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Abstract

Regressions created from experimental or simulated data enable the construction of
metamodels, widely used in a variety of engineering applications. Many engineering
problems involve multi-parametric physics whose corresponding multi-parametric
solutions can be viewed as a sort of computational vademecum that, once computed
offline, can be then used in a variety of real-time engineering applications including
optimization, inverse analysis, uncertainty propagation or simulation based control.
Sometimes, these multi-parametric problems can be solved by using advanced model
order reduction—MOR-techniques. However, solving these multi-parametric problems
can be very costly. In that case, one possibility consists in solving the problem for a
sample of the parametric values and creating a regression from all the computed
solutions. The solution for any choice of the parameters is then inferred from the
prediction of the regression model. However, addressing high-dimensionality at the
low data limit, ensuring accuracy and avoiding overfitting constitutes a difficult
challenge. The present paper aims at proposing and discussing different advanced
regressions based on the proper generalized decomposition (PGD) enabling the just
referred features. In particular, new PGD strategies are developed adding different
regularizations to the s-PGD method. In addition, the ANOVA-based PGD is proposed to
ally them.

Keywords: Model order reduction, Proper generalized decomposition, Sparse PGD,
Data-driven models, LASSO, Ridge regression, ANOVA, Elastic net

Introduction

Model order reduction—MOR-techniques express the solution of a given problem
(expressed as a partial differential equation—PDE, for instance) into a reduced basis with
strong physical or mathematical content. By “strong physical content” we mean that they
are extracted and motivated by the physical laws governing the system under study. In
addition, the dynamic evolution of this type of basis is also computed based on the corre-
sponding physics-based model. Very often, these bases are extracted from solutions of the
problem at hand and are obtained offline. This can be done, for instance, by invoking the
proper orthogonal decomposition—POD—or the reduced basis method—RB—[8]. When
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computing with a reduced basis, the solution complexity scales with the size of this basis,
which is in general much smaller than the size of the multi-purpose approximation basis
associated with the finite element method—FEM, whose size scales with the number of
nodes in the mesh.

Even if the use of a reduced basis implies a certain loss of generality, it enables impressive
computing time savings and, as soon as the problem solution continues living in the space
spanned by the reduced basis, the computed solution remains accurate enough. Obviously,
as soon as one is interested in a solution that can not be accurately approximated within the
space spanned by that reduced basis, the solution will be computed fast, but its accuracy
is expected to be poor. To improve generality while ensuring accuracy, an appealing route
consists of constructing the reduced basis and solving the problem simultaneously, as the
Proper Generalized Decomposition—PGD—does [8]. However, this option becomes in
general very intrusive, even more than the ones based on the employ of reduced bases. In
this work, by intrusiveness we mean the degree of changes required by the MOR frame-
work, with respect to standard simulation techniques, in the mathematical procedure to
solve an industrial problem. These changes should be programmed in softwares that are
already implemented in the market and therefore they already have the confidence of the
client as well as several years of improvement and development. Companies’ reluctance to
make major changes to their long-established software promotes and favors the creation
of methodologies with a low level of intrusiveness..

To alleviate intrusiveness, non-intrusive procedures were proposed. They proceed by
constructing the parametric solution of the parametric problem from a number of high-
fidelity solutions performed offline. In general, these are very expensive from the com-
puting time viewpoint, for different choices of the model parameters that constitutes the
design of experiments—DoE.

Among these techniques we can mention standard polynomial approximations on
sparsely sampled parametric domains. Despite its simplicity, its use is not to be taken
lightly. The use of orthogonal polynomial bases, with their associated Gauss—Lobatto
points as DoE, allows us to obtain very accurate approximations. However, the sampling
(DoE) increases exponentially with either the number of dimensions of the considered
polynomial degree. Using randomly sampled DoE, or considering an approximation too
rich with respect to the available amount of data (underdetermined approximation prob-
lem), results in noticeable overfitting effects. A way of attenuating these unfavorable
effects, consists in using an approximation basis avoiding over-oscillating phenomena, as
kriging approximations, for instance perform successfully [31], being a major protagonist
of the so-called surrogate models (or metamodels) [12,30]. Another possibility consists in
restricting polynomial approximations to alow degree, e.g., linear or moderately nonlinear
regressions.

Other approaches concern the proper orthogonal decomposition with interpolation—
PODI—[25], where usual regressions for expressing the dependence of the modal coef-
ficients on the parameters are employed. Within the PGD rationale, Sparse Subspace
Learning—SSL—[4] interpolates the pre-computed solutions related to the DoE associ-
ated to an structured grid (Gauss-Lobatto points) over the whole parametric space, by
considering a hierarchical approximation basis for interpolating the precomputed solu-
tions. This ensures the separated representation of the interpolated parametric solution.
A sparsely sampled counterpart, the so-called sparse PGD, s-PGD, was proposed in [20].



Sancarlos et al. Advanced Modeling and Simulation in Engineering Sciences(2023)10:4 Page 3 of 26

The main limitations of SSL-based regression procedures is the volume of data, which
increases exponentially with the number of parameters involved in the model. Thus, when
considering P parameters, the lowest approximation level, the so-called 0-level, which
consists in a multi-linear approximation (the product of a linear approximation along
each parametric dimension), needs 2¥ data (each datum coming in fact from a high fidelity
solution). On the other hand, s-PGD reduces the amount of required data, by considering a
sparse sampling. However, the fact of combining higher degree approximations (induced
by the separated representations) with very reduced amount of data, exacerbates the
risk of overfitting. To avoid overfitting, in [20] the authors proposed the use of adaptive
approximation bases, the so-called Modal adaptive Strategy—MAS—, whose degree is
kept to a minimum in the first PGD modes (first terms of the finite sum decomposition
expressing the variables separation which is at the heart of the PGD). This degree is
then increased progressively for the calculation of higher level modes. Other choices of
the approximation bases were also considered for limiting these spurious over-oscillating
behaviors, as for example the employ of kriging. The s-PGD can thus be viewed as a
nonlinear regression that makes use of the separation of variables. This enables its use in
multi-parametric settings.

Regressions are widely employed in artificial intelligence in general, and more particu-
larly in supervised scientific machine learning [7,16,37], in the development of cognitive
or hybrid digital twins [9,28,32] or even in the field of neuroscience [35]. Regression can
thus be seen as the main ingredient in the automatic construction of models of the sur-
rounding physical reality. This is of utmost importance in the construction of an artificial
intelligence able to maneuver in the physical world [27,29].

The main issues related to the implementation of regression in the low-data limit con-
cern nonlinear behaviors in multi-parametric settings. This last factor leads to the so-
called curse of dimensionality, i.e., the exponential growth in the number of degrees of
freedom (equivalently, the number of necessary sampling points in the phase space) that
is necessary to obtain accurate results [23].

When constructing models, it is always important to keep them as simple as possible.
In other words, parsimonious models are always preferable to more complex ones. This
principle, known as Occam’s razor [7,37], implies that simpler explanations should be
preferred among all the available ones to explain any physical phenomenon. In the lit-
erature this is achieved by imposing sparsity in the regression [7,15,17,19]. To obtain
parsimonious models able to address sparsity, it is thus convenient to perform regression
by combining L2 and L1 norms.

This paper aims at proposing robust, general, frugal and accurate regression methodolo-
gies able to operate in separated representation settings. For that purpose, three techniques
will be proposed and analyzed. The first is based on an Elastic Net regularized formulation
[14], called rs-PGD, and combines Ridge and Lasso regressions [5,13,14], that make use,
respectively, of the L2 and L1 norms. Both use a rich approximation basis and, to avoid
overfitting, the former favors specific solutions with smaller coefficients, while the last
enforces the sparsest possible solution by retaining those contributing the most to the
solution approximation.

Then, the doubly sparse regression, the so-called s>-PGD technique will be introduced.
The last makes use of the Lasso regularization (the one introduced above that looks for the
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sparsest approximation through the use of the L1-norm) while searching for the sparsest
dimensions.

The third and last technique, the ANOVA-PGD [22,36], aims at allying orthogonal
hierarchical bases with a more favorable scaling (with respect to the SSL [4]) of the amount
of data with the approximation richness. For that purpose, separated representations and
sparse approximations (eventually regularized) will be combined for addressing multiple
correlation terms.

Figures 1 and 2 sketches the just referred regression strategies, with the main sampling
and approximation features, their pros (emphasized in the green text) and the cons (in
red). A comparison on the different exposed techniques, the general workflow for allying
them for the solution of a given problem, while addressing their scalability to address
industrial problems involving extremely large solutions, constitutes a work in progress
that will constitute the part two of the present work.

Regularized regressions: the regularized sparse PGD (rs-PGD) and the doubly
sparse PGD (s2-PGD)

In the present paper, the term “scarce data limit” does not refer to the fact that in some
scenarios the number of samples is smaller than the number of features or basis elements.
In our case, it refers to dealing with the exponential growth of a base when working
with high-dimensional models, since the growth of base elements is accompanied by the
same exponential growth of data to build the model. The idea is to stop the exponential
growth of needed data by assuming a separated representation of the solution inspired by

Page 4 of 26
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the so-called proper generalized decomposition [10,11]. The s-PGD is proved to be able
to achieve good accuracy in this context as seen in [18,24] where a six-input parametric
solution of a vehicle crash test is constructed by using less than 22 high-fidelity simulations.
Therefore, seeing that the novel proposed strategies (s-PGD, s2-PGD) can outperform the
s-PGD (see “Results” section), it seems that they can provide a new tool when addressing
this type of challenging problems.

We strongly recommend the following references [18,20] to see how the s-PGD is
compared with current state-of-the-art techniques in the frameworks where the s-PGD
is appealing. The same comparison is still valid for the novel s-PGD-based strategies but
taking into consideration that these last ones can improve results in the scenarios depicted
and as shown during the present work.

The PGD-related methods are employed to construct fast multi-parametric solutions of
high-fidelity physics-based models. This way, applications including optimization, inverse
analysis, uncertainty propagation or simulation based control are enabled with a higher
accuracy. An example where the s-PGD is widely employed is the aforementioned crash
simulation (virtual recreation of a destructive crash test of a car). The proposed PGD-
based solutions grow in interest both as the number of the dimensions increases and
as the cost of obtaining the snapshots get bigger. The reason is that they deal with the
exponential growth of the training data when increasing problem dimensionality. For
instance, in [20], it can be observed how a 10-dimensional model is constructed using the
s-PGD employing a reasonable amount of data. In the same way, a 11-dimensional model
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is obtained in [32] to infer the cell battery behaviour of a high-fidelity battery model using
a reasonable amount of snapshots and time.

The rs-PGD technique is designed to improve the s-PGD performance when variables
are highly correlated, matrix is nearly singular or it is desired to decrease overfitting. On
the other hand, the s2-PGD is designed to strongly improve sparse identification when
just a few terms of the interpolation basis are present thus significantly enhancing the final
result.

Two different types of computational expense can be discussed: the one from obtaining
the snapshots and the one needed to construct the PGD model.

On the one hand, considering the snapshot cost, the PGD-related techniques (s-PGD,
s2-PGD, rs-PGD) can greatly reduce the number of needed snapshots in high-dimensional
problems. This is possible thanks to the PGD separated representation of the solution. In
addition, companies can take advantage of the long-time simulations they have already
carried out as well as the previous design of experiments (DoEs) due to the fact that
these PGD-related techniques are not linked to a particular sampling strategy. In many
applications, this is a great advantage. By contrast, imposing a specific sampling strategy
can make them waste months or years of data simulation. However, [18,20] discuss the
types of sampling that would be most suitable for this type of techniques when it is possible
to create a new DoE. In that references, the LHS is recommended to maximize the rank
information in each problem direction thus tending to increase the rank of the PGD
operator. It is a convenient method when there is no prior information. Moreover, in
[33], the LHS is combined with a mesh constrained to Chebyshev nodes to take advantage
of their properties minimizing the Runge’s phenomenon. In addition, other sampling
strategies can be designed to address a particular problem, thus improving performace.
However, to do that, additional insight and priori information about the problem is needed
beforehand.

On the other hand, considering the computational effort to construct the model, the
s-PGD computational expense was discussed in [18,20]. Here, it can be deduced that a
light effort to obtain the solutions is achieved because of the choise of quick-computation
basis such as polynomial basis. The computation time depends on the problem but it is
often in the order of some seconds or minutes. Considering the s>-PGD and the rs-PGD,
the computation time can greatly change depending on the number of hyperparameters,
the rate of convergence and the chosen tuning strategies. Anyway, they often can be
maintained in a suitable time range even though they are more expensive than the s-PGD.

In this section, the novel numerical techniques, the regularized sparse PGD (rs-PGD)
and the doubly-sparse PGD (s2-PGD), are presented and discussed. The content is divided
according to the following subsections:

+ In subsection Theoretical background: the s-PGD, the theoretical background, from
which the proposed methodologies are developed, is presented.

+ In subsection rs-PGD, the regularized PGD is presented starting from the concepts
discussed in Theoretical background: the s-PGD.

+ In subsection s>-PGD, the s2-PGD is presented starting from the concepts presented
in rs-PGD and Theoretical background: the s-PGD.
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Theoretical background: the s-PGD
The rs-PGD and the s>-PGD are constructed from the theoretical background of the
s-PGD in the context of regression problems.! In this section, this theoretical basis is
reviewed and discussed.

Let us consider an unknown function whose approximation is precisely the objective of
this work:

fs, .., :QCcRY > R,

which depends on d different variables s¥, k = 1, ..., d, considered as dimensions of the
state space.

The sparse PGD (s-PGD) approach tries to approximate the function f using a low-rank
separated (tensor) representation. As in standard PGD procedures, it approximates the
function f using a sum of products of one-dimensional functions each one involving one
dimension. Each sum is usually called a mode.

This separated form can be expressed as:

M d
f6h s M s =Y T e (2.1)

m=1 k=1

where fM is the approximate, M is the number of modes and w,/; are the one-dimensional
function of the mode m and dimension k.

In the s-PGD context, functions 1//fn, m=1...,Mandk =1, ...,d are expressed from
standard approximation functions:

D
Uils") = YN, = W) Ty, (22)
j=1

where D represents the number of degrees of freedom (nodes) of the chosen approxi-
mation. In addition, N¥, is a column vector with the set of basis functions for the k-th
dimension and the m-th mode and a¥, is a column vector with the coefficients for the
k-th dimension and the m-th mode. The important issue here is to know which set of
basis functions are best suited for the problem at hand. For example, a Fourier basis or a
polynomial basis can be selected.

In the context of regression problems, the goal is to find an approximation f™, which
minimizes the distance (usually related to the L2-norm) to the sought function

ny
M =argmin Y "(f(s;) — f*(s:)>, (2.3)
iz
where fM takes the separated form of Eq. (2.1), 7; is the number of sampling points to train
the model and s; are the different vectors which contain the data points of the training
set.
The determination of the coefficients of each one-dimensional function for each mode
m = 1,..., M is done by employing a greedy algorithm (described in the next sections)
such that, once the approximation up to order M — 1 is known, the new M-th order term

1\We would like to stress the fact that the s-PGD is based on some of the ideas of the standard Proper Generalized
Decomposition (PGD) method for solving PDEs. For this reason, suggest the reader not familiar with the PGD to review
previous works in the field such as [10,11,34], to name but a few.
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is found using a non-linear solver (Picard or Newton, for instance):

M-1 ng ny
=TTk + T vms. (2.4)
m=1 k=1 k=1

The final goal of the method is that the function f has to approximate f not only when
evaluated in the training set but, notably, in other previously unseen sampling points. This
objective is essentially a particular form of machine learning. This second goal is more
difficult to achieve, yet is more important because this evaluates the predictive ability of
the model £, that is, the capacity to provide good predictions when the model is fed with
previously unseen data. Achieving this is particularly difficult when confronted with a
high-dimensional problem, for which data is nearly always sparse and/or scarce.

Indeed, the regression problem described by Eq. (2.3) only guarantees that the min-
imization is satisfied by the training set, without saying anything at different sampling
points. Hence, if there is not an abundance of sampling points in the training set, in the
low-data limit, high oscillations may appear out of these measured points because of the
increased risk of overfitting. Usually, this is an undesirable effect because it affects the
predictive ability of the constructed regression model.

In order to tackle this problem, the s-PGD uses the Modal Adaptivity Strategy (MAS)
to take advantage of the greedy PGD algorithm. The idea is to minimize spurious oscil-
lations out of the training set by starting the PGD algorithm looking for modes with low
degree. When it is observed that the residual decreases slowly or stagnates, higher order
approximation functions are introduced. By doing this, oscillations are reduced, since a
higher-order basis will try to capture only what remains in the residual.?

The MAS has proved to be a good strategy to improve significantly the s-PGD perfor-
mance in many problems, see for instance [2,18,32,33]. However, it has some limitations.
For example, it has been observed that the desired accuracy is not achieved before reach-
ing overfitting or the algorithm stops too early when using MAS in some cases. This last
issue implies a PGD solution composed of low order approximation functions, thus not
getting an as rich as desired function.

In addition, in problems where just a few terms of the interpolation basis are present
(that is, there are just some sparse non-zero elements in the interpolation basis to be
determined), the strategy fails in recognizing the true model and therefore converging to
other one whose predictive performances are bad.

To solve these difficulties, the rs-PGD and the s2-PGD are proposed in what follows.
Specifically, the first one is used to increase the predictive capacity beyond the s-PGD
capabilities and the second one is used to sparse identification and variable selection to
construct parsimonious models improving the s-PGD explanatory and predictive capa-
bilities.

rs-PGD
For the ease of the exposition and representation but without loss of generality, let us
continue by assuming that the unknown objective function f(x, y) lives in R?,

flxy):QCc R =R,

and that it is to be recovered from scarce data.

2We recommend the reading of [20] and [32] for more information about the MAS.
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The goal is therefore to find a function f which minimizes the distance to the sought
function:

2
27

™M= argfmin Z Hf(xi: yi) = f* i, yi)|

i=1

and that takes the separated form

M M
Py = 3 X Y0) = D (N5) @, V) ),
m=1 m=1
where 7, is the number of sampling points employed to train the model (training set).
Here, the superscript M is employed to highlight the rank of the sought function. How to
determine the precise value of M will be detailed hereafter.

In the PGD framework, an iterative scheme based on an alternating direction strategy
is usually used to solve the resulting non-linear problem—note that we look for products
of one-dimensional functions—and compute &}, and agw This strategy computes ax]\’dk
from afwk ~!and a%’,lk from aka where aﬂ( indicates the values of ayM at iteration k of
the nonlinear iteration algorithm. The iterations proceed until reaching a fixed point
according to a user-specified tolerance.

Defining N7, (x;) and N’ - (y;) as the vectors containing the evaluation of the interpolation
basis of the " mode at x; and y;, respectively, we can write the following matrix equations
defining the systems to solve:

May, =r, (2.5)
Myag\/[ = r’ (2.6)
where:

Flny1) — M 1)

\f(xny ynt) _];M_l(xnt) yn,)
(N 1)) Ty (N (1)) T

(N ) T (N (3, ) T
(N% (1)) T (N (1)) T
M, = :

(N3 (@, ) Ty (N () T

If Egs. (2.5) and (2.6) are solved in the Ordinary Least Squares (OLS) sense:

ai, = (M;Mx)_l .MI;«, (2.7)
ay = (M;M,)"'M]r (2.8)

which give us the usual matrix equations in the OLS context.

The rs-PGD is based on putting a penalty term when solving (2.5) and (2.6) with the
objectives of

(i) reduce overfitting and (ii) deal with strong multicollinearity, namely when the OLS
regression problem is ill-posed.

Page 9 of 26
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Note that the overfitting problem can easily arise in the s-PGD context when high-order
approximations (that separated representations exacerbate) are employed because of the
usual unstructured low data regime used to train the model. This issue strongly affects the
model’s ability to perform on new, unseen sets. We illustrate this in the Results section.
We notice this effect in the corresponding s-PGD results. Therefore, the idea of using the
penalty term consists in improving the model’s ability to perform on new samples at the
cost of increasing the bias or the error model in the training set for a given set of basis
functions.

Different regularizations can be envisaged depending on the properties of the problem
such as the Tikhonov regularization or the Elastic Net regularization. For the sake of
simplicity but without loss of generality, we start introducing the ridge regression regu-
larization (a special case of the Tikhonov regularization) that will be generalized later to
lead to the Elastic Net regularization.

For this purpose, we first rewrite Egs. (2.7) and (2.8):

aly = (MM, + 2D 'M] r (2.9)
ay = (M] M, + ) "'M/r, (2.10)
where A is the penalty factor and I is the identity matrix. In this case, both dimensions
are equally penalized but different penalty factors could be considered depending on the

considered dimension.

The regularized problems associated to Egs. (2.9) and (2.10) are:

a;;:argmm{ v = Meai ] + » a3l ) (2.11)
M

@y = augmin{ |~ Mol +2 |l | (212)
M

where the problem is divided in solving a ridge regression problem for each dimension
when computing a5, and ayM during the alternate direction fixed point strategy.

The interpretation of employing Eqs. (2.11) and (2.12) during the PGD iterative scheme
can be thought of as an attempt of solving the following problem within the PGD rationale:

Pl =g | -7

el ealali) e

where ||-||5 is the Euclidean norm, and fM is the function defined in (2.4) where the new
M-th order term of the model is sought.

As the terminology used in this section shows, a regularization problem is formulated
at each enrichment step. Thus, we are looking for the best penalty factor at each updating
stage, adapting the regularization whenever the approach is enriched. Other possibilities
can be envisaged but this one seems the one which offers the best results according to our
numerical experiments.

A null intercept term was assumed for a; and ”’5\4 in the deduction of Egs. (2.9), (2.10),
(2.11) and (2.12). If this term is going to be included, it can be treated as in standard
ridge procedures when solving the corresponding linear regularized regression problem
for each dimension during the alternating direction strategy.

As we are generally looking for the mode with best predictive abilities in each enrich-
ment, the proposed criterion to choose A is to perform a k-fold cross-validation and select
the value of A that minimizes the cross-validated sum of squared residuals (or some other
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measure). It is also possible to use the “one-standard error” rule (heuristic) with cross-
validation, in which we choose the most penalized model whose error is no more than
one standard error above the error of the best model. Such a rule acknowledges the fact
that the tradeoff curve is estimated with error, and hence takes a conservative approach
[14].

If enough data is available, the split of the training set in two subgroups is equally a
reasonable option to select A and in addition, computationally less demanding. In this
case, one subgroup is employed for constructing the model and the other one to evaluate
the predictive ability and then to select A accordingly.

The Elastic Net regularization results of including a L1-norm regularization, from which
Egs. (2.11)—(2.12) and Eq. (2.13) become:

ay = ar%lein { Hr — M, aj; Hi + A [(1 —a) ”aﬁ Hi + o Haﬁ ”1] }, (2.14)
M
@y = agmin { |r —Myayl; +5[0 =)l + o il ] | (215)
M
and )
Py ) = argmin |~ e )|

0 =a) (Jai 2+ [312) +o (il + )]} @160
respectively, where o € [0, 1) and A are the penalty factors. These coefficients could be
also different for the different dimensions, and the lambda coefficients also different for
the norm L2 and L1. The limit cases @ = 0 and o = 1 result in the Ridge and Lasso
regressions respectively.

It is worth highlighting the fact that the elastic net procedure is used in case ridge does
not achieve the desired performance, in which case the hyperparameter alpha would be
added. In addition, alpha is selected using the state-of-the-art machine learning tools to
tune hyperparameters. In the first test, we recommend ridge regression because: 1. It is
faster. 2. It has not the hyperparameter alpha.

s%-PGD

For the ease of the exposition and representation but without loss of generality, let us
continue by assuming the same two-dimensional unknown function discussed in Sec-
tion rs-PGD.

Here, we are dealing with a solution which admits a sparse solution for a certain basis
using the PGD separated form (2.1). In this case, the goal is to identify the correct non-
zero coefficients at each enrichment step in order to guide the approach to the correct
separated representation.

Without a roadmap to select these nonzero coefficients, the traditional s-PGD fails to
capture the true relationship between the model’s features as well as its final response.
Furthermore, if high-order terms appear in the searched function, these issues become
even worse leading to serious overfitting issues.

Let us consider the theory discussed in the previous section but now considering the L1
regularization with the idea to promote sparsity in the overall solution of the nonlinear
regression problem:

M@y @) = argmin | |f - 7 (@3 )

:

2 *
Cealagl calasl | e




Sancarlos et al. Advanced Modeling and Simulation in Engineering Sciences(2023)10:4 Page 12 of 26

This formulation is convenient because the nonlinear problem can be solved using the
PGD constructor [1,10], with an alternate direction fixed point strategy, where just a
LASSO regression problem is considered in each dimension.

Therefore, the regression problems for the iterative scheme will be:

ay; = arg min { |r — Myal; ||§ + A ||lajf], }, (2.18)
@y = aug min { | = Mol +2 ], | (219)
M

That consists of solving a LASSO regression problem for each dimension when computing
ay; and ayM within the alternate direction fixed point strategy. Moreover, as previously
discussed, in the present case again, both dimensions are equally penalized but different
penalty factors could be envisaged.

As we are iteratively solving a LASSO problem in each direction, we will end up with
sparse solutions for each one-dimensional function choosing the right penalty factor.
Again, a null itercept term was assumed.

In case of looking for sparsity just in the x dimension, only Eq. (2.18) applies for com-
puting coefficients a7, whereas coefficients afw are calculated by invoking the standard
s-PGD or the rs-PGD, addressed in the previous section.

To determine X, we first refer the reader to the discussion of the previous section. Then,
the following considerations applied in the case of the doubly sparse PGD:

« Before selecting a model according to the predictive criterion, a filter is considered

taking only the models with a minimum sparsity criterion ||axM || 0 = Xffm. If sparsity

is also desired in y direction, Xy”m

by |lx]lg = #{i : #; # 0}. We consider this notation even if it is actually not a norm.

will be defined accordingly. Note: We define |||y

+ Once model selection is performed, the OLS methodology is employed with the
detected non-zero elements to obtain the correct update. The reason of this step is that
LASSO regression terms are in general not accurate, and so it may be necessary to de-
bias the obtained values. Remember that the LASSO shrinkage causes the estimates
of the non-zero coefficients to be biased towards zero and in general they are not
consistent [6,14].

If there is prior or physical knowledge about the solution, it can be used to decide
the direction to penalize and, in fact, this often helps to successfully decide on the rigth
dimension. If there is no prior knowledge, usual machine learning strategies to tune
hyperparameters can be employed.

Finally, the enrichment procedure for the s>-PGD strategy (where LASSO regularization
is employed to promote sparsity, that is, « = 1) is:

1 Compute different mode enrichments changing the penalty factor.

2 Select the best one considering the defined accuracy metric and if desired, the other
commented robustness rules such as the Xf”’ filter.

3 The selected mode is employed to identify the non-zero elements. Then, as previously
indicated, the OLS methodology is used with the detected non-zero elements to
obtain the correct update. For the non-sparse dimensions, the s-PGD MAS strategy
is considered.
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In the present work, the lasso problems are solved by employing the algorithm imple-
mented in [26] where the Coordinate Descent and ADDM algorithms are used [5,13]

The ANOVA-based sparse-PGD

The ANOVA decomposition of a function f(s', ..., s?) : @ ¢ R — R is an orthogonal
decomposition based on the analysis of variance, a statistical model designed for data
analysis. Thus, the function f(s) can be written as a sum of orthogonal functions:

d d d
FEO=f+ ) [+ YD funl™s®) + .+ A alshsh s, (3.1)
i=1 i1=1iy=i1
satisfying
Ei(fi1,...,ik (Sil) e Sik)) = O} (32)
where E; stands for the expectation with respect to any coordinate i in the set (i3, . . ., i),

with 1 < k < d. This property results in the orthogonality of functions involved in the
previous decomposition.

To prove it, consider for example a simple 2D case with, s = (x, ), f(s) = f (%, y). Thus,
with Ex