_REF]. The spatial derivatives of the velocity field in Equation ( 22) are evaluated with second-order centered finite differences. The higher-order off-equilibrium coefficients are then computed recursively using Malaspinas' formula [START_REF] Mary | Large eddy simulation of flow around an airfoil near stall[END_REF].

Linear Stability Analyses (LSA)

In this section, it is proposed to extend the spectral analysis of the lattice Boltzmann and Navier-Stokes schemes of Marié et al. [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF] by considering regularised lattice Boltzmann models and by investigating the isotropy properties of both the Navier-Stokes and lattice Boltzmann schemes.

This constitutes a first step towards a fair comparison between the LB and NS methods. For the sake of simplicity, the von Neumann analysis is performed in only two dimensions of space.

General methodology and exact plane wave solutions

Starting from a set of non-linear differential equations written in the form of a dynamical system:

∂q ∂t = L(q), ( 23 
)
where q is the state vector and L is the non-linear differential operator, the state vector is perturbed around a base state q as:

q = q + q . ( 24 
)
By construction, the base state is steady and homogeneous in all directions of space (i.e. ∂ t q = ∂ x i q = 0). In Equation [START_REF] Daude | Self-Adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows[END_REF], q denotes a small perturbation of q such that q q. By substituting Equation [START_REF] Daude | Self-Adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows[END_REF] into Equation ( 23) and keeping only first-order terms, one gets:

∂q ∂t = J q , ( 25 
)
where J is the jacobian matrix of the non-linear differential operator L evaluated at q.

A Fourier transform in space and time of the state vector is then performed, allowing the perturbations to be studied as plane monochromatic waves:

q = q exp (i (k • x -ωt)) , (26) 
where i 2 = -1, q is the complex amplitude of the perturbations, k ∈ R n with n ∈ 1; 3 is the wave number, and ω ∈ C is the pulsation of the wave. Finally, injecting Equation (26) into Equation [START_REF] Jameson | Lower-upper implicit schemes with multiple grids for the Euler equations[END_REF], the spatial and temporal derivatives can be simplified as ∂ t = -iω and ∂ x i = ik i . This leads to the general eigenvalue problem:

ω q = J q. ( 27 
)
In the case of a discrete numerical scheme, where the temporal derivative is often approximated through a difference scheme, Equation [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[END_REF] then becomes:

e -iω q = J q. ( 28 
)
The eigenvalue problems of Equations ( 27) and ( 28) are then solved for each value of k. The complex eigenvalues ω give access to the propagation speed Re(ω) and dissipation rate Im(ω) of each of the linear modes stemming from the set of equations defined by L.

Exact plane wave solutions. In order to assess the dispersive and dissipative properties of the lattice Boltzmann and Navier-Stokes schemes, their spectral properties have to be compared with a reference. To this end, the 2D linearised Navier-Stokes equations are solved for plane wave solutions.

By applying the general LSA methodology to these equations (see [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF] for further details), one gets the following eigenvalue problem:

ω Û = M NS, † Û , (29) 
where Û = (ρ , ρu x , ρu y , p ) t and M NS, † is the time-advance matrix. The solution of Equation [START_REF] Laurent | Étude d'écoulements transitionnels et hors-équilibre par des approches DNS et RANS[END_REF] gives the linear modes of the isothermal Navier-Stokes equations: two acoustic modes (one upstream ω Ac+ and one downstream ω Ac-), one shear mode ω sh in 2D (two in 3D), and one entropy mode ω entr . Their general expressions are given by:

ω Ac± = k • u ± ||k||c 0 + i 2 3 ν + 1 2 ζ ||k|| 2 , ω sh = k • u + iν||k|| 2 , ω entr = k • u. (30) 
It can be seen from Equation (30) that the shear wave propagates at the mean flow velocity u, whereas the acoustic waves propagate at u ± c 0 . Moving to the dissipation rate, the attenuation of the shear wave is directly controlled by the viscosity ν while for the acoustic waves, the attenuation process is divided into two parts: dissipation induced through the viscosity ν, and compression/dilation effects through the bulk viscosity ζ. Due to the isothermal hypothesis of the LBM, the entropy mode is reduced to a non-dissipative wave propagating with the shear mode and is therefore currently ignored.

LSA of space and time discrete Navier-Stokes schemes

The combined effect of the space and time discretisations is studied here. This is necessary for the comparison with lattice Boltzmann schemes in which the space and time discretizations cannot be distinguished. The methodology, introduced by Marié et al. [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF], is briefly recalled here.

Space discretisation. For the sake of simplicity, only centered schemes are studied in the present work. By definition, a 2N -order centered approximation of the spatial derivatives in direction i for a given quantity q can be written as:

∂q ∂x i = 1 ∆x i N j=-N a j q(x + j∆x i ) + O(∆x 2N ), (31) 
where a j = -a -j are the coefficients of the scheme and ∆x i is the mesh size in the i direction. In the following, three schemes are considered: a classic second-order one (denoted by "CenterO2"), a fourth-order "dispersion relation preserving" scheme developed by Tam and Webb [START_REF] Tam | Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics[END_REF] (denoted by "DRPTWO4"), and the optimized sixth-order Bogey scheme [START_REF] Bogey | A family of low dispersive and low dissipative explicit schemes for flow and noise compu-tations[END_REF] (denoted by "FDo13"). By applying the general von Neumann stability analysis, Equation (31) becomes:

∂q ∂x i =   1 ∆x i N j=-N a j exp (i jk • ∆x i )   K scheme,x i q + O(∆x 2N ), (32) 
where the so-called equivalent wave-number K scheme,x i has been introduced. Even though the "Sensor" scheme implemented in ONERA's finite-volume Navier-Stokes solver isn't strictly speaking a second-order centered scheme due to the MUSCL interpolations, it behaves like a centered scheme in the absence of oscillations in the primitive variables. Thereby, centered schemes provide a lowerband estimate of the dissipative behavior of this finite-volume scheme.

Time discretisation. As in [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF], this study is restricted to explicit Runge-Kutta time-stepping schemes.

This is motivated by the fact that most computations in Section 5 use an explicit third order Runge-Kutta scheme. By definition, a p-step explicit Runge-Kutta (RK) method applied to Equation ( 23) can be expressed as:

q n+1 = q n + p j=1 γ j ∆tL j (q n ), (33) 
where q n+1 and q n are the values of q at time (n + 1)∆t and n∆t respectively. ∆t is the time-step and L j denotes the j-th composition of the function L. The coefficients γ j are related to the specific Runge-Kutta scheme being used. In this paper, two Runge-Kutta schemes are studied: a third-oder one denoted by RK3 and a sixth-order optimised one (RK6) proposed by Bogey and Bailly [START_REF] Bogey | A family of low dispersive and low dissipative explicit schemes for flow and noise compu-tations[END_REF].

When applying the general LSA methodology to the space-and time-discrete Navier-Stokes schemes, one gets the following general eigenvalue problem:

e -iω q =   I + p j=1 γ j CFL j Λ j   q = M NS q, ( 34 
)
where I is the identity matrix and Λ is given by:

Λ = - ∆x c 0 [K scheme,x 1 M x 1 + K scheme,x 2 M x 2 ] . (35) 
Note that K scheme,x 1 and K scheme,x 2 are also present in the definition of M x 1 and M x 2 since they involve derivatives in their generic expressions (see [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF]).

LSA of lattice Boltzmann schemes

The main variables of the lattice Boltzmann method are the distribution functions. Therefore, the state vector q is now defined as:

q f = (f 1 , f 2 , ..., f q-1 , f q ), ( 36 
)
where q is the number of discrete velocities. In order to distinguish the state vector of Equation [START_REF] Shan | Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation[END_REF] with the one used in the NS formalism, the former is written with the letter f as a subscript. This difference being noted, the general methodology introduced in Section 3.1 is applied in the same way. After some algebra (see [START_REF] Wissocq | Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[END_REF] for the details), the following eigenvalue problem is obtained:

e -iω q f = M LB q f , (37) 
where the time evolution matrix M LB depends on the collision operator. For the BGK, RRN r , and HRR ψ collision models, its general expression is derived in [START_REF] Wissocq | Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[END_REF][START_REF] Renard | A linear stability analysis of compressible hybrid lattice Boltzmann methods[END_REF].

Equation [START_REF] White | Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice[END_REF] highlights one main difference between the LSA of NS and LB schemes. Indeed, for the Navier-Stokes schemes, the eigenvalue problem leads to 4 eigenmodes in 2D. However, in the lattice Boltzmann framewok, the eigenvalue problem is of size q meaning that q eigenmodes are obtained. Owing to the fact that q > 4, the dynamics of the DVBE include more information than at the Navier-Stokes level.

Extended von Neumann analysis of LB schemes. In order to give a physical interpretation to the q modes resulting from the von Neumann analysis in the lattice Boltzmann framework, an extended von Neumann analysis methodology [START_REF] Wissocq | An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues[END_REF] is used. The latter relies on the study of the LB eigenvector qf = ( f 1 , f 2 , ..., f q-1 , f q ) and more particularly on its moments defined as:

ρ = q I=1 f i and ρu = q I=1 ξ i f i . (38) 
The resulting macroscopic vector V = [ρ, ρu] T is then projected onto the Navier-Stokes one. This analysis allows for a systematic identification of the modes carrying a macroscopic information at more than a prescribed ratio η. In the results presented below, this parameter will be set to η = 0.99. Such extended analysis has been extensively used in the recent years for a very large set of problems [START_REF] Wissocq | Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes[END_REF][START_REF] Wissocq | Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[END_REF][START_REF] Astoul | Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[END_REF][START_REF] Renard | A linear stability analysis of compressible hybrid lattice Boltzmann methods[END_REF].

In the following, three different collision models are studied, namely the BGK, RR3 and HRR for which the value of σ is set to σ = 0.995 which is commonly used for industrial applications [START_REF] Astoul | Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[END_REF].

Comparison between the Navier-Stokes and lattice Boltzmann schemes

In order to compare the dispersive and dissipative properties of both the lattice Boltzmann and Navier-Stokes schemes, a comparison metric has to be introduced. For this purpose, it is chosen to focus on the error committed on Re(ω) and Im(ω) as a function of the wavenumber [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF]:

   Err Re (k) = |Re(ω th ) -Re(ω)| Err Im (k) = |Im(ω th ) -Im(ω)| , ( 39 
)
where ω th refers to the solutions of the exact linearised Navier-Stokes equations [START_REF] Laurent | DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation[END_REF], and ω refers to the solutions of the eigenvalue problems of Equations ( 34) and [START_REF] White | Rotational invariance in the three-dimensional lattice Boltzmann method is dependent on the choice of lattice[END_REF]. The latter are solved numerically thanks to an in-house Python code, using the NumPy and SimPy libraries [START_REF] Harris | Array programming with NumPy[END_REF][START_REF] Meurer | Sympy: symbolic computing in python[END_REF].

Since only the real part of the perturbations are of interest, and by virtue of Shannon's theorem it is sufficient to restrict the problem to k x ∈ [-π, π] and k y ∈ [0, π] in 2D. The wavenumber space is discretised with a uniform step ∆k = 0.01 determined by a convergence study.

The values of Err Re (k) and Err Im (k) are computed for the same CFL number. Since the lattice

Boltzmann method operates at a fixed CFL number of 1/ √ 3, the same value is chosen for the Navier-Stokes schemes. Other CFL numbers have been tested without changing the conclusions.

The viscosity is set to ν = 10 -5 m 2 /s which is representative of aeronautical applications. Compared to centered NS schemes, the LBM dispersion error is between a second-order and an optimized third-order space scheme with a 3-step Runge-Kutta time-stepping. This result is quite interesting since the LBM is a second-order accurate method which has better spectral properties than centered second-order NS schemes. When it comes to the dissipation error, it can be seen that NS schemes have a higher dissipation on the acoustic modes than on the shear mode. Such observation is in accordance with previous results [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF]. However, regardless of the collision model, the trend is reversed for the LBM. Indeed, the dissipation error on the shear mode is slightly higher than the one of the acoustic modes. Regarding the dissipation error curves, the dissipation error of the LBM highly depends on the collision model which is employed as well as the on the physical mode of interest. For instance, the LB regularised collision models are highly dissipative on the shear mode for which all the Navier-Stokes schemes tend to be less dissipative. The only LB model which competes with the NS schemes is the LBM-BGK for which the dissipation error is between an optimised third order and sixth-order Navier-Stokes centered scheme. This behavior of the regularised collision kernels was recently discussed in [START_REF] Wissocq | Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes[END_REF] and linked to a "hyperviscous degeneracy" phenomena. However, on acoustic modes, it can be seen that the BGK and RR collision models have the exact same low dissipation error when perturbations are aligned with the x-axis. In comparison, one has to consider a sixth-order NS scheme in order to get a lower dissipation error for low wavenumbers. Despite its higher dissipation, the HRR model is still better than traditional NS schemes lying in between an optimised third-order and sixth-order Navier-Stokes centered scheme. All in all, regularised collision kernels preserve the low dissipative capabilities of the lattice Boltzmann models on acoustic modes but exhibit an increased dissipation on shear modes with respect to the classical -but unstable -BGK collision model.

The tendencies outlined in the analysis of in Figure 3 for a horizontal mean flow at Ma = 0.2. Note that similar tendencies are obtained by varying the angle of the mean flow. First of all, a rather anisotropic dissipative behavior is observed for all the numerical schemes on a broad range of wavenumbers. One can however notice that increasing the order of the spatial NS scheme tends to increase the isotropic region in the limit of k x , k y → 0. Inasmuch as centered schemes do not induce any numerical dissipation, the anisotropy observed in the dissipation error can be attributed to the coupling between the spatial and temporal discretisations. Regarding the lattice Boltzmann schemes, some grey regions are exhibited indicating that no physical information was identified by the extended von Neumann analysis (the η ≥ 0.99 condition is no more satisfied).

From a general point of view, the main conclusion which can be drawn from Figure 3 is that the spectral properties observed when considering a planar monochromatic wave with k y = 0 hold over the whole wavenumber plane. The lattice Boltzmann method with BGK collision operator remains the least dissipative method. However, one can see that, all the regularised LB models have a much higher dissipation when the perturbation is no longer fully aligned with the main mesh directions especially on acoustics. All in all, when considering shear-driven flows, the Navier-Stokes schemes seem to be better candidates to propagate such information over long distances and only the LBM-BGK presents an advantage in comparison with regularised LB schemes. However, for acoustic problems, even though regularised LBMs have a higher dissipation error w.r.t. the classical LBM-BGK, they present a lower dissipation error than second and thrid-order Navier-Stokes schemes over the whole range of practical interest i.e. ||k|| ≤ π/2.

All in all, in this section, the study of Marié et al. [START_REF] Marié | Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics[END_REF] has been extended by taking into account advanced LB collision models of practical relevance and several directions of propagation for the perturbations. In addition, while in the NS community schemes are generally studied for onedimensional problems, the present study provides some insight into their anisotropic dissipative behavior when both the space and time discretisations have been simultaneously performed.

CPU Performance

It is not enough for a numerical method to have good dispersive and dissipative properties; it must also take advantage of modern computing resources in the context of massively parallel systems. Therefore, this section focuses on the intrinsic CPU performance of the lattice Boltzmann and Navier-Stokes methods. The aim of this section is to optimise each code to the limits of the considered CPU architecture with the help of the Roofline performance model so as to avoid implementation bias. The algorithmic differences between the LB and NS methods are also discussed. Dissipation error Dissipation error 
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Implementation details

Before diving into the evaluation of the performance of the LB and NS methods, some implementation details are provided to clarify how the optimisation is achieved within ONERA's Cassiopee/Fast CFD environment. At a node-level, an OpenMP parallelisation strategy is implemented (see Alferez et al. [START_REF] Alferez | Intel Xeon and Xeon Phi optimizations of an industry-oriented Computational Fluid Dynamics solver[END_REF]). Each thread computes its own local subset of indexes and the workload is distributed among the cores of the node (one thread per core). Note that only the HPC layer dedicated to shared memory nodes is discussed here. Indeed, it is relatively easy to obtain a good scalability at a cluster level with the help of MPI asynchronous communications.

Data layout. Both the Navier-Stokes and lattice Boltzmann equations are solved using a domain decomposition technique in several structured blocks where ghost cells are used at the interfaces between them. The simulation domain is therefore represented by a multi-dimensional array featuring a flag field for distinguishing between the computed cells centers and the not computed ones (e.g. ghost cells or obstacles). Consequently, all variables can be accessed by simple index arithmetic.

The choice has also been made to store the variables in a Structure of Array mode for vectorisation purposes and to guarantee contiguous memory access in the NS and LBM schemes updates [START_REF] Alferez | Intel Xeon and Xeon Phi optimizations of an industry-oriented Computational Fluid Dynamics solver[END_REF][START_REF] Wellein | On the single processor performance of simple lattice Boltzmann kernels[END_REF].

By virtue of its dimensionless formulation, the LBM does not require any grid metrics to be stored. However, when using finite-volume Navier-Stokes method, informations about each cell face normal and surface are needed for each topological direction of the mesh. Therefore, in an effort to maximise its HPC efficiency, 3 different versions of the NS method are implemented within FastS in order to take advantage of specific grid topologies: 3dcart for cartesian grids where all the metrics are reduced to scalar values; 3dhomo for curvilinear meshes in the (x, y) plane and cartesian in the z direction and 3dfull for fully curvilinear grids. The importance of distinguishing between these different implementations when comparing the performance of the LBM with the Navier-Stokes method will be discussed in the following.

Factorisation of the compute kernels. For the structured Navier-Stokes method, the number of functions has been reduced to 5 calls of subroutines [START_REF] Alferez | Intel Xeon and Xeon Phi optimizations of an industry-oriented Computational Fluid Dynamics solver[END_REF] where the computation of fluxes balance is responsible for approximately 80% of the overall computational time in the explicit case. Regarding the lattice Boltzmann method, a straightforward implementation would lead to separate functions, namely the streaming and the collision steps. However, the number of data transfers can be reduced by executing the collision and propagation step in the same loop [START_REF] Wellein | On the single processor performance of simple lattice Boltzmann kernels[END_REF]. Moreover, since three nested loops over the three spatial dimensions are involved, an additional level of optimisation can be introduced by splitting the innermost loop into smaller ones and by storing common subexpression into buffer arrays allocated for each thread [START_REF] Bauer | lbmpy: Automatic code generation for efficient parallel lattice Boltzmann methods[END_REF].

Vectorisation. Modern processors have few Single Instruction Multiple Data (SIMD) units per core that can perform operations by group of 4 or 8 for the price of one in the innermost loop. In order to ensure coalesced memory accesses, the threads are aligned along the x-axis while blocks of threads are aligned in the (y, z) plane. Consequently, the internal loop is instrumented with a SIMD directive to help the compiler to generate an efficient assembly code.

Cache Blocking. The memory traffic can be further reduced by using a cache-blocking technique.

The main idea behind cache-blocking is to rearrange data access to pull subsets of data into cache and to operate on this block to avoid having to repeatedly fetch data from main memory. This optimisation technique is particularly useful for the Navier-Stokes schemes but does not play an important role when considering lattice Boltzmann models since no data reuse is present in the classic "Stream & Collide algorithm".

Roofline Performance model

The Roofline model [START_REF] Williams | Roofline: an insightful visual performance model for multicore architectures[END_REF] is introduced in an effort to derive an upper performance limit of each method on the present hardware system. The Roofline model states that the performance of a given algorithm is either bounded by the floating point performance (expressed in floating point operations per second or FLOPS) or bounded by the memory bandwidth (in bytes/s). Thereby, the achievable performance P is expressed by:

P = min(P peak , B m × AI), (40) 
where P peak denotes the processor's peak floating point performance, B m is the memory bandwidth, and AI is the arithmetic intensity which depends on the studied algorithm. The latter corresponds to the number of floating point operation per bytes that must be transferred between the processor and memory in order to execute on step of the algorithm. The values of P peak and B m for the considered CPU system are provided in Table 1. The effective memory bandwidth is measured using the STREAM copy benchmark [START_REF] Mccalpin | Memory bandwidth and machine balance in current high performance computers[END_REF] as well as with an adjusted benchmark mimicking the LB streaming step on a D3Q19 lattice: copy-19 which concurently copies 19 arrays [START_REF] Habich | A performance engineering process for developing high performance lattice Boltzmann implementations[END_REF].

In its classical formulation, the Roofline model is expressed in FLOPS. However, for the LB and finite-volume Navier-Stokes methods it is better to think about performance in terms of Cell Updates Per Second (CUPS). In order to perform this change of units, one has to determine γ FP which corresponds to the number of floating point operations required per cell update and B = 1/AI which expresses the number of bytes which are transferred from the main memory to the CPU for one cell update. The γ FP metric shows that, regardless of the collision models, the LBM performs less floating point operations per cell and time-step than the finite-volume NS method. Naturally, when implementing more robust collision model (such as the regularised ones), more operations have to be performed in comparison to the classic BGK model. However, on average, the LBM performs between two to five times less operations than the NS method on Cartesian grids. Regarding the B metric, while all the LB models have approximately the same memory traffic (the HRR collision model requires the storage of additional gradients), the topology of the grid used by the NS method strongly conditions the memory traffic. Table 3: Maximum achievable performance and measured performance for each numerical method according to the results of the Roofline model (see Figure 4). The relative performance w.r.t. the NS method on cartesian grids is also provided. MCUPS corresponds to Million Cell Updates Per Second.

First, from the theoretical results of Figure 4, it can be seen that both the Navier-Stokes and lattice Boltzmann algorithms are memory bound owing to the use of vectorisation techniques.

Regardless of the collision model, the LBM is expected to outperform the FV-NS method when only considering the CPU performance. It can be seen that the FV-NS method on Cartesian grids is expected to be about 2.3 to 3 times slower than the LBM. Note that this is only valid for the 3dcart version. Indeed, when considering the FV-NS method on a fully curvilinear grid (3dfull), the LBM is approximately 10 times faster which is the value commonly reported in the literature.

Before drawing more general conclusions, it is crucial to ensure that the implementation of the LB and NS methods employed in this study does not introduce any additional bias, i.e. that the methods are well optimised at the processor limits. To this end, the Roofline models are confronted to the present implementations in ONERA's FAST CFD environment by profiling the codes with the help of Intel's Advisor software. To this end, colored vertical dashed lines indicate the arithmetic intensity and thus the global performance measured by the software (also reported in are almost superimposed, it can be confirmed that the methods are optimised to the hardware's limit capabilities. Consequently, the LBM is shown to be about 2.3 to 2.8 times faster than a finite-volume Navier-Stokes method applied on Cartesian grids. In addition, the performance of each loop in the algorithms is provided in Figure 4 and depicted by circles. As one can observe in Figure 4, all the implemented loops are located on the rooflines meaning that the LB and NS 520 methods are optimised up to the hardware limit. This further confirms that any bias from improper implementation preventing the methods from being fairly compared with each other is removed.

The results of Figure 4 also confirm the fact that the LBM-BGK is completely memory bound since all the loops are on the copy-19 bandwidth limit. When it comes to the other LB models, one can see that once the streaming step is performed and all the buffer arrays initialised, the 525 remaining computations are bound by the peak FLOP performance roofline. Figure 4 (d) also highlights the effect of cache-blocking on the Navier-Stokes Cartesian solver. Indeed, the fluxes are computed in the following order: first in the k-direction (or z coordinate), then in the j-direction (or y respectively) and in the i-direction (corresponding to the x coordinate). The values being loaded into the cache for the fluxes computations in the k directions (the loop hits the bandwidth roofline) are reused by the other fluxes which, in turn, are bound by the peak floating point operations.

Parallel scaling

As already stated, only the performances on a single shared memory node are discussed here since it is relatively easy to obtain a good scalability on distributed memory architectures with the help of MPI asynchronous communications. Moreover, when it comes to non-uniform grids and explicit multi-rate time-stepping [START_REF] Jeanmasson | On some explicit local time stepping finite volume schemes for CFD[END_REF][START_REF] Schornbaum | Massively parallel algorithms for the lattice boltzmann method on nonuniform grids[END_REF], the issues related to load balancing between the nodes is essentially the same for the LB and NS methods.

Figure 5 shows the performance of the LB and NS methods on one single BDW node under strong scaling. To obtain this curve, computations of the three dimensional Taylor Green vortex on a grid consisting of 200 3 cells were performed. Such simulations are representative of the workload one would encounter at a node level for distributed memory clusters on large scale problems. Note that this test case will be further discussed in Section 5.3. The performance is then evaluated in MCUPS (Million Cell Updates Per Second) and is defined by:

P MCUPS = n substep × 200 3 t CPU × 10 6 , (41) 
where t CPU is the CPU time required by the solver to perform one iteration expressed in µs, and n substep corresponds to the number of sub-iteration per full time step (n substep = 3 for the explicit RK3 time-stepping scheme while n substep = 1 for all the LB models). In addition, in Figure 5, horizontal lines corresponding to the Roofline model predictions are plotted. It can be seen from Figure 5 that the full-node performance of the Navier-Stokes and lattice Boltzmann methods almost matches the results of the Roofline model. Indeed, the measured performances represent about 90% to 95% of the expected ones. For the Navier-Stokes method, the curves of Figure 5 highlight the substantial increase in performance achieved by implementing grid specific subroutines. The Cartesian version is naturally the fastest and is about 2.5 to 3 times faster than its full curvilinear counterpart. The 3dhomo implementation of the Navier-Stokes method is only 1.5 times slower than the cartesian version making it a good candidate for LES or DNS in reasonable CPU time. Moving to the lattice Boltzmann models, they all are more than twice as fast as the Navier-Stokes method. As indicated by the Roofline model, when the full node is used, both the LBM-BGK and LBM-RR achieve the same performance. This property is quite interesting knowing the fact that the LBM-RR is much more stable than the LBM-BGK. On the other hand, due to the introduction of non-local operations in the algorithm of the LBM-HRR, the performance is decreased with respect to the other collision models. Yet, the LBM-HRR is still about 2.25 times faster than the Navier-Stokes method on Cartesian grids. All these results are in perfect agreement with the tendencies outlined by the Roofline model (see Table 3). Note that the performance figures of the NS method are only given in the explicit case. When considering an implicit time-stepping scheme, the value of n substep depends on the number of iterations performed by the Newton approximation process. Therefore, implicit computations tend to be at least three times more expensive than the explicit ones.

In order to get more insight into the performance and scaling of each method, Figure 6 

t eff = t CPU × N threads n substep × 200 3 . ( 42 
)
The results of Figure 6 (a) indicate that the lattice Boltzmann models can iterate over 10 million cells per core when the node is fully loaded. In comparison, the Cartesian version of the Navier-Stokes method only performs one iteration over 3.3 million cells per core. One should keep in mind that in the explicit case 3 updates are performed within the Runge-Kutta algorithm indicating that 10 million cells can effectively be updated per core within the Navier-Stokes method but not one entire iteration as it is the case for lattice Boltzmann method.

Figure 6 (b) shows that a cell update by the lattice Boltzmann method is performed in approximately 0.1 µs. Moreover, as already highlighted, the LBM-HRR is a bit slower than the other LB models. Its extra cost is found to be about 30%. Besides, Figure 6 (b) further demonstrates the need to compare the LBM with a NS method on Cartesian grids when seeking for fair one-to-one comparisons since other formulations introduce a significant computational overhead. Consequently, in comparison to the Navier-Stokes method on Cartesian grids, the lattice Boltzmann method is about 2.2 to 3 times faster depending on the collision model. Now, with respect to the NS method on fully curvilinear grids, the lattice Boltzmann method is between 5 to 10 times faster. In terms of strong scaling, Figure 6 (a) suggests that the Navier-Stokes and lattice Boltzmann methods do not behave in the same way. Indeed, a huge drop in the performance per core is observed for the LB schemes when increasing the number of cores whereas the performance of the NS method seems to be less affected. Such disparity might be explained by the fact that the LB "Stream & Collide" algorithm is essentially memory driven and that increasing the number of cores does not lead in a significant increase in memory bandwidth. This might also explain why the LBM-RR and LBM-HRR show better scaling since they require more computations than the BGK collision model which in turn means a higher arithmetic intensity.

Numerical simulations

Having discussed the main differences between the lattice Boltzmann and Navier-Stokes methods from a theoretical and computational point of view, the aim of this section is to bridge all the results in order to answer the question raised in the introduction which, it should be recalled, is to determine which method is the most competitive, in terms of accuracy and computational cost, for unsteady aerodynamic and aeroacoustic applications. To this end, the LB and NS methods are now compared through numerical simulations, admittedly canonical, but still representative of industrial-like aeronautical Large Eddy simulation requirements in terms of simulation parameters.

In order to fairly assess the suitability of each method regarding both the accuracy and the computational cost, it is proposed to study the "time to solution" metric which corresponds to the time needed by each method to achieve a certain error target. The "time to solution" metric (denoted hereafter by T CPU ) is based on a variety of relevant factors and given by:

T CPU = T c 0 ∆x t eff N CFL , ( 43 
)
where T is the physical time intended to be simulated, c 0 is the speed of sound, ∆x is the grid spacing, t eff is the effective time introduced in Equation ( 42), and N is the number of grid points.

Although the CFL number is also required, it is only relevant for NS schemes.

Throughout this paper, the time to solution specific to the NS method is only given for the Cartesian case. One can easily transpose the conclusions to the curvilinear NS method by using the multiplicative factors given in Section 4. Moreover, all the simulations are performed on fully 3D computational domains using periodic boundary in all directions of space.

Plane monochromatic acoustic wave

The propagation of a downstream plane monochromatic acoustic wave is studied in order to assess the acoustic capabilities of the lattice Boltzmann and Navier-Stokes schemes introduced in Section 2. For this purpose, the initial flow field is given by [START_REF] Wissocq | Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods[END_REF]:

ρ(x, y)| t=0 = ρ + ρ , where ρ = ρ cos(k x x + k y y), u x (x, y)| t=0 = Mac s + ρ c s cos(θ k )/ρ, u y (x, y)| t=0 = ρ c s sin(θ k )/ρ, (44) 
where ρ and Ma denote the mean flow density and Mach number, respectively. The amplitude of the perturbation is set to = 10 -3 , which is sufficiently small to ensure linear acoustics. k x and k y correspond to the wavenumbers in the xand y-direction respectively, and

θ k = arctan(k y /k x )
is the propagation angle. The latter are defined as k i = 2π ∆xN ppw,i where N ppw,i is the number of points per wavelength in the i-direction. The speed of sound is given by c 0 = 343.2 m.s -1 .

In the following, the grid size ∆x is set to a constant value of 1 × 10 -2 m and the computational domain extends over one wavelength in the direction of propagation with five cells in the other directions. The simulations are run for 50,000 time-steps (where ∆t ≈ 1.68 × 10 -5 s owing to the acoustic scaling) so as to observe significant effects of dispersion and dissipation. Note that, for this study, the viscosity is set to ν = 1.5 × 10 -5 m 2 /s leading to τ -1/2 ≈ 10 -5 which is representative of air flows relevant to the aeronautical field. Consequently, the Reynolds number based on the the mean flow velocity is 10 5 . It can be shown that the density field at any given time t is given by:

ρ(x, y, t) = ρ + ρ exp [Im(ω)t] cos(k • x -Re(ω)t), ( 45 
)
where the theoretical real and imaginary parts of the angular frequency ω are given by Equation [START_REF] Laurent | DNS database of a transitional separation bubble on a flat plate and application to RANS modeling validation[END_REF]. The numerical dispersion and the numerical dissipation induced by each method are estimated by least-square fitting Equation ( 45) to the density time signal. Consequently, the study of the acoustic properties of both approaches is made through the dispersion and dissipation ratios:

E ω = Re(ω th ) Re(ω) and E ν = Im(ω th ) Im(ω) . ( 46 
)
Parametric study of the Navier-Stokes schemes. A short discussion regarding the tuning parameters of the Navier-Stokes schemes has to be made. Indeed, the latter offer a higher set of degrees of freedom than LBMs. For three fixed values of N ppw , the following set of parameters is studied: the numerical scheme chosen to discretise the convective fluxes; the time-stepping scheme (which can 635 be explicit or implicit); and the value of the CFL number. Figure 7 shows the results obtained in the case of a 1D plane monochromatic acoustic wave without mean flow (i.e. k y = 0 and Ma = 0.). It can be seen that, for all the combinations considered here, the numerical dispersion of finite-volume Navier-Stokes schemes is lower than their numerical dissipation. Moreover, and as expected, by increasing the number of points per wavelength, one approaches the theoretical behavior of acoustic waves. Regarding the CFL number, lowering its value tends to reduce the numerical dissipation of the schemes. Surprisingly, the number point per wavelength and the CFL number have a negligible influence on the dispersive capabilities of time-explicit schemes. Yet, despite its increased stability region, the implicit Gear time-stepping scheme is not suited for computational aeroacoustics (CAA) applications. Indeed, for typical CFL numbers encountered in industrial applications, using the implicit Gear time-stepping scheme leads to an important numerical dissipation and dispersion. This effect can be attributed to the decentered nature of the scheme. Figure 7 also evidences the low dissipation of the Sensor scheme in comparison to the AUSM while their dispersion curves are identical. This confirms the fact that the the binary function Φ only acts on the dissipative terms of the convective fluxes approximations. All in all, when considering CAA simulations the combination Sensor + explicit RK3 has to be favored since it offers a good tradeoff between dissipation and dispersion over a wide range of CFL numbers and points per wavelength.

Comparison. Figure 8 shows the dispersion and dissipation ratios as a function of the non-dimensional wavenumber k∆x = 2π/N ppw without mean flow. Since the values of E ω and E ν fall in the range [0, 1], it can be concluded that the LB and NS methods tend to introduce some over-dissipation as well as a time delay (or frequency shift). Such behavior is in accordance with the results of the linear stability analyses of Section 3. Regarding the dispersive properties of the LB schemes, they all have the same values of E ω , which also confirms the results of the LSA. However, up to 6 points per wavelength, the finite-volume Navier-Stokes scheme is slightly less dispersive than the LB ones. This result does not comply with Figure 2 where the dispersion error of LB schemes is expected to be less than the one made by second-order centered schemes. Yet, this discrepancy can be explained by the fact that both the AUSM and Sensor schemes are not completely equivalent to centered schemes thereby modifying their dispersion relations. When it comes to dissipation, the results of the linear stability analyses are retrieved. Indeed, all the LB schemes are far less dissipative than the finite-volume Navier-Stokes scheme. Consequently, even with more stable collision operators than the classical BGK model, the lattice Boltzmann method is especially suited for CAA simulations since it introduces very little numerical dissipation even at very low resolutions.

Figure 9 displays the minimal value of N ppw for the LB and NS schemes required to achieve a given tolerated dispersion or dissipation error level. For the sake of clarity, the exact minimal value of N ppw is reported on top of each bar. In terms of dispersion error, when considering high error levels (i.e. 10% or 1%), the minimal value of N ppw is exactly the same for both the LB and NS schemes. However, with stricter requirements, the explicit Navier-Stokes Sensor scheme requires only 70% to 50% of the points needed by lattice Boltzmann schemes. When it comes to the minimal value of N ppw required to achieve a given tolerated dissipation error level, Figure 9 Time to solution. From Equation [START_REF] Dellar | Bulk and shear viscosities in lattice Boltzmann equations[END_REF], one can see that the value of T CPU directly depends on the ratio between the number of points per wavelength and the CFL number. In the case of Navier-Stokes schemes, where the CFL number is a free parameter, the Nppw CFL ratio has to be taken as small as possible so as to minimise the total CPU time. According to the results of Figure 7, it can be shown that this ratio varies only by 10% around its value when CFL N S = CFL LBM = 1/ √ 3. For this reason, the results are given with at CFL N S = 1/ √ 3 associated by a 10% margin to account for this slight variability. Figure 10 shows the time to solution for each method considered here when propagating the acoustic wave for 100 periods. To ease the comparison, the ratios of Navier-Stokes time to solution over the LBM ones are reported next to the bars with their corresponding color. In terms of dispersion, regardless of the collision model, all the LB schemes are 2 times faster than the Navier-Stokes sensor scheme for error targets ranging from 10% to 0.1% even when taking into account the uncertainty margins. However, if one wants to keep the dispersion error below 0.01%, then all the methods seem to require the same computational time. This bar plot clearly shows that the information of the number of points per wavelength alone is not sufficient to determine whether one method is better than another. Indeed, from Figure 9 one would think that the LBM is at a disadvantage when it comes to dispersion. Moving to the dissipation results, here the advantage is clearly to the lattice Boltzmann method since if offers speedups between 15 and 30 over the whole range of error levels considered. These results correspond to a 1D planar wave, therefore, the speedup is actually between to 2 to 3 times higher for full 3D computations. This demonstrates that the LBM contains intrinsic and serious acoustic capabilities thereby enabling the method to propagate acoustic fluctuations over long distances at very low computational cost.

Convected vortex

The convected vortex problem is ideal for comparing the lattice Boltzmann and Navier-Stokes approaches since they should be able to propagate the vortex without distorsion for an indefinite amount of time. In addition, being capable of sustaining vortical flow structures with minimal numerical dissipation is crucial for industrial LES.

Most of the time, an isentropic formulation of the vortex is adopted. However, as discussed in dedicated publications [START_REF] Gendre | Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach[END_REF][START_REF] Wissocq | Consistent vortex initialization for the athermal lattice Boltzmann method[END_REF], the latter hypothesis is not consistent with the athermal approximation of standard LBMs since no energy conservation equation is solved. To alleviate this issue, a more suited "barotropic" version of the widely used Taylor vortex derived in [START_REF] Wissocq | Consistent vortex initialization for the athermal lattice Boltzmann method[END_REF] is chosen. It reads:

                 ρ(x, y)| t=0 = ρ exp - 2 2c 2 s exp -r 2 R 2 c , u x (x, y)| t=0 = Mac s - y -y c R c exp - (x -x c ) 2 + (y -y c ) 2 2R 2 c , u y (x, y)| t=0 = x -x c R c exp - (x -x c ) 2 + (y -y c ) 2 2R 2 c , (47) 
where ρ = 1.1765 kg.m -3 is the free-stream density, Ma = 0.1 is the advection Mach number, = 0.07c 0 is the vortex strength, and R c = 0.1 m is the characteristic radius of the vortex. The center of the vortex is initially positioned at (x c , y c ) = (0.5, 0.5).

For this test case, the computational domain has a size of given by Re = Mac s L/ν = 2 × 10 6 . Thereby, viscous effects are expected to be negligible and the intrinsic numerical dissipation of each methods can be compared.

Analysis of the numerical dissipation. The convected vortex test case can be seen as the advection of a vorticity spot. Therefore, in the light of the modal analysis of the exact Navier-Stokes equations, the decay of the vorticity field is expected to be proportional to e -νk 2 t . The numerical dissipation rate G is estimated by averaging the norm of the vorticity field over 2 advection cycles and by computing the ratio between the 2 last and the 2 first cycles:

G = 5t 3t ||ω z (t)||dt 2t 0 ||ω z (t)||dt 1/4t . ( 48 
)
Figure 11 displays the evolution of the vorticity norm dissipation as a function of the vortex resolution N vortex . In addition, to ease the comparison between the numerical solutions and the theoretical dissipation rate, a reference curve is added in Figure 11.

From a general point of view, when refining the mesh, all the numerical schemes tend to recover the theoretical dissipative behavior. If one focuses on the Navier-Stokes method, one main difference between the AUSM and Sensor scheme can be highlighted. Indeed, regardless of the time-stepping scheme, the dissipation curves of the AUSM scheme are almost superimposed thereby indicating that the numerical dissipation is governed by the space discretisation error. Conversely, the behavior of the Sensor scheme highly depends on the time-stepping scheme thereby showing that the dissipation error is dominated by the latter. Regarding the lattice Boltzmann models, their numerical dissipation is slightly greater than the one of the Sensor scheme with explicit time-stepping scheme for N vortex > 6. Moreover, as indicated by the linear stability analyses, switching to regularised collision models further increases the numerical dissipation especially at low resolutions. Yet, the numerical dissipation of the LB schemes is still less important than the one of the AUSM scheme.

Therefore, when omitting well-designed schemes such as the Sensor scheme, the lattice Boltzmann method is a very good candidate for vortex advection. Now, the Sensor scheme, which was especially designed to achieve very little numerical dissipation, seems to outperform the LBM over a broad range of vortex resolutions. However, for typical LES-like resolutions (6 ≤ N vortex ≤ 12) the advantage between both approaches is not clear and needs to be further studied.

Quality of the solution. Figure 12 compares the vortex shapes after 5 advection cycles. As one can see, for highly resolved cases (N vortex = 50), all the numerical schemes converge to the same solution and match the analytical profile. When decreasing the vortex resolution, spurious dispersive and dissipative effects are evidenced. On the whole, the trends of Figure 11 are recovered here. For LES-like resolutions, i.e. for N vortex = 6 or N vortex = 12 a strong deformation of the vortex is observed thereby confirming the anisotropy of the schemes for coarse grids already pointed out by the LSA. As in the case of the acoustic wave, the numerical dissipation is the most critical flaw in the numerical schemes studied. When N vortex = 6, the lattice Boltzmann solvers tend to preserve in a better way the vorticity peak at the center of the vortex. The oscillations observed in the BGK vorticity profile indicate the onset of an instability that causes the calculation to diverge if it is continued. The regularised collision models however help to stabilise the computation. For N vortex ≥ 12, the NS explicit Sensor scheme has a very good behavior which converges rapidly towards the analytical solution. Therefore, the convergence of the schemes is now discussed. Convergence. The convergence of both approaches is discussed through the analysis of their L 2error norm on the velocity field (the exact same conclusion can be obtained when reasoning with the density field). Figure 13 displays the evolution of the L 2 -error norm as a function of the vortex resolution. Regarding the lattice Boltzmann schemes, all the curves are almost superimposed and follow a second-order slope which is in accordance with the spatial order of the scheme. On the other hand, the Navier-Stokes schemes seem to follow a third-order slope even though their are designed as being second-order schemes. This discrepancy can be explained by the fact that all the computations where performed on cartesian grids with a third-order MUSCL reconstruction thereby biasing the results. Notwithstanding this unexpected behavior, the conclusions of Figures greater the constraint, the greater the vortex resolution and therefore the longer the computational time. Compared to the monochromatic plane acoustic wave, no solver prevails over the whole range of error levels considered. Indeed, it is necessary to distinguish two cases. If large error levels are allowed (or equivalently if meshes consisting in less than 12 grid points by vortical structures are employed as it is commonly the case in LES), the lattice Boltzmann method is slightly faster than the NS Sensor scheme by a factor 2 or 3. However, when it comes to convergence down to several orders of magnitude, it is clear that Navier-Stokes methods implemented in ONERA's FastS solver are more appropriate. This tendency is quantified in Figure 14 by providing the ratio between the NS time to solution over the LB time to solution in black boxes. Thus, for L 2 (u) ≤ 0.1%, a solution 780 is obtained 3 times faster with the NS solver than with the LBM regardless of its collision model. It is essential to note that the conclusions drawn on this test case are not a general truth since the order of convergence of the LB and NS methods do not match. Indeed, a fully second-order NS scheme might be less suited to L 2 (u) error minimisation. Yet, this little discussion has the merit of underlining the fact that by taking advantage of the combinations of spatial and temporal schemes and MUSCL-type reconstructions in the framework of finite-volume Navier-Stokes schemes, one can tailor more efficient numerical schemes than those offered by the LBM.

Taylor Green Vortex

In order to compare the lattice Boltzmann and Navier-Stokes methods on a 3D turbulent configuration, the Taylor-Green vortex (TGV) is considered. It is a fundamental prototype flow for vortex stretching and production of small-scale eddies which therefore allows to study the dynamics of transition to turbulence. In the following, no subgrid scale models are used so as to assess the implicit LES capabilities of each method. This test case has been widely employed to evaluate numerical methods by both the lattice Boltzmann and Navier-Stokes communities [START_REF] Wang | High-order CFD methods: Current status and perspective[END_REF][START_REF] Nathen | On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows[END_REF][START_REF] Haussmann | Direct numerical simulation of decaying homogeneous isotropic turbulence -Numerical experiments on stability, consistency and accuracy of distinct lattice Boltzmann methods[END_REF].

The flow is solved in a fully periodic cube of size Ω = (2πL) 3 , where L is a reference length.

According to Brachet et al. [START_REF] Brachet | Small-scale structure of the taylor-green vortex[END_REF], the initial velocity and pressure fields are given by:

u x (x, y, z)| t=0 = U ∞ sin x L cos y L cos z L , u y (x, y, z)| t=0 = -U ∞ cos x L sin y L cos z L , u z (x, y, z)| t=0 = 0, p(x, y, z)| t=0 = p ∞ + ρ ∞ U 2 ∞ 16 cos 2z L + 2 cos 2x L + cos 2y L , (49) 
where U ∞ , p ∞ , and ρ ∞ denote the reference velocity, pressure, and density respectively. All these parameters are chosen such as to impose a Reynolds number Re = 1600 and a Mach number of 0.1.

Also note that for the LB computations, the initial distribution field is computed by calculating the velocity gradient [START_REF] Skordos | Initial and boundary conditions for the lattice Boltzmann method[END_REF].

Time dependent global quantities. As a first step to analyse the simulation results, time dependent global flow quantities are evaluated. These consist of the non-dimensional kinetic energy evolution, defined as:

E k (t) = 1 2|Ω|U 2 ∞ Ω ||u|| 2 dΩ, (50) 
and the non-dimensional enstrophy evolution :

E(t) = L 2 2|Ω|U 2 ∞ Ω ||ω|| 2 dΩ. (51) 
The enstrophy ( 51) is computed from the vorticity field ω for which a fourth-order reconstruction is used by both numerical methods for the sole purpose of post-processing. The temporal evolution of E k and E is expressed by means of the non-dimensional time scale defined by: t = L/U ∞ . The reference solution is the spectral solution from [START_REF] Wang | High-order CFD methods: Current status and perspective[END_REF]. Energy spectrum. The last quantity investigated for the comparison of the lattice Boltzmann and Navier-Stokes methods on the TGV is the turbulent energy spectrum which is defined as:

E(k, t) = 1 2 k | u(k, t)| 2 , ( 52 
)
where u is the complex Fourier transform of the velocity field, k the wavenumber vector, and 52) corresponds to the integration over shells of equal wave number. Due to the sampling theorem, only wave numbers up to k = 2/∆x in each directions are considered. In the following, the results will be compared to those of Foti and Duraisamy [START_REF] Foti | An investigation of an implicit large-eddy simulation framework for the vorticity transport equations[END_REF] at t = 10t .

k = |k| = k 2 x + k 2 y + k 2 z its norm. Equation (
Figure 17 shows the results for the LB and NS methods for the 64 3 , 128 3 , 256 3 , and 512 3 grids. From a general point of view, all the schemes tend to converge to the same turbulent kinetic energy spectrum as Foti and Duraisamy [START_REF] Foti | An investigation of an implicit large-eddy simulation framework for the vorticity transport equations[END_REF] even though they tend to slightly over-estimate the kinetic energy associated to very low wavenumbers. Such discrepancies with the reference solution can also originate from the digitisation process of the low-resolution figure in [START_REF] Foti | An investigation of an implicit large-eddy simulation framework for the vorticity transport equations[END_REF]. For all the schemes considered here, the energy cascade in the intertial range is well recovered. However, in the dissipation range, it can be seen that regularised LB models tend to over-dissipate when going toward the cutoff wavenumber. This confirms the previous observations indicating that regularised models are more dissipative than NS and LBM-BGK schemes in shear-driven flows. Despite its limited stability preventing it from being used in an industrial context, the LBM-BGK model shows better convergence than the Navier-Stokes computation. In Figure 18 (b), the time to solution for each scheme are compared with respect to different error levels on the enstrophy curve. Once again, for high error tolerances, the lattice Boltzmann method achieves competitive runtimes. However, in the present case, due to hyperviscous effects, the HRR collision model is quickly overtaken by the performances of the Navier-Stokes method.

Surprisingly, for an error target of 0.1%, the Navier-Stokes computation is about two time faster than all the LB models. This might be explained by the huge error drop depicted in Figure 16.

Conclusion

In this paper, a comprehensive comparison between the lattice Boltzmann and Navier-Stokes methods is performed in order to provide rigorous decision support on the suitability of one particular CFD method over the other for canonical aerodynamic and aeroacoustic applications. While most of the existing approaches are subject to bias and therefore of very limited practical relevance when it comes to assess the core capabilities of the LB and NS methods, an interest of the present contribution is to thoroughly discuss each aspect of the numerical methods by taking great case so as to avoid all possible sources of bias. This lead to the following conclusions:

• The low dissipation of the LBM with respect to conventional Navier-Stokes schemes has to be nuanced especially when considering advanced LB collision models of practical relevance such as the regularised ones. While both the linear stability analyses and numerical simulations indicate that the LBM has serious acoustic capabilities, regularised collision models exhibit a higher numerical dissipation on shear modes than standard NS schemes.

• While in the NS community schemes are generally studied and optimised for one-dimensional problems, their anisotropic dissipative behavior when both the space and time discretisations are simultaneously performed is highlighted and discussed.

• When optimised to the limits of the considered CPU architecture, a cell update using the lattice Boltzmann method is found to be 2 to 3 times faster than for the Navier-Stokes method on Cartesian grids. The speedup of 10 in favor of the LBM classically reported is recovered but only for the LBM-BGK when compared to NS methods on fully curvilinear grids. Moreover, it is shown that the intrinsic HPC capabilities of the LBM have to be tempered since, as NS methods, the core algorithm is memory bound and therefore an increased performance can only be achieved by increasing the memory bandwidth.

• Finally, it is shown that, in order to fairly compare the numerical methods in terms of accuracy and computational cost, a "time to solution" metric has to be considered. Through the computation of test cases representative of LES requirements for which an analytical solution is known and therefore for which the error levels for each methods can be precisely quantified, it is shown that the efficiency of one method with respect to the other is closely related to underlying physics and the chosen error threshold levels.

In the light of these conclusions, general decision aids can be provided to assist in selecting the most efficient method for a given application. For aeroacoustic computations, regardless of the collision model, the LBM is the most efficient method since it leads to speedups up to 30 (per direction) w.r.t. NS computations for an acoustic plane wave. In the case of shear-driven flows, the most appropriate method varies according to the fidelity to be achieved. For the Direct Numerical Simulations (DNS) of such flows, a finite-volume Navier-Stokes solver appears to be the best candidate to achieve highly accurate results with a reduced time in comparison to the LBM.

When it comes to Large Eddy Simulations (or Quasi-DNS) the LB and finite-volume NS methods seem slightly equivalent. However, for Very Large Eddy Simulation (VLES, where vortical structures are resolved by 4 to 6 mesh points), the lattice Boltzmann method is particularly efficient. This confirms the trend that, if the flow physics are not driven by the boundary layer (e.g. for massive separation induced by the geometry), the LBM-VLES is very interesting in terms of runtimes.

Even if this comparison has only been performed on CPUs, the main conclusions are very likely to be transposable to the GPU framework. Indeed, several recent studies of Navier-Stokes solvers running on GPUs [START_REF] Bernardini | STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows[END_REF][START_REF] Jude | An octree-based, cartesian navier-stokes solver for modern cluster architectures[END_REF] indicate a similar performance increase than the one observed for the lattice Boltzmann method in [START_REF] Latt | Cross-platform programming model for many-core lattice boltzmann simulations[END_REF]. Therefore, one could expect an acceleration of the same order of magnitude for both the NS and LB methods. Further investigations of the performance of these two methods on GPU by porting ONERA's research codes on such architectures may be the purpose of future work. Also, a comprehensive comparison of the numerical treatment of walls within the context of lattice Boltzmann and finite-volume Navier-Stokes methods is planned for future work and will be the subject of a dedicated study. In addition, while the issue of stability has received very little attention in the present work, the ability of numerical schemes to stay stable is fundamental for real-world CFD applications especially if boundary conditions and mesh refinements are considered. The present methodology can therefore be used as a basis for further research aiming to compare the lattice Boltzmann and Navier-Stokes methods.

  An important point when focusing on acoustics is the physical speed of sound simulated by the LBM denoted hereafter by c LBM 0 . Indeed, the athermal sound speed c ath 0 = √ RT 0 imposed by the D3Q19 lattice does not correspond to the expected one c 0 = √ γRT 0 where γ is the heat capacity ratio. However, in practice, one can enforce c LBM 0 = c 0 by computing the time-step following the acoustic scaling. The physical values of the speed of sound c LBM 0 and the viscosity ν are then given by:
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 2 Figure 2 displays the dispersion and dissipation errors of the lattice Boltzmann and Navier-Stokes schemes for plane monochromatic waves such as k y = 0 superimposed to a horizontal mean flow at Ma = 0.2. The dispersion curves indicate that switching from the BGK to regularised collision models has very little influence on the dispersive properties of the lattice Boltzmann method. Compared to centered NS schemes, the LBM dispersion error is between a second-order
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 2 are now completed by exploring the whole spectral space (i.e. for k x ∈ [-π, π] and k y ∈ [0, π]). Indeed, shear and acoustic fluctuations are very seldom aligned with the main axes of the mesh and numerical schemes are prone to anisotropic numerical properties. Therefore, planar plots of the dissipation errors are provided
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 2 Figure 2: Dispersion (left), and dissipation (right) of the lattice Boltzmann and Navier-Stokes schemes for Ma = 0.2 and ν = 10 -5 .

Figure 3 :

 3 Figure 3: Spectral maps of the dissipation error of the lattice Boltzmann and Navier-Stokes schemes for Ma = 0.2 and ν = 10 -5 . Top: shear mode; Middle: Acoustic+ mode; and Bottom: Acoustic-mode.

Figure 4

 4 Figure 4 displays the Roofline model's curves on a full BDW node for the LBM-BGK, LBM-RR3and LBM-HRR as well as for the Navier-Stokes method on Cartesian grids. In these curves, the floating point performance bound is represented by the dashed and solid horizontal lines for scalar and vectorised (AVX2) double precision operations respectively. Conversely, the linear solid and dotted lines corresponds to the memory bandwidth performance bound. The solid vertical lines indicate the arithmetic intensity of each solver and thereby allow to determine their theoretical maximum achievable performance by reading the y-intercept of its point of intersection with the black curve. The maximum achievable performances of the methods are also reported in Table3.

Figure 4 :

 4 Figure4: Roofline models of each of the numerical methods studied in this section for the BDW system expressed with the "cell update" metric. The vertical line on each plots indicates the corresponding arithmetic intensity and the maximum reachable performance is obtained by taking the intersection of this line with the Roofline model.

  provides a plot of the performance per core (Figure (a)) as well as the effective time (Figure (b)) as functions of the number of cores. The effective time, expressed in µs, corresponds to the time required by the corresponding algorithm to perform one iteration on one cell of the mesh:

Figure 6 :

 6 Figure 6: Performance comparison of the solver in terms of MCUPS per core and effective time.

Figure 7 :

 7 Figure 7: Dispersive (dashed lines) and dissipative (solid lines) behavior of the finite-volume Navier-Stokes schemes for different CFL numbers and points per wavelength.

Figure 8 :

 8 Figure 8: Comparison of the dispersive and dissipative behavior of the lattice Boltzmann (solid lines) and finitevolume Navier-Stokes (dashed lines) schemes for 1D plane monochromatic acoustic wave without mean flow (i.e. ky = 0 and Ma = 0.).

  clearly highlights the dissipation gap in favor of lattice Boltzmann schemes. Indeed, regardless of the error level and the chosen collision model, LB schemes require about 3 to 4 times less points per wavelength than the explicit finite-volume Navier-Stokes scheme.

Figure 9 :

 9 Figure 9: Minimal value of Nppw for the LB and NS schemes required to achieve a given tolerated dispersion or dissipation error level on the acoustic mode.

Figure 10 :

 10 Figure 10: Time to solution for the plane monochromatic acoustic wave.

  [L, L, 10∆x], with L being the reference length equal to 1 m. The uniform grid size is set to ∆x = L/N where N is the grid resolution. The simulations are performed for a range of grid resolutions such as N vortex ∈ {6; 12; 25; 50; 100; 200} where N vortex is the number of grid points within the vortical structure leading to ∆x ∈ [0.0025 -0.08] m and ∆t ∈ [10 -6 -10 -4 ] s. The computations are run over 5 advection cycles defined by the normalised time 5t where t = tMac s /L. The viscosity is set to ν = 1.5×10 -5 m 2 /s (corresponding to τ -1/2 = [10 -5 -10 -7 ]) such as to mimic a vortex convection in air. The Reynolds number is

Figure 11 :

 11 Figure 11: Numerical dissipation of the norm, with respect to the numerical wavenumber. The dashed line represents the theoretical dissipation rate of the vorticity mode.

Figure 12 :

 12 Figure 12: Comparison of the vortex shapes in terms of vorticity after 5 advection cycles. (a) Vorticity isocontours. 30 levels are displayed ranging from -1 (red) to 1 (grey). (b) Vorticity profiles for y = 0. ( ) : Reference solution; and ( ) numerical solution after 5 advection cycles.

11 and 12 Figure 13 :

 1213 Figure 13: Convergence plot of the lattice Boltzmann (solid lines) and NS (dashed lines) schemes for the convected vortex test case. Two reference slopes are also represented.

Figure 14 :

 14 Figure 14: Time to solution for the convected vortex test case for different error levels.

Figure 15 :

 15 Figure 15: Time evolution of the kinetic energy (a) and enstrophy (b) for the 3D Taylor-Green Vortex at Re = 1600.

Figure 16 :

 16 Figure 16: Accuracy and convergence study for the 3D Taylor-Green vortex test case at Re = 1600. All the L 2 -norms are computed with respect to the spectral solution of [70].
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Figure 17 :

 17 Figure 17: Turbulent kinetic energy spectrum for the 3D Taylor-Green vortex test case benchmark at Re = 1600. The vertical dashed lines indicate the cut-off wavenumbers associated to the smallest resolved scales.

Figure 18 :

 18 Figure 18: Time to solution for the 3D Taylor Green vortex test case.

Table 1 :

 1 Specifications of the BDW system.

	Name		BDW		
	Processor		Intel Xeon	Name		BDW
			E5-2680v4	Processor		Intel Xeon
	micro-arch.		Broadwell			E5-2680v4
	frequency	[GHz] 2.4	Memory bandwidth	
	cores per sock.		14	B m copy	[GB/s]	117.0
	sockets		2	B m copy-19	[GB/s]	87.2
	L1 cache	[KB]	32	Peak FLOPS	
	L2 cache	[KB]	32	P peak scalar	[GFLOPS] 57.6
	L3 cache	[MB] 18	P peak vect.	[GFLOPS] 230.8
	ISA		AVX2	(b) Memory bandwidth and peak floating point per-
				formance for the BDW system.
	(a) Mains features of the BDW system.		

Throughout this paper, the performances are measured on ONERA's supercomputer featuring Intel Xeon E5-2680v4 Broadwell dual-socket CPU nodes (denoted by BDW in the following) with 14 physical cores per socket operating at a base frequency of 2.4GHz. Table

1

provides the main specifications of the CPU system used in the present work.

Table 2 :

 2 Table2provides the corresponding key figures for the lattice Boltzmann and the finite-volume Navier-Stokes methods. Comparison between the lattice Boltzmann and Navier-Stokes methods implemented in ONERA's Fast CFD environment in terms of memory and computational footprint. Note that only the case of an explicit time-stepping scheme for the NS solver is shown.

		lattice Boltzmann method	FV Navier-Stokes method
		BGK	RR	HRR	3dcart	3dhomo	3dfull
	2 sets of 19 distribution functions (f Storage Variables Double precision (8 bytes)	Double precision (8 bytes)
	Stencil						
	γ FP	204	325	490	1012	1295	1774
	B	456	456	520	1152	1430	2149

1 , f 2 , ..., f 19 ) 3 sets of primitive variables (ρ, u x , u y , u z , p)

Table 3 .

 3 

	Solver	LBM BGK LBM RR LBM HRR FV-NS 3dcart
	Achievable Performance [MCUPS]	285	283	234	101
	Measured Performance [MCUPS]	277	275	228	98
	Relative Performance	2.8	2.8	2.3	1.

Table 3 )

 3 

		4096	(a) LBM D3Q19 BGK					4096	(b) LBM D3Q19 RR		
	Attainable Performance [MCUPS]	16 64 256 1024				DP Scalar DP AVX Intel Advisor Arithm. Int. 1st LB loop other LB loops	Attainable Performance [MCUPS]	16 64 256 1024		DP Scalar DP AVX			Intel Advisor Arithm. Int. 1st LB loop other LB loops reg. LB loops
		4				copy BWidth		4					copy BWidth
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. As one can see, by comparing the theoretical and measured arithmetic intensities, which
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Figure 15 displays the temporal evolution of the kinetic energy and the enstrophy for three LBM computations (with BGK, RR3, and HRR collision models) and one explicit NS computation with the Sensor scheme. Indeed, the latter is especially designed such as to mitigate dissipative effect for turbulent flow computations. Different grid resolutions are investigated namely 64 3 , 128 3 , 256 3 , and 512 3 . This leads to ∆x ∈ [10 -6 -10 -5 ] and accordingly ∆t ∈ [10 -8 -10 -7 ]. In addition, the viscosity is set to ν = 1.5 × 10 -5 m 2 /s which corresponds to τ -1/2 ≈ 10 -3 . The results are compared to the spectral solution from [START_REF] Wang | High-order CFD methods: Current status and perspective[END_REF] for a resolution of 512 3 .

The first thing to notice from Figure 15 is that the computation carried out by the lattice Boltzmann method with BGK collision operator for the highly under-resolved case (i.e. on the 64 3 grid) is unstable. This justifies the fact that regularised schemes are preferred for industrial computations. Consequently, one should keep in mind that even if stability issues are not studied here, the ability of numerical schemes to stay stable is fundamental in CFD. Both the LBM and the finite-volume NS schemes converge towards the reference solution. In particular, the enstrophy peak is being captured at t = 9 for sufficiently resolved cases (i.e. when N ≥ 128 3 ). The temporal evolution of the enstrophy helps to discriminate between the numerical methods. As it has already been observed in the previous test cases, the LBM BGK method has very little numerical dissipation and therefore tends to better capture the enstrophy peak for N = 128 3 . On the other hand, more stable collision models also come with an increased numerical dissipation since this test case is mainly vorticity driven. When N = 512 3 , it can be shown that the grid size ∆x is almost equal to the Kolmogorov length [START_REF] Geier | Under-resolved and large eddy simulations of a decaying Taylor-Green vortex with the cumulant lattice Boltzmann method[END_REF]. Therefore, comparing both numerical methods for this particular grid resolution gives some insight into their quasi-DNS capabilities. As can be seen on Figure 15, all the numerical schemes reach the spectral solution with very little error.

Accuracy. Figure 16 shows the convergence of the L 2 -error norm on the temporal evolution of the kinetic energy and enstrophy for the LB and NS schemes. It can be seen that both methods converge towards the reference solution at second-order in space. Since the vorticity field is reconstructed at fourth-order, no bias is attributable to the post-processing and the direct numerical behavior of each method is shown. Moreover, the curves of Figure 16 confirm the tendencies of Figure 15. Indeed, while all the numerical schemes capture well the kinetic energy evolution with an error between 10 -4 and 10 -6 , the enstrophy evolution is much more discriminating in terms of accuracy. Yet, all the LB schemes reach the spectral solution with the same ranges of error than the finite-volume sensor scheme, except when N = 512 3 where the error of the sensor scheme drops to 10 -5 .