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Abstract

Regressions created from experimental or simulated data enable the construction of
metamodels, widely used in a variety of engineering applications. Many engineering
problems involve multi-parametric physics whose corresponding multi-parametric
solutions can be viewed as a sort of computational vademecum that, once computed
offline, can be then used in a variety of real-time engineering applications including
optimization, inverse analysis, uncertainty propagation or simulation based control.
Sometimes, these multi-parametric problems can be solved by using advanced model
order reduction—MOR-techniques. However, solving these multi-parametric problems
can be very costly. In that case, one possibility consists in solving the problem for a
sample of the parametric values and creating a regression from all the computed
solutions. The solution for any choice of the parameters is then inferred from the
prediction of the regression model. However, addressing high-dimensionality at the
low data limit, ensuring accuracy and avoiding overfitting constitutes a difficult
challenge. The present paper aims at proposing and discussing different advanced
regressions based on the proper generalized decomposition (PGD) enabling the just
referred features. In particular, new PGD strategies are developed adding different
regularizations to the s-PGD method. In addition, the ANOVA-based PGD is proposed to
ally them.

Keywords: Model order reduction, Proper generalized decomposition, Sparse PGD,
Data-driven models, LASSO, Ridge regression, ANOVA, Elastic net

Introduction
Model order reduction—MOR-techniques express the solution of a given problem
(expressed as a partial differential equation—PDE, for instance) into a reduced basis with
strong physical or mathematical content. By “strong physical content” we mean that they
are extracted and motivated by the physical laws governing the system under study. In
addition, the dynamic evolution of this type of basis is also computed based on the corre-
sponding physics-basedmodel. Very often, these bases are extracted from solutions of the
problem at hand and are obtained offline. This can be done, for instance, by invoking the
proper orthogonal decomposition—POD—or the reduced basismethod—RB—[8].When
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computing with a reduced basis, the solution complexity scales with the size of this basis,
which is in general much smaller than the size of the multi-purpose approximation basis
associated with the finite element method—FEM, whose size scales with the number of
nodes in the mesh.
Even if the use of a reduced basis implies a certain loss of generality, it enables impressive

computing time savings and, as soon as the problem solution continues living in the space
spannedby the reducedbasis, the computed solution remains accurate enough.Obviously,
as soon as one is interested in a solution that cannot be accurately approximatedwithin the
space spanned by that reduced basis, the solution will be computed fast, but its accuracy
is expected to be poor. To improve generality while ensuring accuracy, an appealing route
consists of constructing the reduced basis and solving the problem simultaneously, as the
Proper Generalized Decomposition—PGD—does [8]. However, this option becomes in
general very intrusive, even more than the ones based on the employ of reduced bases. In
this work, by intrusiveness we mean the degree of changes required by the MOR frame-
work, with respect to standard simulation techniques, in the mathematical procedure to
solve an industrial problem. These changes should be programmed in softwares that are
already implemented in the market and therefore they already have the confidence of the
client as well as several years of improvement and development. Companies’ reluctance to
make major changes to their long-established software promotes and favors the creation
of methodologies with a low level of intrusiveness..
To alleviate intrusiveness, non-intrusive procedures were proposed. They proceed by

constructing the parametric solution of the parametric problem from a number of high-
fidelity solutions performed offline. In general, these are very expensive from the com-
puting time viewpoint, for different choices of the model parameters that constitutes the
design of experiments—DoE.
Among these techniques we can mention standard polynomial approximations on

sparsely sampled parametric domains. Despite its simplicity, its use is not to be taken
lightly. The use of orthogonal polynomial bases, with their associated Gauss–Lobatto
points as DoE, allows us to obtain very accurate approximations. However, the sampling
(DoE) increases exponentially with either the number of dimensions of the considered
polynomial degree. Using randomly sampled DoE, or considering an approximation too
rich with respect to the available amount of data (underdetermined approximation prob-
lem), results in noticeable overfitting effects. A way of attenuating these unfavorable
effects, consists in using an approximation basis avoiding over-oscillating phenomena, as
kriging approximations, for instance perform successfully [31], being a major protagonist
of the so-called surrogate models (or metamodels) [12,30]. Another possibility consists in
restricting polynomial approximations to a lowdegree, e.g., linear ormoderately nonlinear
regressions.
Other approaches concern the proper orthogonal decomposition with interpolation—

PODI—[25], where usual regressions for expressing the dependence of the modal coef-
ficients on the parameters are employed. Within the PGD rationale, Sparse Subspace
Learning—SSL—[4] interpolates the pre-computed solutions related to the DoE associ-
ated to an structured grid (Gauss-Lobatto points) over the whole parametric space, by
considering a hierarchical approximation basis for interpolating the precomputed solu-
tions. This ensures the separated representation of the interpolated parametric solution.
A sparsely sampled counterpart, the so-called sparse PGD, s-PGD, was proposed in [20].
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The main limitations of SSL-based regression procedures is the volume of data, which
increases exponentially with the number of parameters involved in themodel. Thus, when
considering P parameters, the lowest approximation level, the so-called 0-level, which
consists in a multi-linear approximation (the product of a linear approximation along
each parametric dimension), needs 2P data (each datum coming in fact from a high fidelity
solution).On the other hand, s-PGD reduces the amount of required data, by considering a
sparse sampling. However, the fact of combining higher degree approximations (induced
by the separated representations) with very reduced amount of data, exacerbates the
risk of overfitting. To avoid overfitting, in [20] the authors proposed the use of adaptive
approximation bases, the so-called Modal adaptive Strategy—MAS—, whose degree is
kept to a minimum in the first PGD modes (first terms of the finite sum decomposition
expressing the variables separation which is at the heart of the PGD). This degree is
then increased progressively for the calculation of higher level modes. Other choices of
the approximation bases were also considered for limiting these spurious over-oscillating
behaviors, as for example the employ of kriging. The s-PGD can thus be viewed as a
nonlinear regression that makes use of the separation of variables. This enables its use in
multi-parametric settings.
Regressions are widely employed in artificial intelligence in general, and more particu-

larly in supervised scientific machine learning [7,16,37], in the development of cognitive
or hybrid digital twins [9,28,32] or even in the field of neuroscience [35]. Regression can
thus be seen as the main ingredient in the automatic construction of models of the sur-
rounding physical reality. This is of utmost importance in the construction of an artificial
intelligence able to maneuver in the physical world [27,29].
The main issues related to the implementation of regression in the low-data limit con-

cern nonlinear behaviors in multi-parametric settings. This last factor leads to the so-
called curse of dimensionality, i.e., the exponential growth in the number of degrees of
freedom (equivalently, the number of necessary sampling points in the phase space) that
is necessary to obtain accurate results [23].
When constructing models, it is always important to keep them as simple as possible.

In other words, parsimonious models are always preferable to more complex ones. This
principle, known as Occam’s razor [7,37], implies that simpler explanations should be
preferred among all the available ones to explain any physical phenomenon. In the lit-
erature this is achieved by imposing sparsity in the regression [7,15,17,19]. To obtain
parsimonious models able to address sparsity, it is thus convenient to perform regression
by combining L2 and L1 norms.
This paper aims at proposing robust, general, frugal and accurate regressionmethodolo-

gies able tooperate in separated representation settings. For that purpose, three techniques
will be proposed and analyzed. The first is based on an Elastic Net regularized formulation
[14], called rs-PGD, and combines Ridge and Lasso regressions [5,13,14], that make use,
respectively, of the L2 and L1 norms. Both use a rich approximation basis and, to avoid
overfitting, the former favors specific solutions with smaller coefficients, while the last
enforces the sparsest possible solution by retaining those contributing the most to the
solution approximation.
Then, the doubly sparse regression, the so-called s2-PGD technique will be introduced.

The lastmakes use of the Lasso regularization (the one introduced above that looks for the
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Fig. 1 Part A. Non-intrusive MOR techniques with the main sampling and approximation features, their pros
(emphasized in the green text) and the cons (in red)

sparsest approximation through the use of the L1-norm) while searching for the sparsest
dimensions.
The third and last technique, the ANOVA-PGD [22,36], aims at allying orthogonal

hierarchical bases with amore favorable scaling (with respect to the SSL [4]) of the amount
of data with the approximation richness. For that purpose, separated representations and
sparse approximations (eventually regularized) will be combined for addressing multiple
correlation terms.
Figures 1 and 2 sketches the just referred regression strategies, with the main sampling

and approximation features, their pros (emphasized in the green text) and the cons (in
red). A comparison on the different exposed techniques, the general workflow for allying
them for the solution of a given problem, while addressing their scalability to address
industrial problems involving extremely large solutions, constitutes a work in progress
that will constitute the part two of the present work.

Regularized regressions: the regularized sparse PGD (rs-PGD) and the doubly
sparse PGD (s2-PGD)
In the present paper, the term “scarce data limit” does not refer to the fact that in some
scenarios the number of samples is smaller than the number of features or basis elements.
In our case, it refers to dealing with the exponential growth of a base when working
with high-dimensional models, since the growth of base elements is accompanied by the
same exponential growth of data to build the model. The idea is to stop the exponential
growth of needed data by assuming a separated representation of the solution inspired by
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Fig. 2 Part B. Non-intrusive MOR techniques with the main sampling and approximation features, their pros
(emphasized in the green text) and the cons (in red)

the so-called proper generalized decomposition [10,11]. The s-PGD is proved to be able
to achieve good accuracy in this context as seen in [18,24] where a six-input parametric
solutionof a vehicle crash test is constructedbyusing less than22high-fidelity simulations.
Therefore, seeing that the novel proposed strategies (rs-PGD, s2-PGD) can outperform the
s-PGD (see “Results” section), it seems that they can provide a new tool when addressing
this type of challenging problems.
We strongly recommend the following references [18,20] to see how the s-PGD is

compared with current state-of-the-art techniques in the frameworks where the s-PGD
is appealing. The same comparison is still valid for the novel s-PGD-based strategies but
taking into consideration that these last ones can improve results in the scenarios depicted
and as shown during the present work.
The PGD-relatedmethods are employed to construct fast multi-parametric solutions of

high-fidelity physics-basedmodels. This way, applications including optimization, inverse
analysis, uncertainty propagation or simulation based control are enabled with a higher
accuracy. An example where the s-PGD is widely employed is the aforementioned crash
simulation (virtual recreation of a destructive crash test of a car). The proposed PGD-
based solutions grow in interest both as the number of the dimensions increases and
as the cost of obtaining the snapshots get bigger. The reason is that they deal with the
exponential growth of the training data when increasing problem dimensionality. For
instance, in [20], it can be observed how a 10-dimensional model is constructed using the
s-PGD employing a reasonable amount of data. In the same way, a 11-dimensional model
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is obtained in [32] to infer the cell battery behaviour of a high-fidelity battery model using
a reasonable amount of snapshots and time.
The rs-PGD technique is designed to improve the s-PGD performance when variables

are highly correlated, matrix is nearly singular or it is desired to decrease overfitting. On
the other hand, the s2-PGD is designed to strongly improve sparse identification when
just a few terms of the interpolation basis are present thus significantly enhancing the final
result.
Two different types of computational expense can be discussed: the one from obtaining

the snapshots and the one needed to construct the PGD model.
On the one hand, considering the snapshot cost, the PGD-related techniques (s-PGD,

s2-PGD, rs-PGD) can greatly reduce the number of needed snapshots in high-dimensional
problems. This is possible thanks to the PGD separated representation of the solution. In
addition, companies can take advantage of the long-time simulations they have already
carried out as well as the previous design of experiments (DoEs) due to the fact that
these PGD-related techniques are not linked to a particular sampling strategy. In many
applications, this is a great advantage. By contrast, imposing a specific sampling strategy
can make them waste months or years of data simulation. However, [18,20] discuss the
types of sampling that would bemost suitable for this type of techniqueswhen it is possible
to create a new DoE. In that references, the LHS is recommended to maximize the rank
information in each problem direction thus tending to increase the rank of the PGD
operator. It is a convenient method when there is no prior information. Moreover, in
[33], the LHS is combined with a mesh constrained to Chebyshev nodes to take advantage
of their properties minimizing the Runge’s phenomenon. In addition, other sampling
strategies can be designed to address a particular problem, thus improving performace.
However, to do that, additional insight and priori information about the problem is needed
beforehand.
On the other hand, considering the computational effort to construct the model, the

s-PGD computational expense was discussed in [18,20]. Here, it can be deduced that a
light effort to obtain the solutions is achieved because of the choise of quick-computation
basis such as polynomial basis. The computation time depends on the problem but it is
often in the order of some seconds or minutes. Considering the s2-PGD and the rs-PGD,
the computation time can greatly change depending on the number of hyperparameters,
the rate of convergence and the chosen tuning strategies. Anyway, they often can be
maintained in a suitable time range even though they are more expensive than the s-PGD.
In this section, the novel numerical techniques, the regularized sparse PGD (rs-PGD)

and the doubly-sparse PGD (s2-PGD), are presented and discussed. The content is divided
according to the following subsections:

• In subsection Theoretical background: the s-PGD, the theoretical background, from
which the proposed methodologies are developed, is presented.

• In subsection rs-PGD, the regularized PGD is presented starting from the concepts
discussed in Theoretical background: the s-PGD.

• In subsection s2-PGD, the s2-PGD is presented starting from the concepts presented
in rs-PGD and Theoretical background: the s-PGD.
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Theoretical background: the s-PGD

The rs-PGD and the s2-PGD are constructed from the theoretical background of the
s-PGD in the context of regression problems.1 In this section, this theoretical basis is
reviewed and discussed.
Let us consider an unknown function whose approximation is precisely the objective of

this work:

f (s1, . . . , sd) : � ⊂ R
d → R,

which depends on d different variables sk , k = 1, . . . , d, considered as dimensions of the
state space.
The sparse PGD (s-PGD) approach tries to approximate the function f using a low-rank

separated (tensor) representation. As in standard PGD procedures, it approximates the
function f using a sum of products of one-dimensional functions each one involving one
dimension. Each sum is usually called a mode.
This separated form can be expressed as:

f (s1, . . . , sd) ≈ f̃ M(s1, . . . , sd) =
M∑

m=1

d∏

k=1
ψk
m(sk ), (2.1)

where f̃ M is the approximate,M is the number of modes andψk
m are the one-dimensional

function of the modem and dimension k .
In the s-PGD context, functionsψk

m,m = 1, . . . ,M and k = 1, . . . , d are expressed from
standard approximation functions:

ψk
m(sk ) =

D∑

j=1
Nk
j,m(s

k )akj,m = (N k
m)�akm, (2.2)

where D represents the number of degrees of freedom (nodes) of the chosen approxi-
mation. In addition, N k

m is a column vector with the set of basis functions for the k-th
dimension and the m-th mode and akm is a column vector with the coefficients for the
k-th dimension and the m-th mode. The important issue here is to know which set of
basis functions are best suited for the problem at hand. For example, a Fourier basis or a
polynomial basis can be selected.
In the context of regression problems, the goal is to find an approximation f̃ M , which

minimizes the distance (usually related to the L2-norm) to the sought function

f̃ M = arg min
f ∗

nt∑

i=1
(f (si) − f ∗(si))2, (2.3)

where f̃ M takes the separated formof Eq. (2.1), nt is the number of sampling points to train
the model and si are the different vectors which contain the data points of the training
set.
The determination of the coefficients of each one-dimensional function for each mode

m = 1, . . . ,M is done by employing a greedy algorithm (described in the next sections)
such that, once the approximation up to orderM − 1 is known, the newM-th order term

1We would like to stress the fact that the s-PGD is based on some of the ideas of the standard Proper Generalized
Decomposition (PGD)method for solving PDEs. For this reason, suggest the reader not familiar with the PGD to review
previous works in the field such as [10,11,34], to name but a few.
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is found using a non-linear solver (Picard or Newton, for instance):

f̃ M =
M−1∑

m=1

nd∏

k=1
ψk
m(sk ) +

nd∏

k=1
ψk
M(sk ). (2.4)

The final goal of the method is that the function f̃ has to approximate f not only when
evaluated in the training set but, notably, in other previously unseen sampling points. This
objective is essentially a particular form of machine learning. This second goal is more
difficult to achieve, yet is more important because this evaluates the predictive ability of
the model f̃ , that is, the capacity to provide good predictions when the model is fed with
previously unseen data. Achieving this is particularly difficult when confronted with a
high-dimensional problem, for which data is nearly always sparse and/or scarce.
Indeed, the regression problem described by Eq. (2.3) only guarantees that the min-

imization is satisfied by the training set, without saying anything at different sampling
points. Hence, if there is not an abundance of sampling points in the training set, in the
low-data limit, high oscillations may appear out of these measured points because of the
increased risk of overfitting. Usually, this is an undesirable effect because it affects the
predictive ability of the constructed regression model.
In order to tackle this problem, the s-PGD uses the Modal Adaptivity Strategy (MAS)

to take advantage of the greedy PGD algorithm. The idea is to minimize spurious oscil-
lations out of the training set by starting the PGD algorithm looking for modes with low
degree. When it is observed that the residual decreases slowly or stagnates, higher order
approximation functions are introduced. By doing this, oscillations are reduced, since a
higher-order basis will try to capture only what remains in the residual.2

The MAS has proved to be a good strategy to improve significantly the s-PGD perfor-
mance in many problems, see for instance [2,18,32,33]. However, it has some limitations.
For example, it has been observed that the desired accuracy is not achieved before reach-
ing overfitting or the algorithm stops too early when using MAS in some cases. This last
issue implies a PGD solution composed of low order approximation functions, thus not
getting an as rich as desired function.
In addition, in problems where just a few terms of the interpolation basis are present

(that is, there are just some sparse non-zero elements in the interpolation basis to be
determined), the strategy fails in recognizing the true model and therefore converging to
other one whose predictive performances are bad.
To solve these difficulties, the rs-PGD and the s2-PGD are proposed in what follows.

Specifically, the first one is used to increase the predictive capacity beyond the s-PGD
capabilities and the second one is used to sparse identification and variable selection to
construct parsimonious models improving the s-PGD explanatory and predictive capa-
bilities.

rs-PGD

For the ease of the exposition and representation but without loss of generality, let us
continue by assuming that the unknown objective function f (x, y) lives in R

2,

f (x, y) : � ⊂ R
2 → R,

and that it is to be recovered from scarce data.

2We recommend the reading of [20] and [32] for more information about the MAS.
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The goal is therefore to find a function f̃ M which minimizes the distance to the sought
function:

f̃ M = arg min
f ∗

nt∑

i=1

∥∥f (xi, yi) − f ∗(xi, yi)
∥∥2
2 ,

and that takes the separated form

f̃ M(x, y) =
M∑

m=1
Xm(x)Ym(y) =

M∑

m=1

(
(N x

m)�axm(N
y
m)�aym

)
,

where nt is the number of sampling points employed to train the model (training set).
Here, the superscriptM is employed to highlight the rank of the sought function. How to
determine the precise value ofM will be detailed hereafter.
In the PGD framework, an iterative scheme based on an alternating direction strategy

is usually used to solve the resulting non-linear problem—note that we look for products
of one-dimensional functions—and compute axM and ayM . This strategy computes ax,kM
from ay,k−1

M and ay,kM from ax,kM where ay,kM indicates the values of ayM at iteration k of
the nonlinear iteration algorithm. The iterations proceed until reaching a fixed point
according to a user-specified tolerance.
DefiningN x

m(xi) andN
y
m(yi) as the vectors containing the evaluation of the interpolation

basis of themthmode at xi and yi, respectively, we canwrite the followingmatrix equations
defining the systems to solve:

MxaxM = r, (2.5)

MyayM = r, (2.6)

where:

r =

⎛

⎜⎜⎝

f (x1, y1) − f̃ M−1(x1, y1)
...

f (xnt , ynt ) − f̃ M−1(xnt , ynt )

⎞

⎟⎟⎠ ,

Mx =

⎛

⎜⎜⎝

(N y
M(y1))�ayM(N x

M(x1))�
...

(N y
M(ynt ))�a

y
M(N x

M(xnt ))�

⎞

⎟⎟⎠ ,

My =

⎛

⎜⎜⎝

(N x
M(x1))�axM(N y

M(y1))�
...

(N x
M(xnt ))�axM(N y

M(ynt ))�

⎞

⎟⎟⎠ .

If Eqs. (2.5) and (2.6) are solved in the Ordinary Least Squares (OLS) sense:

axM = (M�
x Mx)−1 · M�

x r, (2.7)

ayM = (M�
y My)−1M�

y r (2.8)

which give us the usual matrix equations in the OLS context.
The rs-PGD is based on putting a penalty term when solving (2.5) and (2.6) with the

objectives of
(i) reduce overfitting and (ii) deal with strong multicollinearity, namely when the OLS

regression problem is ill-posed.
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Note that the overfitting problem can easily arise in the s-PGD context when high-order
approximations (that separated representations exacerbate) are employed because of the
usual unstructured low data regime used to train themodel. This issue strongly affects the
model’s ability to perform on new, unseen sets. We illustrate this in the Results section.
We notice this effect in the corresponding s-PGD results. Therefore, the idea of using the
penalty term consists in improving the model’s ability to perform on new samples at the
cost of increasing the bias or the error model in the training set for a given set of basis
functions.
Different regularizations can be envisaged depending on the properties of the problem

such as the Tikhonov regularization or the Elastic Net regularization. For the sake of
simplicity but without loss of generality, we start introducing the ridge regression regu-
larization (a special case of the Tikhonov regularization) that will be generalized later to
lead to the Elastic Net regularization.
For this purpose, we first rewrite Eqs. (2.7) and (2.8):

axM = (M�
x Mx + λI)−1M�

x r (2.9)

ayM = (M�
y My + λI)−1M�

y r, (2.10)

where λ is the penalty factor and I is the identity matrix. In this case, both dimensions
are equally penalized but different penalty factors could be considered depending on the
considered dimension.
The regularized problems associated to Eqs. (2.9) and (2.10) are:

axM = arg min
ax∗M

{ ∥∥r − Mxax∗M
∥∥2
2 + λ

∥∥ax∗M
∥∥2
2

}
, (2.11)

ayM = arg min
ay∗M

{ ∥∥r − Myay∗M
∥∥2
2 + λ

∥∥ay∗M
∥∥2
2

}
, (2.12)

where the problem is divided in solving a ridge regression problem for each dimension
when computing axM and ayM during the alternate direction fixed point strategy.
The interpretation of employing Eqs. (2.11) and (2.12) during the PGD iterative scheme

can be thought of as an attempt of solving the following problemwithin the PGD rationale:

f̃ M(axM,ayM) = arg min
ax∗M ,ay∗M

{ ∥∥∥f − f̃ M(ax∗M,ay∗M)
∥∥∥
2

2
+ λ

∥∥ax∗M
∥∥2
2 + λ

∥∥ay∗M
∥∥2
2

}
, (2.13)

where ‖·‖2 is the Euclidean norm, and f̃ M is the function defined in (2.4) where the new
M-th order term of the model is sought.
As the terminology used in this section shows, a regularization problem is formulated

at each enrichment step. Thus, we are looking for the best penalty factor at each updating
stage, adapting the regularization whenever the approach is enriched. Other possibilities
can be envisaged but this one seems the one which offers the best results according to our
numerical experiments.
A null intercept term was assumed for axM and ayM in the deduction of Eqs. (2.9), (2.10),

(2.11) and (2.12). If this term is going to be included, it can be treated as in standard
ridge procedures when solving the corresponding linear regularized regression problem
for each dimension during the alternating direction strategy.
As we are generally looking for the mode with best predictive abilities in each enrich-

ment, the proposed criterion to choose λ is to perform a k-fold cross-validation and select
the value of λ that minimizes the cross-validated sum of squared residuals (or some other
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measure). It is also possible to use the “one-standard error” rule (heuristic) with cross-
validation, in which we choose the most penalized model whose error is no more than
one standard error above the error of the best model. Such a rule acknowledges the fact
that the tradeoff curve is estimated with error, and hence takes a conservative approach
[14].
If enough data is available, the split of the training set in two subgroups is equally a

reasonable option to select λ and in addition, computationally less demanding. In this
case, one subgroup is employed for constructing the model and the other one to evaluate
the predictive ability and then to select λ accordingly.
The ElasticNet regularization results of including a L1-norm regularization, fromwhich

Eqs. (2.11)–(2.12) and Eq. (2.13) become:
axM = arg min

ax∗M

{ ∥∥r − Mxax∗M
∥∥2
2 + λ

[
(1 − α)

∥∥ax∗M
∥∥2
2 + α

∥∥ax∗M
∥∥
1

] }
, (2.14)

ayM = arg min
ay∗M

{ ∥∥r − Myay∗M
∥∥2
2 + λ

[
(1 − α)

∥∥ay∗M
∥∥2
2 + α

∥∥ay∗M
∥∥
1

] }
, (2.15)

and
f̃ M(axM,ayM) = arg min

ax∗M ,ay∗M

{∥∥∥f − f̃ M(ax∗M,ay∗M)
∥∥∥
2

2

+λ
[
(1 − α)

(∥∥ax∗M
∥∥2
2 + ∥∥ay∗M

∥∥2
2

)
+ α

(∥∥ax∗M
∥∥
1 + ∥∥ay∗M

∥∥
1
)] }

, (2.16)

respectively, where α ∈ [0, 1) and λ are the penalty factors. These coefficients could be
also different for the different dimensions, and the lambda coefficients also different for
the norm L2 and L1. The limit cases α = 0 and α = 1 result in the Ridge and Lasso
regressions respectively.
It is worth highlighting the fact that the elastic net procedure is used in case ridge does

not achieve the desired performance, in which case the hyperparameter alpha would be
added. In addition, alpha is selected using the state-of-the-art machine learning tools to
tune hyperparameters. In the first test, we recommend ridge regression because: 1. It is
faster. 2. It has not the hyperparameter alpha.

s2-PGD

For the ease of the exposition and representation but without loss of generality, let us
continue by assuming the same two-dimensional unknown function discussed in Sec-
tion rs-PGD.
Here, we are dealing with a solution which admits a sparse solution for a certain basis

using the PGD separated form (2.1). In this case, the goal is to identify the correct non-
zero coefficients at each enrichment step in order to guide the approach to the correct
separated representation.
Without a roadmap to select these nonzero coefficients, the traditional s-PGD fails to

capture the true relationship between the model’s features as well as its final response.
Furthermore, if high-order terms appear in the searched function, these issues become
even worse leading to serious overfitting issues.
Let us consider the theory discussed in the previous section but now considering the L1

regularization with the idea to promote sparsity in the overall solution of the nonlinear
regression problem:

f̃ M(axM,ayM) = arg min
ax∗M ,ay∗M

{ ∥∥∥f − f̃ M(ax∗M,ay∗M)
∥∥∥
2

2
+ λ

∥∥ax∗M
∥∥
1 + λ

∥∥ay∗M
∥∥
1

}
. (2.17)
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This formulation is convenient because the nonlinear problem can be solved using the
PGD constructor [1,10], with an alternate direction fixed point strategy, where just a
LASSO regression problem is considered in each dimension.
Therefore, the regression problems for the iterative scheme will be:

axM = arg min
ax∗M

{ ∥∥r − Mxax∗M
∥∥2
2 + λ

∥∥ax∗M
∥∥
1

}
, (2.18)

ayM = arg min
ay∗M

{ ∥∥r − Myay∗M
∥∥2
2 + λ

∥∥ay∗M
∥∥
1

}
. (2.19)

That consists of solving a LASSO regression problem for each dimensionwhen computing
axM and ayM within the alternate direction fixed point strategy. Moreover, as previously
discussed, in the present case again, both dimensions are equally penalized but different
penalty factors could be envisaged.
As we are iteratively solving a LASSO problem in each direction, we will end up with

sparse solutions for each one-dimensional function choosing the right penalty factor.
Again, a null itercept term was assumed.
In case of looking for sparsity just in the x dimension, only Eq. (2.18) applies for com-

puting coefficients axM , whereas coefficients ayM are calculated by invoking the standard
s-PGD or the rs-PGD, addressed in the previous section.
To determine λ, we first refer the reader to the discussion of the previous section. Then,

the following considerations applied in the case of the doubly sparse PGD:

• Before selecting a model according to the predictive criterion, a filter is considered
taking only the models with a minimum sparsity criterion

∥∥axM
∥∥
0 ≤ χ lim

x . If sparsity
is also desired in y direction, χ lim

y will be defined accordingly. Note: We define ‖·‖0
by ‖x‖0 = #{i : xi 
= 0}. We consider this notation even if it is actually not a norm.

• Once model selection is performed, the OLS methodology is employed with the
detectednon-zero elements toobtain the correct update.The reasonof this step is that
LASSO regression terms are in general not accurate, and so it may be necessary to de-
bias the obtained values. Remember that the LASSO shrinkage causes the estimates
of the non-zero coefficients to be biased towards zero and in general they are not
consistent [6,14].

If there is prior or physical knowledge about the solution, it can be used to decide
the direction to penalize and, in fact, this often helps to successfully decide on the rigth
dimension. If there is no prior knowledge, usual machine learning strategies to tune
hyperparameters can be employed.
Finally, the enrichment procedure for the s2-PGD strategy (where LASSO regularization

is employed to promote sparsity, that is, α = 1) is:

1 Compute different mode enrichments changing the penalty factor.
2 Select the best one considering the defined accuracy metric and if desired, the other

commented robustness rules such as the χ lim
x filter.

3 The selectedmode is employed to identify the non-zero elements. Then, as previously
indicated, the OLS methodology is used with the detected non-zero elements to
obtain the correct update. For the non-sparse dimensions, the s-PGD MAS strategy
is considered.
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In the present work, the lasso problems are solved by employing the algorithm imple-
mented in [26] where the Coordinate Descent and ADDM algorithms are used [5,13]

The ANOVA-based sparse-PGD
The ANOVA decomposition of a function f (s1, . . . , sd) : � ⊂ R

d → R is an orthogonal
decomposition based on the analysis of variance, a statistical model designed for data
analysis. Thus, the function f (s) can be written as a sum of orthogonal functions:

f (s) = f0 +
d∑

i=1
fi(si) +

d∑

i1=1

d∑

i2=i1

fi1 ,i2 (si1 , si2 ) + . . . + f1,2,...d(s1, s2, . . . , sd), (3.1)

satisfying

Ei(fi1 ,...,ik (s
i1 , . . . , sik )) = 0, (3.2)

where Ei stands for the expectation with respect to any coordinate i in the set (i1, . . . , ik ),
with 1 ≤ k ≤ d. This property results in the orthogonality of functions involved in the
previous decomposition.
To prove it, consider for example a simple 2D case with, s = (x, y), f (s) ≡ f (x, y). Thus,

with Ex(fx(x)) = 0, Ex(fx,y(x, y)) = 0 and Ey(fx,y(x, y)) = 0, we have Ex,y(fx,y(x, y)fx(x)) =
Ex{Ey(fx,y(x, y)) fx(x)} = 0.
The number of function involved in the decomposition (without considering the con-

stant term) is 2d − 1, and they can be parametrized by the integer n, n = 1, . . . , 2d − 1.
The different functions involved in the ANOVA decomposition can be expressed from
expectations according to:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(f (s)) = f0
E(f (s|si)) = fi(si) + f0
E(f (s|si, sj)) = fi,j(si, sj) + fi(si) + fj(sj) + f0
...

(3.3)

where E(f (s|si)) refers to the integration on all the variables except si.

Sensitivity analysis: Sobol coefficients

The variance of f (s), which we refer to as Var(f (s)), taking into account the orthogonality
of the functions involved in the ANOVA decomposition, reads

Var(f (s)) =
2d−1∑

n=1
E (fn(s))2 =

2d−1∑

n=0
Varn, (3.4)

that allows defining the so-called Sobol sensitivity coefficients Sn

Sn = Varn
Var(f (s)) . (3.5)

The anchored ANOVA

Multidimensional settings imply expensive calculations for computing the multidimen-
sional expectations. For alleviating those costly computations we introduce the so-called
anchor point c such that f0 = f (c). Then, in the definition of the functions involved in
the ANOVA decomposition, the expectations are replaced by f (c|sn), that is, the partic-
ularization of the function in the anchor point, except for those coordinates involved in
sn.
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Combining the anchored-ANOVAwith the sparse PGD

A valuable strategy consists in: (i) first, using the standard anchored-ANOVA for evaluat-
ing the functions depending on each dimension fi(si), i = 1, . . . , d, by using an adequate
sampling, a sort of multidimensional cross centered at the anchor point c.
Let c = (c1, c2, . . . , cd) and q1i , q

2
i , . . . , q

ni
i be one-dimensional sampling points for the

dimension si. In each dimension, fi(si) can be approximated by using any 1D interpola-
tion method such as polynomial regression, kriging, piecewise polynomial interpolation,
…For instance the term f1 can be approximated from the data collected at the points(
qj1, c2, . . . , cd

)
such that f1

(
qj1

)
≈ f

(
qj1, c2, . . . , cd

)
− f0. In this work, the fi are approx-

imated using a spline interpolation. Then, (ii) one could compute the residual f ′(s):

f ′(s) = f (s) − f0 −
d∑

i=1
fi(si), (3.6)

and finally, (iii) using the rs-PGD, or thes2-PGD, for approximating that residual f ′(s)
that contains the different correlations. In that case, an enhanced sparse sampling can be
considered by increasing the density of the sampling points near the boundaries of the
parametric domain.

Results
In this section, the results of using the above techniques are shown for different cases.
The rs-PGD examples are chosen to see how the s-PGD overfitting is reduced thanks

to the proposed strategy. The s2-PGD examples are selected to see how the proposed
technique improve the s-PGD results due to a better model indentification. The ANOVA
PGD aims at allying orthogonal hierarchical bases with a more favorable scaling (with
respect to the SSL) of the amount of data with the approximation richness. The ANOVA
PGD example is chosen to easily illustrate the proposed strategy and how it can improve
the results.3

First, in Section Results for the rs-PGD approach, the error reduction is shown
when using the rs-PGD comparing with the classical procedure (s-PGD). Then, in Sec-
tion Checking the performance of s2-PGDwhen addressing sparse solutions, sparse iden-
tification and error reduction is presented when using the s2-PGD comparing with the
standard sparse procedure (s-PGD). Finally, Section ANOVA-PGD numerical results
employes the analysis of variance and combines it with regularized approximations to
define an original and powerful regression methodology.

Results for the rs-PGD approach

The following examples considers the Elastic Net Regularization. For that purpose, an α

parameter is employed for combining the Ridge and Lasso regression. The α parameter is
selected by running the algorithm several times for different α values, and then choosing
the one which has better predictive performances.
The error reduction depends on the nature of the sought function to be built into the

PGD separated representation. For instance, if the sought function contains some sparsity,
the lasso penalty or ElasticNet needwithα close to 1will produce a greater error reduction
than ridge or Elastic Net with α close to 0.

3A part two of the present work, which constitutes a work in progress, will study the general workflow for allying the
PGD-based techniques under the ANOVA procedure for the solution of a given problem.
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Fig. 3 Comparing the reference (Eq. (4.1)) and its associated s-PGD and rs-PGD regressions, at points
(x1 , x2 , x3 = 0, x4 = 0, x5 = 0.7071)

Generally, it is not known beforehand which regularization might work best for a given
problem (it can also depend on the collected data, function properties, …) Therefore, a
hyperparemeter tuning job has to be performed for α: The α parameter is selected by
running the algorithm several times for different values. Note that ridge and lasso are
particular α values of the Elastic Net procedure. This is the reason why various values of
α are tested. Therefore, if the ridge strategy gives, for instance, a better error reduction,
it will be detected in the previous hyperparameter tuning job (selecting in this case α = 0
as the best run).

A first example involving a five dimensional polynomial

In the first example, we are trying to approximate the five-dimensional function

f (x1, x2, x3, x4 , x5) = (8x31 − 6x1 − 0.5x2)2 + (4x33 − 3x3 − 0.25x4)2 + 0.1(2x25 − 1).

(4.1)

The above function is to be reconstructed in the domain � = [−0.51, 0.51]5. The
sampling for the training set contains 160 points. Therefore, only these points are used to
construct the model either using the s-PGD or the rs-PGDmethodology. In addition, the
Latin hypercube sampling (LHS) is used to generate this set of data.
A testing set of 54,000 untrained points is considered to compare the results between

techniques when predicting unseen scenarios. This second set will be used to study the
predictive ability of both models once they are finally constructed.
A standard MAS employing up to 4th degree polynomials for both the s-PGD and the

rs-PGD is considered. To measure the error of both methodologies in the testing set, the
following error criterion is used:

errpgd =
∥∥z − zpgd

∥∥
2

‖z‖2 ; errrpgd =
∥∥z − zrpgd

∥∥
2

‖z‖2 ;

where z is the vector containing the values of f (x1, x2, x3, x4 , x5) in the testing set, zpgd and
zrpgd are the vectors containing the prediction in the testing set of both methodologies
(s-PGD and rs-PGD, respectively).
After employing the discussed techniques in the above conditions, we obtain in this

example that the error is reduced by 52.38 % using the rs-PGD with α = 0.1.
To perceive the improvements and the overfitting reduction, in Figure 3, we show a plot

of the original function f (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071). It can be noticed that the
rs-PGD corrects the shape of the function in the indicated areas in Fig. 3, improving the
performance of the regression.
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Fig. 4 Comparing the reference (Eq. (4.1)) and its associated s-PGD and rs-PGD regressions, at points
(x1 , x2 , x3 = −0.17069, x4 = −0.17069, x5 = −0.015517)

This improvement occurs over the whole five-dimensional domain. Other result is
shown in Fig. 4 that depicts f (x1, x2, x3 = −0.17069, x4 = −0.17069, x5 = −0.015517).

A second example involving five dimensions with trigonometric and logarithmic functions

In this second example, we are trying to approximate the function:

f (x1, x2, x3, x4 , x5) = cos(x1x2)
[(

sin(2x3) − 3.14
)
log(3x4 + 1.5) cos(x5)

+ exp(x4) cosh(x3) sinh(x5)
]
,

(4.2)

by using the rs-PGDwith polynomials. The above function is intended to be reconstructed
in the domain � = [−1, 1]5.
In this case, the sampling for the training set contains 390 points. Therefore, only

these points are used to construct the model either by using the s-PGD or the rs-PGD
methodology. In addition, the Latin hypercube sampling is used to generate this set of
data.
A testing set of 2000 untrained points is available to compare the results when predicting

unseen scenarios. Again a standard MAS is employed reaching 4th degree polynomials in
both, the s-PGD and the rs-PGD. An error reduction of about 47% is accomplished with
α = 0.5.

Checking the performance of s2-PGD when addressing sparse solutions

A first example involving sparsity in one dimension

In the first example of this Section, we are trying to approximate the function:

f (x1, x2, x3) = (sin(2x1) − 3.14)T5(x2) + exp(x3) cosh(x1), (4.3)

by using a Chebyshev basis for the one-dimensional functions of the PGD. The above
function is intended to be reconstructed in the domain � = [−1, 1]3. Please note that
in this work, we employ the terminology Tn to denote the Chebyshev polynomials of the
first kind.
Moreover, the sampling for the training set is created using a sparse grid based on

the Smolyak quadrature rule [3,21] of level 3 based on the Clenshaw-Curtis univariate
quadrature rule. Therefore, only these points are used to construct the model either using
the s-PGD or the s2-PGD methodology. In Fig. 5, the mesh used for the training set is
shown.
A testing set of 27,000 untrained points is available to compare the results between

techniques when predicting unseen scenarios. This second set will be used to study the
predictive ability of both models once they are finally constructed.
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Fig. 5 Plot of the original function and the training set (circles) used to construct the PGD models

Fig. 6 Problem defined in Eq. (4.3): Comparison of predicted s-PGD values with the reference ones in the testing
set (the black line represents a perfect prediction)

The conditions to employ the s2-PGD in this example are the following. A basis reaching
eighth-degreepolynomials is chosen for the sparsedimension.Moreover, a standardMAS-
based s-PGD is used, reaching 4th degree polynomials along the non-sparse dimensions.
In Figure 6, the results of the standard s-PGD are shown. In this case, we can see that

the predictions are bad because this methodology completely fails in finding this type of
sparse solutions. This is one of the problems that the s-PGD is facing and we propose to
solve with the s2-PGD.
In addition, if we observe the s-PGD solutionwe can see that all the possible elements are

nonzero, so it fails in identifying the sparsity. To detect sparsity, three simulations of the
s2-PGD are carried out, penalizing a different dimension at each iteration. Consequently,
the model with best predictive ability (out of the training set) will be the selected one. For
instance, x1 is supposed sparse in the first simulation, x2 is supposed sparse in the second
simulation, and so on. As expected, the chosenmodel is the one obtained when penalizing
the x2 dimension.
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Fig. 7 Problem defined in Eq. (4.3): Comparison of predicted s2-PGD values with the reference ones in the
testing set (the black line represents a perfect prediction)

Table 1 Example of mode enrichment when constructing the s2-PGD solution of problem defined
in Eq. (4.3)

x1 x2 x3
T0 0.0312 0.0016 0.6806

T1 0.1307 0 7.78E−09

T2 0.1184 0 0.0009

T3 0.0097 0 1.26E−07

T4 0 0 0

T5 0 5.8792 0

T6 0 0 0

T7 0 0 0

T8 0 0 0

As it can be observed, the method can correctly detect the non-zero elements in the sparse dimension of the separated
representation

In Fig. 7, the results of the s2-PGD are presented. As we can observe, predictions are
almost perfect. In this case the solution is correctly identified using four modes, that is,
four sums of the PGD decomposition. In Table 1 we can observe an example of mode
enrichment where the correct non-zero elements are identified in the sparse dimension.
Theerrors concerning the s-PGDand the s2-PGDsolutions are respectively errpgd = 141

% and errs2pgd = 0.56 %.

A second example involving sparsity in two dimensions

In this case we consider the approximations problem of function

f (x1, x2, x3, x4 , x5) = [
T5(x1) + 2T1(x1)

][
T2(x2) + 2T4(x2)

]
[(

sin(2x3) − 3.14
)
log(3x4 + 1.5) cos(x5)

+ exp(x4) cosh(x3) sinh(x5)
]

(4.4)
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Fig. 8 Problem defined in Eq. (4.4): Comparison of predicted s-PGD values with the reference ones in the testing
set (the black line represents a perfect prediction)

by using a Chebyshev approximation basis for the one-dimensional functions involved in
the PGD constructor.
The above function is intended to be reconstructed in the domain � = [−1, 1]5. The

sampling for the training set contains 490 points. In addition, the Latin hypercube sam-
pling is used to generate this random set of data.
A testing set of 2000 untrained points is available to compare the results between tech-

niques when predicting unseen scenarios. As in the previous examples, this second set will
be used to study the predictive ability of both models once they are finally constructed.
Concerning the s2-PGD a basis reaching sixth-degree polynomials is chosen for the

sparse dimensions. Moreover, a standard MAS is used, up-to 4th degree polynomials, in
the non-sparse dimensions.
In Fig. 8, the results of the standard s-PGD are shown. In this case, we can see that the

predictions are bad. This is due to the wrong identification of the non-zero elements in
the separated representation, which causes overfitting problems. This is a proof of the
limitations that the s-PGD can find. The s2-PGD is designed to address that.
To detect sparsity, five different simulations of the s2-PGD are carried out, penalizing

one different dimension each time. In other words, the algorithm is employed five times
but changing the dimension to penalize to seek sparsity. Consequently, the model with
best predictive ability (out of the training set) will be the selected one. For instance, x1 is
supposed sparse in the first simulation, x2 is supposed sparse in the second simulation,
and so on. As expected, the chosen model is the one obtained when penalizing the x1
dimension. The reason is that in this case, we observe that the correct non-zero terms for
x1 and x2 are identified just penalizing x1.
In Fig. 9, the results of the s2-PGD are presented. An exellent agreement between the

real function and the proposed approach is observed. Furthermore, if we examine the
modes of the s2-PGD solution, we can see that the model has correctly identified the
non-zero elements in the two sparse dimensions. For instance, see Table 2 as a mode
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Fig. 9 Problem defined in Eq. (4.4): Comparison of predicted s2-PGD values with the reference ones in the
testing set (the black line represents a perfect prediction)

Table 2 Example of mode enrichment when constructing the s2-PGD solution of problem defined
in Eq. (4.4)

x1 x2 x3 x4 x5
T0 0 0 1.3218 0.1658 0.2213

T1 0.369 0 −3.6109 0.5287 0.3541

T2 0 −0.1236 4.387 0.1045 0.5085

T3 0 0 −1.7597 0.7351 0.3519

T4 0 0.0649 0 0 0

T5 −0.1788 0 0 0 0

T6 0 0 0 0 0

As it can be observed, the method can correctly detect the non-zero elements in the two sparse dimensions of the separated
representation

example. In addition, this PGD solution needed 104 modes, that is, 104 sums of the PGD
decomposition, solution that can be re-compacted by invoking again the PGD [10].
Finally, the errors concerning the s-PGD and the s2-PGD solutions are respectively

errpgd = 46.39 % and errs2pgd = 2.4 %.

A third example involvingmore dimensions

In the third example of this Section, we are trying to approximate a challenging function
involving eight dimensions:

f (
x) = (
180x33T3(x1)T2(x2) + 120x33T1(x1)T2(x2) + 144x23T3(x1)T2(x2)

+96x23T1(x1)T2(x2) + 18x3T3(x1)T2(x2) + 12x3T1(x1)T2(x2)

−18T3(x1)T2(x2) − 12T1(x1)T2(x2)) (sin(2x4) − 3.14) (log(3(x5 + 1.5)))

(6x36 − 9x26 − x6 − 2)(−6x37 + 9x27 + 4x7 − 2)(−6x38 − 4x28 + 2x8 − 2), (4.5)

by using a Chebyshev basis for the one-dimensional functions of the PGD constructor.
Note that x = (x1, x2, x3, x4 , x5, x6, x7, x8).
The sampling for the training set contains 2900 points. In addition, the Latin hypercube

sampling is used to generate this random set of data.
A testing set of 3000 untrained points is available to compare the results between s-PGD

and s2-PGD techniques when predicting unseen scenarios. As in the previous examples,
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Fig. 10 Problem defined in Eq. 4.5: Comparison of predicted s-PGD values with the reference ones in the testing
set (the black line represents a perfect prediction)

Fig. 11 Problem defined in Eq. 4.5: Comparison of predicted s2-PGD values with the reference ones in the
training set (the black line represents a perfect prediction)

this second set will be used to study the predictive ability of both models once they are
finally constructed.
As in the previous examples, the standard MAS strategy is used for the s-PGD. On the

other hand, dimensions x1 and x2 are penalized in the s2-PGD algorithm to detect sparsity.
In Fig. 10, the results of the standard s-PGD are shown. In this case, we can see that the

predictions are bad. This is due to the wrong identification of the non-zero elements in
the separated representation. This is another proof of the limitations that the s-PGD can
find in several scenarios. The s2-PGD is designed to address that to achieve the correct
sparse identification.
In Figs. 11, 12, the results of the s2-PGD are presented. An exellent agreement between

the real function and the proposed approach is observed. This is true for the training set
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Fig. 12 Problem defined in Eq. 4.5: Comparison of predicted s2-PGD values with the reference ones in the
testing set (the black line represents a perfect prediction)

and also for unseen scenarios such as the untrained set of points employed to check the
predictivie ability (Fig. 12).
Finally, the errors concerning the s-PGD and the s2-PGD solutions are respectively

errpgd = 87.17 % and errs2pgd = 1.9 %.

ANOVA-PGD numerical results

ANOVA-PGD regression consists of applying regression techniques (such as standard
interpolation, s-PGD, rs-PGD or s2-PGD) separately to the different terms (or groups of
terms) in the ANOVA decomposition. This strategy suggests the MAS since it enforces
some simplicity in the first modes, even if here richer approximations can be envisaged,
but it also provides other benefits through the orthogonality of the decomposition and
the opportunity to work in a low dimension setting, as previously expossed.
Here, we consider the numerical test related to the 2D function

f (x, y) = −2 cos(3x1.75) + 10 log(y − 0.6)4 + 6 cos(x)(y − 0.3y2), (4.6)

that perfectly fits the ANOVA structure, despite the functional complexity of the terms
involving the coordinates x and y, 2 cos(3x1.75) and 10 log(y − 0.6)4 respectively, and the
one coupling both coordinates, 6 cos(x)(y − 0.3y2).
When considering the ANOVA-based sampling consisting of the center point of the

parametric domain acting as the anchor c = (xc, yc), 10 additional points in the first
dimension (of the form (x, yc)) and 10 additional points in the second dimension (of the
form (xc, y)), functions fx(x) and fy(y) were calculated with a cubic spline interpolation.
Then, a standard 2D nonlinear regression using basis functions of the form (x − xc)m(y−
yc)n, m, n ≥ 1 (due to the low dimensionality of the treated problem the employ of
separated representations is not needed) was employed for calculating the term fx,y(x, y)
using 4 sample points.
The constructed solution is depicted in Fig. 13 where it is compared with the exact

solution as well as with the solution obtained by using the standard s-PGD (with a Latin
Hypercube Sampling containing 25 points), while Figs. 14 and 15 compare the predictions
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Fig. 13 Comparing s-PGD and ANOVA-PGD regressions

Fig. 14 Problem defined in Eq. (4.6): Comparison of predicted s-PGD values with the reference ones in the
testing set (the black line represents a perfect prediction)

and the reference values. From all these results, excellent performances of the ANOVA-
based regression can be stressed.

Conclusions
In this paper, three different data-driven regression techniques are introduced, the first
two, the so-called rs-PGD and s2-PGD, that consist of a regularization of the usual sparse
PGD, and the third, that combines analysis of variance features with sparse separated
representations. It has been shown and discussed, through different examples, how they
can improve significantly the existing sparse s-PGDperformance, reducing overfitting and
achieving great explanatory predictive capabilities when dealing with unseen scenarios.
Furthermore, the s2-PGD can be employed to sparse identification and variable selec-

tionwhen the s-PGD fails. The comparison of Figs. 6 and 7 is an example of the substantial
improvements under this rationale. In what respecto to the ANOVA version just intro-
duced, in Fig. 15 the clear improvement obtained with respecto to the s-PGD approach
can be noticed at first sight.
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Fig. 15 Problem defined in Eq. (4.6): Comparison of predicted ANOVA-PGD values with the reference ones in the
testing set (the black line represents a perfect prediction)

In addition, the suitability of the s-PGDtodealwith the challenging scenarios concerning
the low-data regime context and high-dimensional parametric functions was previously
proved in [18,20]. Therefore, the improvements carried out by these new techniques opens
the door to construct better high-performance ROMs in this difficult context. Moreover,
this is really appealing because of the increasing industrial interest of obtaining accurate
models under these circumstances.
Our works in progress address specific industrial applications where the use of these

techniques can be competitively advantageous. In addition, other penalties are being
studied for its use in specific frameworks as well as different sampling strategies when
they can be controlled, to maximize the ROM performance.
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