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Abstract—In this paper, we study the aging factor of a new
polymer B and second time on A-150, A-185 polymer systems
already certified for use in the aircraft and aerospace industry
and we formulate a predictive model of sustainability thanks
to artificial neural networks. It is the continuation of the paper
[] in which we approach the experimental problem and the
the theoretical part concerning Bayesian regularization and the
BFGS algorithm. In this paper, an initial small experimental
dataset of 33 samples is used to analyze the strain of polymers
systems as a function of aging time, temperature, Young
modulus and the breaking stress. In the view of the very small
dataset, the strain of polymers systems is predicted by training
Levenberg–Marquardt (LM), Bayesian regularization (BR), and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with a
regularized cost function algorithms. The best results have been
obtained with the two regularized artificial neural network from
very small data set.

Index Terms—rtificial Neural Network Multi-Layer Percep-
tron Bayesian Regularization Levenberg Marquardt and BFGS
Polymer system Lifetimertificial Neural Network Multi-Layer
Perceptron Bayesian Regularization Levenberg Marquardt and
BFGS Polymer system LifetimeA

I. INTRODUCTION

In our article we are interested in the characterization
of polymer systems aged in traction resulting from the
experimental study at the LGP (Laboratoire Génie de Pro-
duction) of Tarbes. In particular, the data from this study,
for polymer B, will serve as a basis for training an Artificial
Neural Network (ANN). In the first part, we introduced the
experimental problem and we approached the regularization
methods for the ANNs that we used.

The objective is therefore to find a compromise between
the quality of learning and the capacity for generaliza-
tion. Also first, we evaluate training performance of the
Levenberg-Marquardt(LM) algorithm without regularization,
compared with two regularization algorithms. This part
presents the results of the different stages of the modeling:
a phase of calculation carried out in order to determine the
architecture of the optimal ANN and its validation before
moving on to predictions. Secondly, regularized ANN were
employed to predict strain of the polymer B and thirdly the
polymers A-150, A-185.
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This paper is organized as follows: section II presents the
results and discussion in section III we concluded the part I
and the part II of the papers.

II. RESULTS AND DISCUSSIONS

A. Implemention of ANN

We trained the LM, BR and BFGS networks, multiple
times with 33 vectors by changing the number of hidden
layer neurons and selected the one which gave best results for
prediction. For the Bayesian Regularization Artificial Neural
Network (BRANN), the regularization parameters (β, α)
were optimized following(Part I, III-B) . The validation set
is not essentially required in the case of the regularization
methods.

To evaluate the performance of the three networks,
mean squared error (MSE) and correlation coefficient R are
estimated. The MSE measures the deviation between original
values and predicted ones, and R provides information on the
strength of correlation between them. They are defined by the
equations below:

MSE = 1
N

∑N
i=1(yi − y′i)

2 (1)

R =
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(yi−y)(y′

i−y′)√∑N
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(yi−y)2

∑N

i=1
(y′

i
−y′)2

(2)

where yi is the observed value and y′i is the network output
value. y′ and y′ are respectively the average of the real value
and the network output value, and N is the sample number.
The MSE and the number of neurons in the hidden layer are
investigated to construct the optimal structure of the neural
network.

The MSE depending on iteration (epochs) of the BRANN
is shown in the Figures above. In red, the error on the test set,
in green the error on the validation set. In blue, the learning
error. If the validation and test error increase while the
training error continues to decrease then there is overfitting.
The training stopped when the MSE value was achieve.
A negligible value of the MSE indicates the high degree
of correlation among input variables. Training stops when
any of these conditions occurs: 1) the maximum number of
epochs is reached, 2) performance of the network with the
number of neurons has met a suitable level, 3) performance is
minimized to the goal 4) the gradient was below a suitable
target 5) µ exceeds µmax = 1010. In conclusion, we see
the effectiveness of the regularization methods. Indeed, we
clearly observe in the left figure 2 of the supervised training
performance an overfitting.

Proceedings of the World Congress on Engineering 2022 
WCE 2022, July 6 - 8, 2022, London, U.K.

ISBN: 978-988-14049-3-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2022



Fig. 1. Performance of the feedforward neural network without regular-
ization

Fig. 2. Performance of the Bayesian neural network

The two figures of histograms represent the errors between
target values and predicted values after training ANN. These
error values indicates how predicted values are differing from
the target values. Y-axis represents the number of samples
from dataset, which lies in a particular bin. For example for
the BRANN, we have a bin corresponding to the error of -
0.0031 and the height of that bin for training dataset lies near
to 11, the height of bar in the bar plot means how many data
points are near the bin value. It means that 11 samples from
training dataset have an error lies in the following range.
Zero error line corresponds to the zero error value on the
X-axis. We can see on the left histogram that the errors are
much more dispersed: the difference is between -1.95 and
1.05, the majority of errors correspond to 7 samples with an
error of -0.057.

The the regression coefficient figures show a better perfor-
mance of R for the BRANN with regularization whose R is
close to 0.95 against 0.92 for the NN without regularization.
For the BRANN, the outputs are correlated with the corre-
sponding target values for training and testing, the R value
is 0.9599 for the total response. There is a relatively linear
relationship between outputs and targets. These results show
a good fit at the level of training and testing. It was shown
that there is a good correlation between the predicted values

Fig. 3. Error histogram for Neural network without regularisation

Fig. 4. Error histogram for the Bayesian regularization neural network

Fig. 5. Regression of the neural network without regularization

of BRANN and the experimental values. After several tests
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Fig. 6. Regression of Bayesian regularization neural network

the optimal neural architecture is composed of 12 neurons
with the performance equal to 0.1857.

Now the optima structure and the performance parameters
of the three networks are summerized Table I.

TABLE I
MEAN SQUARED ERROR AND EPOCHS FOR DIFFERENT ARCHITECTURES.

Network models Network structures MSE Epochs

LM 4 - 5 - 1 0.4642 8
BFGS 4 - 12 - 1 0.1861 300
BR 4 - 12 - 1 0.1803 369

The models training is performed with 4 to 15 hidden
neurons. By increasing the neural network structure of one
neuron each time and comparing the mean square error, it
attains a minimum for the BRANN model with 12 neurons.
The minimum values are obtained for the two regularized
models. So, the model can be explained well with small
data set when Bayesian Regularization is used for training
the networks. Once the BRANN model has learned well, it
interpolates the data according to an implicit function of the
following form:

ε = f(t, T, E, σ) (3)

B. ANN prediction results for the polymer B.

Now, we are going to make all of our predictions in our
work with the BR and BFGS algorithms.

In this section, first we trained the models with a dataset
containing 32 samples (at 33 samples we remove the last
value for aging time t=15th month for T = 70◦C) of the
polymer B. After having selected for each model the optimal
structure we predicted the following value for T = 70◦C and
aging time t = 15th month.

In order to verify the ability of the models to predict
data outside the database, some following data for aging
time t=15 months. The prediction results and the statistical

parameters are presented in Table II. It can be seen that the
regularized models have good performance. This means that
the regularized models have a good ability to predict the
unknown data and a better performance compared to the
unregulated model.

TABLE II
STATISTICAL PARAMETERS OF THE PREDICTED STRAIN OF THE

POLYMER B FOR T = 70◦C , T=15 MONTHS.

Network models ε(%) predicted ε(%) MSE

BFGS 1.45 1.38 0.0043
BR 1.45 1.51 0.0036

According to the performance calculations for the strain
prediction for T = 70◦C, and aging time t=15 months,
Bayesian regularization gives the best result with a mean
square error of 0.0036 against 0.0043 for BFGS.

Secondly, a case with even smaller subset of the data
was considered with 28 samples (at 33 samples we remove
the last five samples for aging time 3th, 6th, 9th, 12th and
15th months for T = 70◦C) and we predicted strain values
for aging time the 3th, 6th, 9th, 12th and 15th months and
T = 70◦C.

Fig. 7. Prediction by the BR algorithm of the deformation of the polymer
B, for the last five terms of the experiment

Fig. 8. Prediction by the BFGS algorithm of the deformation of the polymer
B, for the last five terms of the experiment

As shown in Fig. 8, with the BFGS algorithm, the last five
values predicted of strain are close to the desired outputs re-
sults, in particular within the interval of uncertainties. These
results show that the BFGS regularization is accurate even
with a small dataset. However, for BRANN the predicted
strain values show deviation from the desired target result
and three points do not belong to the uncertainty interval.
The MSE corresponding are given Table III and it confirms
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that the performance of BRANN is a little worse than that
of BFGS:

TABLE III
PREDICTION OF THE STRAIN OF THE POLYMER B FOR T = 70◦C , AND

AGING TIME T= 3, 6, 9, 12 AND 15 MONTHS.

Network models MSE

BFGS 0.108
BR 0.356

From the cases, we observed that the predictions of
BRANN model are closer to the experimental target values
even with a small training data set. But in the last case where
a prediction of the strain is requested for many aging times
t=3, 6, 9, 12 and 15 months, BFGS performs better than
BR. The accuracy of the regularized models decrease when
increasing the number of points to predict. Both regularized
algorithms are able to predict, despite a small data set, for
aging times depending on the mechanical characteristics of a
polymer. This means that during experimental work a neural
network is able to predict for the next three, six, nine months.

This type of prediction, with a quality of precision even
for small datasets which is often the case in the field of
materials, can make it possible to continue and complete
experiments. It allows to reduce the time and the cost in
long experiments, for the study of the durability of polymers.
Monitoring the aging of polymers over several months is
costly and restrictive. ANNs can be an effective tool, even
on small samples, to test the behavior and performance of
materials.

C. Prediction of the strain for the polymers A-150 and A-
185.

Now, an already trained neural network is used to make
predictions on new data with variables that have been gener-
ated by the same underlying processes and relationships as
the original dataset that was used to train the model. The
possibility of generalization is an essential characteristic of
neural networks. We tested Bayesian methods and regular-
ized BFGS methods on other polymer systems at the same
conditions that the system B. We explore characterization of
polymer systems aged in traction on systems A-185 and A-
150. The entire sample of polymer B was used to train the
neural network. Time aging, temperature, elasticity modulus
and stress was used as inputs contained 33 experimental data
and the strain as output. Then, the trained neural network on
polymer B was requested to predict the points of the strain
for T = 70◦C of polymers A - 150, A- 185. A comparison
is then made between the forecast values obtained with
the experimental data. Figures 9, 10, 11 and 12 below
next illustrate this comparison. The red point represents the
expected results according to the network formed and the
blue point represents the experimental results.

The table below gives MSE corresponding of the predic-
tion of the ANNs on these polymer systems.

A perfect match between the experimental values and
the predicted values of the polymers A was not expected.
According to the results of Table IV, the performance of the
network are a little worse than the prediction on polymer

Fig. 9. The comparison of experimental and predicted strain for polymer
A-150 with Bayesian regularization

Fig. 10. The comparison of experimental and predicted strain for polymer
A-150 with BFGS algorithm

Fig. 11. The comparison of experimental and predicted strain for polymer
A-185 with Bayesian regularization

Fig. 12. The comparison of experimental and predicted strain for polymer
A-185 with BFGS algorithm

B, with however a larger number of points to be predicted.
We note, on the one hand, that the BFGS algorithm gives
better results than BR for the two polymers A. On the other
hand, predictions are better for the long times and much
more accurate than on short times. Here we therefore reach
the limits of the neural network training on a small set of
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TABLE IV
PREDICTION OF THE STRAIN FOR T = 70◦C OF THE POLYMERS A-150

AND A-185.

Network models MSE (A-185 70◦C) MSE (A-150 70◦C)

BFGS 2.35 0.86
BR 2.4 2.45

data. However, we note that the predicted strains have the
same tendency as the experimental strains.

III. CONCLUSION

In with work, Bayesian Regularization and BFGS with
modified performance function models are employed to
predict the strain of traction-aged polymer systems. In the
first stage, regularized ANN and ANN model without regu-
larization were built using a very small dataset of 33 samples.
The training phase of the ANNs is performed taking into
consideration several parameters, such as the aging time,
temperature, tensile stress and Young’s modulus. The optimal
architecture model which contains a sigmoid function and an
output layer which contains a linear function, is evaluated us-
ing mean square error (MSE) and the regression value R. It is
concluded that the Bayesian regularization training algorithm
and BFGS regularized algorithm show better performance
than the Levenberg–Marquardt algorithm without regularisa-
tion. Regularized algorithm can solve the overfitting problem
which is not the case of Levenberg–Marquardt algorithm for
a small data set.

In a second stage, regularized ANN models, with three
datasets of 32, 30 and 28 samples, are used to predict the per-
cent strain of the system B for several aging times. BRANN
showed higher performance for one aging time, three aging
times predictions. Finally in a third stage, these regularization
methods are also used for two different polymer systems :
the polymers A-150 and A-185 that were not in the training
dataset. Considering the limitations of the model, due to the
small dataset, the neural network can more accurately predict
the results of the two polymers for long times than for short
times. However, the network successfully predicted the strain
trend for both polymers.

This allows us to conclude that these two regularized ANN
are reliable despite small data. These ANN approaches can
be used to predict the trend for the next few months, which
saves time and cost in the experimental field.
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