NS

CPS 07 Statistical estimation II

Quantifying the contribution of individual records to the reidentification risk of (pseudo)anonymized datasets

Michel Béra¹, Vasiliki Daskalaki², Gilbert Saporta¹, Kimon Spiliopoulos², Konstantinos Spinakis³ and Photis Stavropoulos²

¹CNAM ²Quantos S.A. ³EPFL Monday 17 July, 8:30AM - 9:40AM

OTTAWA 2023

64TH WORLD STATISTICS CONGRESS

Dataset risk according to the QaR method (1)

	1	2	3	4	5					N
1										
2										
3										
4										
1										
	_									
	_				_					
	_		-	-	-		-	-		_
L .										

- $L \times N$ tabular dataset
- Each set of p columns, $1 \le p \le N$, is a quasiidentifier of size p

•
$$N_p = \binom{N}{p} = \frac{N!}{p!(N-p)!}$$
 quasi-identifiers of size p

Reidentification risk associated with quasi-identifier $Q(j), j = 1, 2, ..., N_p$ $\theta(j) = \frac{H(j)}{L}$

H(j): number of distinct values assumed by Q(j) in the dataset

Sex	Age group	Nationality		
Female	55-64	Greek		
Male	25-34	Greek		
Female	25-34	Italian		
Male	25-34	Greek		
Male	35-44	Greek		
Female	55-64	Greek		
Male	25-34	Greek		
Male	25-34	Greek		

Female	55-64	Greek	
Male	25-34	Greek	
Female	25-34	Italian	
Male	35-44	Greek	

 $\theta(j) = \frac{4}{8} = 0.5$

Dataset risk according to the QaR method (3)

Z90-030

- Compute the risks $\theta(j), j = 1, 2, ..., N_p$, associated with all quasi-AFNOR SPEC identifiers of size p
- Compute the empirical $1 \pi_u$ quantile, u, of the risks
- Retain the N_{u} risks that are greater than u; Extreme risks
- Fit a Generalised Pareto Distribution (GPD) to a logit transformation of the extreme risks
- Based on the estimated GPD parameters, estimate the 1α quantile • of the distribution of risks

$$\widehat{T}(p,\alpha) = \exp\left(\ln\left(\frac{u}{1-u}\right) + \frac{\widehat{\beta}}{\widehat{\xi}}\left[\left(\frac{N_p \cdot \alpha}{N_u}\right)^{-\widehat{\xi}} - 1\right]\right) / \left\{1 + \exp\left(\ln\left(\frac{u}{1-u}\right) + \frac{\widehat{\beta}}{\widehat{\xi}}\left[\left(\frac{N_p \cdot \alpha}{N_u}\right)^{-\widehat{\xi}} - 1\right]\right)\right\}$$

This is the **dataset's reidentification risk**

A record's contribution to risk

- Contribution of record i, i = 1, 2, ..., L: $\hat{T}(p, \alpha)$ $\hat{T}(p, \alpha: i)$
- An indication of the risk of identifying the respective statistical unit
- Removal of a few "largest contributors" may reduce considerably the reidentification risk of the dataset
- 'Proper' backward elimination of records very expensive computationally
- Number of dataset risk computations involved in S eliminations

$$1 + \sum_{s=1}^{5} (L - s + 1)$$

E.g., removal of 10 out of 12000 records: 119956 risk computations

A record's contribution to risk: proxies

- Contribution to the initial dataset's risk: $DT(i) = \hat{T}(p, \alpha) \hat{T}(p, \alpha: i)$
- Contribution to the initial dataset's risk as estimated by PLS regression of the sign of DT(i) on the record's contents (numerical values)
- A record entropy

$$\begin{split} \mathsf{F}(i,j) &= \frac{1}{L} \sum_{r=1}^{L} \mathbb{1} \left(x_{r,j_1} \leq x_{i,j_1}, \ x_{r,j_2} \leq x_{i,j_2}, \dots, \ x_{r,j_p} \leq x_{i,j_p} \right) \text{ empirical cdf of } Q(j) \\ \mathsf{H}(i,j) &= \frac{1}{L} \sum_{r=1}^{L} \mathbb{1} \left(\mathsf{F}(r,j) \leq \mathsf{F}(i,j) \right) \\ \mathcal{E}(i) &= \sum_{m=1}^{\sqrt{N_p}} (-p_m^i \log(p_m^i)), \text{ where } p_m^i \text{ the proportion of } \mathsf{H}(i,j) \text{ that fall in } \left[(m-1) * 1/\sqrt{N_p} , \ m*1/\sqrt{N_p} \right] \end{split}$$

A record's contribution to risk: proxies

• Uniqueness pattern of a record

$$U(i,j) = \begin{cases} 1 & \text{if record } i \text{ is unique w.r.t. } Q(j) \\ 0 & \text{if record } i \text{ is not unique w.r.t.} Q(j) \end{cases}$$

Proxy:
$$U^+(i) = \sum_j U(i,j)\theta(j)$$

Removing a record that is unique w.r.t. Q(j) reduces $\theta(j)$. Records that are unique w.r.t. to a lot of "risky" Q(j) should reduce dataset risk.

Comparison of the proxies

Comparison of the proxies

Computing-time gains with the proxies

ESS Round 10

No proxy ('proper')	•	12.64 hours for removal of 1000 records
Current U+ based	•	3.58 hours for removal of 1000 records
Initial risk contribution	•	10 minutes to compute all records' contributions Negligible time to remove 1000 records
Initial U+ based	•	Under 1 minute to compute the initial U^+ of all records Negligible time to remove 1000 records
Entropy-based	•	Approx. 1.6 hours to compute all records' entropies Negligible time to remove 1000 records
PLS regression- based	•	 10 minutes to compute all records' contributions Negligible time to fit a PLS model User-dependent time for model checking and adjustments Negligible time to remove 1000 records

Observations about U⁺

ESS Round 10

Observations about U⁺

<u>ADULT</u>

THANK YOU

Copyright ISIWSC2023