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Abstract
We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism.
To satisfy by construction the principles of thermodynamics in the learned physics (conservation of energy, non-negative
entropy production), we modify accordingly the port-Hamiltonian formalism so as to achieve a port-metriplectic one. We
show that the constructed networks are able to learn the physics of complex systems by parts, thus alleviating the burden
associated to the experimental characterization and posterior learning process of this kind of systems. Predictions can be
done, however, at the scale of the complete system. Examples are shown on the performance of the proposed technique.

Keywords Port-Hamiltonian · Thermodynamics · Scientific machine learning · Inductive biases

1 Introduction

Recently, the possibility of developing learned simulators has
attracted an important research activity in the computational
mechanics community and beyond. By “learned simulators”
we mean methodologies able to learn from data the dynam-
ics of a physical system so as to perform accurate predictions
about previously unseen situations without the burden asso-
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ciated to the construction of numerical models by means
of finite elements, finite volumes or similar techniques [1–
3]. Among their advantages we can cite that they are based
on reusable architectures, can be optimized to work under
really stringent real-time feedback rates, and are specially
well suited for optimization and inverse problems.

While original, black-boxapproaches showedgreat promise,
both industry and academia are reluctant to generalize their
use, since small modifications in the input data may cause
nonsense results. This is at the origin of the development and
employ of inductive biases during the learning process [3,4].
An inductive bias allows the learning algorithm to prioritize
one particular solution over any other [5]. This is particu-
larly interesting for physical phenomena for which previous
knowledge exists. Paul Dirac once said that [6]

The underlying physical laws necessary for the mathe-
matical theory of a large part of physics and the whole
of chemistry are thus completely known, and the dif-
ficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

Therefore, in the presence of centuries of knowledge about
virtually any physical phenomena, it is simply nonsense to
ignore it and to favor theory-blind, black-box approaches.

In this paper we develop a novel strategy based on the
port-Hamiltonian formalism, which we extend so as to com-
ply with the first and second principles of thermodynamics
by construction [7–9]. Port-Hamiltonian formalisms extend
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the well-known Hamiltonian (thus, conservative) physics to
open systems and introduce the possibility of dissipation
and control through external actuation within this theory. We
show here, however, that general port-Hamiltonian systems
do not comply a priori with the laws of thermodynamics
and modify them so as to ensure this fulfillment. Based on
this new formalism, which we call port-metriplectic, since
it is at the same time metric and symplectic, we construct
a deep neural network methodology to learn the physics of
complex systems from data. The resulting port-metriplectic
networks will comply by construction with the principles of
thermodynamics—that can be enforced through hard or soft
constraints—while they allow to analyze complex systems
by parts. These parts will then communicate through energy
ports to construct the final, complex systems.

The outline of the paper is as follows. In Sect. 2 we review
the state of the art in the development of machine learn-
ing strategies that impose energy conservation by using a
Hamiltonian formalism. We include here neural networks
based upon port-Hamiltonian formalisms, which we show
not be necessarily compliant with the principles of thermo-
dynamics. We then develop the concept of port-metriplectic
networks in Sect. 3. Then, in Sect. 4 we analyze the perfor-
mance of the just developed neural networks, while in Sect. 5
we draw some conclusions.

2 Hamiltonian neural networks

2.1 Reversible dynamics as an inductive bias

Learning the physics of a given phenomenon from data can
be seen as learning a dynamical problem [10]. If we assume
that the problem is governed by a set of variables z, which
we can measure experimentally—a detailed discussion on
the limitations and implications of this assumption can be
found at [11], then the problem of learning the evolution of
the system in time can be seen as finding the structure of the
dynamical problem

ż = d z
dt

= f (z, t), z(0) = z0, (1)

or, in other words, to find by regression the flow map

z0 → z(T , z0). (2)

Equivalently, wemust find the particular form of the function
f governing the dynamics of the system. This is done by
regression, where neural networks play an important role,
but by no means constitute the only possibility, as in [12–
14].

This particular form of seeing the problem has impor-
tant advantages. For instance, if the system under scrutiny is
known to be conservative, or reversible, we can impose as an
inductive bias the Hamiltonian form of the sought function
f ,

ż = d z
dt

= L
∂H
∂ z

= L
∂E

∂ z
, (3)

where the Hamiltonian, H, whose canonical form depends
on the position and momenta of particles, is now the total
energy of the system, E . Under this prism, the problem (1) is
now seen as to find the precise form of the skew-symmetric
(symplectic) matrix L and the form of the energy of the sys-
tem, E(z). If we enforce the particular form given by Eq.
(3) during our regression procedure, it is straightforward to
prove that the resulting evolution will be conservative.

Manyworks have leveraged this approach. Several authors
take advantage of theHamiltonian structure to construct sym-
plectic integrators to predict conservative dynamical systems
[15–17]. Others, use the Hamiltonian principles to design
more expressive deep neural network architectures [18] or
to find the Hamiltonian function and phase space from data
[19,20]. The Hamiltonian paradigm is also widely used in
quantum mechanics, where similar deep learning literature
can be found in problems such as electron dynamics [21],
learning ground states [22] or optimal control [23]. Alter-
native formulations can be developed by resorting to the
equivalent Lagrangian formalism, see [4,24–27], among oth-
ers.

2.2 Port-Hamiltonian neural networks

If the physical phenomenon at hand is known to be dissipa-
tive, or if the system is open and thus no guarantee on the
conservation of energy exists, things become more intricate.
For dissipative systems, the easiest form of the evolution Eq.
(1) could be, perhaps, a gradient flow [28]. Their evolution
can be established after some (dissipation) potentialR in the
form [29]

ż = −∂R
∂ z

.

Recently, the so-called SymplecticODEnets (symODEN)
[30,31], have tackled the issue of introducing dissipation in
the learned description of the physics. It is also the approach
followed in [32].More recently, two distinctworks have tack-
led the dissipation problem by relaxing equivariance in the
networks [33,34].

These works seem to be closely related to the vast corps
of literature on the port-Hamiltonian approach to dynamical
systems [7–9]. Port-Hamiltonian systems assume an evolu-
tion of the system in the form
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[
q̇
ṗ

]
=

([
0 I

−I 0

]
− D(q)

)[
∂H
∂q
∂H
∂ p

]
+

[
0

g(q)

]
u, (4)

where (q, p) are the generalized position and momenta,
dissipation is included by adding a symmetric, positive semi-
definite matrix D, and control is considered through an
actuation term u and a non-linear function of the position
g(q). Equation (4) reduces to the Hamiltonian description
if no dissipation nor control are considered. Here, we have
assumed a canonical form for the Hamiltonian, i.e., that it
depends on a set of variables z = {q, p}. More general forms
can be expressed similarly.

The true advantage of using port-Hamiltonian formalisms
as inductive biases in the learning procedure stems from the
fact that, on one side, they allow the introduction of dis-
sipation and control and, on the other, they model open
systems (as opposed to classical Hamiltonian descriptions
where energy conservation assumes inherently that the sys-
tem is closed) [35].

Therefore, the use of port-Hamiltonian formalisms as
inductive biases in learning processes is extremely interest-
ing. However, as will be demonstrated in the next section,
classical port-Hamiltonian schemes do not guarantee a pri-
ori to comply with the laws of thermodynamics, see ref. [11].

3 Port-metriplectic neural networks

3.1 Metriplectic biases for dissipative phenomena

In the case of dissipative phenomena, the first in proposing
the introduction of a second potential, the so-called Math-
ieu potential, seems to have been Morrison [36,37], Grmela
[38,39] and Kaufman [40]. They suggested to consider an
evolution of the governing variables of the type

ż = L(z)
∂E

∂ z
+ M(z)

∂S

∂ z
, (5)

where S is precisely this second (dissipation) potential,
entropy.

This formulation is often referred to as metriplectic, since
it is metric and symplectic at the same time. Here, M(z) is
a symmetric, positive semi-definite dissipation matrix and
L(z), the Poisson matrix, continues to be skew-symmetric.

However, for this formulation to be consistent with the
principles of thermodynamics, two additional conditions
must hold, the so-called degeneracy conditions:

L(z)
∂S

∂ z
= 0, (6)

and

M(z)
∂E

∂ z
= 0, (7)

which give rise to the General Equation for the non-
Equilibrium Reversible-Irreversible Coupling, GENERIC,
equations [41–45].

In a nutshell, Eqs. (6) and (7) state that the energy potential
is independent of dissipation, whereas entropy is unrelated
to the energy conservation. If they hold, it is straightforward
to demonstrate that, given the skew-symmetry of L,

Ė(z) = ∂E

∂ z
ż = 0,

and

Ṡ = ∂S

∂ z
ż = ∂S

∂ z
M(z)

∂S

∂ z
≥ 0,

given the positive semi-definiteness of M.
These properties have been leveraged in some of our for-

merworks to developwhatwehave coined as thermodynamics-
informed neural networks [46–48].

Given experimental data setsDi containing labelled pairs
of a single-step state vector zt and its evolution in time zt+1,

D = {Di }Nsim
i=1 , Di = {(zt , zt+1)}Tt=0, (8)

we construct a neural network by considering two different
loss terms. First, a data-loss term that takes into account the
correctness of the network prediction of the state vector at
subsequent time steps by integrating GENERIC in time, i.e.,

Ldata
n =

∥∥∥ żGTn − żnetn

∥∥∥2
2
,

with ‖ ·‖2 the L2-norm, żGTn is ground truth solution and żnetn
is the network prediction. The choice of the time derivative
instead of the state vector itself is employed to regularize the
global loss function to a uniform order of magnitude with
respect to the degeneracy terms.

We then consider a second loss term to take into account
the fulfillment of the degeneracy equations in a soft way,

Ldeg
n =

∥∥∥∥L ∂S

∂ zn

∥∥∥∥
2

2
+

∥∥∥∥M ∂E

∂ zn

∥∥∥∥
2

2
.

These networks have have demonstrated towork verywell
for physics perception and reasoning in combination with
computer vision [49,50].
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These two loss terms are weighted and averaged over the
Nbatch batched snapshots.

L = 1

Nbatch

Nbatch∑
n=0

(λLdata
n + Ldeg

n ). (9)

Alternative formulations of these thermodynamics-informed
networks exist in which the degeneracy conditions are
imposed in hard way, see refs. [51] and [52].

It is worth noting that, by comparing Eqs. (5), (6) and
(7), on one side, and Eq. (4), on the other, one readily con-
cludes that port-Hamiltonian biases do not necessarily ensure
the fulfillment of the principles of thermodynamics. Note
that, since entropy does enter the classical port-Hamiltonian
formulation, it is difficult to impose the fulfillment of the
second principle of thermodynamics. Therefore, we suggest
to extend the GENERIC formalism to open systems so as to
develop alternative port-metriplectic biases. These are devel-
oped in the next section.

3.2 Port-metriplectic neural networks

Very few works exist, to the best of our knowledge, on
the development of GENERIC formulations for open sys-
tems, that may lead to the development of port-metriplectic
formulations.Maybe the only exception is [53], later on revis-
ited by [54,55], both published in conference proceedings
and, of course, with no machine learning approximations.
Both approaches are essentially identical, and start from the
bracket formulation ofGENERIC.Operators L andM define
a bracket structure of the type

ż = {z, E} + [z, S], (10)

where {·, ·} is the so-called Poisson bracket and [·, ·] repre-
sents the dissipative bracket [41,45,56].

For open systems, these brackets take the form

{·, ·} = {·, ·}bulk + {·, ·}boun, (11)

and

[·, ·] = [·, ·]bulk + [·, ·]boun. (12)

In other words, both brackets are decomposed additively into
bulk and boundary contributions. With this decomposition in
mind, the GENERIC principle (5) now reads

ż = {z, E}bulk + [z, S]bulk
= {z, E} + [z, S] − {z, E}boun − [z, S]boun. (13)

The degeneracy conditions (6) and (7) must be satisfied by
the bulk operators only, since it is possible, in general, that

there may be a reversible flux of entropy at the boundary or,
equivalently, an irreversible flux of energy at the boundary
[53],

Lbulk(z)
∂Sbulk

∂ z
= 0, (14)

and

Mbulk(z)
∂Ebulk

∂ z
= 0, (15)

The particular form of the boundary terms in Eq. (13)
depends, of course, of the particular phenomenon under
scrutiny, but in a general way it can be expressed using L
and M operators as

ż = L
∂E

∂ z
+ M

∂S

∂ z

− Lboun
∂Eboun

∂ z
− Mboun

∂Sboun
∂ z

. (16)

More particular expressions can be developed if we know in
advance some properties of the system at hand. For instance,
in Sect. 4.1 we deal with a double pendulum by learning the
behavior of each pendulum separately. If we know in advance
that the only boundary term comes from the energy-entropy
pair transmitted by the other pendulum, and no other exter-
nal contribution is present, more detailed assumptions in the
form of degeneracy conditions can be assumed. This may
lead to a decrease in learning time or the employ of less
data.

Figure 1 sketches the approach developed herein for com-
plex systems. In the numerical results section below we
explore the particular form that these terms could acquire
for both finite and infinite dimensional problems.

We propose two learning procedures which correspond to
different level of information available of the dynamics of
the system. In the first example, we focus on two coupled
subsystems in which we learn the self and boundary con-
tributions of both subsystems to the global dynamics of the
problem. This is the case when the interest is focused on
the complete system divided into smaller subsystems. In the
second example, we suppose that the external influence is
determined by a load vector as a result of an unknown exter-
nal interaction with another subsystem. Thus, the learning
procedure is focused on the self and boundary contributions
of only one subsystem based on an external interaction. This
case is convenient for applications where only partial infor-
mation of the system is available.
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Fig. 1 Complex system created
as a connected group of
subsystems �i . The dynamics
of any subsystem is described
using a GENERIC formulation
including conservative and
dissipative terms, taking also
into account the external
contributions in the boundary
terms �i . Sub-systems
communicate between each
other through ports by the
exchange of energy and entropy

Fig. 2 Double thermoelastic pendulum. A single pendulum with exter-
nal perturbations is learned, and the coupling between both systems is
achieved via the port-metriplectic framework

4 Numerical results

4.1 Double thermoelastic pendulum

The first example is a double thermoelastic pendulum con-
sisting of two masses m1 and m2 connected by two springs
of variable lengths λ1 and λ2 and natural lengths at rest λ01
and λ02, as depicted in Fig. 2.

The set of variables describing each pendulum are here
chosen to be

S = {z = (q, p, s) ∈ (R2 × R
2 × R)}. (17)

where q, p and s are the position, linear momentum and
entropy of the pendulum mass.

The evolution of the state variables of the second pendu-
lum is defined as

ż2 = L2
∂E2

∂ z2
+ M2

∂S2
∂ z2

− Mboun,2
∂Sboun,2

∂ z2
,

where the first two positive terms describe the self contri-
bution of the simple pendulum (conservative and dissipative
effects) and the third term describes the dissipative effect
produced by the first pendulum affecting over the second
pendulum.

On the other hand, the evolution of the state variables of
the first pendulum is defined as

ż1 = L1
∂E1

∂ z1
+ M1

∂S1
∂ z1

− Lboun,1
∂Eboun,1

∂ z1
− Mboun,1

∂Sboun,1
∂ z1

, (18)

where in this case the first two positive terms describe the self
contribution of the first simple pendulum (conservative and
dissipative effects) and the third and fourth terms describe
the external contribution on the conservative and dissipative
parts, both produced by the influence of the second pendulum
over the first pendulum.

Note that the first pendulum has no conservative contri-
bution to the second pendulum, i.e., the term

Lboun,2
∂Eboun,2

∂ z2

does not exist. However, there is a conservative contribution
from the second pendulum on the first pendulum, see [57].

It is worth noting, as previously pointed out in [35], that
the fact that every term in Eq. (18) depends on the state vari-
ables z1 makes the learning procedure more intricate. This is
caused by the non-separable structure of Eq. (18). This prob-
lem is not present if the port terms depend only on time, as
it is the case in Sect. 4.2 below. To overcome this limitation,
we employ a structure-preserving neural network for each
of the terms in Eq. (18). These networks share the weights,
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Fig. 3 Box plots for the relative L2 error for all the rollout snapshots
of the double pendulum in both train and test cases. The state variables
represented are position (q), momentum ( p), and entropy (s)

however, for both pendula, if they are known in advance to
be identical.

The fact of using individual approximations of the dynam-
ics of each subsystem (each pendulum) allows to use artificial
neural networks of considerably smaller size with respect to
an analysis of the whole problem using a larger number of
variables to describe the global state [46].

The database consists of 50 different simulationswith ran-
dom initial conditions of position q and linear momentum
p of both masses m1 and m2 around a mean position and
linear momentum of q1 = (4.5, 4.5) m, p1 = (2, 4.5)
kg·m/s, and q2 = (−0.5, 1.5) m, p2 = (1.4, −0.2) kg·m/s
respectively. The masses of the double pendulum are set to
m1 = 1 kg and m2 = 2 kg, joint with springs of a natural
length of λ01 = 2 m and λ02 = 1 m and thermal constant of
C1 = 0.02 J and C2 = 0.2 J and conductivity constant of
κ = 0.5. Note that the double pendulum constitutes a closed
system as a whole, but this is not the case for each one of the
simple pendula. Both start from a temperature of 300 K. The
simulation time of the movement is T = 60 s in NT = 200
time increments of �t = 0.3 s.

The boxplot in Fig. 3 shows the statistics of the L2 relative
error of the rollout train and test simulations.

4.2 Interacting beams

In this example we consider two viscoeleastic beams that can
interact through contact between them, see Fig. 4, and whose
physics are to be learned. Synthetic data come from finite
element simulations, assuming a strain energy potential of
the type

U = C10(I 1 − 3) + C01(I 2 − 3) + 1

D1
(Jel − 1)2,

with Jel the elastic volume ratio, I 1 and I 2 are the two invari-
ants of the left Cauchy-Green deformation tensor, C10 and
C01 are shear material constants and D1 is the material com-
pressibility parameter. The viscoelastic behavior is described

Fig. 4 One single beam problem is analyzed from simulation data. The
resulting system is composed of two of these beams interacting together

by a two-term Prony series of the dimensionless shear relax-
ation modulus,

gR(t) = 1 − ḡ1(1 − e
−t
τ1 ) − ḡ2(1 − e

−t
τ2 ),

with relaxation coefficients of ḡ1 and ḡ2, and relaxation times
of τ1 and τ2.

We assume that the necessary state variables for for a
proper description of the beams are the position q, its velocity
v and the stress tensor σ ,

S = {z = (q, v, σ ) ∈ R
3 × R

3 × R
6}, (19)

at each node of the discretization of the beams. Since both
beams are identical, see Fig. 4 we characterize only one
of them and develop a port-metriplectic learned simulator
for the joint system. To do so, we employ thermodynamics-
informed graph neural networks [48].

Basically, a graph neural network is constructed on top
of a graph structure G = (V, E, u), where V = {1, . . . , n}
is a set of |V| = n vertices, E ⊆ V × V is a set of |E | = e
edges and u is the global feature vector. Each vertex and edge
in the graph is associated with a node in the finite element
model from which data are obtained. The global feature vec-
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Fig. 5 Box plots for the relative L2 error for all the rollout snapshots
of the interacting beams in both train and test cases. The state variables
represented are position (q), velocity (v), and stress tensor (σ )

tor defines the properties shared by all the nodes in the graph,
such as constitutive properties. More details on the precise
formulation can be found at [48].

To ensure traslational invariance of the learned model,
the position variables of the system, qi , are assigned to the
edge feature vector ei j so the edge features represent relative
distances (qi j = qi − q j ) between nodes. The rest of the
state variables are assigned to the node feature vector vi . We
employ an encode-process-decode scheme [3], built upon
multilayer perceptrons (MLPs) shared between all the nodes
and edges of the graph.

We use this graph-based framework to learn the self con-
tribution of the dynamics, i.e. the first two terms of Eq. (16).
The boundary terms are learned using a standard structure-
preserving neural network [46] with the additional input of
the external forces applied to the beam.

The dimensions of the beams are H = 10, W = 10
and L = 40. The finite element mesh from which data are
obtained consisted of Ne = 500 hexahedral linear brick ele-
ments and N = 756 nodes. The constitutive parameters are
C10 = 1.5 · 105, C01 = 5 · 103, D1 = 10−7 and ḡ1 = 0.3,
ḡ2 = 0.49, τ1 = 0.2, τ2 = 0.5 respectively. A distributed
load of F = 105 is applied in 52 different positions with an
orientation perpendicular to the solid surface. Simulations
were quasi-static and included NT = 20 time increments of
�t = 5 · 10−2 s. Two identical beams are assembled in 90◦
with a gap of g = 10, as depicted in Fig. 4.

The results are presented in Fig. 5. The error magnitude
is similar as the reported in previous work [48] in addition to
the consistent formulation of port-metriplectic dynamics.

5 Conclusions

In this paper we have made two main contributions. On one
side, the development of port-Hamiltonian-like approxima-
tions for dissipative open systems that communicate with
other systems by exchanging energy and entropy through
ports in their boundaries. This formulation extends the

classical port-Hamiltonian approaches while guaranteeing
the fulfillment of the laws of thermodynamics (conserva-
tion of energy in the bulk system, non-negative entropy
production). The resulting formulation, which we refer
as port-metriplectic—since it consists of a metric term
and a symplectic one—presents a rigorous thermodynamic
description of the dissipative behavior of the system.

On the other hand, the just developed formulation is
employed as an inductive bias for themachine learning of the
physics of complex systems from measured data. This bias
is developed as a soft constraint in the loss term, although it
can also be imposed straightforwardly as a hard constraint.

The resulting neural networks, for which we have formu-
lated two distinct versions, one based on standard multilayer
perceptrons, and a second one based on graph neural net-
works, have shown an excellent performance. Error bars are
equivalent to those obtained in previous works of the authors,
by employing a closed-system approach to the same physics.
The new approach opens the door to the development of
learned simulators for complex systems through piece-wise
learning of the physical behavior of each of its components.
The final, global simulator is then obtained by assembling
each piece through their ports.
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