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of the Standard Model and beyond
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Abstract—Since Isaac Newton the understanding of the phys-
ical world is more and more complex. The Euclidean space of
three dimensions , independent of time is replaced in Enstein’s
vision by the Lorentzian space-time at first, then by four
dimensions manifold to unify space and matter. String theorists
add to space more dimensions to make their theory consistent.
Complex topological invariants which characterize different kind
of spaces are developed. Space is discretized at the quantum
scale in the loop quantum gravity theory. A non-commutative
and spectral geometry is defined from the theory of operator
algebra by Alain Connes. In this review, our goal is to enumerate
different approaches implementing algebra and topology in order
to understand the standard model of particles and beyond.

Keywords: NC-geometry, Supersymmetry, Heat kernel, Loop
Quantum Gravity

I. INTRODUCTION

The unification of physical theory remains an unattainable
question. The first experiments about gravity, electricity, or
magnetism were static theory all defined in space and universal
time.They have given way to dynamical theories and unified
electromagnetism with Maxwell’s equations, Newton theory
is replaced by special, and general relativity. The concept
of forces lead to the concept of fields, of symmetry. A
fundamental point is that the introduction of time in special
or general relativity as a variable in the same way as the other
space variables, In static theory, we have an universal time
while in dynamic theories the time (proper time) is coupled
to the other space variables. in different theories, time has
not same meaning. The notion of invariance relatively to a
gauge group, or by diffeomorphism in relativity lead to the
introduction of different mathematical theories in the physical
world, group theory, and Lie algebras, Riemannian geometry,
algebra or topology. The fundamental problem is unification
at the quantum level of two incompatible theories; Large-scale
gravitation and quantum mechanics. The first success was the
unification through the standard model of electromagnetism
of weak and strong nuclear interactions. The standard model
of particles (U(1) × SU(2) × SU(3)) composed of bosons
(interactions) and fermions (particles) perfectly describe world
at quantum scales. In this review article, we want to discuss
on different strategies to understand the role that gravity can
play at the quantum level.
The first, string theory, was originally an hadronic theory
describing interactions (bosonic theory). Assuming the exis-
tence of supersymmetric particle and changing length scale of

string (planck order 10−33 cm, we obtain a theory allowing
to construct a particle of spin 2 which seems to describe a
quantification of gravitation: the graviton. Another contribu-
tion of supersymmetry is to allow the entry into the scene
of topology in field theory: The index theorem shows that
a good strategy is not the study of all the spectrum of an
operator but rather the state of vacuum (ground state). Around
this concept of index of an operator, topology, ground state,
Witten describes a new QFT: topological quantum field theory.
In this context, one can define different theories of fields,
with boundary, associated with the pairs (open strings, branes),
(describing the standard model), or without boundary (closed
strings) describing the gravity.
A second approach to understand gravitation at the quantum
scale is to be directly inspired by Heisenberg’s ideas of
quantum mechanics: the notion of spectral lines of a chemical
element such as the hydrogen atom leads to describe, from
the point of view of classical mechanics, the convolution
group, algebra of frequencies emitted: these structures are
commutative. However, in quantum reality, the convolutional
algebra must be replaced by matrix algebra and therefore is
non-commutative. This fundamental idea led Alain Connes
[15] to be interested in the algebra of operators and to construct
non-commutative geometry (NCG).
The last approach is to describe some elements of another
theory: loop quantum gravity. For a long time people tried to
overcome the problems linked to the perturbative approach in
gravitation.The perturbative approach produces infiny quan-
tities in Feynman diagram so is not renormalizable. The
string theory solve this by replacing Feynman diagrams by
Riemann surfaces with boundary. The LQG proposes to avoid
the perturbative approach but at the cost of a complex mathe-
matical language.This theory adopt Hamiltonian language (as
previously NCG) , to quantify gravity. The basic idea amounts
to saying that at the planck scale the geometry is discretized,
The concept of holonomy ( as in RG to measure the curvature),
is already present in the quantification of electromagnetism
(Wilson loops). The concept plays a major role in quantum
gravity hence The discretization at the planck scale of space
time leads to the creation of Spin networks and spin foam
managing the passage between authorized quantum states.
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II. QUANTUM MECHANIC AND QUANTUM FIELD THEORY

A. Lagrangian approach

The concept of field is fundamental in physics. A field ϕ is
a function of a source space (world sheet for string theory )
into a target space, M with a sufficient number of dimensions.
So this given a "package" (Σ,M, ϕ) and a classical action:
S where: Σ is the source space, often a manifold: for The
classical mechanic of the point is the time axis (world line).
For the conformal field theories like bosonic string theories:
Riemann surface ...
Lagrangian density is a function on one or more fields and its
first derivatives:

L = L(ϕ1, ϕ2, ..., ∂µϕ1, ∂µϕ2...) (1)

Classical action is the integral of the classical Lagrangian
density on space S =

∫
Ldn+1x

Principle of least action: The minimization of the action:
(δS = 0, leads to each field noted just ϕ to the Euler-Lagrange
equation which gives the equations of motion of the particle

∂L
∂ϕ
− ∂µ(

∂L
∂(∂µϕ)

) = 0 (2)

A quantization can be seen in through a classical action
quantified from the path integral. We can then define the
correlation functions dependent on selected observable. These
functions depend, for example, the metric that is chosen on
the target space.
Uncertainty on the position or momentum in quantum me-
chanic led to replace the classical solution (least action) by
the partition function or the set of all possible solutions: It is
the path integral [16]

Z =

∫
Σ→M

e−S(ϕ)Dϕ (3)

Similarly, one can calculate correlation functions, or functions
with n marked points.

< ϕ1(x1), ..., ϕn(xn) >=

∫
Σ→M

ϕ1(x1)...ϕn(xn)e−S(ϕ)Dϕ
(4)

B. Hamiltonian approach

The Legendre transformation is an ingredient allowing to
pass from Lagrangian formalism to Hamiltonian formalism.
This makes it possible to set up non-perturbative methods
in field theory: geometric quantification. Briefly we have a
simplectic manifold (M,ω) endowed with a Hamiltonian Ht,
a Poisson bracket. The Hamilton evolution equation describes
the dynamic evolution of an observable by the Hamiltonian
flow. The quantification consists in replacing this by a Hilbert
space of states, by the Eisenberg operator and a Lie bracket.

III. TOPOLOGICAL FIELD THEORY

The first theory that we will visit in an attempt to understand
gravity at the quantum level is supersymmetric string theory.
It is a perturbative approach in which topology and the search
of invariants play a big role. An essential idea to understand is
that the not exited states, in quantum mechanic (ground states)
describe the topology and by the same a kind of quantification.

A. Standard model, String theory, and supersymmetry

String theory was originally an hadronic theory to describe
the strong nuclear interaction, it was a bosonic theory: it did
not involve particles of matter (the fermions) but only the
cement that unites them: the interactions between quarks. It is
by accident that gravity came to play a preponderant role in
this theory. The modification of the length of the strings on
the scale Planck and the consideration of the supersymmetry
allow to eliminated the tachyons (negatives probabilities) and
reduced the number of additional dimensions of the theory.
The consideration of supersymmetry staged the topology in
quantum field theory. The first decisive step was to understand
that the Atiyah and Singer index theorem: demonstrating
the identity between the analytical index of certain elliptical
operators and the topological index characterizing the topol-
ogy of geometrical objects. It should also be noted that the
supersymmetry can also be applied to other gauge theory:
Chern-Simons, Yang mills theory. Supersymmetry tell us that
each elementary particle (bosons or fermions) of the standard
model is equipped with super-partners (respectively of integer
and half integer spin)

B. Index theorem

We have reviewed in [17] some tools about index theory.
By introducing supersymmetry to classical field theory, we
make these theories topological, by adopting the perturbative
Lagrangian approach, we can introduce the path integral and
the correlation functions. In the latter, the points or functions
of these points are replaced by cohomology classes and this
makes it possible to define topological invariants;. Let us
quickly recall the key points of the construction. The index
of an elliptical pseudodifferential operator is constructed from
cohomology classes. In the initial work of Atiyah [], This
was also at the origin of a new theory the topological K-
Theory. It is rather the local theory of the index defined from
the heat kernel that will allow the entry into the scene of
supersymmetry.
Recall that in [] we have described that what ensures the
existence and uniqueness of the differential system L (u) =
v, where L is an elliptic operator of a vector bundle E in a
vector bundle F is controlled by l ’analytical index of operator
L:

Inda(L) = dim(ker(L)− dim(Coker(L)) (5)

The simplest model is the case where L is a linear map
between two spaces of finite dimensions E and F . In this
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case it is immediate that the analytical index is equal to the
topological index indeed:

Inda(L) = dim(ker(L)− dim(Coker(L)) =

dim(ker(L)− (dim(F )− dim(Im(L)) =

dim(E)− dim(F )

(6)

This last quantity is the difference between two dimensions
of space it obviously has a topological nature, moreover a
small deformation of the operator L, being able to make it
non-bijective for example, does not change the nature of the
index. Always with this example we can introduce the spirit
of supersymmetry:

C. Supesymmetrie heat kenel

by the previous example, E= Cn, F= Cm , we can now
build a new space using the tensor product E ⊗ F . If f
denote linear map between us with matrix P and f∗ is. We
can build a new space using the tensor product, in this, the

matrix
(

0n,n P ∗

P 0m,m

)
is an endomorphism that exchanges

E and F we will say that E is the space of Bosons, F that of
fermions. This endomorphism can be seen as a square root of

endomorphism with matrix:
(
P ∗P 0n,m
0m,n PP ∗

)
with, PP ∗ and

P ∗P : selfadjoint In physics, the first matrix denote the Dirac
operator, and it is the square root of the second matrix: the
Laplacian (Hamiltonian) The eigenvalues of PP ∗ and P ∗P
are positive (self-adjoint operator). It has two heat equations
(bosonic aspect), easily resolvable:

(
d

dt
+ P ∗P )u1(t) = 0

(
d

dt
+ PP ∗)u2(t) = 0

(7)

there solutions are u1(t) = e−tP
∗Pu1(0) and u1(t) =

e−tPP
∗
u2(0)

The non-zero eigenvalues of PP ∗ and P ∗P are identical. they
represent the exited states (in quantum mechanics). We show
that the kernel of P ∗P (resp. P ∗P ) are those of P (resp. P ∗),
They represent non-exited states or ground states.
We can then define the "super-trace" of P 2:

Str(e−tP
2

) = Tr(e−tP
∗P )− Tr(e−tPP

∗
) =

Tr(e−tP ) − Tr(e−tP
∗
) =

dim(ker(f))− dim(coker(f)) = Inda(f)

(8)

Solve the heat equation on (E,P 2), gives the spectrum of
the selfadjoint operator P 2; LetP : E → F , P ∗ be adjoint,
the embedding of E in the super-space E ⊗ F gives a natural
self-adjoint: PP ∗ +P ∗P whose in the square root, P and its
adjoint exchange E (bosons) and F (fermions). the index of
P select the ground states of the supersymmetric system so
constructed.
We have seen a first equivalence: the index theorem connects
a problem of analysis to a problem of topology. And now, In a
supersymmetric world, only the non-exited states contribute to
the super partition function of the quantum theory considered.

These ground states are the signatures of the topology, given
by Index theorem. We have the "triangle" : Analysis-topology-
Physic

ANALYSIS

↗↙ INDEX ↖↘

TOPOLOGY � PHYSIC
A concrete realisation of previous construction in physic is
,given by:

D. Application 1: Supersymmetric Quantum Mechanic

1) Bosonic version: If we consider a particle moving on
a manifold M, the quantification of this problem consists in
solving the Shrodinger equation. Mathematically it is to solve
the heat equation on a manifold, the Laplacian ∆ = − 1

2
d2

dθ2

is Hamiltonian H in physic. For simplicity, take the circle S1

of radius β. The solution of heat equation is here:

Tr(e−βH) =
+∞∑

n=−∞
exp(

−β2π2n2

R2
) (9)

A physical interpretation of this quantity is the partition
function Z(β).

2) Supersymmetric version: Physicists in the mid-sixties
postulate the existence of a new symmetry that Symmetry
of Noether: this is supersymmetry, we shall return in more
detail later. Briefly, in the standard model, there are two types
of particles: the bosons that carry the interactions, and the
fermions that constitute matter. Supersymmetry postulates that
each fermion has a super-partner bosonic correspondent (and
reciprocally). A boson has the vocation of being a switching
variable, that is a pair variable, while a fermion must be
anticommutative, we will say that it is an odd variable. That
explains why we choose the algebra of the differential forms
of degree 1 to construct the fermionic variables. The most
suitable framework for introducing supersymmetry is that of
Clifford algebras. The idea to add fermions artificially will
be to inject algebras functions on a variety In the algebra
of differential forms. The differential forms of even degrees
will represent the bosons, while the differential forms of odd
degrees will be the fermions. We then construct a so-called
super-space, we often note ψ, or θ a fermionic variable. We
denote by Q the operator BRST in mathematics is simply
the differential of the De Rham complex. One can construct
its adjoint noted Q. For example, for the circle S1, to take
into account supersymmetry, we replace the Hilbert space
H(S1,C) by a larger space : H(Ω∗(S1)⊗ C).

HB = Ω0(S1)
Q,Q−→ HF = Ω1(S1) (10)

The Dirac operator D exchanges bosons and fermions and
reciprocally in the case of the circle S1, we simply have:

D = Q+Q (11)
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This operator is a square root of the Laplacian, the semi-
Laplacian which restores the energy H of the system:

H =
1

2
(QQ+QQ) =

1

2
∆ (12)

In this context, the partition function on the circle S1 becomes,
the index:

ZS(β) = Str(e−βH) = (−1)FTr(e−βH) =

Tr(e−βQQ))− Tr(e−βQQ))
(13)

The two operators QQ, QQ have the same eigenvalues and
on the other hand: the QQ kernels are those of Q and that of
QQ is the Q; The preceding equality thus becomes:

ZS(β) = Str(e−βH) = dimKer(Q)− dimker(Q) (14)

In the framework of Riemannian geometry, we know that
each class of cohomology has a harmonic representation. Ψ
verifying Qψ = Qψ = 0 Is in the kernel of the Laplacian,
which physically represents the states of the vacuum. In other
words, when one is interested in the supersymmetric model,
the function of partition depends only on the non-exited states:
the state of the vacua of a theory. That is the topological side
of the index of operator (here D): ind (D). In addition, the two
kernels: ker(QQ), ker(QQ) represents the betti numbers: b0
and b1 respectively. So the index of the Dirac operator on S1

vanish.
The above calculations can be generalized for any compact
variety. The de Rham complex is exploited, the even differen-
tial forms represent the bosons, the odd forms, the fermions.
We find by taking Dirac operator d+ d† that the index of this
operator on the manifold is the Euler Poincaré characteristic
of the manifold.
We have given here a very simple construction of the super-
symmetry: we can indeed construct the bosons and the fermion
from a split on the de Rham cohomology (separating even
and odd differential forms). The more natural constructions
are made by using spinors that can be defined from Clifford
algebras. We then define a kind of square root of geometry, a
spinor is in a way the square racine of a vector Dirac operator
the square root of a Laplacian ....

E. Topological field theory

Topological field theory exploits many complexes resulting
from algebraic topology, many topological invariants can be
calculated: by exploiting the theory of bundles and connec-
tions on a principal bundle, we can calculate: the Donaldson
invariants [6], Seiberg-Witten, in dimension 4 , in dimension
3 the correlation functions lead exploit Wilson loops Chern-
Simons theory and provide new invariants for the theory of
knots [22]. The exploitation of the moduli of stable curves
in symplectic geometry leads to the Gromov-Witten invariants
[11] ...

1) Construction of a topological field theory: Historically,
we have seen that some field theory could be expressed in a
purely topological way, for example the Chern-Simons theory.
This field theory has a 3-dimensional variety as its starting
point. ,. The correlation functions that we can define from this
theory are based on topological observables, Wilson’s loops,
they have led to the definition of new invariants for knot
theory. Another example, Yang-Mills theories can be made
topological, if we consider the addition of supersymmetry.
AtIyah and Segal [] are the first to have defined the bases of
an axiomatics of topological field theory: They started from
the notion of riemann surface in conformal field theory. A
Riemann surface has good properties such as being able to
be broken down into elementary bricks like a pair of pants.
Theory is also at the origin of the definition of the sigma
model. Witten proposes another approach. He wants to define
a purely topological field theory, by making the correlation
functions of a field theory independent of the notion of
metric. One strategy to do this, is to assume the existence
of supersymmetry: Noether’s principles of symmetry are
adapted by adding supersymmetric variables. That helped
extend the BRST formalism for supersymmetric topological
field theories. Calculations of correlation functions in which
the points are replaced by cohomology classes, lead to
define spaces of instantons: moduli space whose dimension
calculated by the index theorem lead to enumerative geometry.

2) moduli space: An indispensable structure, on which
modern invariant research is based, is moduli space. In the
different applications, it should be properly defined. The
custom wants it to be invariant under the action of a symmetry
group (gauge group in physics). The moduli space is therefore
obtained by quotienting a set of geometric objects: in the
theories of Donaldson and Seiberg-Witten, it is a space of
connections. For Seiberg-Witten invariants, the gauge group is
U(1). For those of Donaldson [6], we take the set of auto-dual
connections (ASD) and the gauge group is SU(2). For string
theory, the modulus space is made from holomorphic curves [?
] and Cauchy Riemann conditions. For example, the modulus
space allowing calculation of Seiberg-Witten invariants [9]
is constructed as follows: X is a manifold of dimension 4,
oriented, endowed with a Spinc structure characterized by
the line bundle det(S+) where S+ is the bundle of positive
spinors. we consider a connection A on the principal bundle
U(1) then:

ML = {(Φ, A) ∈ Γ(S+)×C(PU(1)) : DA = 0, F+
A =

1

4
ωΦ}/G

(15)

Rules for the calculation of invariants

1) Properly define the modulus space.

2) Make it compact to kill singularities.

3) Define an Elliptical complex in algebraic topology
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associated with this moduli space.

4) Using the index theorem or the Riemann-Roch theorem,
Calculate the index of the elliptic complex thus constructed:
This is the dimension of the moduli spaces.

5) In good cases, adequate correlation functions allow
the dimension of the moduli space to be made zero.

6) define the invariants for example using the tools of
enumerative geometry(in the case where moduli space has
dimension zero.

IV. NON COMMUTATIVE GEOMETRY

The approach of non-commutative geometry (NCG) has as
its starting point the origins of mechanics and the study of
the distribution of frequencies in chemical elements. Rydberg
shows that the lines are distributed s according to the formula
:. On the other hand, if in the approach of classical mechanics,
all the frequencies form a group, Experience proves that this is
not the case at the quantum level. More precisely, the convolu-
tional algebra associated with the groupoid 4 = {(i, j), i, j ∈
I} with composition rule (i, j)(jk) = (i, k) algebra =behaves
like a matrix algebra. therefore a noncommutative algebra.
It was Heisenberg who was the first to have the idea of
ââreplacing the observable quantities of classical mechanics
by "matrix mechanics" in which the observable quantities no
longer commute. This naturally led Alain Connes, inventor
of non-commutative geometry, to develop his vision of the
quantum world. Taking into account the principles of geo-
metric quantification, quantification in (NCG) will consist in
algebraizing the geometric and topological structures in order
to be able to couple the external geometry of a particle and its
internal geometry as well as all the operators of differential
calculus, of the theory measurement and algebraic topology:

A. Tools of NCG

The macroscopic space from which we are working is a
Riemannian manifold M (or rather Lorentzian of dimension
4). We further assume that M is spinorial. A natural algebra
which corresponds to it is the algebra of functions over M
infinitely differentiable. We can then define the spinor bundle
S on this manifold as well as the Classical Dirac operator
obtained as the square root of the Riemannian Laplacian. We
need to define an Hilbert space, it will be the set of sections
L2(M,S) of the bundle of spinors. This involves a triplet,
the triplet (A,H, D). The generalization can then be done by
performing appropriate semidirect products of algebras, so as
to combine all or part of the Lagrangian of the standard model
and that of Relativity: A becomes a possibly noncommutative
algebra,H a Hilbert space and D the associated Dirac operator.
Consideration of differential geometry from this point of view
allows non-trivial extensions of field theory. The strategy is
to define increasingly complex triplets to include the internal
geometry of particle physics.

B. One example : Gravity coupled with standard model

The symmetry group for particle of standard model is given
by: U = C∞(R4, U(1) × SU(2) × SU(3)) his also the local
gauges transformations.
Lagrangian for standard model coupled with gravity is given
by: L = Lgµν + Lparticlee
The Triplet (A,H, D) is given by:
A = C∞(R4)⊗ (C⊕H⊕M3(C)), where H is quatenions
H = L2(R4,H⊕H)⊗ C: the spinor bundle
D = Dgµν ⊗ 1 + γ5 ⊗DF which combine gravitational Dirac
and operator derived by standard model.
A decisive remark is that intern deformation of metric are
parametized by Gauges Bosons. CThis work [] offers a re-
markable prediction for the mass MBH of the Higgs boson:
MBH ∈ [160GEV, 180GEV ]

V. LOOP QUANTUM GRAVITY

The quantification from the perturbative theory is a success
of string theory. To do this, we replace the Feynman diagrams
by Riemann surfaces with boundary . This is not the way
adopted to quantify gravity by the LQG approach. The strat-
egy adopted in this theory is to prepare the Hilbert-Einstein
action so that it can facilitate the quantization. The notion of
holonomy from kind of Wilson loops (as in Chern-Simons
theory), and the concept of spin network play a great role.

A. Introduction of LQG

The first step to implement the Loop Quantum Gravity
is therefore to find a formalism which makes it compatible
with Hamiltonian mechanics [21]. It is necessary to create a
couple of variables "position, moment" which make it possible
and apply the principles of geometric quantization. Recall
that in the Hilbert-Einstein action, the field considered is the
metric gµν ; This field does not allow quantization. Even the
approximate attempts that proposing a slight perturbation of
the flat metric: gµν=ηµν + hµν cannot be renormalized.
Ashtekar [19] leads to rewrite the equation of general relativity
in the language of Cartan. The new entity, which replaces the
metric is the triad or mobile frame. It replaces the metric gµν
by two variables which are the 1-form of connection and the
2-form of curvature (as we do in electromagnetism or quantum
electrodynamics). In Einstein’s time-space, the time and space
variables are separated. This will stage two groups of gauge;
SO(3, 1) manages the transformation of the four-dimensional
space, while SO(3), manages only three-dimensional space
variables. In fact the spinor representation are the essential
bricks to recreate the geometry (square root of geometrical
tools), thus it stages the 2-folds cover of rotational gauge
groups namely SL(2,C) and SU(2).

B. Triangulated Space and space time

Another essential point in this theory is that the authors
do not have the ambition to manufacture an unified theory
everything: they want just quantized space-time. This leads
to the definition of a discrete geometry, which consists in
triangulating space and space-time. This leads to the notion of
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spin network, dual graph of spatial triangulation (kinematics
of the theory), and to the notion of spin foams (triangulation
of space-time) dynamic aspect of the theory.

C. Quantum mecanic for LQG

Firstly consider quantification of space: when we change
the tetrahedron in the discrete geometry modeling the three-
dimensional space, this amounts to defining a discrete parallel
transport and producing curvature. We use to do this the 1
form of connection defined from the gauge group SU(2). Con-
cretely, we can think that we have a discrete rotation in space.
In the dual graph, each tetrahedron is a node. The passage
from one tetrahedron to another is an edge of the graph. We
will therefore define the hilbert space corresponding to an edge
ey e′ of the graph (that corresponds to tetrahedrom change)
.

1) Hilbert space at the edge: When looking at the space
part, the interesting gauge group is SU(2): covering space of
SO(3). Recall that this is the set of unitary matrices with unit
determinant:
h =

(
a −b̄
b ā

)
, with |a|2 + |b|2 = 1

Geometricaly is the three sphere S3 thus it is compact mani-
fold. In the Hamiltonian formalism, what replaces the position
variable to be quantified which is here a "rotation" given
by an element of the associated spin group, namely SU(2).
then construct the Hilbert space: H = L2(SU(2)), the waves
functions ψ are summable square functions (for Harr measure)
from SU(2) to C.
You can define a scalar product in L2(SU(2)) given by:

〈ϕ,ψ〉 =

∫
SU(2)

ψ(h)ϕ(h)dh (16)

It is well known that the associated Lie-agebra is su(2)
generated by the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(17)

so h = e−iα
iσi/2 = cos( α2) .1 + isin( α2)

αi

α σi with α =
√
αiαi

We can consider left (and right) invariant vector fields
−→
L of

component:

Liψ(h) = limt→0[
ψ(he−t

iσi
2 )− ψ(h)

t
] (18)

. The variables and conjugate moment of Hamiltonian me-
chanics are here the connection linked to an element of the
group SU(2) and the conjugate element is the derivation
defined before (18). The latter allows to give again the metric:
Glk = Ll.Lk which corresponds to the normal angle between
two faces and the area of the triangle which connects two
tetrahedra and satisfy:

A2 = Ll.Ll (19)

This reconstructs a (discrete) 3 −D Riemanian geometry on
networks

2) Gravity 3-D on Lattice: Using the previous elementary
lego, we can reconstruct the Hilbert space associated with the
dual graph associated with our three-dimensional geometry of
space at time t. this is the kinematic part of the quantization.
What causes geometry to change is the passage from an
elementary tetrahedron to the next: it corresponds to traversing
an edge of the dual graph to the discrete geometry. We deduces
a first Hilbert space given by:

H̃ = L2(SU(2)L) (20)

It is necessary to take into account the gauge invariance at
each vertex of the graph. Indeed the fact of choosing another
moving frame must not change the result, it is therefore
necessary take quotient by a product of group SU (2) on the
vertex number, we then obtain the space:

H = L2(SU(2)L)/SU(2)N ) (21)

3) Quantization: The quantum mechanics of the group
U(1) (or of the circle S1) is characterized by the eigenfunc-
tions einx. which form an orthonormal system. The principle
is the same to describe the quantum mechanics of SU(2):
We need to find an orthogonal basis of eigenfunctions: these
are Wigner matrices Dj(h)mn , −j ≤ m,n ≤≤ j built from
the irreducible representation of SU(2) and labelled by an
half integer jin {0, 1

2 , 1,
3
2 , ...} called "spin" . The operator

L2 = Li.Li is the Casimir operator, it acts on the Wigner
matrices as follows:

L2Dj(h) = j(j + 1)Dj(h) (22)

The eigenvalues of the Casimir operator give the quantification
of the areas according to [] so

A =
√
j(j + 1) (23)

We can also express the volume thanks to the operator
−→
Ll, let

l1, ...l4 be the edges coming out of the vertex n: We have:

V =

√
2

3

√
−→
Ll1 .(

−→
Ll2 ×

−−→
Ll3) (24)

This formula is independent of the choice of edges because
of the gauge invariance and the relation:

−→
Ll1 +

−→
Ll1 +

−→
Ll1 +

−→
Ll1 =

−→
0 (25)

There is also a quantization for the volume but this is more
complicated see [21]
Geometrically, it is well known that the area of a face of the
tetrahedron is given by the norm of a normal vector

−→
Ei =

A.−→n , with −→n normal vector to the face i. We then obtain
Ei.Ei = A2. We can show that

−→
Li is exactly the quantization

(up to a coefficient) of the vector
−→
Ei

D. Dynamic: Spin foams

To summarize, we have defined operators allowing to quan-
tify areas and volume in space. It remains to define the
dynamic version, where the Hamiltonian depends on time,
this will allow us to describe amplitudes that we can for
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example calculate from the path integral or using Hamiltonian
mechanics. I: will now consider the temporal evolution of Spin
networks: we will describe what we call spin foams.

1) Hamiltonian classical mechanic: In classical mechanics,
we consider a space of configurations C and the evolution
of a particle as a function of a universal time qi(t). We
define the phase space Γ by adding pi(t) associated momenta.
In quantum mechanics, qi corresponds to an operator |q >,
We define the Hamiltonian H(qi, p

i). Quantum dynamics is
captured by the amplitudes of transitions given by the formula

W (qini , tin, q
f
i , tf ) = 〈qfi |e

i
~ (tf−tin)|qini 〉 (26)

2) Extended Hamiltonian mechanic: In relativistic mechan-
ics (special relativity), time is no longer universal, we define
an extension of the configuration and phase spaces by adding
time to the space variables, we must also define a conjugate
variable for the time noted pt. the classical Hamitonian is
replaced by the constrained Hamitonian C(qa, p

a), qa = (qi, t)
the evolution is now captured by the Hamilton-Jacobi:

C(qa,
∂S(qa

∂qa
) = 0 (27)

equation.In the Newtonian case, (privileged time) the general-
ized Hamiltonian is:

C(qa, p
a) = pt +H(qi, pi) (28)

Then if S(qin, tin, q
f , tf ) is a solution of |], by writing

∂S(qin, tin, q
f , tf )

∂qi
) = pi(q

in, tin, q
f , tf ) (29)

We find the final position qf function of initial conditions.
In the general case, the solution of the Hamilton Jacobi
equation follows the same principle, however time is no longer
privileged.

3) Adaptation to General relativity: Formally, we replace
the couple of variable position, momenta by the couple of
variable: metric 3-D, conjugate moment (qab(

−→x ), pab(−→x )).
The Hamilton-Jacobi equation (27) becomes:

Gabcd
δS[qab]

δqac(
−→x )

δS[δqab]

δqbd(
−→x )
− det(g(−→x )R(qab(

−→x )) = 0 (30)

Where Gabcd = G2(qabqcd − 1
2 (qacqbd), G gravitational con-

stant. Set also the invariance of metric by diffeomorphism. We
want to describe evolution of metric from initial: qiab to final
qfab The Hamilton function is given her by: S(qiab, q

f
ab). we

have
δS

δqiab
= pab(x) = pab(qiab, q

f
ab) (31)

So we obtain with initials conditions final metric. Of course
here, S is action of Hilbert-Einstein for general relativity

Formally, (qab(
−→x ), pab(−→x )) become non commutative op-

erator qab, pab We can calculate "amplitudes" in quantum
mechanic (with path integral form we have:

W (qfab, q
i
ab) =

∫
De 1

~
∫ √

gR (32)

In classical limit (~→ 0) we find G.R:

W (qfab, q
i
ab) =

∫
De 1

~
∫ √

gR ∼ e 1
~
∫ √

gR (33)

In general setting recall you have (qa, p
a) which satisfy clas-

sically Hamilton-Jacobi equation: C(qa, ∂S(qa)
∂qa ) = 0, given

amplitudes functions W (qfa , q
i
a) the classical Hamiltonian

equation is replaced by Wheeler-Dewitt equation:

C(qa, i~
∂

∂qa
)W (qfa , q

i
a) = 0 (34)

In classical mechanic, with universal time, this equation gen-
eralize Shrodinger equation:

[i~
∂

∂t
+H(qi, i~

∂

∂qi
)]W = 0 (35)

This can be transposed if we replace the coordinates by
the metrics in general relativity. Now we want to solve the
equation (35). the geometry at quantum level being determined
by the eigenvalues of the objects to be quantified. The variables
that are the initial and final 3-D metric must be replaced by
their quantized forms namely spin networks: S = (Γ, jl, in)
with L links and N nodes.

W (qfab, q
i
ab) ≈W ((Γ, jl, in)out, (Γ, jl, in)in) (36)

The 4-D geometry is reconstructed from the two initial and
final networks. We have described the outline of the work that
should be rigorous. This work has progressed a lot since then
the work of different authors . In Ashekar’s formalism [? ], the
equation of general relativity is rewritten in equivalent form
in the language of Cartan and Weil. The basic building block
is the notion of mobile frame (repère mobile=, connection,
curvature which replaces the metric field. In this language,
the equations of general relativity have analogies with the
Yang-Mills equations. the Hamiltonian uses the new conjugate
variables which are Connection and curvature. To deal with
the dynamics of quantum gravity, we must in particular study
the Lie groups and algebra of SO(3, 1), and SL(2C). The
interested reader can consult [20].

VI. INTERACTIONS BETWEEN THE DIFFERENT THEORIES

The three theories presented briefly here, are different ap-
proaches to try to couple gravity to the standard model of par-
ticles. The starting point for quantization in non-commutative
geometry and in loop quantum gravity, is geometric quanti-
zation or second quantization. Chern-Simons theory are built
from Wilson loops. these are exactly the same used in the
LQG. The notion of non-commutativity is also present in
topological field theory, in fact the study of branes, supposed
to model the physics of particles is coupled to open strings:
the algebra of matrices and the group SU(n) come into play
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(Chan Paton factors, K-theory of branes [3]). It is therefore
tempting to be able to compare these theories. In mathematical
terms it seems a vain task because the tools are noticeably
different. However there are some attempts to reconcile these
theories. Although not necessary for the approach of non-
commutative geometry, Alain Connes in his book on Non-
commutative Geometry, includes supersymmetry in his model.
To compare the LQG with the supersymmetric string theory
some authors [18] have constructed a quantum theory with
loops in any dimensions.

VII. CONCLUSION

In this paper we tried to describe briefly, different theories
developed to understand physics beyond the Planck scale. it is
a subject which is still largely misunderstood, even if progress
has been made over the past thirty years. In the early 90s
branes were not discovered and K-Theory remained an abstract
branch of algebraic topology theory. In the future several
choices are possible, abandon certain tracks or try as much
as possible to bring together certain theories. All the doors
are open because the researchers are not close to breaking the
walls of Planck...
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