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Regularized Artificial Neural Networks for
Predicting the Strain of Traction-aged Polymer
Systems Part I

Helene Canot, Philippe Durand, Emmanuel Frenod, Bouchera.Hassoune-Rhabbour, Valerie.Nassiet

Abstract—The Liquid Resin Infusion (LRI) is a process
that has the greatest development and cost reduction potential
for the manufacture of large complex parts which made of
composite materials. The viscosity/temperature pair is the
essential criterion for the smooth running of the infusion in
order to obtain composite parts of quality. However, humidity
is a threatening factor for composite materials. Therefore, aging
factors and a predictive model of durability were investigated
on a new polymer B and second time on A-150, A-185 polymer
systems already certified for use in the aircraft and aerospace
industry. Tensile tests were carried out at temperatures T =
—40°C, 25°C, 70°C. In this paper, an initial small experimental
dataset of 33 samples is used to analyze the strain of polymers
systems as a function of aging time, temperature, Young
modulus and the breaking stress. In the view of the very small
dataset, the strain of polymers systems is predicted by training
Levenberg-Marquardt (LM), Bayesian regularization (BR), and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with a
regularized cost function algorithms. This paper is considered
a first part of the problem. In this part, we give the setting of
the experimental problem and we approach the theoretical part
concerning Bayesian regularization and the BFGS algorithm.
The article of part II will present the numerical results as well
as its analysis.

Index Terms—rtificial Neural Network Multi-Layer Percep-
tron Bayesian regularization Levenberg Marquardt and BFGS
Polymer system Lifetimertificial Neural Network Multi-Layer
Perceptron Bayesian regularization Levenberg Marquardt and
BFGS Polymer system LifetimeA

I. INTRODUCTION

Estimating the lifetime of a composite material is a major
scientific and technological challenge. Humidity and extreme
temperatures are a threat factor for composite materials. In
this paper, we study the aging factor of the composite and
we formulate a predictive model of sustainability thanks to
artificial neural networks. The purpose of the aging study
of polymer systems is to determine what are the irreversible
consequences of temperature and water penetration on their
chemical structure and on their mechanical properties. Three
polymer systems are considered in this study : a new system
B, system A polymerized at 1" = 150°C for two hours with a
conversion rate of 89% (noted A-150), system A polymerized
at T = 185°C for two hours with a conversion rate of 98%
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(noted A 185). To meet long-term sustainability criteria, an
aging study of these polymer systems is necessary. The type
of aging is chosen according to the environmental conditions
or the constraints with which the material may be confronted
during its commissioning. So water and temperature are two
environmental factors that polymer systems are sensitive.
Consequently, aging is of the hygrothermal type and the
exposure conditions adopted are a temperature of 7' = 70°C.
and a humidity rate of 85%.

In our article we are interested in the characterization of
polymer systems aged in traction resulting from the experi-
mental study at the LGP (Laboratoire Génie de Production)
of Tarbes. In particular, the data from this study, for polymer
B, will serve as a basis for training an Artificial Neural
Network (ANN).

In many studies, different modes of aging appear:
wet aging by plasticization (Colombini et al. 2002 [6]), by
degradation of the polymer by hydrolysis (Ennis et al. 1989
[9]); (Xiao et al. 1998 [33]), by differential swelling linked to
concentration gradients (Merdas et al. 2002) [22] but also by
damage. The various studies show an influence of hygrother-
mal aging as a function of the exposure time. Generally,
during the hygrothermal aging the mechanical properties of
polymers decrease (Dyakonov et al. 1996 [8]); (Popineau
et al. 2005 [27]). For short exposure times, a reversible
plasticization appears while for long times, swellings and
cracks can be identified.

One of the phenomena linked to the penetration of water
into the polymer is plasticization, which has consequences
on the mechanical and physico-chemical properties of the
polymer. The experimental study therefore relates to the
tensile tests of polymer system B in order to assess the
degradation of their mechanical properties over time. In a
second time we take these experimental data to establish a
predictive model of the behavior of the polymers B aged in
traction. This problem is non-linear and an analytical solution
is not always easy to obtain. Thus, for reasons of simplicity,
advanced identification techniques based on artificial neural
networks have been used.

The aim is to develop a neural architecture for predicting
the strain of the polymer systems through the use of multi-
layer perceptron (MLP) type with gradient backpropagation.
In recent years, many researchers have used ANN in the
field of composite materials to predict their behavior Zhang
(2003) [36] and Goh (1995) [12]. Qingbin et al. (1996)
[25] constructed a feedforward neural network with two
hidden layers, temperature, effective strain, and strain rate
were the inputs, and stress was the output of the neural
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network. It was able to approximate the constitutive relation
for a thermal viscoplastic material. Huber and Tsakmakis
(2001) [13] show that the ANN identified physically sets
of parameters of the material composite. And it correctly
predicted experimentally observed material behavior. ANN
make it possible to estimate, at lower digital cost, the level of
damage to a composite without resorting to exact calculation.

Mahmoudi (2017) [18] used ANN modeling allowing a
good localization and estimation of the damage as well
as the prediction of the dynamic response of composite
structures totally or locally, damaged while reducing the cost
of calculation.

Burgaz et al. (2014) [5] employed ANN method with
a feedforward back propagation algorithm for the predic-
tion of thermal stability, crystallinity and thermochemical
properties of polyethylene (oxide)/clay nanocomposites. The
ANN results confirm that nanocomposites thermal stability
increases with the decrease of enthalpy of melting and
relative crystallinity.

Doblies et al. (2019) [7] used ANN and Fourier-Transform
Infrared Spectroscopy (FTIR)- to predict the mechanical
properties, as well as the thermal exposure time and temper-
ature of epoxy resin and composite. It is a novel approach to
combine FTIR, data processing, and machine-learning (ML)
to estimate the material state. The ANN has been trained
and has shown the feasibility of predicting the coupled
degradation parameters, time and temperature, individually,
using only the FTIR spectra.

An ANN was performed by Barbosa et al. (2019) [3]
to model the temperature-frequency dependence of dynamic
mechanical of thermoplastic polymers of advanced compos-
ites. They studied a new Elium® acrylic matrix developed
by Arkema to evaluate the accelerated test methodology
based on time-temperature superposition principle of Carbon
Fiber/Elium® 150 composites. The learning rule employed
by the ANN was Levenberg-Marguardt algorithm, with the
gradient descent transfer function into the network. The
temperature and frequency dependence were chosen as input
parameters and the output parameters provides information
about the material properties of the carbon fiber.

Very recently, Adesina et al (2020) [1] examine the
potential of ANN for the prediction of mechanical proper-
ties, namely density and hardness of graphene nanoplatelet
(GNP)/polylactic acid (PLA) nanocomposite developed un-
der various operating conditions of spark plasma sintering
(SPS) technique. They employed back-propagation archi-
tecture and Levenberg—Marquardt algorithm to predict the
mechanical performance in terms of density and hardness
property of GNP/PLA nanocomposites.

ANN developments have gone through three periods of
activity. The first period in the 1940s was due to the work
of McCulloch and Pitts (1943) [20]. The second occurred in
the 1960s with Rosenblatt’s perception theorem of perceptual
convergence (1962) [30] and the work of Minsky and Papert
(1969) [24] showing the limits of a simple perceptron. Theirs
findings have showered the enthusiasm of most researchers,
particularly those in the IT community. After a period of
silence that lasted almost 20 years, in the early 1980s, the
ANNSs regained the interest of researchers. This resurgence
made it possible to develop the back-propagation learning
algorithm for multilayer perceptrons.
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The use of a neural network normally requires a large
database in order to obtain the best credible model. But the
set of experimental data in the field of materials, in particular
polymers, is generally limited. In this study, we use an
initial small experimental dataset, however ANN can exhibit
problem behaviour in performance with over-fitting and the
impossibility of generalization of the neural network. One
method for improving network generalization and avoiding
over-fitting is to use a technique called regularization. To
solve these problems, regularization techniques have been
applied. In view of our tiny dataset collected from the poly-
mer B, it has been attempted to provide a strain predicting
model based on the Bayesian regularization in combination
with Levenberg-Marquardt algorithm and a penalized cost
function in combination with BFGS algorithm.

Bayesian regularization has been employed to study vari-
ous problems such as constitutive modeling : in [17] (2003)
M. Lefik and B.A. Schreer. proposed a Bayesian Regular-
ization Artificial Neural Network (BRANN) as a tool for
numerical modelling of the constitutive behaviour of a phys-
ically non-linear body, or to study magnetic shielding in [15]
2010, where analytical, finite element and BRANN methods
was compared to calculate the shielding efficiency of a
cylindrical ferromagnetic shield. In [31] Singh et al. (1998)
used a BRANN to predict the yield and tensile strength of
rolled steel sheets as a function of chemical composition and
processing parameters. Zhang et al. [14] (2002) employed
BRANN to predict storage and loss modului of short fiber
reinforced composites as a function of material composition
and temperature. Gavard et al. [11] (1996) used BRANN to
study formation of austenite during continuous heating of
steels. The goal being to predict austenite start and finish
temperatures as a function of chemical composition and
heating rate.

Arzaghi et al. [2] (2017) presents a dynamic risk-based
methodology for maintenance scheduling of subsea pipelines
subjected to fatigue cracks using Bayesian network inference.

More recently, Pruksawan et al. [29] (2019) proposed the
optimization of a very high strength adhesive material based
on an active learning model and Bayesian optimization.
This combination makes it possible to rely on a small
number of experimental data, without having to use data
from the literature. They selected the 5 target values closest
to experimental reality and then injected them into the initial
data set.

Regarding the BFGS algorithm, H E. Balcioglu et
al. (2017) [4] used six different training artificial neural
network algorithms such as Bayesian regularization, Leven-
berg—Marquardt and BFGS to predict the failure loads of
bonded pultruded composite.

Recently, M. Wiciak-Pikuta et al. deals in [35] with
the phenomenon of tool wear prediction in face milling
of aluminum matrix composite materials (AMC), class as
hard-to-cut materials. For this purpose, the MLP networks
is considered with different activation functions based on
cutting force and vibration acceleration measures in the time
domain. The BFGS algorithm, which is considered one of
the most effective, is selected for training 13 imputs.

Our study has three steps. First, in part I, mechanical
and physico-chemical characteristic of the polymer B and
systems A-150, A-185 were extracted from the thesis work
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of Laurence Poussines [28]. They are summarized below.
Second, tensile tests were performed at three imposed tem-
peratures by the industrialist, —40°C', 25°C and 70°C. And
thirdly in part II, ANN was carried out to train with the
B system and to predict the mechanical properties of the
polymer B and systems A-150, A-185 for different aging
times.

The aim of our study is to present the prediction of
the deformation of polymer as function of temperature,
Youg modulus, stress and aging time using ANN. On the
basis of a small experimental data of polymer system B,
we tried to predict, using regularized algorithms, the strain
measurements for different aging time.

This paper is organized as follows: section II presents the
experimental procedure. Section III concerns the ANN con-
figuration and the presentation of the Bayesian regularization,
Levenberg—Marquardt and BFGS algorithms.

II. MATERIAL AND METHODS
A. Material

In Laurence Poussines work [28], carbon/epoxy compos-
ites have been processed by Liquid Resin Infusion (LRI).
This process involved selecting a polymer system suited
to the parameters imposed by the infusion process. This
process makes it possible to impregnate a stack of dry fabrics,
without a rigid counter-mold and without autoclaving, only
by vacuum pulling. Low viscosity around 100mPa.s and
temperature are the essential criteria for the success of the
infusion in order to obtain composite parts of quality. The
function that these parts must provide is reliability in the
environment because the fuselage structure is subject to
temperature variations between 60°C' and +90°C' and this
temperature range must be ensured even after aging.

Two epoxy/amine systems are used in this work. System A
was developed primarily for the injection and reinforcement
infusion processes. According to [Kiuna 2002] [16], The
system A is a monocomponent. It consists of a stoichio-
metrics blends of a tetrafunctional epoxy prepolymer, the
tetraglycidyl methylene dianiline (trademark TGMDA) and
two hardeners, The 2,6-diethylaniline and le 2-isopropyl-6-
methylaniline.

The polymer system B is used for the training phase of the
ANN and to predict strain of the polymer for different aging
time. The system B is composed of a resin and a hardener
purchased by Sicomin. Based on supplier data, the resin is
a mixture between Bisphenol A DiGlycidylEther (DGEBA)
and N, N-Diglycidylaniline, Figure 1

o, CH, OH CH, o
7/ \ | | | 7\
CH,— CH—CH,— ? 0—CH,—CH—CH,—0. ? .0—CH,—CH—CH,
CH, CH,
<}

e

Fig. 1. Molecules present in resin B.
Two elements make up the hardener: 4,4-
methanediyldicyclohexanamine and 3- (aminomethyl)

-3, 5, 5-trimethylcyclohexanamine, the structures are shown
schematically in Figure 2:
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CH,
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H,N NH, CH;3 CH,

Fig. 2. Chemical structure of the substances present in the hardener.

B. Cured polymers’characterization before aging

The infusion of system A begins with preheating the
resin to 80°C'. This then passes through a heating system
maintained at 110°C' to lower viscosity of system A up to
80 mPa.s then to diffuse in the preformed room maintained
at 130°C in an oven or simply by heating lamps. Finally, the
polymerization takes place at 150°C' with these same heating
systems for 2 hours. Adapting system A [28] to the infusion
process generates this polymerization temperature that must
not be exceeded. In this case, the polymer system obtained
is incompletely crosslinked with a rate of conversion of 89%
measured by Infra-Red Spectrometry.

An optimized polymerization cycle (2h at 185°C' after
a rate at 3°C' /min) made it possible to obtain a rate of
high conversion of 98% measured by IRTF as well as a
glassy temperature Tg, determined by Differential Scanning
Calorimetry (DSC), of 2113°C. These properties are ob-
tained with oxidation on the extreme surface of the samples
produced. For the infusion of system B, an optimized poly-
merization cycle (2h at 100°C' + 3h at 140°C'" at 1°C/min
between isotherm) made it possible to obtain a high con-
version rate of 98% measured by IRTF as well as a Tg of
1353°C' measured by DSC. These properties are obtained
without oxidation on the surface of the samples.

Tensile tests are carried out on 2x12x45mm3
rectangular-shaped samples. For each testing temperature
imposed by the manufacturer (40°C, 25°C, 70°C' and each
polymer, 3 test pieces were tested using an INSTRON
type machine, equipped with a 5000 N load cell and an
INSTRON extensometer, at a speed of 0.2mm/min. System
B behaves brittle at low temperatures and ductile at high
temperatures whereas system A185°C' behaves brittle what-
ever temperature. Indeed, elongation at break for system A
are lower values compared these of system B. The Young’s
modulus is similar between the two cured epoxy systems
and decreases as the temperature rises. The breaking stresses
reach a maximum at ambient temperature but see their values
decrease at 40°C' and 70°C.

C. Experimental data set

A total of 3 data sets with 33 points used for
the development of the neural network model were
collected from experimental values of the system B.
Each data point consisted of the following variables
measured in the experiment : stress, percent strain and
modulus of elasticity for the aging time sequence: ¢ =
{0,24, 48,168, 336, 720, 2160, 4320, 6480, 8640, 10800}
hours and the temperatures of —40°C, 25°C and 70°C.
The experimental data obtained from tensile tests for the B
system studied at different temperatures and different aging
times are shown in Figures 3, 4 and 5.

Tests carried out at room temperature show a slight
decrease in Young’s modulus up to one month of aging,
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6000 and its stress and strain at break decrease. On the other
hand, at 70°C', the modulus of elasticity and the tensile
stress are lower and the deformation is higher than the values
taken at 25°C. The test pieces seem more ductile but a
S\ Basec certain brittleness is notable due to the lower values of the
s B-40°c tensile stress. Let us note all the same an increase in the

“ B70°c breaking stress and the strain for aging times greater than
9 months. Indeed, the test temperature is close to the zone

of macromolecular mobility. The material is therefore in its

ductile zone which generates an increase in stress and strain.

Modulus of elasticity (MPa)

0 24h 48h 1w 2w 1m 3m 6m 9m  12m 15m
Aging time

Fig. 3. Evolution of the elastic modulus of system B as a function of the At llong.er aging tl'mes’ the network is irreparably a_'ffeCt.ed
aging time and the test temperature. by oxidation as evidenced by FTIR and hydrolysis with

chains scissions leading to a mass loss during desorption

test in oven at 70°C' .
then, after that, a slight increase in it. Its stress and strain

are constant except for uncertainties during the first month 4
and then decrease beyond. The samples undergo from the Am/mo %)
first stages of aging plasticization due to the penetration of ! — ::80
water but which remains relatively low and which leads to a 2
reduction in the Young’s modulus. But at longer times, the
system becomes rigid and the network is irreparably affected 1
following the hydrolysis in operation. infrared evidence. 0

Rigid as supported by increase again of elastic modulus
and decrease of stress and strain at break. -1

-2
¢/ e (h2/mm)

80

Fig. 6. Desorption curve at 140°C for the three systems.
60

20

Stress (MPa)

1605...: 1035..:

Systéme B en surface
= to

0 24h 48h 1w 2w 1m 3m 6m 9m 12m 15m
Aging time

24h =

12m l

4m ! 1650 c.:
Fig. 4. Evolution of the breaking stress of system B as a function of the
aging time and the test temperature.

o Absorbance

4000 3500 3000 2500 2000 1500 1000 500

Fig. 7. Absorbance spectra of system B at the surface as a function of the
|\ number of waves (cm 1) and as a function of the aging time.

. B25°C  Also noteworthy is the appearance, increase and decrease

~72B-40°C of several absorption bands. Several phenomena are at the

B70C origin of these modifications. Infrared analysis shows a
decrease in the concentration of CH bonds (between 2700
and 3000 cm~1) and an increase in the absorption bands of
C = O at 1650 and 1600 crn~! characteristic of amides. The
chemical reaction leading to the formation of amide under
the action of oxygen is shown in Figure

IS
i

Strain (%)

N

2w 1m  3m 6m 9m 12m 15m
Aging time

0 24h 48h 1w

Fig. 5. Evolution of the deformation of system B as a function of the
aging time and the test temperature.

D. Presentation of the database

The tests carried out at —40°C weaken the polymer In this study, an ANN was implemented with two different
network even more, which sees its Young’s modulus increase  algorithms for regularization conditions and compared first
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OH OH OH (‘m ,
0. | / | 7 ’ ;

f—> —CH,—CH—Cl —CH,—CH—CH—N{ —> —CH,~CH—C —N

CH,—CH—CH—N{ —> —CH,—CH %H NQ ,—CH { \

—CH,—CH—CH;~NH ]
O0H 0 0

Fig. 8. Reaction mechanism of amide formation (Pei 2011) [26].

to Levenberg-Marquardt algorithm without regularization. As
the data set is small we need all the information to feed the
neural network. We know that when the tensile tests a certain
value of stress is applied on pieces and percent strain is the
expected result. A feed-forward network with one layer of
hidden neurons was builded to represent the complexity the
nonlinear nature of the problem.

The input layer consisted of four inputs: the stress, Young’s
modulus, aging time and temperatures : thus the total data
set of system B consists of 4x33 matrix defining four
attributes for 33 different measurements. The targets are the
33 measurements of the corresponding strains of the polymer.
The feed-forward neural network model maps the functional
relationship between the four parameters and the strain. An
optimal number of neurons in hidden layer is selected by
testing different choice of neurons number. The data are
summarized in the attached table:

TABLE I
VARIATION RANGE OF THE POLYMER B.

Time (months) T °C E (MPa) o(MPa)

10 - 75

e(%)
0.1 -69

0-15 -40, 25,70 2000 - 5000

The model parameters are adjusted during the model
calibration phase in order to minimize the error between the
value obtained by the network and that normally obtained. In
this study, in order to avoid overfitting of the trained ANN,
two regularization methods were applied and compared.
The first method of regularization consists in modifying the
performance function which is the mean sum of squares of
the network errors by adding a term that consists of the mean
of the sum of squares of the network weights. This method
is in combination with BFGS algorithm. The second method
consists of Bayesian regularization which determines the
optimal regularization parameters in an automated fashion
coupled with Levenberg-Marquardt algorithm.

E. Prediction of the strain based on neural network for
polymer systems

First, the ANN model was developed and its performance
assessed on a dataset of 33 samples of the original dataset.
In our case, the database being very small we need as many
data as possible for training. Then we divided randomly
the data in two sets, given the small data set, everything
is done so that BR trains on the maximum amount of
data: a separate training set and a testing set. We take the
ratio 90% of the data dedicated to training the network and
10% of the data dedicated to testing the network. Then
we compare the performance of the three algorithms BR,
BFGS regularized and Levenberg Marquardt. We will see
that the two regularized algorithms offer better results than
Levenberg Marquardt. After this, for the following we will
only use these two regularized algorithms BR and BFGS.
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Then, to assess the predictive quality of the neural net-
work, we provide the last measurement of polymer B for
the temperature of 70°C' after an aging time of 15 months
and secondly a smaller dataset with 28 samples and strain
predictions for aging time ¢ = {3,6,9,12,15} months.

Having said that, we implement the ANN modeling using
Deep Learning Toolbox of MATLAB (R2020a edition), with
the Matlab commands : trainlm for Levenberg-Marquard
algorithm, trainbr for Bayesian Regularization algorithm,
tansig, mapminmax and trainbfg for BFGS algorithm. Before
training, it is useful to scale the inputs and targets so that
they always fall within a specified range. This is necessary
to avoid premature saturation of the activation function and
allows synaptic coefficients to be kept within relatively small
intervals. And it is also about reducing all the inputs of the
same order of magnitude which improves the convergence
of the algorithm. MATLAB automatically rescaled all input
and output variables using the “mapminmax” function such
that they resided in the range [1, +1]. So each variable is
normalized in this range using the equation to improve the
accuracy and efficiency of calculation:

_ (z—Tmin) 1

Tn = ("L'7naz_l"rrl'in) ( )
where x,, is the normalized value of the corresponding =,
xmax and Z,,;, are the maximum and minimum values of
x respectively.

III. ARTIFICIAL NEURAL NETWORKS CONFIGURATION
A. ANN architecture

The most widely used ANN in the community is the
multilayer perceptron (MLP), also called feedforward back-
propagation. In Figure 9, we see the fully connected network
which is divided into layers. In our study, the input layer
corresponds in p=4 independent variables and covariates. The
input variables are associated with each of N neurons in a
hidden layer by using weights (wg;,k = 1,2,...,N) and
a bias specific to each neuron. The number of hidden layer
depends the training process. The input vector of independent
variables p; = p1, p2, 3, p4 1s related to the output y;.

Aging
Time

OUTPUTS
Temperature b?

Young's
modulus

Strain

Stress

INPUTS

HIDDEN LAYER

Fig. 9. Artificial neural network design with 4 inputs
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Step 1

For N neurons in hidden layer of the ANN and appropriate

biases: b(ll), bél)...bg\}), then input values for neuron k prior

to activation is expressed linearly as b;cl) + ijlwkjpj.

We applied values to the input in each neuron an activation
function which is defined by:

4
Frb) + > wiiy). )

Jj=1

Step 2

Now, the actived output from the hidden layer is sent to
the output layer as SN wf fi (b + Z?:l wy;p;) + b
with the weights specific to each neuron wj and the bias
parameters b(!) and b(?) respectively in the hidden and output
layers. And at the end, the quantity is activated with the
function g(.) which is g[zgzl w) fr + 53] = a? =4/, and
becomes the predicted value y; of the target variable in the
training set as:

N 1 R
=9[> riz w;ef(bl(c "+ Zj:l Wi;p;) + b3, 3)
j=1,2...,R k=1,2..N.

where w), = {wy;}.

In our case, we used the sigmoidal activation function such
as tangent hyperbolic and logit in the hidden layer. This
property shows the interest of neural networks compared
to other approximators such as polynomials whose output
is a linear function of adjustable parameters: for the same
number of inputs, the number of adjustable parameters to
be determined is lower for a neural network only for a
polynomial. The activation function at the output layer g is
linear.

B. Orverfitting and Regularization

Several regularization methods exist in the literature, in our
case, we use active method such as Bayesian regularization
which we compare to another method of regularization which
modifies the performance function with BFGS algorithm.

In the Bayesian approach, all the parameters, in particular
the network weights, are considered as random variables
from a probability distribution, the weights are assigned
a probability fixed a priori, and, once the training data
have been observed, this a priori probability is transformed
into posterior probability thanks to Bayes’ theorem. In the
following section we review Bayesian techniques, applying
by (MacKay 1992 [21]; Dan. Foresee and Hagan 1997 [10])
to optimize regularization.

1) Bayesian Regularization: The training process is car-
ried out by minimizing a function F' named cost function,
computing the distance between real and predicted data, this
function determines the objective to be reached. The function
writes:

1 ¢ 1
F = Ep(Dlw, M) = 1= > _(e:) :NZyﬁyﬁ (4)
i=1 i=1
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where Fp is the mean sum of squares of the network error,
D is the training data set and M is the specific functional
form of the neural network architecture.

In Bayesian Regularization, an extra term, F,,, is added by
the neural network to the objective function which penalizes
large weights in anticipation to reach a better generalization
and smoother mapping. A gradient-based optimization algo-
rithm is then applied to minimize the function:

F =BEp(Dlw,M)+ aE,(w, M) (5)

where E,,(w, M) is the sum of squares of architecture
weights, M is the ANN architecture and « and (3 the regular-
ization parameters or hyper-parameters. The second term on
the right hand side of equation, E,,is the weight decay and
with , the weight decay rate, favors small values of w and
decreases the tendency of a model to overfit. Large values
of « lead to posterior densities of weights that are highly
concentrated around zero, so that the weights effectively
disappear discounting connections in the network. If « <<
then the training algorithm will make the errors smaller. If
« >> (3, training will emphasize weight size reduction at
the expense of network errors, thus producing a smoother
network response [10].

After the data is taken, the density function for the weights
can be updated according to Bayes’ rule. The posterior
distribution of w given «, 8, D, and M is:

P(D|w, 8, M).P(w|o, M)
P(Dle, 8, M)

where D is the training data set and M is the specific
functional form of the neural network architecture consid-
ered. P(w|D,«,, M) is the posterior probability of w
and P(D|w,B, M) the likelihood function which is the
probability of the occurrence, giving the network weights.
P(w|a, M) is the prior distribution of weights under M,
P(D|w, 8, M) is a normalization factor or evidence for
hyperparameters « and §.

We assume that the noise in the training set data is
Gaussian and that the prior distribution for the weights is
Gaussian, then probability densities write:

( )n/2 exp(_BED)v
(¢ )N/2 exp(—akE,),

where n and N are the number of observations and total
number of network parameters, respectively. We substitute
these two probabilities in the equation 6, we obtain:

P(w|D,a, 3, M) =

(6)

P(Dfw, 5, M) =

P(wla, M) = @)

_ (&) (2)N/2 exp(—(BEp+aEw))
- P(D|e,3,M)

= Zrtap) - P(—F(w))

P(w|D,a, 8, M)

)
Maximizing the posterior probability P(w|D,«, 3, M) is
equivalent to minimizing the regularized objective function
F =BEp(D|w, M) + aE,(w, M).
Considering the joint posterior density by:

P(D|a, 3, M)P(a, 8, M)
P D, M) =
(a, 5D, M) P(D|M) ©)
Now the equation 6 is, according to Mckay 1992 [21] :
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P(D|w,3,M).P(w|a,M
P(D|O{,ﬁ,M) = ( lP(BD|a),,B,](\/[)‘a )
. Zr(a,B) exp(—BEp—aFE,)
- (%)11,/2.(%)1\7/2' exp(—F(w)) (10)
_ Zr(,B)

where Zr (v, ) can be estimated by Taylor series expansion:
see (Foresee et al 1997 [10]). The objective function F'(w)
has the shape of a quadratic in the neighborhood of the
minimum point, then F'(w) is expanded around the minimum
point of the posterior density, where the gradient is zero.

Zr(a, ) = (2m)N/? (det (HMT)71) /2 exp(—F(w™F))

(1

where H = 8V2Ep + aV2E,, the Hessian matrix of the

objective function. Values of regularization parameters, o and
[ are calculated as:

aMP 2 and 6MP _ n-—r

= 2B, (wMP) = 2Ep(wMP)

with v = N — 2aMPTr(HMF)~1| the effective number of
parameters, and N the total number of parameters in the
network. The Bayesian optimization of the regularization
parameters requires the computation of the Hessian matrix
of the function F(w) at the minimum point w™¥ [10].
Mackay 1992 proposes an approach in [21]: the Gauss-
Newton approximation to the Hessian matrix can be used
if the Levenberg-Marquardt optimization algorithm is em-
ployed to locate the minimum point.

2) Levenberg-Marquardt optimization: The Levenberg-
Marquardt algorithm is a robust numerical optimization
technique for mapping as well as function approximation.
We define the least squares cost function J(w) by

12)

n

1 ! 2
J(w) = 5;(% ~ ) (13)
its gradient is therefore defined by the vector
oJ oJ aJ
VJ(w) = ( T (14)

dwy’ dws’ " dwy,

The Hessian matrix of the cost function, and has the form:

2 J(w)  8%J(w) 3% J(w)
(Ow1)? Owiws Owiwy,
92 J(w)  9%J(w)) 8%J(w)
Owpwi Ownwa (Bwnp,)?

The Levenberg-Marquardt algorithm, which also belongs to
the class of quasi-Newtonian methods, obeys the following
formula for updating the parameters at [ iteration:

wtl = w — [H(w') + s I~ VI (w!) 15)

where 1741 is Levenberg’s damping factor, which is adjusted
at each iteration and guides the optimization process, and I is
the identity matrix. We will find in [32] a popular alternative
to the Gauss-Newton method of finding the minimum of a
function.

From a practical point of view, the Bayesian approach
to neural networks brings important improvements: as all
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calculations are done from the training base, it is no longer
necessary to have a validation base. It is therefore possible
to use all the data available to estimate the weights of the
network.

3) Regularized cost function and BFGS algorithm: An-
other method of regularization consists in modifying the
performance function, we add a penalizing term consisting
of the mean of the sum of squares of the network weights
to the cost function.

F =35 2 —v)?) + 3(5 i wi).

We implement with this regularized function the BFGS
algorithm.

This algorithm is based on an approximation of Newton’s
method. The parameter update rule is defined as follows:

(16)

W't = wh — My VF(wh) (17)

where M;, is an iteratively calculated approximation of
the inverse of the Hessian matrix. The approximation of the
inverse of Hessian is modified at each iteration according to
the following rule:

68 sy MMy
5ZT’W 5LT”/1

T
M4 =Ml+(1+%)

"

(18)

where v, = VF(w;) — VF(w;—1) and 6; = w; — w;—1. The

initial value of the matrix M is generally the identity matrix,

value to which M;,; will also be reset during the algorithm
if it turns out to be no longer definite positive.

The interest of the BFGS algorithm lies in that it makes
it possible to be freed from the computation of the inverse
of the Hessian matrix (which can itself prove to be delicate
in certain cases), by iteratively estimating an approximation
of this inverse matrix according to formula (13). This quasi-
Newtonian method is only effective near the minimum of the
cost function.
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