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Abstract

In order to address the question of the SPH (Smoothed Particle Hydrodynamics)
Laplacian conditioning, a spectral analysis of this discrete operator is performed. In
the case of periodic Cartesian particle network, the eigenfunctions and eigenvalues
of the SPH Laplacian are found on theoretical grounds. The theory agrees well with
numerical eigenvalues. The effects of particle disorder and non-periodicity conditions
are then investigated from numerical viewpoint. It is found that the matrix condi-
tion number is proportional to the square of the particle number per unit length,
irrespective of the space dimension and kernel choice.
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1. Introduction and notation

The Smoothed Particle Hydrodynamics (SPH) Lagrangian method has now reached
its maturity in the field of computational mechanics. We assume the reader is familiar
with SPH (see e.g. Monaghan, 2005; a recent review for fluid application is given e.g.
by Violeau and Rogers, 2017). SPH being based on the motion of material particles,
the differential operators are approximated with discrete operators involving sums
running over the (neighbouring) particles that are within the kernel support of a
given particle. Here we focus on the discrete Laplacian operator used for several
purposes in SPH. For the modelling of viscous forces, several kinds of SPH Laplacian
forms can be used (Violeau, 2009) and applied to the (vector) velocity field, one of the
most commonly used is that of Morris et al. (1997). On the other, since the work of
Cummins and Rudman (1999), many publications have used a similar SPH Laplacian
applied to the (scalar) pressure field in order to solve a Poisson equation to deal

with incompressible flows through a projection method, the so-called ISPH method
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(Incompressible SPH, see Shao and Lo, 2003; Lind et al., 2009, Leroy et al., 2014 and
2015, among others). A similar technique is employed in other related particle-based
simulation methods such as MPS (Moving Particle Semi-Implicit, see e.g. Koshizuka
et al., 1995; Khayyer and Gotoh, 2009). A review of these techniques is proposed by
Ma et al. (2016). In this kind of work, the matrix associated to the SPH Laplacian
must be inverted, and the question of its conditioning has never been addressed.
Inverting this kind of matrix is also useful when applying an implicit integrator to
viscous forces with low Reynolds numbers (Peer et al., 2015). More generally, the
spectral properties of the SPH Laplacian operators can be useful to study some
numerical properties of this method, like energy modes, numerical stability (Violeau
and Leroy, 2014 and 2015), or SPH convergence.

In this work we will look for the eigenfunctions and eigenvalues of the Laplacian
discrete SPH operator for pressure, or rather minus the Laplacian, denoted —L. Our
final goal is to estimate the condition number of the associated matrix. We work
in arbitrary dimension d (typically d = 2 or 3), on a Cartesian lattice of N = n?
particles with distances 7 and individual volumes V = §r?, covering a square (or
cubic) domain of size L? (with L = ndr), and periodicity conditions in all directions
(the case d = 2,n = 6 is shown in Figure 1). Hence, the N degrees of freedom are
the pressures {py}, b € {1, ..., N}, making an N—dimensional vector P. The discrete
Laplacian operator used in ISPH, without rigid boundaries and under the assumption

of constant particle volume, reads:

I
Wap

Va,(LP), =2V > (pa — ps)
b

(1)

Tab
with usual SPH notations rqp = |rep|, rap = rq — rq and w’, = w' (rq), w being the

smoothing kernel. In the following we also use the following notation:

wl
Wab = 72V7ab = Wba >0 (2)

Tab
(the latter quantity is non-zero since the sum runs over b # a). The quantities Wy
are thus symmetrical; like the Laplacian they have the dimension of the inverse of a

surface.

From label symmetry we know that the operator —L is positive:
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Figure 1: Cartesian periodic network of particles. Case n = 6, i.e. N = 36. The figures between
parentheses show (k1,q,k2,q).

PT (_L) P= Zpa (pa - pb) Wap (3)
a,b

1
= 52(% —pu)? Wap > 0
a,b

This expression also shows that the kernel of —L (i.e. the set of pressure fields such
that their Laplacian vanishes) is the vector line of constant pressures {py} = {po}-

We will first characterise multi-periodic functions on the considered particle net-
work, then show that some of them are eigenfunctions of —L and identify the corre-
sponding eigenvalues and their orders of multiplicity. The set of such eigenfunctions
will be proved to make an orthonormal basis of the —L eigenfunctions. We will finally
estimate the condition number of the —L matrix as a function of the domain size L
and the kernel standard deviation o.

2. Spectral analysis of the SPH Laplacian

2.1. Eigenfunctions and eigenvalues

We try to solve the following problem:

(~L)P = AP (4)

which also reads

Va, (A — Z Wab> Pa + Z Wabpb =0 (5)
b b



By analogy with the ordinary Laplacian and with the discrete Finite Difference
Laplacian operators, we consider the vectors P of the form Va,p, = fk (r,), where

the functions fk are defined by

fx (r) = ﬁ exp (iK - r) (6)

K = Kje; being an unknown wave vector (the normalising factor will be explained
later). The spatial coordinates are defined by r = z;e; ({e;} being an orthonormal
basis of R?) and the origin is located on the bottom left corner of the domain (in two

dimensions, see Figure 1). The periodicity conditions read

Vi e{l,...d}, fi (r + Le;) = fi (r) (7)

With the proposed functions, this gives

Vi€ {l,..,d}, et =1 (8)
thus

Qkﬂr

Vi€ {1 ndh K= ok € 2 (9)

From now on, we denote these functions by fi, where k = {k1,...,kq} € Z¢, thus

27 .

o1 2
Ji(r) = Tajz &P (Lk . r) (10)
With our assumptions the particles have half-integer coordoninates, i.e. x;, =
(k:j,a + %) or, with k;, € {0,...,n—1}, or r, = (kj,a + %) dre; (with a summation

over the repeated label j). Then, since L = ndr:

d .
1 2um 1
va, i (va) = Tar Hexp{ n i (kj’” 2)] ()

Jj=1

We now observe that these functions are redundant. Indeed we have

Vie{l,....,d}, fitne; (ra) = fi (ra) exp (2i7k;q) (12)

= fi (ra)



The latter function belongs to the same vector line as fi. We thus have N = n?
linearly independant periodic functions fx, given by k € {0,...,n — 1}d. We can see

that they all are eigenfunction of —L, by dividing (5) by fk (rs):

0
Va, A=Y Wap + > Wapexp (_’L”k : rab> -0 (13)
b b

This relation can be satisfied by all particles a because the sums are invariant

through discrete translations on the regular network. We thus have

M= {1 —exp (—?k : rabﬂ Wab (14)

b

2.2. Orthogonality of the eigenbasis

The proposed eigenfunctions fyx are linearly independent since they are orthogonal

with respect to the following hermitian product:

<{fa}7{ga}> = 5Tdea§a (15)

where Z denotes the complex conjugate of z. Indeed, from (11) we have

{he )} {fiw () }) = (fg)d I1 Z_; exp [ZZT (kj — k) (kj,a + ;)}
— Lo [T 0 )] 5 oo [27 1 sy 10

(the minus sign in front of £ stems from complex conjugation of fi (rs)). We now

observe that

Zj = exp [2;” (kj — k;)] (17)

is an n—th complex root of 1. Hence:

n—1 . n—1
Vi, > exp {2:( (kj — k) m} =y zr (18)
m=0 m=0
=10, k!

since the sum of the first n powers of Z; vanishes unless Z; = 1, i.e. k; — k;- =0.

Finally:



1 d .
(Che o)} U )} = TLexo | (hy = ) i (19)
j=1
e (Skk/
3. Analysis of the spectrum

3.1. Counting the eigenvalues

We saw that the eigenvalues are given by (14), which also reads

2
Ak = Z [1 — cos (;k . rabﬂ Wu =0 (20)

b
ke {0,..,n—1}*

This is because the contribution of the sinus terms cancels out by symmetry, since

for all particle b there is another one b’ such that ryoy = —14, with Wy = Wyy:

2
S sin (gk : rab> Wap = 0 (21)
b

The fact that the eigenvalues (20) are real and positive is natural since the matrix
of —L is symmetrical and positive. As we said in the introduction, it is positive
definite only for non constant pressure fields. We must now remove the constant
pressure fields, given by the vector line of eigenfunctions directed by fo (this is
possible since the pressure is only defined up to an additive constant value). We
must thus remove the set k = (0, ...,0), which amounts to removing the eigenvalue
Ao = 0. This can be done by imposing the pressure of one particle, reducing the
number of degrees of freedom (or eigenmodes) to N — 1.

It is obvious that several eigenfunctions can correspond to the same eigenvalue.

Indeed, using the notation k; 4, = kja — kj» we have

2
Vj c {]., . d} R >\nej—k = Z |:]. — COoS (27Tkj,ab - f’nk . I‘ab>:| Wb (22)
b
2
= Z [1 — cos (Lk . rab>} Wb
b
= )\k

Thus, every coordinate k; of k leads to the same eigenvalue as k:; =n—kj. The

values of k; can thus be paired, except 0 and § (if n is even). This holds in all spatial



directions, which leaves only (L%J + l)d — 1 distinct non-zero eigenvalues. This is
still reduced by noting that the k£; can be swapped by space isotropy. Thus, we can
write the k; by decreasing order: there are L%J + 1 choices for k; (0, ..., L%J), then
k1 + 1 choices for ks (0, ..., k1), etc. Finally, there are

[5]+2
d

—1 (23)

distinct non-zero eigenvalues, unless other distincts sets of integers give the same
result using (20). This reasonning also shows that when n is large, most of the
eigenvalues have the order of multiplicity 2.

3.2. Approximation of the eigenvalues

When the number of particles is large, the formula (20) can be approximated by an

integral:

w' (r)

r

Ak &~ 2 /Rd [cos (K -r)—1] dr (24)

This integral can be extended to the whole space if a is placed at the center of
the domain and chosen as the origin in (24), the support of the kernel being smaller
than L/2. Tt is related to the dimensionless function Fy defined by Violeau & Leroy
(2014, 2015):

Fy (K*) = 202 / fcos (K - 1) — 1] ) gy (25)

R4 r
with K* = oK and K = |K|. As a reminder, the kernel standard deviation is defined
by

1
o? = 7/ 2w (r) dr (26)
d Jpa
Hence:
1 *

It is interesting to note that this approximation does not break the positivity of
eigenvalues, since Fy is positive regardless of the kernel choice (since w’ (r) < 0). We
also notice that the eigenvalues have the dimension of the inverse of a surface, as
expected. Finally, we note that with the present approximation Ay only depends on

the norm of K. As a consequence, for a given choice of k there may be other vectors



k' giving the same approximation (27) of A\x. As a consequence, the approximation
(27) can fail in predicting the orders of multiplicity of the eigenvalues (examples will
be provided later).

The norm of the wave vector is

thus

3 k2

Ak iFQ Qﬂii (29)
n or

3.3. Condition number of the SPH Laplacian

The condition number of positive definite matrix is given by the ratio of its extreme

eigenvalues. With (29) we obtain, for large n:

1 2 o
e =0~ 5P (4 ) .
1 o
)\max =A n n ~ < F d— 1
(I_EvaLiJ)T o2 2 (W\f&“) (3 )

We note that Ani, depends on Z, while Aya depends on (;’7. Thus both dis-
cretization parameters have an effect, each of them at one side of the spectrum.
To go further in estimating the condition number, we use Violeau et Leroy’s

results (2014):

* *2
Fy (K™) P K (32)
B(K") =, Fo (33)

F3 is plotted in Figure 2 for the Gaussian kernel on one hand, and for Wendland’s
5th order kernel in dimension 2 on the other hand (Wendland, 1995). The asymptotic
value F given in (33) is equal to 2 for the Gaussian kernel irrespective of d, and
remains close to 2 for other types of kernels (this asymptote is reached when K* ~ 4).
Now, for usual SPH simulations 7v/d 5 ~ 10, showing that increasing - has almost

no effect on Ayna.x. Moreover, the factor }L

in Amin (equation (30)) allows using the

approximation of Fy for small values of K* (equation (32)). Hence:



Fy

Figure 2: Graph of F» (K*) for the Gaussian kernel and Wendland’s 5th order kernel in dimension
d = 2. The black lines represent the approximations near the origin (32) (thin line) and (46) (thick
line), respectively.

Feo
>\max ~ ? (35)
The condition number of —L is thus given, as an approximation, by
Amax 1 L)?
~F|—— 36
Amin (277 0’) (36)

This is a very bad conditioning, similar to that of Finite Differences (Allaire &
Kaber, 2008). It is an increasing function of n, meaning that refining the discretisa-
tion can increase the numerical error. One can observe that it is proportional to n?
regardless of the space dimension. Besides, it is independent on the number of parti-
cles within the kernel support in the present approximation, which is a consequence

of the fact that Ayax is almost independent on £-). Finally, one can notice that



making the particle coordinates dimensionless would not improve the conditioning,
since the ration % would remain unchanged.

3.4. Case of the continuous SPH Laplacian

In the case of a large number of particles within the kernel support, the discrete sums
can be approximated by integrals, showing that the eigenfunctions and eigenvalues
are almost independent on the particle distribution. We can solve the following

eigenvalue problem similarly to what has been done so far:

vr, [ [p(r) = p (&)W (Jr —x'[) dr’ = Ap(r) (37)
[0,1]

where W is defined as above: W (r) = —2w’ (r) /r. We seek for orthogonal eigen-
functions in the form given by (6). The periodicity condition imposes that the wave
vector satisfies the same conditions as in the discrete case (9), but without restric-
tions to k, which can now be chosen arbitrarily in Z?. A development similar to (13)

gives, using the variable change ¥ =r’ —r:

)\k:/ [1 —exp (—iK-T)]W (F) dr (38)
[0,L]¢

= cos - T) — m r

2/[0,L]d[ (K-1)—1] F d

ZéFz(K*)

(if L/2 is larger than the kernel support). We thus get an infinity of eigenvalues, given
by the same formula as in the discrete case, but this time without any approximation.
This spectrum represents the limit of the discrete Cartesian case when dr/c is very
small. This result shows that the particle arrangement has only little effect on the
condition number when using many particles in the kernel support.

The eigenfunctions (6) are orthonormal with respect to the following hermitian

product:

Indeed, we have:
1 24w
== — (k-X)- 4
(fx, fxr) 74 /[O,L]d eXP{ i ( ) I'] dr (40)

10



On the other hand, on decreasing ¢ (yet in the continuous case) the norms of the
wave vectors K* are decreased. According to (32), the eigenvalues (38) thus behave

as follows:

A~ K2 (41)

These are the eigenvalues of the —A operator, as expected. Hence, the spectrum
of the SPH Laplacian operator tends towards the spectrum of the true Laplacian
operator when or and o are decreased while o /dr is increased. This gives a promising
clue to study the convergence of the ISPH Poisson equation.

4. Examples

4.1. Cartesian case

We first concentrate on the Cartesian case with n = 10; we thus have |5 | = 5.

Wendland’s 5th order kernel is chosen, given by

wo) = o (1-3) a2 (12)

where ¢ = r/h, the subscript + denoting the positive value. In dimension d = 2, for

this kernel o = ,/1—58h and F., = 32 while

187
2y oy = 30 (N 0y
PWA9) =502\ % (1 2)+ (43)
and
1
By (k= B _ 1T K20y (2K) — S KT I (2K) »
2 T 18 6Kt +I (K+2 . § Y (2KT)
2 4
with K+ = (h/o) K* = hK and
Y (z) = Jy (x) Hy () — Jo () Hy () (45)

(Violeau and Leroy, 2014). In the latter equation, Jo and J; are Bessel functions of
the first kind while Hy et H; are the so-called Struve functions (see Abramovic &
Stegun, 1972).

We consider three values of h/ér = 1.5, 2.0 and 2.5, i.e. o/dr = 0.79057, 1.05409
and 1.31762. The norms of the wave vectors are given by (28) with L = 10dr. We

11
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Figure 3: Graph of F» (K*) for Wendland’s 5th order kernel in dimension d = 2. The circles show
the dimensionless eigenvalues o2\ as a function f the wave vector norm, in the discrete periodic
Cartesian case with n = 10 for h/ér = 1.5, 2.0 and 2.5 (from top to bottom). The black lines
represent the approximations near the origin (32) (thin line) et (46) (thick line), respectively.
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Figure 4: Discrete periodic Cartesian case with d = 2 and n = 10, Wendland’s 5th order kernel.
Distribution of the 19 distinct eigenvalues for h/ér = 1.5 (top) and 2.5 (bottom), using Mathematica
(circles), exact theoretical values (equation (20), blue symbols) and approximate theoretical values
(equation (29), red symbols). The length of horizontal bars show the orders of multiplicity.
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denote here k = (k, £) (instead of (k1, k2)). According to (23), there are -1=20
2

distinct non-zero eigenvalues. However, we observe that the pair (k, ¢) = (0,5) yields
the same value of k2 + ¢ than (3,4) (in addition to (5,0) and (4, 3)). Therefore, in
the approximation (29) these pairs correspond to a unique eigenvalue with order of
multiplicity larger than 8 (i.e. 10 in the present case).

The approximate eigenvalues (29) are listed in Table 1 in the case h/dr = 2.0, by
increasing order and non-dimensionalised by 1/dr2. Their orders of multiplicity Ny
are also displayed, with total sum equal to 100 — 1 = 99 as expected. They are also
plotted on Figure 3, non-dimensionalised by 1/02.

The exact eigenvalues, given by (20), are a priori slightly different. This is con-
firmed by Figure 4, plotting the exact eigenvalues (20) as well as approximate ones
(29), for two values of h/dr. the same figure also shows the numerical eigenvalues
computed using Mathematica, which coincide with the present theory (20), including
the orders of multiplicity. One can see that the approximate formula overestimates
Ak. It is better when more particles are included in the kernel support (large h/dr),
as expected. Figure 4 also confirms that with this approximation some orders of
multiplicity are not well predicted.

The condition numbers for the three cases are given in Table 2. One can see
that the formula (36) is only a crude approximation. This is because the extreme
eigenvalues are only roughly estimated by (34) and (35) in this case, as evidenced
by Figure 3. This is due to the small number of particles. In order to improve this

estimation, one can refine (32) by

. . K*4
PR o K7 =

(Violeau & Leroy, 2014). Hence, (34) and (36) become

o () [ ()] n

(48)

(46)

Table 2 shows that this improves the prediction of condition numbers. However,
the best is to invoke the accurate formulae (30) and (31). The approximations (36)
and (48) are useful to study the behaviour of the conditioning with the problem

parameters.

14



Table 1: Discrete Cartesian case with d = 2 and n = 10, Wendland’s 5th order kernel. Values of
the 19 norms of the dimensionless wave vectors KT and associated dimensionless eigenvalues Ay
approximated by (29), with their orders of multiplicity Nyx. The pairs (3,4) and (0, 5) correspond to
the same eigenvalue in this approximation, thus the first of these pairs does not appear explicitely.

k = (k,0) Ne | Kt 572 \ie
(0,1) 4 1.2566 0.3543
(1,1) 4 17772 0.6376
(0,2) 4 | 25133 1.0423
(1,2) 8 | 2.8099 1.1837
(2,2) 4 | 35543 1.4498
(0,3) 4 | 3.7699 1.5026
(1,3) 8 | 3.9738 1.5436
(2,3) 8 | 4.5309 1.6190
(0,4) 4 | 5.0266 1.6551
(1,4) 8 | 51813 1.6627
(3,3) 4 | 53315 1.6690
(2,4) 8 | 5.6199 1.6790
(0,5) 10 | 6.2832 1.6966
(1,5) 4 | 6.4076 1.6994
(2,5) 4 | 6.7672 1.7070
(4,4) 4 | 7.1086 1.7134
(3,5) 4 | 7.3274 1.7170
(4,5) 4 | 8.0464 1.7257
(5,5) 1 8.8858 1.7315

On the other hand, the simple formula (36) should work better for larger values
of n, the spectrum being much larger (recall that the number of degrees of freedom
is n? — 1). As an illustration, Figure 5 shows the wave numbers in the case n = 40
with h/dr = 2.0. There are now 197 distinct non-zero eigenvalues in the approxi-
mation (27), with many pairs (k,¢) giving identical values, e.g. (0,5) ~ (3,4) (as
before), (1,7) ~ (5,5), (1,8) ~ (4,7), (2,9) ~ (6,7), (1,18) ~ (6,17) ~ (10,15),
etc. The condition number is thus equal to 70.06 according to (30) and (31), while
the approximations (36) and (48) give 70.92 and 71.41, respectively. Figure 6 shows
the distribution of eigenvalues in this case (actually for n = 39), with comparison of
theory against numerical values. Again we see that the exact theoretical predictions

are in perfect agreement with the numerical eigenvalues, while the approximate the-

15
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Figure 5: Graph of F» (K*) for Wendland’s 5th order kernel in dimension d = 2. The circles show
the dimensionless eigenvalues o2\ as a function of the wave vector norm, in the discrete periodic
Cartesian case with n = 40 for h/§2.0. The black lines represent the approximations near the origin
(32) (thin line) and (46) (thick line), respectively.

oretical eigenvalues using the F5 function are overestimated. The overestimation is

worst for larger eigenvalues since they correspond to smaller wave lengths.

Table 2: Discrete Cartesian case with d = 2 and n = 10, Wendland’s 5th order kernel. Condition
numbers of the Laplacian for the three chosen values of %

= 1.5 2.0 2.5
eqns  (30) and | ¢ co0s 48877 3.3379
(31)

eqn (36) 7.8805  4.4328  2.8370
eqn (48) 8.3986  4.9788  3.4236

4.2. Non-Cartesian cases

In order to look at the effect of particle disorder, we used Mathematica to compute
the discrete Laplacian eigenvalues for a set of 39 x 39 particles initially placed on a
Cartesian grid and then moved according to the ISPH equations in a lid-driven square
cavity (hereafter referred to as LDC, we used the model by Leroy et al., 2014). The

distribution of the particles is shown in Figure 7, while Figure 8 shows the eigenvalues

16
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Figure 6: Discrete periodic Cartesian case with d = 2 and n = 39, Wendland’s 5th order kernel.
Distribution of the eigenvalues for h/dr = 2.0, using Mathematica (circles), exact theoretical values
(equation (20), blue symbols) and approximate theoretical values (equation (29), red symbols). The
length of horizontal bars show the orders of multiplicity. The top picture shows all eigenvalues while
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compared to the Cartesian case with the same number of particles (note that the walls
of the cavity were removed, thus the domain size has been decreased by half the
initial particle spacing to keep the particle density homogeneous near the periodicity
boundaries). It can be seen that particle disorder has no effect on the spectrum
except a small peak on the highest values, thus the condition number is almost
unchanged. The reason for the increase of highest eigenvalues seems difficult to
explain. They correspond to wavelenghts of typically one particle spacing, suggesting
that this behaviour may be due to the local properties of the particle distribution.
A careful study of these properties in SPH, such as the correlation spectrum of
particle distances, remains to be done, although recent works suggest that the particle
distribution in practical SPH simulation may revele non-obvious properties. As an
example, Colagrossi et al. (2012) show that the equilibrium particle distributions
in two dimensions are not obtained on regular packings. As a second non-Cartesian
test case, we consider a particle distribution based on the 2-D Taylor-Green vortices
(TGV) with 101 x 101 particles. Figure 9 shows that for the TGV case the spectrum
is very similar to the Cartesian case, except that the asymptotic value is slightly
reduced.

4.3. Effects of non-periodicity

The effect of periodicity is now numerically investigated. The 39 x 39 case with
h/ér = 2.0 is considered with Mathematica with and without periodicity condi-
tions, on Cartesian and non-Cartesian particle distributions. Figure 10 shows that
with non-periodicity (i.e. when the particles on the boundary are considered like
free-surface particles), the eigenvalues in the Cartesian case are distributed on a
continuous curve with two steps (in the present case). On the other hand, the eigen-
values remain smoothly distributed when using a non-Cartesian particle distribution,
while the peak on highest values is smaller than in the periodic case. On the other
hand, Figure 11 shows that non-periodicity affects the intermediate eigenvalues that
are smaller than in the periodic case. However, in all cases the extreme eigenvalues
are almost unaffected, except the small peak on highest values. The fact that inter-
mediate eigenvalues are decreased by non-periodicity is not clear. They correspond
to wavelengths of a few particle spacings (typically the size of the kernel support,

suggesting that the particle near the 'free surfaces’ are responsible for this behaviour.
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Figure 7: Discrete periodic case with d = 2 and n = 39. Distribution of particles for the first

non-Cartesian (from the LDC ISPH simulation).
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Figure 8: Discrete periodic case with d = 2 and n = 39, Wendland’s 5th order kernel. Distribution
of eigenvalues for h/dr = 2.0 using Mathematica. Cartesian (blue symbols) vs. non-Cartesian from

the LDC case (red symbols).
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Figure 9: Discrete periodic case with d = 2 and n = 101, Wendland’s 5th order kernel. Distribution
of eigenvalues for h/dr = 2.0 using Mathematica. Cartesian (blue symbols) vs. non-Cartesian from

the TGV case (red symbols).
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Figure 10: Discrete non-periodic case with d = 2 and n = 39, Wendland’s 5th order kernel. Distribu-
tion of eigenvalues for h/dr = 2.0 using Mathematica. Cartesian (blue symbols) vs. non-Cartesian

from the LDC case (red symbols).
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Figure 11: Discrete non-Cartesian case from the LDC with d = 2 and n = 39, Wendland’s 5th order
kernel. Distribution of eigenvalues for h/ér = 2.0 using Mathematica. Periodic (red symbols) vs.
non-periodic conditions (blue symbols).

5. Conclusion

The present spectral analysis of the SPH Laplacian operator shows that its condi-
tioning is high, being proportional to the square of the number of particles per unit
length, as in Finite Differences. The exact theoretical eigenvalues agree well with nu-
merical values in the case of a Cartesian periodic network of particles, and numerical
values show that particle disorder has little effect on the condition number, while
non-periodicity (i.e. free surface boundaries) only decrease the intermediate eigen-
values, leaving the Laplacian conditioning almost unchanged. We should emphasize
that the present study being done on a square domain under steady conditions, the
effect of free surface and particle disorder in ISPH may be more important with more
realistic geometries and moving free surface, as suggested by practioners. A more
complete study involving realistic flows remains to be done. The effect of walls also
still remains to be addressed. This is a challenging work that depends on the way
walls are modeled in ISPH (see Leroy et al., 2014 for a consistent method). It is hard
to guess wether walls will modify the conditioning of the discrete Poisson equation
in a significant way.

The present theory can be useful to propose conditioning strategies, and gives clues
for studying the convergence properties of the discrete ISPH Poisson equation. This

could be done by decomposing the solution to the continuous and discrete Poisson
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equations on their respective bases of eigenfunctions (see Violeau et al. for a first

attempt).
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