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Abstract

In an effort to determine which Computational Fluid Dynamics method offers the best trade-

off between accuracy and computational cost for aerodynamic and aeroacoustic applications, the

lattice Boltzmann and finite-volume Navier-Stokes methods are compared. Unlike previous studies,

the present framework enables a fair and unbiased comparison of the core capabilities of each

numerical approach and focuses on schemes of practical relevance. With the aim of providing a

comprehensive comparison of the methods, an extended von Neumann analysis is performed and

the High Performance Computing capacities of both methods are thoroughly discussed. In addition,

it is also shown through computations on canonical test cases that a “time to solution” metric has

to be considered in order to objectively assess the suitability of one particular numerical method.

Three main conclusions are drawn: (1) both the lattice Boltzmann and Navier-Stokes schemes

exhibit an anisotropic dissipative behavior, (2) a cell update using the lattice Boltzmann method

is 2 to 3 times faster than with the Navier-Stokes method dedicated to cartesian grids, and (3) the

use of the “time to solution” metric demonstrates that the relevance of one method over the other is

closely linked to the underlying physics and the intended error target. In the light of these results,

decision aids are provided to assist in selecting the most efficient method for a given application.

Keywords: lattice Boltzmann method, Navier-Stokes, finite-volume method, von Neumann

analysis, High Performance Computing, Comparison

1. Introduction

The ability to simulate aerodynamic flows using Computational Fluid Dynamics (CFD) has

progressed rapidly during the last decades owing to the growth of the computational power and

the increasing accuracy and robustness of CFD solvers [1]. While Reynolds Averaged Navier-

Stokes (RANS) simulations are the current workhorse of the aerospace industry, the understanding5

of unsteady turbulent phenomena is becoming a crucial issue. As such, the use of high-fidelity
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methods, such as Large Eddy Simulations (LES) is getting increasingly compulsory. Hence, the

development of efficient and accurate flow solvers that can produce LES-level results in reasonable

amount of computational time is a major and active field of research.

Among all the available numerical methods, the direct discretisation of the Navier-Stokes (NS)10

equations through the finite-volume method (hereafter referred to as Navier-Stokes methods) is the

most common approach in the CFD community since it offers a good trade-off between flexibility

and robustness. However, in the last two decades, the lattice Boltzmann method (LBM) has

become increasingly popular thanks to its simplicity of use and its efficiency [2, 3]. In this context,

Löhner [4] suggests that these two different numerical approaches might be the first ones to achieve15

industrial-level LES in the near future. Consequently, one question which naturally arises is: Which

method is the most competitive, in terms of accuracy and computational cost, on canonical unsteady

aerodynamic and aeroacoustic applications?

While the comparison between the Navier-Stokes and lattice Boltzmann methods has received a

growing attention in the recent years, it is still unclear how to answer the question raised above. In-20

deed, the comparison between numerical methods is not as straightforward since several parameters

might drastically influence their accuracy and performance and thereby have to be controlled [5]. As

such, most of the comparative studies available to date are either too theoretical or too specific (by

focusing on a single industrial configuration) which makes it difficult to assess the relative merits of

the LBM when compared to the Navier-Stokes methods and conversely. From a purely theoretical25

point of view, Marié et al. [3] were the first to compare the intrinsic capabilities of both approaches

through a von Neumann analysis. In particular, they demonstrate the low dissipative property

and the low computational intensity of the LBM. Nevertheless, their results are only valid for the

LBM-BGK model which has a severely limited range of applications because of its poor stability

[6]. While the stability of the LBM has been greatly enhanced by the introduction of advanced col-30

lision models, a comprehensive study assessing their numerical properties with respect to classical

NS schemes is still lacking. Considering only runtimes, most of the published results introduce a

skew in their conclusions. Indeed, in many cases the LB and NS methods are implemented within

independent solvers with different standards in terms of High Performance Computing (HPC) opti-

misation and are thereby not really competing. Consequently, there are many covert ways in which35

some performance demonstrations fall short of practical interest. However, it is worth mentioning

the study of Wichmann et al. [7] which appears to be the first to pave the way towards a fair

runtime comparison between the LB and the finite-difference Navier-Stokes method. They show

that the LBM is particularly efficient for complex flow problems and coarse tolerances. Yet, their

conclusion, even though being valuable and based on a variety of tuning parameters, still lacks of40
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concrete relevance. Indeed, the two solvers used in their study (which are highly simplified and

unreflective of LES solvers) were developed by different teams and do not rely on the same HPC

core thereby biasing the outcome. Besides, comparative studies on industrial-level LES applica-

tions can also hardly be used to draw informed conclusions. In the literature, a large variety of

configurations were studied such as landing gears [8, 9, 10], automotive models [11], swirled flows45

typical of aeronautical combustion chambers [12], linear cascade configuration [13], and reactive

flows [14]. One the whole, these surveys are in favor of the LBM indicating speedups up to 10

with respect to Navier-Stokes solvers while providing accurate results. Albeit interesting, these

conclusions should be taken with caution as they do not compare competing approaches. Indeed,

most of these studies are based on comparisons among results obtained by different teams around50

the globe using different solvers and running options. For instance, it makes little sense to compare

the performance of structured and unstructured solvers or the accuracy of wall-modeled and wall-

resolved computations as each of these choices leads to major differences in throughput which are

expected to dramatically change the outcome of the aforementioned comparisons.

In this context, the aim of the present study is to perform a comprehensive and fair one-to-one55

comparison of the lattice Boltzmann and Navier-Stokes methods for aerodynamic and aeroacoustic

applications. To this end, schemes of practical relevance are investigated and great care is taken

such as to avoid all possible sources of bias when comparing both numerical methods. Moreover,

rather than targeting complex industrial-like configurations, the focus is made on low Mach number

canonical test cases representative of LES requirements for which an analytical solution is known60

and therefore for which the error levels can be precisely quantified. For all these reasons, only

the core capabilities of each method (i.e. their ability to propagate acoustic waves, wakes or to

simulate turbulent flows) are of interest here, which means that the present comparison does not

cover configurations involving walls. Indeed, such computations introduce numerous skews which

are found to be independent of the numerical methods, especially when discussing the way the wall65

is numerically handled since most of practical flows around obstacles require the use of wall models

whose error outweighs the one of the scheme in the near wall region [15, 16]. In addition, it is very

cumbersome to establish precise error metrics for such flows given the different levels of validation

of unsteady data issued from CFD (see the hierarchy proposed in [17]).

The contribution of the present study is threefold and covers all the aspects of the numerical70

methods by: (1) investigating their intrinsic dispersive and dissipative properties, (2) thoroughly

discussing their computational cost and parallel scalability, and (3) expressing their efficiency in

carrying out practical simulations through a “time to solution” metric. Thus, notwithstanding the

conscious choice not to deal with wall bounded flows, general and rigorous decision support on the
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suitability of one particular CFD method over the other are provided for canonical aeroacoustic75

and free shear flow problems commonly encountered in Large Eddy Simulations.

The paper is organised as follows. Section 2 is devoted to the presentation of the lattice Boltz-

mann and Navier-Stokes methods. Then, the theoretical dispersion and dissipation errors of both

methods are discussed in Section 3 through an extended von Neumann analysis. Section 4 com-

pares both methods in terms of their intrinsic HPC capabilities. Finally, the methods are further80

compared thanks to representative aerodynamic and aeroacoustic test cases in Section 5.

2. Numerical framework

The comparison between the lattice Boltzmann and Navier-Stokes methods is performed in

the framework of ONERA’s Cassiopée/FAST CFD environment [18, 19, 20]. This consists in a

set of efficient and interoperable CFD modules sharing the same code architecture, data structure85

and parallel processing functions. This framework is a perfect candidate for method-to-method

comparisons since it avoids the heterogeneities and the computational overhead of independent

CFD codes implementing one single numerical method and optimized with different standards.

2.1. Finite-volume Navier-Stokes method

The three-dimensional compressible Navier-Stokes (NS) equations are solved using ONERA’s90

FastS solver dedicated to multi-block structured grids. Starting from the conservative form of the

Navier-Stokes equations:
∂

∂t
U + ∇ · F(U)−∇ · Fν(U) = 0, (1)

where U = (ρ, ρux, ρuy, ρuz, ρE)t, F(U) and Fν(U) are the flow variable vector, the inviscid, and

the viscous fluxes, respectively. The cell-centered finite volume method is obtained by splitting the

computational domain Ω into N non-overlapping cells Ωijk. The integration of Equation (1) over95

every cell of the mesh leads to a semi-discrete form as:

d
dt

Uijk +
1

|Ωijk|
Rijk(U) = 0, (2)

where Uijk is now the mean flow variable vector evaluated at the center of Ωijk, |Ωijk| the volume

of Ωijk, and Rijk the residual of the discretised convective and viscous terms.

The convective fluxes are approximated by a second-order accurate spatial scheme proposed by

Mary & Sagaut [21] which relies on a modification of the AUSM+(P) scheme (Advection Upstream100

Splitting Method where “+(P)” denotes the addition of a modified pressure contribution to the

interface mass flux for low-speed flows, see Edwards & Liou [22]). The viscous fluxes are discretised

using a second-order accurate centered scheme. Two different time-stepping schemes are imple-

mented in FastS and discussed hereafter: an explicit 3rd-order accurate low-storage Runge-Kutta
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scheme [23] and an implicit 2nd-order accurate backward scheme of Gear with local Newton sub-105

iterations [24]. In the latter case, the Jacobians are approximated following the procedure presented

in [25, 26] and the linear system is solved by the LU-SGS factorisation [25].

Modified AUSM scheme. Several modifications have been introduced to the standard AUSM+(P)

scheme of Edwards & Liou [22] to enhance its accuracy and lower its computational cost in the low

Mach number range. By discarding the shock-capturing part, the convective fluxes on a face l of110

Ωijk are expressed as:

Fl = Ul
UL + UR

2
− |Udis|

UL −UR

2
+ Pl, (3)

where L/R denotes the left and right third-order MUSCL (Monotone Upstream-centered Schemes

for Conservation Laws [27]) interpolated states. The pressure term Pl is given by (pL + pR)/2 ·
(0,n · ex,n · ey,n · ez, 0)t where n is the normal vector to the face l. Ul denotes the interface fluid

velocity and is defined as:115

Ul = n · uL + uR
2

− c2(pR − pL). (4)

Udis, which has the dimension of a velocity, characterises the numerical dissipation acting on the

velocity components through:

Udis = max(|Ul|, c1). (5)

Both c1 and c2 are constant parameters chosen as small as possible to minimize the numerical

dissipation. In [28], an optimal value of 0.04 has been determined. Without a loss in comprehension

or generality this upwind scheme will henceforth be referred to as AUSM.120

In order to further reduce the numerical dissipation of the AUSM scheme for LES-type com-

putations, a hybrid centered/decentered modification of the AUSM scheme was proposed in [21]

and extended by Laurent [29]. It relies on a binary sensor function Φl, which only depends on

the smoothness of the primitive variables ψ = (ρ, ux, uy, uz, p)
t, acting on the dissipative terms in

Equation (3):125

Fl = Ul
UL + UR

2
− |Udis| × Φl ×

UL −UR

2
+ Pl, (6)

where the dissipative term appearing in the definition of Ul becomes:

Ul = n · uL + uR
2

− c2(pR − pL)× Φl. (7)

If no spurious oscillations are detected on ψ in the vicinity of cell Ωijk, then Φl = 0 and the

convective flux of Equation (6) degenerates to a fully centered approximation. The latter scheme

will be denoted as “Sensor” in the following.
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The FastS solver has been extensively used and validated for both academic and industrial130

unsteady flow simulations such as transitional separation bubble [30], airfoils in near-stall configu-

rations [21, 31] and laminar transonic buffet [32].

2.2. Lattice Boltzmann method

The lattice Boltzmann method [2, 33] does not directly rely on the resolution of the Navier-

Stokes equations. In fact, it originates from a very specific discretisation of the Boltzmann equation135

describing the evolution of gases in terms of distribution functions fi(x, t) which represent the

probability density of finding fictitious particles at a location x and time t being advected at a

given discrete velocity ξi. In the absence of a body-force term, the discrete velocity Boltzmann

equation (DVBE) is given by:

∂

∂t
fi(x, t) + ξi ·

∂

∂x
fi(x, t) = Ωi(x, t) i ∈ J1 ; qK, (8)

where q is the number of discrete velocities. The right-hand side term Ωi(x, t) models the time140

evolution of the distribution functions due to collisions between particles. The latter can be ap-

proximated through the BGK collision operator [34] which describes the average collisions effect by

a relaxation process towards a local equilibrium feqi with a single relaxation time τ :

Ωi(x, t) = −1

τ

(
fi(x, t)− feqi (x, t)

)
. (9)

The macroscopic quantities of interest such as the density ρ and the velocity field u are computed

from the set of discrete distribution functions by taking their first two statistical moments:145

ρ(x, t) =

q∑
i=1

fi(x, t) and ρu(x, t) =

q∑
i=1

ξifi(x, t). (10)

The number, norm and orientation of the discrete velocities {ξi}i∈J1;qK must follow particular

rules that depend on the macroscopic behavior of interest. It can be shown through a Chapman-

Enskog expansion [35] that the underlying physics at a macroscopic level are linked to the statistical

moments of the equilibrium distribution functions feqi defined as:

m(n)
eq =

q∑
i=1

ξni f
eq
i , (11)

where ξni is the n-rank tensor built by n tensor products of ξi. Therefore, in order to retrieve150

the Navier-Stokes dynamics, the set of discrete velocities {ξi}i∈J1;qK has to ensure the equality

between the discrete moments of the discrete equilibria {feqi }i∈J1;qK defined by Equation (11) and

the continuous ones, at least up to a given order N [36]:

q∑
i=1

ξni f
eq
i =

∫
ξnfeq for n ∈ J0 ; N − 1K, (12)
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where feq is the continuous Maxwell-Boltzmann distribution:

feq(x, ξ, t) =
ρ(x, t)

(2πRT )d/2
exp

(
−||ξ − u(x, t)||

2RT

)
. (13)

This is usually ensured thanks to a Gauss-Hermite quadrature associated with a Hermite poly-155

nomial expansion of the equilibrium distribution function [36]. The nodes of the corresponding

Gauss-Hermite quadrature then provide the discrete velocities as well as their associated weights.

Naturally, the higher the order of the quadrature (i.e. the more discrete velocities), the more

faithfully the physics of the Navier-Stokes equations will be reproduced.

The most common sets of discrete velocities {ξi}i∈J1;qK are often referred to as a DdQq lattices,160

where d is the spatial dimension and q the number of discrete velocities. Needless to say, the

choice of the velocity set is usually a compromise between efficiency and accuracy. To this end,

the most notorious lattices (D3Q19 and D3Q27) have an order of quadrature Q = 5. In this

case, some discrepancies with respect to the classical Navier-Stokes equations [36] arise. While

the mass conservation equation is recovered without any error, a O(Ma3) error appears is the165

momentum equation. In addition, the lack of discrete velocities leads to an incorrect evaluation of

the convective and diffusive parts of the energy equation. Therefore, an athermal assumption is

made by setting T = T0 where T0 is a constant reference temperature and the equation of state

reduces to p = ρ(cath0 )2 where cath0 =
√
RT0 is the athermal speed of sound. Consequently, the

lattice Boltzmann method is said to be restricted to isothermal and weakly compressible flows.170

For this study, and as it is usually the case for practical computations, the D3Q19 lattice

depicted in Figure 1 is considered in the following. This lattice is often preferred to the D3Q27

x

y

z

ξ2
ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

ξ12
ξ13

ξ14
ξ15

ξ16

ξ17

ξ18

ξ19

cs =
1√
3

D3Q19

i 1 J2; 7K J8; 19K
(±1, 0, 0) (±1,±1, 0)

ξi (0,0,0) (0,±1, 0) (±1, 0,±1)
(0, 0,±1) (0,±1,±1)

wi 1/3 1/18 1/36

Figure 1: D3Q19 velocity set. The cube, drawn in solid lines, has an edge length of 2∆x. For the sake of clarity, the

rest velocity ξ1 = 0 is not represented as it lies at the center of the cube. Each discrete velocity ξi is expressed in

its non-dimensional form. cs is the lattice constant and corresponds to the lattice speed of sound.

since it requires about 40% less memory and computing power. Yet, in the light of recent studies

[37, 38, 39, 40] it becomes clear that the D3Q27 velocity set has to be preferred when computing

high Reynolds number axisymmetric flows. However, for the flows studied in Section 5, the use of a175
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D3Q19 instead of a D3Q27 lattice is found to have very negligible effects on the numerical solution

and thereby on the conclusions of the present study.

The lattice Boltzmann scheme is obtained by discretising the space and time variables of the

DVBE (8). The left-hand side (LHS) linear convection term of Equation (8) is integrated along the

ξi characteristic ensuring an exact advection step and a direct link between the grid and time step180

through ∆x = |ξi|∆t. On the other hand, a trapezoidal integration rule (Crank-Nicolson scheme)

is employed for the right-hand side (RHS) collision term [41]. This strategy, leads to:

gi(x+ ξi∆t, t+ ∆t) = gi(x, t) + ∆tΩi(x, t), (14)

where {gi}i∈J1;qK are the modified distribution functions so as to ensure an explicit formulation

of the algorithm [42]. They are related to the original distribution functions fi(x, t) through the

relation gi(x, t) = fi(x, t)− ∆t
2 Ωi(x, t) which implies geqi (x, t) = feqi (x, t). In the case of the BGK185

collision model, the relaxation time also becomes τ = τ + ∆t
2 .

The lattice Boltzmann method is classically applied in a non-dimensional form. Therefore, the

time-step ∆t (resp. the grid-step ∆x) is chosen as the characteristic time (resp. characteristic

length) for the non-dimensionalization. This leads to the lattice Boltzmann scheme:

gi(x+ ξi, t+ 1) = gi(x, t) + Ωi(x, t), (15)

An important point when focusing on acoustics is the physical speed of sound simulated by the190

LBM denoted hereafter by cLBM0 . Indeed, the athermal sound speed cath0 =
√
RT0 imposed by the

D3Q19 lattice does not correspond to the expected one c0 =
√
γRT0 where γ is the heat capacity

ratio. However, in practice, one can enforce cLBM0 = c0 by computing the time-step following the

acoustic scaling. The physical values of the speed of sound cLBM0 and the viscosity ν are then given

by:195

cLBM0 = c0 =
cs∆x

∆t
and ν = (cLBM0 )2

(
τ − 1

2

)
, (16)

where cs = 1/
√

3 is the D3Q19 lattice constant. The acoustic scaling is equivalent to setting the

LBM fictitious temperature to γT0 where γ is the heat capacity ratio of the fluid to be simulated.

Based on these parameters, the LBM recovers the athermal and weakly-compressible Navier-

Stokes dynamics with a second-order accuracy in both space and time [41].

The lattice Boltzmann method with the BGK collision model is known to suffer from stability200

issues especially at high Reynolds number [6] preventing it from being used in practical computa-

tions. These issues have been attributed to interactions between so called “ghost-modes" arising

from the space and time discretisation of Equation (8) [43, 44]. To alleviate the lack of stability,
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numerous advanced collision models have been proposed for the LBM in the recent years by increas-

ing the number of free parameters (or relaxation rates) in the model [6, 40, 45]. In this context,205

the cumulant model introduced by Geier et al. [40] is noteworthy owing to its ability to resolve

acoustics and turbulent flows [46, 47] with very little additional numerical dissipation w.r.t. the

BGK model while remaining stable. For this reason, and for the sake of generality of the proposed

study, the BGK model will still be studied in the following despite its low stability since all the new

proposed collision models seek to approximate its low numerical dissipation while ensuring stability.210

Thus, the conclusions of this study obtained for the BGK model represent, by omitting for a while

the question of stability, the optimal performance one can expect of the LBM.

In addition to the BGK model, regularised collision kernels [48, 49] are also considered hereafter.

This choice is motivated by the fact that their implementation only requires very slight modifications

with regard to the simple BGK collision operator. Moreover, regularised kernels drastically reduce215

the number of possible free parameters in the model which greatly favors their adoption on an

industrial scale [9, 50] by simplifying user’s intervention. The next two section are therefore devoted

to the introduction of regularised collision models.

2.2.1. Recursive regularised collision model

The regularised collision models are based on the fact that a Chapman-Enskog expansion up to220

the first order in Knudsen number is sufficient to recover the Navier-Stokes behavior at a macroscopic

level. Hence, before each collision step, the distribution functions are reconstructed as:

gregi = geqi + g
(1),reg
i , (17)

where geqi = feqi is the equilibrium distribution function and g(1),reg
i the regularised contribution.

On the basis of the BGK collision model, the collision step can be rewritten as:

Ωi = geqi +

(
1− 1

τ

)
g

(1),reg
i . (18)

The first-order contribution g
(1),reg
i is expanded on the basis of Hermite polynomials as it is the225

case for the equilibrium distribution function. Consequently, one has:

g
(1),reg
i = wi

Nr∑
n=2

1

c2n
s n!

a
(n)
1 : H(n)

i , (19)

where a(n)
1 is the nth-order off-equilibrium Hermite coefficient. For n = 2, the coefficient is com-

puted by projecting the off-equilibrium distribution functions on the basis second-order tensor H(2)
i :

a
(2)
1 =

q∑
i=1

H(2)
i (gi − geqi ) . (20)

9



Malaspinas [48] proposed a technique to reconstruct as many off-equilibrium Hermite coefficients

a
(n)
1 as possible, or at least up to a given order Nr. Thanks to a Chapman-Enskog expansion and230

some algebra, a recursive relation between the off-equilibrium coefficients is determined:

a
(n)
1,α1...αn

= uαna
(n−1)
1,α1...αn−1

+
n−1∑
i=1

uα1 ...uαn−2a
(2)
1,αiαn

for n ≥ 3. (21)

The recursive relation is initialised by Equation (20). In the following, this model will be referred

to as the recursive regularised collision model at order Nr (RRNr) where Nr = 3.

2.2.2. Hybrid recursive regularised collision model

The Hybrid Recursive Regularised (HRR) collision operator [49] has been proposed to further235

enhance the stability of the RR model. The very essence of the HRR collision operator lies in the

way the second-order off-equilibrium coefficient a(2)
1 is computed [49]. In the HRR framework, this

tensor is hybridised. It is decomposed into a linear combination of a projected part (see Equation

(20)) and a finite difference part (FD). Indeed, the Chapman-Enskog expansion links the first-order

off-equilibrium distribution to the deviatoric stress tensor S = 1
2

(
∇u+ (∇u)T

)
. Thereby, the240

off-equilibrium coefficient a(2)
1 is given by:

a
(2)
1 = σ

[
q∑
i=1

H(2)
i

(
gi − geqi +

ψi
2

)]
+ (1− σ)

[
−ρτc2

s

(
∇u+ (∇u)T

)]
, (22)

where 0 ≤ σ ≤ 1 is a user-tuned parameter to control the amount of hyper-viscosity added to

the model [49]. ψi is a corrective term required to recover a Galilean invariant shear stress tensor

and also to stabilise the HRR collision operator [51, 52]. The spatial derivatives of the velocity

field in Equation (22) are evaluated with second-order centered finite differences. The higher-order245

off-equilibrium coefficients are then computed recursively using Malaspinas’ formula (21).

3. Linear Stability Analyses (LSA)

In this section, it is proposed to extend the spectral analysis of the lattice Boltzmann and

Navier-Stokes schemes of Marié et al. [3] by considering regularised lattice Boltzmann models and

by investigating the isotropy properties of both the Navier-Stokes and lattice Boltzmann schemes.250

This constitutes a first step towards a fair comparison between the LB and NS methods. For the

sake of simplicity, the von Neumann analysis is performed in only two dimensions of space.

3.1. General methodology and exact plane wave solutions

Starting from a set of non-linear differential equations written in the form of a dynamical system:

∂q

∂t
= L(q), (23)
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where q is the state vector and L is the non-linear differential operator, the state vector is perturbed255

around a base state q as:

q = q + q′. (24)

By construction, the base state is steady and homogeneous in all directions of space (i.e. ∂tq =

∂xiq = 0). In Equation (24), q′ denotes a small perturbation of q such that q′ � q. By substituting

Equation (24) into Equation (23) and keeping only first-order terms, one gets:

∂q′

∂t
= J q′, (25)

where J is the jacobian matrix of the non-linear differential operator L evaluated at q.260

A Fourier transform in space and time of the state vector is then performed, allowing the pertur-

bations to be studied as plane monochromatic waves:

q′ = q̂ exp (i (k · x− ωt)) , (26)

where i2 = −1, q̂ is the complex amplitude of the perturbations, k ∈ Rn with n ∈ J1; 3K is the wave
number, and ω ∈ C is the pulsation of the wave. Finally, injecting Equation (26) into Equation

(25), the spatial and temporal derivatives can be simplified as ∂t = −iω and ∂xi = iki. This leads265

to the general eigenvalue problem:

ωq̂ = J q̂. (27)

In the case of a discrete numerical scheme, where the temporal derivative is often approximated

through a difference scheme, Equation (27) then becomes:

e−iωq̂ = J̃ q̂. (28)

The eigenvalue problems of Equations (27) and (28) are then solved for each value of k. The

complex eigenvalues ω give access to the propagation speed Re(ω) and dissipation rate Im(ω) of270

each of the linear modes stemming from the set of equations defined by L.

Exact plane wave solutions. In order to assess the dispersive and dissipative properties of the

lattice Boltzmann and Navier-Stokes schemes, their spectral properties have to be compared with a

reference. To this end, the 2D linearised Navier-Stokes equations are solved for plane wave solutions.

By applying the general LSA methodology to these equations (see [3] for further details), one gets275

the following eigenvalue problem:

ωÛ′ = MNS,†Û′, (29)

where Û′ = (ρ′, ρu′x, ρu
′
y, p
′)t and MNS,† is the time-advance matrix. The solution of Equation

(29) gives the linear modes of the isothermal Navier–Stokes equations: two acoustic modes (one
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upstream ωAc+ and one downstream ωAc−), one shear mode ωsh in 2D (two in 3D), and one entropy

mode ωentr. Their general expressions are given by:280

ωAc± = k · u± ||k||c0 + i
(

2

3
ν +

1

2
ζ

)
||k||2,

ωsh = k · u+ iν||k||2,

ωentr = k · u.

(30)

It can be seen from Equation (30) that the shear wave propagates at the mean flow velocity u,

whereas the acoustic waves propagate at u ± c0. Moving to the dissipation rate, the attenua-

tion of the shear wave is directly controlled by the viscosity ν while for the acoustic waves, the

attenuation process is divided into two parts: dissipation induced through the viscosity ν, and

compression/dilation effects through the bulk viscosity ζ. Due to the isothermal hypothesis of the285

LBM, the entropy mode is reduced to a non-dissipative wave propagating with the shear mode and

is therefore currently ignored.

3.2. LSA of space and time discrete Navier-Stokes schemes

The combined effect of the space and time discretisations is studied here. This is necessary for

the comparison with lattice Boltzmann schemes in which the space and time discretizations cannot290

be distinguished. The methodology, introduced by Marié et al. [3], is briefly recalled here.

Space discretisation. For the sake of simplicity, only centered schemes are studied in the present

work. By definition, a 2N -order centered approximation of the spatial derivatives in direction i for

a given quantity q can be written as:

∂q

∂xi
=

1

∆xi

N∑
j=−N

ajq(x+ j∆xi) +O(∆x2N ), (31)

where aj = −a−j are the coefficients of the scheme and ∆xi is the mesh size in the i direction. In295

the following, three schemes are considered: a classic second-order one (denoted by “CenterO2”),

a fourth-order “dispersion relation preserving” scheme developed by Tam and Webb [53] (denoted

by “DRPTWO4”), and the optimized sixth-order Bogey scheme [54] (denoted by “FDo13”). By

applying the general von Neumann stability analysis, Equation (31) becomes:

∂q′

∂xi
=

 1

∆xi

N∑
j=−N

aj exp (i jk ·∆xi)


︸ ︷︷ ︸

Kscheme,xi

q̂ +O(∆x2N ), (32)

where the so-called equivalent wave-number Kscheme,xi has been introduced. Even though the300

“Sensor” scheme implemented in ONERA’s finite-volume Navier-Stokes solver isn’t strictly speaking
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a second-order centered scheme due to the MUSCL interpolations, it behaves like a centered scheme

in the absence of oscillations in the primitive variables. Thereby, centered schemes provide a lower-

band estimate of the dissipative behavior of this finite-volume scheme.

Time discretisation. As in [3], this study is restricted to explicit Runge-Kutta time-stepping schemes.305

This is motivated by the fact that most computations in Section 5 use an explicit third order Runge-

Kutta scheme. By definition, a p-step explicit Runge-Kutta (RK) method applied to Equation (23)

can be expressed as:

qn+1 = qn +

p∑
j=1

γj∆tLj(qn), (33)

where qn+1 and qn are the values of q at time (n+ 1)∆t and n∆t respectively. ∆t is the time-step

and Lj denotes the j-th composition of the function L. The coefficients γj are related to the specific310

Runge-Kutta scheme being used. In this paper, two Runge-Kutta schemes are studied: a third-oder

one denoted by RK3 and a sixth-order optimised one (RK6) proposed by Bogey and Bailly [54].

When applying the general LSA methodology to the space- and time-discrete Navier-Stokes

schemes, one gets the following general eigenvalue problem:

e−iωq̂ =

I +

p∑
j=1

γjCFLjΛj

 q̂ = MNSq̂, (34)

where I is the identity matrix and Λ is given by:315

Λ = −∆x

c0
[Kscheme,x1Mx1 +Kscheme,x2Mx2 ] . (35)

Note that Kscheme,x1 and Kscheme,x2 are also present in the definition of Mx1 and Mx2 since they

involve derivatives in their generic expressions (see [3]).

3.3. LSA of lattice Boltzmann schemes

The main variables of the lattice Boltzmann method are the distribution functions. Therefore,

the state vector q is now defined as:320

qf = (f1, f2, ..., fq−1, fq), (36)

where q is the number of discrete velocities. In order to distinguish the state vector of Equation (36)

with the one used in the NS formalism, the former is written with the letter f as a subscript. This

difference being noted, the general methodology introduced in Section 3.1 is applied in the same

way. After some algebra (see [55] for the details), the following eigenvalue problem is obtained:

e−iωq̂f = MLBq̂f , (37)
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where the time evolution matrix MLB depends on the collision operator. For the BGK, RRNr,325

and HRRψ collision models, its general expression is derived in [55, 56].

Equation (37) highlights one main difference between the LSA of NS and LB schemes. Indeed,

for the Navier-Stokes schemes, the eigenvalue problem leads to 4 eigenmodes in 2D. However, in

the lattice Boltzmann framewok, the eigenvalue problem is of size q meaning that q eigenmodes are

obtained. Owing to the fact that q > 4, the dynamics of the DVBE include more information than330

at the Navier-Stokes level.

Extended von Neumann analysis of LB schemes. In order to give a physical interpretation to the q

modes resulting from the von Neumann analysis in the lattice Boltzmann framework, an extended

von Neumann analysis methodology [44] is used. The latter relies on the study of the LB eigenvector

q̂f = (f̂1, f̂2, ..., f̂q−1, f̂q) and more particularly on its moments defined as:335

ρ̂ =

q∑
I=1

f̂i and ρ̂u =

q∑
I=1

ξif̂i. (38)

The resulting macroscopic vector V = [ρ̂, ρ̂u]T is then projected onto the Navier-Stokes one. This

analysis allows for a systematic identification of the modes carrying a macroscopic information

at more than a prescribed ratio η. In the results presented below, this parameter will be set to

η = 0.99. Such extended analysis has been extensively used in the recent years for a very large set

of problems [51, 55, 57, 56].340

In the following, three different collision models are studied, namely the BGK, RR3 and HRR

for which the value of σ is set to σ = 0.995 which is commonly used for industrial applications [57].

3.4. Comparison between the Navier-Stokes and lattice Boltzmann schemes

In order to compare the dispersive and dissipative properties of both the lattice Boltzmann and

Navier-Stokes schemes, a comparison metric has to be introduced. For this purpose, it is chosen to345

focus on the error committed on Re(ω) and Im(ω) as a function of the wavenumber [3]: ErrRe(k) = |Re(ωth)− Re(ω)|
ErrIm(k) = |Im(ωth)− Im(ω)|

, (39)

where ωth refers to the solutions of the exact linearised Navier-Stokes equations (30), and ω refers

to the solutions of the eigenvalue problems of Equations (34) and (37). The latter are solved

numerically thanks to an in-house Python code, using the NumPy and SimPy libraries [58, 59].

Since only the real part of the perturbations are of interest, and by virtue of Shannon’s theorem it350

is sufficient to restrict the problem to kx ∈ [−π, π] and ky ∈ [0, π] in 2D. The wavenumber space is

discretised with a uniform step ∆k = 0.01 determined by a convergence study.
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The values of ErrRe(k) and ErrIm(k) are computed for the same CFL number. Since the lattice

Boltzmann method operates at a fixed CFL number of 1/
√

3, the same value is chosen for the

Navier–Stokes schemes. Other CFL numbers have been tested without changing the conclusions.355

The viscosity is set to ν = 10−5 m2/s which is representative of aeronautical applications.

Figure 2 displays the dispersion and dissipation errors of the lattice Boltzmann and Navier-

Stokes schemes for plane monochromatic waves such as ky = 0 superimposed to a horizontal mean

flow at Ma = 0.2. The dispersion curves indicate that switching from the BGK to regularised

collision models has very little influence on the dispersive properties of the lattice Boltzmann360

method. Compared to centered NS schemes, the LBM dispersion error is between a second-order

and an optimized third-order space scheme with a 3-step Runge-Kutta time-stepping. This result

is quite interesting since the LBM is a second-order accurate method which has better spectral

properties than centered second-order NS schemes. When it comes to the dissipation error, it

can be seen that NS schemes have a higher dissipation on the acoustic modes than on the shear365

mode. Such observation is in accordance with previous results [3]. However, regardless of the

collision model, the trend is reversed for the LBM. Indeed, the dissipation error on the shear mode

is slightly higher than the one of the acoustic modes. Regarding the dissipation error curves,

the dissipation error of the LBM highly depends on the collision model which is employed as

well as the on the physical mode of interest. For instance, the LB regularised collision models370

are highly dissipative on the shear mode for which all the Navier-Stokes schemes tend to be less

dissipative. The only LB model which competes with the NS schemes is the LBM-BGK for which

the dissipation error is between an optimised third order and sixth-order Navier-Stokes centered

scheme. This behavior of the regularised collision kernels was recently discussed in [51] and linked

to a “hyperviscous degeneracy” phenomena. However, on acoustic modes, it can be seen that the375

BGK and RR collision models have the exact same low dissipation error when perturbations are

aligned with the x-axis. In comparison, one has to consider a sixth-order NS scheme in order to get

a lower dissipation error for low wavenumbers. Despite its higher dissipation, the HRR model is

still better than traditional NS schemes lying in between an optimised third-order and sixth-order

Navier-Stokes centered scheme. All in all, regularised collision kernels preserve the low dissipative380

capabilities of the lattice Boltzmann models on acoustic modes but exhibit an increased dissipation

on shear modes with respect to the classical – but unstable – BGK collision model.

The tendencies outlined in the analysis of Figure 2 are now completed by exploring the whole

spectral space (i.e. for kx ∈ [−π, π] and ky ∈ [0, π]). Indeed, shear and acoustic fluctuations

are very seldom aligned with the main axes of the mesh and numerical schemes are prone to385

anisotropic numerical properties. Therefore, planar plots of the dissipation errors are provided
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Figure 2: Dispersion (left), and dissipation (right) of the lattice Boltzmann and Navier–Stokes schemes for Ma = 0.2

and ν = 10−5.
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in Figure 3 for a horizontal mean flow at Ma = 0.2. Note that similar tendencies are obtained

by varying the angle of the mean flow. First of all, a rather anisotropic dissipative behavior is

observed for all the numerical schemes on a broad range of wavenumbers. One can however notice

that increasing the order of the spatial NS scheme tends to increase the isotropic region in the390

limit of kx, ky → 0. Inasmuch as centered schemes do not induce any numerical dissipation, the

anisotropy observed in the dissipation error can be attributed to the coupling between the spatial

and temporal discretisations. Regarding the lattice Boltzmann schemes, some grey regions are

exhibited indicating that no physical information was identified by the extended von Neumann

analysis (the η ≥ 0.99 condition is no more satisfied).395

From a general point of view, the main conclusion which can be drawn from Figure 3 is that the

spectral properties observed when considering a planar monochromatic wave with ky = 0 hold over

the whole wavenumber plane. The lattice Boltzmann method with BGK collision operator remains

the least dissipative method. However, one can see that, all the regularised LB models have a much

higher dissipation when the perturbation is no longer fully aligned with the main mesh directions400

especially on acoustics. All in all, when considering shear-driven flows, the Navier-Stokes schemes

seem to be better candidates to propagate such information over long distances and only the LBM-

BGK presents an advantage in comparison with regularised LB schemes. However, for acoustic

problems, even though regularised LBMs have a higher dissipation error w.r.t. the classical LBM-

BGK, they present a lower dissipation error than second and thrid-order Navier-Stokes schemes405

over the whole range of practical interest i.e. ||k|| ≤ π/2.

All in all, in this section, the study of Marié et al. [3] has been extended by taking into account

advanced LB collision models of practical relevance and several directions of propagation for the

perturbations. In addition, while in the NS community schemes are generally studied for one-

dimensional problems, the present study provides some insight into their anisotropic dissipative410

behavior when both the space and time discretisations have been simultaneously performed.

4. CPU Performance

It is not enough for a numerical method to have good dispersive and dissipative properties;

it must also take advantage of modern computing resources in the context of massively parallel

systems. Therefore, this section focuses on the intrinsic CPU performance of the lattice Boltzmann415

and Navier-Stokes methods. The aim of this section is to optimise each code to the limits of the

considered CPU architecture with the help of the Roofline performance model so as to avoid imple-

mentation bias. The algorithmic differences between the LB and NS methods are also discussed.
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Figure 3: Spectral maps of the dissipation error of the lattice Boltzmann and Navier–Stokes schemes for Ma = 0.2

and ν = 10−5. Top: shear mode; Middle: Acoustic+ mode; and Bottom: Acoustic- mode.
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4.1. Implementation details

Before diving into the evaluation of the performance of the LB and NS methods, some im-420

plementation details are provided to clarify how the optimisation is achieved within ONERA’s

Cassiopee/Fast CFD environment. At a node-level, an OpenMP parallelisation strategy is imple-

mented (see Alferez et al. [60]). Each thread computes its own local subset of indexes and the

workload is distributed among the cores of the node (one thread per core). Note that only the HPC

layer dedicated to shared memory nodes is discussed here. Indeed, it is relatively easy to obtain a425

good scalability at a cluster level with the help of MPI asynchronous communications.

Data layout. Both the Navier-Stokes and lattice Boltzmann equations are solved using a domain

decomposition technique in several structured blocks where ghost cells are used at the interfaces be-

tween them. The simulation domain is therefore represented by a multi-dimensional array featuring

a flag field for distinguishing between the computed cells centers and the not computed ones (e.g.430

ghost cells or obstacles). Consequently, all variables can be accessed by simple index arithmetic.

The choice has also been made to store the variables in a Structure of Array mode for vectorisation

purposes and to guarantee contiguous memory access in the NS and LBM schemes updates [60, 61].

By virtue of its dimensionless formulation, the LBM does not require any grid metrics to be

stored. However, when using finite-volume Navier-Stokes method, informations about each cell face435

normal and surface are needed for each topological direction of the mesh. Therefore, in an effort to

maximise its HPC efficiency, 3 different versions of the NS method are implemented within FastS in

order to take advantage of specific grid topologies: 3dcart for cartesian grids where all the metrics

are reduced to scalar values; 3dhomo for curvilinear meshes in the (x, y) plane and cartesian in the

z direction and 3dfull for fully curvilinear grids. The importance of distinguishing between these440

different implementations when comparing the performance of the LBM with the Navier-Stokes

method will be discussed in the following.

Factorisation of the compute kernels. For the structured Navier-Stokes method, the number of

functions has been reduced to 5 calls of subroutines [60] where the computation of fluxes balance is

responsible for approximately 80% of the overall computational time in the explicit case. Regarding445

the lattice Boltzmann method, a straightforward implementation would lead to separate functions,

namely the streaming and the collision steps. However, the number of data transfers can be reduced

by executing the collision and propagation step in the same loop [61]. Moreover, since three nested

loops over the three spatial dimensions are involved, an additional level of optimisation can be

introduced by splitting the innermost loop into smaller ones and by storing common subexpression450

into buffer arrays allocated for each thread [62].
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Vectorisation. Modern processors have few Single Instruction Multiple Data (SIMD) units per core

that can perform operations by group of 4 or 8 for the price of one in the innermost loop. In

order to ensure coalesced memory accesses, the threads are aligned along the x-axis while blocks

of threads are aligned in the (y, z) plane. Consequently, the internal loop is instrumented with a455

SIMD directive to help the compiler to generate an efficient assembly code.

Cache Blocking. The memory traffic can be further reduced by using a cache-blocking technique.

The main idea behind cache-blocking is to rearrange data access to pull subsets of data into cache

and to operate on this block to avoid having to repeatedly fetch data from main memory. This

optimisation technique is particularly useful for the Navier-Stokes schemes but does not play an460

important role when considering lattice Boltzmann models since no data reuse is present in the

classic “Stream & Collide algorithm”.

4.2. Roofline Performance model

The Roofline model [63] is introduced in an effort to derive an upper performance limit of each

method on the present hardware system. Throughout this paper, the performances are measured465

on ONERA’s supercomputer featuring Intel Xeon E5-2680v4 Broadwell dual-socket CPU nodes

(denoted by BDW in the following) with 14 physical cores per socket operating at a base frequency

of 2.4GHz. Table 1 provides the main specifications of the CPU system used in the present work.

Name BDW

Processor Intel Xeon

E5-2680v4

micro-arch. Broadwell

frequency [GHz] 2.4

cores per sock. 14

sockets 2

L1 cache [KB] 32

L2 cache [KB] 32

L3 cache [MB] 18

ISA AVX2

(a) Mains features of the BDW system.

Name BDW

Processor Intel Xeon

E5-2680v4

Memory bandwidth

Bm copy [GB/s] 117.0

Bm copy-19 [GB/s] 87.2

Peak FLOPS

Ppeak scalar [GFLOPS] 57.6

Ppeak vect. [GFLOPS] 230.8

(b) Memory bandwidth and peak floating point per-

formance for the BDW system.

Table 1: Specifications of the BDW system.

The Roofline model states that the performance of a given algorithm is either bounded by the

floating point performance (expressed in floating point operations per second or FLOPS) or bounded470
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by the memory bandwidth (in bytes/s). Thereby, the achievable performance P is expressed by:

P = min(Ppeak, Bm ×AI), (40)

where Ppeak denotes the processor’s peak floating point performance, Bm is the memory bandwidth,

and AI is the arithmetic intensity which depends on the studied algorithm. The latter corresponds

to the number of floating point operation per bytes that must be transferred between the processor

and memory in order to execute on step of the algorithm. The values of Ppeak and Bm for the475

considered CPU system are provided in Table 1. The effective memory bandwidth is measured

using the STREAM copy benchmark [64] as well as with an adjusted benchmark mimicking the LB

streaming step on a D3Q19 lattice: copy-19 which concurently copies 19 arrays [65].

In its classical formulation, the Roofline model is expressed in FLOPS. However, for the LB

and finite-volume Navier-Stokes methods it is better to think about performance in terms of Cell480

Updates Per Second (CUPS). In order to perform this change of units, one has to determine γFP

which corresponds to the number of floating point operations required per cell update andB` = 1/AI

which expresses the number of bytes which are transferred from the main memory to the CPU for

one cell update. Table 2 provides the corresponding key figures for the lattice Boltzmann and the

finite-volume Navier-Stokes methods.485

lattice Boltzmann method FV Navier-Stokes method

BGK RR HRR 3dcart 3dhomo 3dfull

Variables
2 sets of 19 distribution functions

(f1, f2, ..., f19)
3 sets of primitive variables

(ρ, ux, uy, uz, p)

Storage Double precision (8 bytes) Double precision (8 bytes)

Stencil

γFP 204 325 490 1012 1295 1774

B` 456 456 520 1152 1430 2149

Table 2: Comparison between the lattice Boltzmann and Navier-Stokes methods implemented in ONERA’s Fast CFD

environment in terms of memory and computational footprint. Note that only the case of an explicit time-stepping

scheme for the NS solver is shown.

The γFP metric shows that, regardless of the collision models, the LBM performs less floating

point operations per cell and time-step than the finite-volume NS method. Naturally, when im-

plementing more robust collision model (such as the regularised ones), more operations have to

be performed in comparison to the classic BGK model. However, on average, the LBM performs
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between two to five times less operations than the NS method on Cartesian grids. Regarding the490

B` metric, while all the LB models have approximately the same memory traffic (the HRR collision

model requires the storage of additional gradients), the topology of the grid used by the NS method

strongly conditions the memory traffic.

Figure 4 displays the Roofline model’s curves on a full BDW node for the LBM-BGK, LBM-RR3

and LBM-HRR as well as for the Navier-Stokes method on Cartesian grids. In these curves, the495

floating point performance bound is represented by the dashed and solid horizontal lines for scalar

and vectorised (AVX2) double precision operations respectively. Conversely, the linear solid and

dotted lines corresponds to the memory bandwidth performance bound. The solid vertical lines

indicate the arithmetic intensity of each solver and thereby allow to determine their theoretical

maximum achievable performance by reading the y-intercept of its point of intersection with the500

black curve. The maximum achievable performances of the methods are also reported in Table 3.

Solver LBM BGK LBM RR LBM HRR FV-NS 3dcart

Achievable Performance [MCUPS] 285 283 234 101

Measured Performance [MCUPS] 277 275 228 98

Relative Performance 2.8 2.8 2.3 1.

Table 3: Maximum achievable performance and measured performance for each numerical method according to the

results of the Roofline model (see Figure 4). The relative performance w.r.t. the NS method on cartesian grids is

also provided. MCUPS corresponds to Million Cell Updates Per Second.

First, from the theoretical results of Figure 4, it can be seen that both the Navier-Stokes and

lattice Boltzmann algorithms are memory bound owing to the use of vectorisation techniques.

Regardless of the collision model, the LBM is expected to outperform the FV-NS method when

only considering the CPU performance. It can be seen that the FV-NS method on Cartesian grids505

is expected to be about 2.3 to 3 times slower than the LBM. Note that this is only valid for the

3dcart version. Indeed, when considering the FV-NS method on a fully curvilinear grid (3dfull),

the LBM is approximately 10 times faster which is the value commonly reported in the literature.

Before drawing more general conclusions, it is crucial to ensure that the implementation of

the LB and NS methods employed in this study does not introduce any additional bias, i.e. that510

the methods are well optimised at the processor limits. To this end, the Roofline models are

confronted to the present implementations in ONERA’s FAST CFD environment by profiling the

codes with the help of Intel’s Advisor software. To this end, colored vertical dashed lines indicate

the arithmetic intensity and thus the global performance measured by the software (also reported in

Table 3). As one can see, by comparing the theoretical and measured arithmetic intensities, which515
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Figure 4: Roofline models of each of the numerical methods studied in this section for the BDW system expressed

with the “cell update” metric. The vertical line on each plots indicates the corresponding arithmetic intensity and

the maximum reachable performance is obtained by taking the intersection of this line with the Roofline model.

are almost superimposed, it can be confirmed that the methods are optimised to the hardware’s

limit capabilities. Consequently, the LBM is shown to be about 2.3 to 2.8 times faster than a

finite-volume Navier-Stokes method applied on Cartesian grids. In addition, the performance of

each loop in the algorithms is provided in Figure 4 and depicted by circles. As one can observe

in Figure 4, all the implemented loops are located on the rooflines meaning that the LB and NS520

methods are optimised up to the hardware limit. This further confirms that any bias from improper

implementation preventing the methods from being fairly compared with each other is removed.

The results of Figure 4 also confirm the fact that the LBM-BGK is completely memory bound

since all the loops are on the copy-19 bandwidth limit. When it comes to the other LB models,

one can see that once the streaming step is performed and all the buffer arrays initialised, the525

remaining computations are bound by the peak FLOP performance roofline. Figure 4 (d) also

highlights the effect of cache-blocking on the Navier-Stokes Cartesian solver. Indeed, the fluxes are

computed in the following order: first in the k-direction (or z coordinate), then in the j-direction (or

y respectively) and in the i-direction (corresponding to the x coordinate). The values being loaded
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into the cache for the fluxes computations in the k directions (the loop hits the bandwidth roofline)530

are reused by the other fluxes which, in turn, are bound by the peak floating point operations.

4.3. Parallel scaling

As already stated, only the performances on a single shared memory node are discussed here

since it is relatively easy to obtain a good scalability on distributed memory architectures with the

help of MPI asynchronous communications. Moreover, when it comes to non-uniform grids and535

explicit multi-rate time-stepping [66, 67], the issues related to load balancing between the nodes is

essentially the same for the LB and NS methods.

Figure 5 shows the performance of the LB and NS methods on one single BDW node under

strong scaling. To obtain this curve, computations of the three dimensional Taylor Green vortex on

a grid consisting of 2003 cells were performed. Such simulations are representative of the workload540

one would encounter at a node level for distributed memory clusters on large scale problems. Note

that this test case will be further discussed in Section 5.3. The performance is then evaluated in

MCUPS (Million Cell Updates Per Second) and is defined by:

PMCUPS =
nsubstep × 2003

tCPU × 106
, (41)

where tCPU is the CPU time required by the solver to perform one iteration expressed in µs, and

nsubstep corresponds to the number of sub-iteration per full time step (nsubstep = 3 for the explicit545

RK3 time-stepping scheme while nsubstep = 1 for all the LB models). In addition, in Figure 5,

horizontal lines corresponding to the Roofline model predictions are plotted.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of cores

0

50

100

150

200

250

P
er

fo
rm

an
ce

[M
C

U
P

S
]

FastLBM BGK

FastLBM RR

FastLBM HRR

FastS 3dcart

FastS 3dhomo

FastS 3dfull

Figure 5: Comparison of the performance of each numerical scheme on one single BDW node. The horizontal lines

correspond to the maximum achievable performances given in Table 3. ( ) LBM BGK and RR, ( ) LBM

HRR, and ( ) FV-NS 3dcart.
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It can be seen from Figure 5 that the full-node performance of the Navier-Stokes and lattice

Boltzmann methods almost matches the results of the Roofline model. Indeed, the measured

performances represent about 90% to 95% of the expected ones. For the Navier-Stokes method,550

the curves of Figure 5 highlight the substantial increase in performance achieved by implementing

grid specific subroutines. The Cartesian version is naturally the fastest and is about 2.5 to 3

times faster than its full curvilinear counterpart. The 3dhomo implementation of the Navier-Stokes

method is only 1.5 times slower than the cartesian version making it a good candidate for LES or

DNS in reasonable CPU time. Moving to the lattice Boltzmann models, they all are more than555

twice as fast as the Navier-Stokes method. As indicated by the Roofline model, when the full node

is used, both the LBM-BGK and LBM-RR achieve the same performance. This property is quite

interesting knowing the fact that the LBM-RR is much more stable than the LBM-BGK. On the

other hand, due to the introduction of non-local operations in the algorithm of the LBM-HRR, the

performance is decreased with respect to the other collision models. Yet, the LBM-HRR is still560

about 2.25 times faster than the Navier-Stokes method on Cartesian grids. All these results are

in perfect agreement with the tendencies outlined by the Roofline model (see Table 3). Note that

the performance figures of the NS method are only given in the explicit case. When considering an

implicit time-stepping scheme, the value of nsubstep depends on the number of iterations performed

by the Newton approximation process. Therefore, implicit computations tend to be at least three565

times more expensive than the explicit ones.

In order to get more insight into the performance and scaling of each method, Figure 6 provides

a plot of the performance per core (Figure (a)) as well as the effective time (Figure (b)) as functions

of the number of cores. The effective time, expressed in µs, corresponds to the time required by

the corresponding algorithm to perform one iteration on one cell of the mesh:570

teff =
tCPU ×Nthreads

nsubstep × 2003
. (42)

The results of Figure 6 (a) indicate that the lattice Boltzmann models can iterate over 10 million

cells per core when the node is fully loaded. In comparison, the Cartesian version of the Navier-

Stokes method only performs one iteration over 3.3 million cells per core. One should keep in mind

that in the explicit case 3 updates are performed within the Runge-Kutta algorithm indicating that

10 million cells can effectively be updated per core within the Navier-Stokes method but not one575

entire iteration as it is the case for lattice Boltzmann method.

Figure 6 (b) shows that a cell update by the lattice Boltzmann method is performed in approx-

imately 0.1 µs. Moreover, as already highlighted, the LBM-HRR is a bit slower than the other LB

models. Its extra cost is found to be about 30%. Besides, Figure 6 (b) further demonstrates the

need to compare the LBM with a NS method on Cartesian grids when seeking for fair one-to-one580
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comparisons since other formulations introduce a significant computational overhead. Consequently,

in comparison to the Navier-Stokes method on Cartesian grids, the lattice Boltzmann method is

about 2.2 to 3 times faster depending on the collision model. Now, with respect to the NS method

on fully curvilinear grids, the lattice Boltzmann method is between 5 to 10 times faster.
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Figure 6: Performance comparison of the solver in terms of MCUPS per core and effective time.

In terms of strong scaling, Figure 6 (a) suggests that the Navier-Stokes and lattice Boltzmann585

methods do not behave in the same way. Indeed, a huge drop in the performance per core is

observed for the LB schemes when increasing the number of cores whereas the performance of the

NS method seems to be less affected. Such disparity might be explained by the fact that the LB

“Stream & Collide” algorithm is essentially memory driven and that increasing the number of cores

does not lead in a significant increase in memory bandwidth. This might also explain why the590

LBM-RR and LBM-HRR show better scaling since they require more computations than the BGK

collision model which in turn means a higher arithmetic intensity.

5. Numerical simulations

Having discussed the main differences between the lattice Boltzmann and Navier-Stokes methods

from a theoretical and computational point of view, the aim of this section is to bridge all the595

results in order to answer the question raised in the introduction which, it should be recalled, is

to determine which method is the most competitive, in terms of accuracy and computational cost,

for unsteady aerodynamic and aeroacoustic applications. To this end, the LB and NS methods

are now compared through numerical simulations, admittedly canonical, but still representative of

industrial-like aeronautical Large Eddy simulation requirements in terms of simulation parameters.600
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In order to fairly assess the suitability of each method regarding both the accuracy and the

computational cost, it is proposed to study the “time to solution” metric which corresponds to

the time needed by each method to achieve a certain error target. The “time to solution” metric

(denoted hereafter by TCPU) is based on a variety of relevant factors and given by:

TCPU =
Tc0

∆x

teffN

CFL
, (43)

where T is the physical time intended to be simulated, c0 is the speed of sound, ∆x is the grid605

spacing, teff is the effective time introduced in Equation (42), and N is the number of grid points.

Although the CFL number is also required, it is only relevant for NS schemes.

Throughout this paper, the time to solution specific to the NS method is only given for the

Cartesian case. One can easily transpose the conclusions to the curvilinear NS method by using

the multiplicative factors given in Section 4. Moreover, all the simulations are performed on fully610

3D computational domains using periodic boundary in all directions of space.

5.1. Plane monochromatic acoustic wave

The propagation of a downstream plane monochromatic acoustic wave is studied in order to

assess the acoustic capabilities of the lattice Boltzmann and Navier-Stokes schemes introduced in

Section 2. For this purpose, the initial flow field is given by [55]:615

ρ(x, y)|t=0 = ρ+ ρ′, where ρ′ = ερ cos(kxx+ kyy),

ux(x, y)|t=0 = Macs + ρ′cs cos(θk)/ρ,

uy(x, y)|t=0 = ρ′cs sin(θk)/ρ,

(44)

where ρ and Ma denote the mean flow density and Mach number, respectively. The amplitude of

the perturbation is set to ε = 10−3, which is sufficiently small to ensure linear acoustics. kx and

ky correspond to the wavenumbers in the x- and y-direction respectively, and θk = arctan(ky/kx)

is the propagation angle. The latter are defined as ki = 2π
∆xNppw,i

where Nppw,i is the number of

points per wavelength in the i-direction. The speed of sound is given by c0 = 343.2 m.s−1.620

In the following, the grid size ∆x is set to a constant value of 1×10−2 m and the computational

domain extends over one wavelength in the direction of propagation with five cells in the other

directions. The simulations are run for 50,000 time-steps (where ∆t ≈ 1.68 × 10−5 s owing to the

acoustic scaling) so as to observe significant effects of dispersion and dissipation. Note that, for this

study, the viscosity is set to ν = 1.5× 10−5 m2/s leading to τ − 1/2 ≈ 10−5 which is representative625

of air flows relevant to the aeronautical field. Consequently, the Reynolds number based on the the

mean flow velocity is 105. It can be shown that the density field at any given time t is given by:

ρ(x, y, t) = ρ+ ερ exp [Im(ω)t] cos(k · x− Re(ω)t), (45)
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where the theoretical real and imaginary parts of the angular frequency ω are given by Equation

(30). The numerical dispersion and the numerical dissipation induced by each method are estimated

by least-square fitting Equation (45) to the density time signal. Consequently, the study of the630

acoustic properties of both approaches is made through the dispersion and dissipation ratios:

Eω =
Re(ωth)

Re(ω)
and Eν =

Im(ωth)

Im(ω)
. (46)

Parametric study of the Navier-Stokes schemes. A short discussion regarding the tuning parameters

of the Navier-Stokes schemes has to be made. Indeed, the latter offer a higher set of degrees of

freedom than LBMs. For three fixed values of Nppw, the following set of parameters is studied: the

numerical scheme chosen to discretise the convective fluxes; the time-stepping scheme (which can635

be explicit or implicit); and the value of the CFL number. Figure 7 shows the results obtained in

the case of a 1D plane monochromatic acoustic wave without mean flow (i.e. ky = 0 and Ma = 0.).
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Figure 7: Dispersive (dashed lines) and dissipative (solid lines) behavior of the finite-volume Navier-Stokes schemes

for different CFL numbers and points per wavelength.

It can be seen that, for all the combinations considered here, the numerical dispersion of finite-
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volume Navier-Stokes schemes is lower than their numerical dissipation. Moreover, and as ex-

pected, by increasing the number of points per wavelength, one approaches the theoretical behavior640

of acoustic waves. Regarding the CFL number, lowering its value tends to reduce the numerical

dissipation of the schemes. Surprisingly, the number point per wavelength and the CFL number

have a negligible influence on the dispersive capabilities of time-explicit schemes. Yet, despite its

increased stability region, the implicit Gear time-stepping scheme is not suited for computational

aeroacoustics (CAA) applications. Indeed, for typical CFL numbers encountered in industrial appli-645

cations, using the implicit Gear time-stepping scheme leads to an important numerical dissipation

and dispersion. This effect can be attributed to the decentered nature of the scheme. Figure 7

also evidences the low dissipation of the Sensor scheme in comparison to the AUSM while their

dispersion curves are identical. This confirms the fact that the the binary function Φ only acts on

the dissipative terms of the convective fluxes approximations. All in all, when considering CAA650

simulations the combination Sensor + explicit RK3 has to be favored since it offers a good tradeoff

between dissipation and dispersion over a wide range of CFL numbers and points per wavelength.

Comparison. Figure 8 shows the dispersion and dissipation ratios as a function of the non-dimensional

wavenumber k∆x = 2π/Nppw without mean flow. Since the values of Eω and Eν fall in the range

[0, 1], it can be concluded that the LB and NS methods tend to introduce some over-dissipation as655

well as a time delay (or frequency shift). Such behavior is in accordance with the results of the

linear stability analyses of Section 3.
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Figure 8: Comparison of the dispersive and dissipative behavior of the lattice Boltzmann (solid lines) and finite-

volume Navier-Stokes (dashed lines) schemes for 1D plane monochromatic acoustic wave without mean flow (i.e.

ky = 0 and Ma = 0.).

Regarding the dispersive properties of the LB schemes, they all have the same values of Eω,
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which also confirms the results of the LSA. However, up to 6 points per wavelength, the finite-volume

Navier-Stokes scheme is slightly less dispersive than the LB ones. This result does not comply with660

Figure 2 where the dispersion error of LB schemes is expected to be less than the one made by

second-order centered schemes. Yet, this discrepancy can be explained by the fact that both the

AUSM and Sensor schemes are not completely equivalent to centered schemes thereby modifying

their dispersion relations. When it comes to dissipation, the results of the linear stability analyses

are retrieved. Indeed, all the LB schemes are far less dissipative than the finite-volume Navier-665

Stokes scheme. Consequently, even with more stable collision operators than the classical BGK

model, the lattice Boltzmann method is especially suited for CAA simulations since it introduces

very little numerical dissipation even at very low resolutions.

Figure 9 displays the minimal value of Nppw for the LB and NS schemes required to achieve a

given tolerated dispersion or dissipation error level. For the sake of clarity, the exact minimal value670

of Nppw is reported on top of each bar. In terms of dispersion error, when considering high error

levels (i.e. 10% or 1%), the minimal value of Nppw is exactly the same for both the LB and NS

schemes. However, with stricter requirements, the explicit Navier-Stokes Sensor scheme requires

only 70% to 50% of the points needed by lattice Boltzmann schemes. When it comes to the minimal

value of Nppw required to achieve a given tolerated dissipation error level, Figure 9 clearly highlights675

the dissipation gap in favor of lattice Boltzmann schemes. Indeed, regardless of the error level and

the chosen collision model, LB schemes require about 3 to 4 times less points per wavelength than

the explicit finite-volume Navier-Stokes scheme.
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Figure 9: Minimal value of Nppw for the LB and NS schemes required to achieve a given tolerated dispersion or

dissipation error level on the acoustic mode.

Time to solution. From Equation (43), one can see that the value of TCPU directly depends on the

ratio between the number of points per wavelength and the CFL number. In the case of Navier-680

Stokes schemes, where the CFL number is a free parameter, the Nppw
CFL ratio has to be taken as small
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as possible so as to minimise the total CPU time. According to the results of Figure 7, it can be

shown that this ratio varies only by 10% around its value when CFLNS = CFLLBM = 1/
√

3. For

this reason, the results are given with at CFLNS = 1/
√

3 associated by a 10% margin to account for

this slight variability. Figure 10 shows the time to solution for each method considered here when685

propagating the acoustic wave for 100 periods. To ease the comparison, the ratios of Navier-Stokes

time to solution over the LBM ones are reported next to the bars with their corresponding color.
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Figure 10: Time to solution for the plane monochromatic acoustic wave.

In terms of dispersion, regardless of the collision model, all the LB schemes are 2 times faster than

the Navier-Stokes sensor scheme for error targets ranging from 10% to 0.1% even when taking into

account the uncertainty margins. However, if one wants to keep the dispersion error below 0.01%,690

then all the methods seem to require the same computational time. This bar plot clearly shows that

the information of the number of points per wavelength alone is not sufficient to determine whether

one method is better than another. Indeed, from Figure 9 one would think that the LBM is at a

disadvantage when it comes to dispersion. Moving to the dissipation results, here the advantage

is clearly to the lattice Boltzmann method since if offers speedups between 15 and 30 over the695

whole range of error levels considered. These results correspond to a 1D planar wave, therefore, the

speedup is actually between to 2 to 3 times higher for full 3D computations. This demonstrates

that the LBM contains intrinsic and serious acoustic capabilities thereby enabling the method to

propagate acoustic fluctuations over long distances at very low computational cost.

5.2. Convected vortex700

The convected vortex problem is ideal for comparing the lattice Boltzmann and Navier-Stokes

approaches since they should be able to propagate the vortex without distorsion for an indefinite

amount of time. In addition, being capable of sustaining vortical flow structures with minimal

numerical dissipation is crucial for industrial LES.
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Most of the time, an isentropic formulation of the vortex is adopted. However, as discussed in705

dedicated publications [68, 69], the latter hypothesis is not consistent with the athermal approxi-

mation of standard LBMs since no energy conservation equation is solved. To alleviate this issue,

a more suited “barotropic" version of the widely used Taylor vortex derived in [69] is chosen. It

reads: 

ρ(x, y)|t=0 = ρ exp

[
− ε2

2c2
s

exp

(−r2

R2
c

)]
,

ux(x, y)|t=0 = Macs − ε
(
y − yc
Rc

)
exp

[
−(x− xc)2 + (y − yc)2

2R2
c

]
,

uy(x, y)|t=0 = ε

(
x− xc
Rc

)
exp

[
−(x− xc)2 + (y − yc)2

2R2
c

]
,

(47)

where ρ = 1.1765 kg.m−3 is the free-stream density, Ma = 0.1 is the advection Mach number,710

ε = 0.07c0 is the vortex strength, and Rc = 0.1 m is the characteristic radius of the vortex. The

center of the vortex is initially positioned at (xc, yc) = (0.5, 0.5).

For this test case, the computational domain has a size of [L,L, 10∆x], with L being the reference

length equal to 1 m. The uniform grid size is set to ∆x = L/N where N is the grid resolution. The

simulations are performed for a range of grid resolutions such as Nvortex ∈ {6; 12; 25; 50; 100; 200}715

where Nvortex is the number of grid points within the vortical structure leading to ∆x ∈ [0.0025−
0.08] m and ∆t ∈ [10−6− 10−4] s. The computations are run over 5 advection cycles defined by the

normalised time 5t? where t? = tMacs/L. The viscosity is set to ν = 1.5×10−5 m2/s (corresponding

to τ − 1/2 = [10−5 − 10−7]) such as to mimic a vortex convection in air. The Reynolds number is

given by Re = MacsL/ν = 2 × 106. Thereby, viscous effects are expected to be negligible and the720

intrinsic numerical dissipation of each methods can be compared.

Analysis of the numerical dissipation. The convected vortex test case can be seen as the advection of

a vorticity spot. Therefore, in the light of the modal analysis of the exact Navier-Stokes equations,

the decay of the vorticity field is expected to be proportional to e−νk2t. The numerical dissipation

rate G is estimated by averaging the norm of the vorticity field over 2 advection cycles and by725

computing the ratio between the 2 last and the 2 first cycles:

G =

(∫ 5t?

3t? ||ωz(t)||dt∫ 2t?

0 ||ωz(t)||dt

)1/4t?

. (48)

Figure 11 displays the evolution of the vorticity norm dissipation as a function of the vortex resolu-

tionNvortex. In addition, to ease the comparison between the numerical solutions and the theoretical

dissipation rate, a reference curve is added in Figure 11.

From a general point of view, when refining the mesh, all the numerical schemes tend to recover730

the theoretical dissipative behavior. If one focuses on the Navier-Stokes method, one main difference
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Figure 11: Numerical dissipation of the norm, with respect to the numerical wavenumber. The dashed line represents

the theoretical dissipation rate of the vorticity mode.

between the AUSM and Sensor scheme can be highlighted. Indeed, regardless of the time-stepping

scheme, the dissipation curves of the AUSM scheme are almost superimposed thereby indicating

that the numerical dissipation is governed by the space discretisation error. Conversely, the behavior

of the Sensor scheme highly depends on the time-stepping scheme thereby showing that the dissi-735

pation error is dominated by the latter. Regarding the lattice Boltzmann models, their numerical

dissipation is slightly greater than the one of the Sensor scheme with explicit time-stepping scheme

for Nvortex > 6. Moreover, as indicated by the linear stability analyses, switching to regularised

collision models further increases the numerical dissipation especially at low resolutions. Yet, the

numerical dissipation of the LB schemes is still less important than the one of the AUSM scheme.740

Therefore, when omitting well-designed schemes such as the Sensor scheme, the lattice Boltzmann

method is a very good candidate for vortex advection. Now, the Sensor scheme, which was espe-

cially designed to achieve very little numerical dissipation, seems to outperform the LBM over a

broad range of vortex resolutions. However, for typical LES-like resolutions (6 ≤ Nvortex ≤ 12) the

advantage between both approaches is not clear and needs to be further studied.745

Quality of the solution. Figure 12 compares the vortex shapes after 5 advection cycles. As one can

see, for highly resolved cases (Nvortex = 50), all the numerical schemes converge to the same solution

and match the analytical profile. When decreasing the vortex resolution, spurious dispersive and

dissipative effects are evidenced. On the whole, the trends of Figure 11 are recovered here. For

LES-like resolutions, i.e. for Nvortex = 6 or Nvortex = 12 a strong deformation of the vortex is750

observed thereby confirming the anisotropy of the schemes for coarse grids already pointed out by

the LSA. As in the case of the acoustic wave, the numerical dissipation is the most critical flaw in
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the numerical schemes studied. When Nvortex = 6, the lattice Boltzmann solvers tend to preserve

in a better way the vorticity peak at the center of the vortex. The oscillations observed in the

BGK vorticity profile indicate the onset of an instability that causes the calculation to diverge if755

it is continued. The regularised collision models however help to stabilise the computation. For

Nvortex ≥ 12, the NS explicit Sensor scheme has a very good behavior which converges rapidly

towards the analytical solution. Therefore, the convergence of the schemes is now discussed.
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Figure 12: Comparison of the vortex shapes in terms of vorticity after 5 advection cycles. (a) Vorticity isocontours.

30 levels are displayed ranging from -1 (red) to 1 (grey). (b) Vorticity profiles for y = 0. ( ) : Reference solution;

and ( ) numerical solution after 5 advection cycles.

Convergence. The convergence of both approaches is discussed through the analysis of their L2-

error norm on the velocity field (the exact same conclusion can be obtained when reasoning with760

the density field). Figure 13 displays the evolution of the L2-error norm as a function of the vortex

resolution. Regarding the lattice Boltzmann schemes, all the curves are almost superimposed and

follow a second-order slope which is in accordance with the spatial order of the scheme. On the

other hand, the Navier-Stokes schemes seem to follow a third-order slope even though their are

designed as being second-order schemes. This discrepancy can be explained by the fact that all765

the computations where performed on cartesian grids with a third-order MUSCL reconstruction

thereby biasing the results. Notwithstanding this unexpected behavior, the conclusions of Figures

11 and 12 are recovered. Indeed, for low resolutions, the lattice Boltzmann schemes provide a more

accurate solution than classical finite-volume schemes.

Time to solution. Figure 14 reports the CPU time required by each method to achieve a certain error770

target on the L2-error norm of the velocity field after 5 advection cycles. As a matter of fact, the
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Figure 13: Convergence plot of the lattice Boltzmann (solid lines) and NS (dashed lines) schemes for the convected

vortex test case. Two reference slopes are also represented.

greater the constraint, the greater the vortex resolution and therefore the longer the computational

time. Compared to the monochromatic plane acoustic wave, no solver prevails over the whole range

of error levels considered. Indeed, it is necessary to distinguish two cases. If large error levels are

allowed (or equivalently if meshes consisting in less than 12 grid points by vortical structures are775

employed as it is commonly the case in LES), the lattice Boltzmann method is slightly faster than

the NS Sensor scheme by a factor 2 or 3. However, when it comes to convergence down to several

orders of magnitude, it is clear that Navier-Stokes methods implemented in ONERA’s FastS solver

are more appropriate. This tendency is quantified in Figure 14 by providing the ratio between the

NS time to solution over the LB time to solution in black boxes. Thus, for L2(u) ≤ 0.1%, a solution780

is obtained 3 times faster with the NS solver than with the LBM regardless of its collision model.
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Figure 14: Time to solution for the convected vortex test case for different error levels.

It is essential to note that the conclusions drawn on this test case are not a general truth since
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the order of convergence of the LB and NS methods do not match. Indeed, a fully second-order NS

scheme might be less suited to L2(u) error minimisation. Yet, this little discussion has the merit of

underlining the fact that by taking advantage of the combinations of spatial and temporal schemes785

and MUSCL-type reconstructions in the framework of finite-volume Navier-Stokes schemes, one can

tailor more efficient numerical schemes than those offered by the LBM.

5.3. Taylor Green Vortex

In order to compare the lattice Boltzmann and Navier-Stokes methods on a 3D turbulent con-

figuration, the Taylor-Green vortex (TGV) is considered. It is a fundamental prototype flow for790

vortex stretching and production of small-scale eddies which therefore allows to study the dynamics

of transition to turbulence. In the following, no subgrid scale models are used so as to assess the

implicit LES capabilities of each method. This test case has been widely employed to evaluate

numerical methods by both the lattice Boltzmann and Navier-Stokes communities [70, 71, 72].

The flow is solved in a fully periodic cube of size Ω = (2πL)3, where L is a reference length.795

According to Brachet et al. [73], the initial velocity and pressure fields are given by:

ux(x, y, z)|t=0 = U∞ sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
,

uy(x, y, z)|t=0 = −U∞ cos
(x
L

)
sin
( y
L

)
cos
( z
L

)
,

uz(x, y, z)|t=0 = 0,

p(x, y, z)|t=0 = p∞ +
ρ∞U2

∞
16

[
cos

(
2z

L

)
+ 2

] [
cos

(
2x

L

)
+ cos

(
2y

L

)]
,

(49)

where U∞, p∞, and ρ∞ denote the reference velocity, pressure, and density respectively. All these

parameters are chosen such as to impose a Reynolds number Re = 1600 and a Mach number of 0.1.

Also note that for the LB computations, the initial distribution field is computed by calculating

the velocity gradient [74].800

Time dependent global quantities. As a first step to analyse the simulation results, time dependent

global flow quantities are evaluated. These consist of the non-dimensional kinetic energy evolution,

defined as:

Ek(t) =
1

2|Ω|U2∞

∫
Ω
||u||2 dΩ, (50)

and the non-dimensional enstrophy evolution :

E(t) =
L2

2|Ω|U2∞

∫
Ω
||ω||2 dΩ. (51)

The enstrophy (51) is computed from the vorticity field ω for which a fourth-order reconstruction805

is used by both numerical methods for the sole purpose of post-processing. The temporal evolution

of Ek and E is expressed by means of the non-dimensional time scale defined by: t? = L/U∞.
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Figure 15 displays the temporal evolution of the kinetic energy and the enstrophy for three

LBM computations (with BGK, RR3, and HRR collision models) and one explicit NS computation

with the Sensor scheme. Indeed, the latter is especially designed such as to mitigate dissipative810

effect for turbulent flow computations. Different grid resolutions are investigated namely 643, 1283,

2563, and 5123. This leads to ∆x ∈ [10−6− 10−5] and accordingly ∆t ∈ [10−8− 10−7]. In addition,

the viscosity is set to ν = 1.5 × 10−5 m2/s which corresponds to τ − 1/2 ≈ 10−3. The results are

compared to the spectral solution from [70] for a resolution of 5123.

The first thing to notice from Figure 15 is that the computation carried out by the lattice815

Boltzmann method with BGK collision operator for the highly under-resolved case (i.e. on the

643 grid) is unstable. This justifies the fact that regularised schemes are preferred for industrial

computations. Consequently, one should keep in mind that even if stability issues are not studied

here, the ability of numerical schemes to stay stable is fundamental in CFD. Both the LBM and

the finite-volume NS schemes converge towards the reference solution. In particular, the enstrophy820

peak is being captured at t? = 9 for sufficiently resolved cases (i.e. when N ≥ 1283). The temporal

evolution of the enstrophy helps to discriminate between the numerical methods. As it has already

been observed in the previous test cases, the LBM BGK method has very little numerical dissipation

and therefore tends to better capture the enstrophy peak for N = 1283. On the other hand, more

stable collision models also come with an increased numerical dissipation since this test case is825

mainly vorticity driven. When N = 5123, it can be shown that the grid size ∆x is almost equal

to the Kolmogorov length [47]. Therefore, comparing both numerical methods for this particular

grid resolution gives some insight into their quasi-DNS capabilities. As can be seen on Figure 15,

all the numerical schemes reach the spectral solution with very little error.

Accuracy. Figure 16 shows the convergence of the L2-error norm on the temporal evolution of the830

kinetic energy and enstrophy for the LB and NS schemes. It can be seen that both methods converge

towards the reference solution at second-order in space. Since the vorticity field is reconstructed at

fourth-order, no bias is attributable to the post-processing and the direct numerical behavior of each

method is shown. Moreover, the curves of Figure 16 confirm the tendencies of Figure 15. Indeed,

while all the numerical schemes capture well the kinetic energy evolution with an error between835

10−4 and 10−6, the enstrophy evolution is much more discriminating in terms of accuracy. Yet, all

the LB schemes reach the spectral solution with the same ranges of error than the finite-volume

sensor scheme, except when N = 5123 where the error of the sensor scheme drops to 10−5.
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Figure 15: Time evolution of the kinetic energy (a) and enstrophy (b) for the 3D Taylor-Green Vortex at Re = 1600.

The reference solution is the spectral solution from [70].
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Figure 16: Accuracy and convergence study for the 3D Taylor-Green vortex test case at Re = 1600. All the L2-norms

are computed with respect to the spectral solution of [70].

Energy spectrum. The last quantity investigated for the comparison of the lattice Boltzmann and

Navier-Stokes methods on the TGV is the turbulent energy spectrum which is defined as:840

E(k, t) =
1

2

∑
k

|û(k, t)|2, (52)

where û is the complex Fourier transform of the velocity field, k the wavenumber vector, and

k = |k| =
√
k2
x + k2

y + k2
z its norm. Equation (52) corresponds to the integration over shells of

equal wave number. Due to the sampling theorem, only wave numbers up to k = 2/∆x in each

directions are considered. In the following, the results will be compared to those of Foti and

Duraisamy [75] at t = 10t?.845

Figure 17 shows the results for the LB and NS methods for the 643, 1283, 2563, and 5123

grids. From a general point of view, all the schemes tend to converge to the same turbulent kinetic

energy spectrum as Foti and Duraisamy [75] even though they tend to slightly over-estimate the

kinetic energy associated to very low wavenumbers. Such discrepancies with the reference solution

can also originate from the digitisation process of the low-resolution figure in [75]. For all the850

schemes considered here, the energy cascade in the intertial range is well recovered. However, in

the dissipation range, it can be seen that regularised LB models tend to over-dissipate when going

toward the cutoff wavenumber. This confirms the previous observations indicating that regularised

models are more dissipative than NS and LBM-BGK schemes in shear-driven flows. Despite its

limited stability preventing it from being used in an industrial context, the LBM-BGK model855

shows better convergence than the Navier-Stokes computation.
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Figure 17: Turbulent kinetic energy spectrum for the 3D Taylor-Green vortex test case benchmark at Re = 1600.

The vertical dashed lines indicate the cut-off wavenumbers associated to the smallest resolved scales.

Time to solution. Figure 18 (a) displays the computational time (expressed in hours) required by

each method to compute the Taylor Green Vortex on a 5123 grid with 8 BDW nodes thereby taking

into account MPI communications. As in the single-node case, all the LB models, regardless of

their collision operator, are at least two times faster than the Navier-Stokes solver.860

In Figure 18 (b), the time to solution for each scheme are compared with respect to different

error levels on the enstrophy curve. Once again, for high error tolerances, the lattice Boltzmann

method achieves competitive runtimes. However, in the present case, due to hyperviscous effects,

the HRR collision model is quickly overtaken by the performances of the Navier-Stokes method.

Surprisingly, for an error target of 0.1%, the Navier-Stokes computation is about two time faster865

than all the LB models. This might be explained by the huge error drop depicted in Figure 16.

6. Conclusion

In this paper, a comprehensive comparison between the lattice Boltzmann and Navier-Stokes

methods is performed in order to provide rigorous decision support on the suitability of one partic-

ular CFD method over the other for canonical aerodynamic and aeroacoustic applications. While870

most of the existing approaches are subject to bias and therefore of very limited practical relevance
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Figure 18: Time to solution for the 3D Taylor Green vortex test case.

when it comes to assess the core capabilities of the LB and NS methods, an interest of the present

contribution is to thoroughly discuss each aspect of the numerical methods by taking great case so

as to avoid all possible sources of bias. This lead to the following conclusions:

• The low dissipation of the LBM with respect to conventional Navier-Stokes schemes has to be875

nuanced especially when considering advanced LB collision models of practical relevance such

as the regularised ones. While both the linear stability analyses and numerical simulations

indicate that the LBM has serious acoustic capabilities, regularised collision models exhibit a

higher numerical dissipation on shear modes than standard NS schemes.

• While in the NS community schemes are generally studied and optimised for one-dimensional880

problems, their anisotropic dissipative behavior when both the space and time discretisations

are simultaneously performed is highlighted and discussed.

• When optimised to the limits of the considered CPU architecture, a cell update using the

lattice Boltzmann method is found to be 2 to 3 times faster than for the Navier-Stokes method

on Cartesian grids. The speedup of 10 in favor of the LBM classically reported is recovered but885

only for the LBM-BGK when compared to NS methods on fully curvilinear grids. Moreover,

it is shown that the intrinsic HPC capabilities of the LBM have to be tempered since, as NS

methods, the core algorithm is memory bound and therefore an increased performance can

only be achieved by increasing the memory bandwidth.

• Finally, it is shown that, in order to fairly compare the numerical methods in terms of accuracy890

and computational cost, a “time to solution” metric has to be considered. Through the

computation of test cases representative of LES requirements for which an analytical solution

is known and therefore for which the error levels for each methods can be precisely quantified,
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it is shown that the efficiency of one method with respect to the other is closely related to

underlying physics and the chosen error threshold levels.895

In the light of these conclusions, general decision aids can be provided to assist in selecting

the most efficient method for a given application. For aeroacoustic computations, regardless of

the collision model, the LBM is the most efficient method since it leads to speedups up to 30

(per direction) w.r.t. NS computations for an acoustic plane wave. In the case of shear-driven

flows, the most appropriate method varies according to the fidelity to be achieved. For the Direct900

Numerical Simulations (DNS) of such flows, a finite-volume Navier-Stokes solver appears to be the

best candidate to achieve highly accurate results with a reduced time in comparison to the LBM.

When it comes to Large Eddy Simulations (or Quasi-DNS) the LB and finite-volume NS methods

seem slightly equivalent. However, for Very Large Eddy Simulation (VLES, where vortical structures

are resolved by 4 to 6 mesh points), the lattice Boltzmann method is particularly efficient. This905

confirms the trend that, if the flow physics are not driven by the boundary layer (e.g. for massive

separation induced by the geometry), the LBM-VLES is very interesting in terms of runtimes.

Even if this comparison has only been performed on CPUs, the main conclusions are very

likely to be transposable to the GPU framework. Indeed, several recent studies of Navier-Stokes

solvers running on GPUs [76, 77] indicate a similar performance increase than the one observed910

for the lattice Boltzmann method in [78]. Therefore, one could expect an acceleration of the same

order of magnitude for both the NS and LB methods. Further investigations of the performance

of these two methods on GPU by porting ONERA’s research codes on such architectures may be

the purpose of future work. Also, a comprehensive comparison of the numerical treatment of walls

within the context of lattice Boltzmann and finite-volume Navier-Stokes methods is planned for915

future work and will be the subject of a dedicated study. In addition, while the issue of stability

has received very little attention in the present work, the ability of numerical schemes to stay

stable is fundamental for real-world CFD applications especially if boundary conditions and mesh

refinements are considered. The present methodology can therefore be used as a basis for further

research aiming to compare the lattice Boltzmann and Navier-Stokes methods.920
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