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Abstract. The reidentification of individuals or business establishments in 

(pseudo)anonymized microdata may expose sensitive data and will lead to fines 

and reputational damage for the data’s custodians. The QaR method (AFNOR, 

2020) proposes a measure of the reidentification risk of a dataset, and a statistical 

technique, based on extreme-value theory, to estimate it. This risk has great value. 

It is a gauge of the effectiveness of whatever disclosure control the custodians 

apply to the data; it could be reported to regulatory authorities to demonstrate the 

custodians’ level of care for the data subjects’ privacy; it can be used to calculate 

an insurance premium against unauthorized disclosure or the amount of money 

that custodians need in their balance sheet to cover potential financial damages 

due to such disclosure. 

The present paper deals with a particular aspect of the methodology: the 

quantification of the contribution of each record to the dataset’s risk. It discusses 

its importance and its large computational demands in very large datasets, and 

proposes metrics that are faster to compute and could serve as proxies of record 

contribution. The results for some of these proxies are promises but more 

investigation is needed.  

 

Keywords: Anonymization, extreme-value theory, privacy, pseudonymization, 

reidentification, risk. 

1 Introduction 

Personal data about large segments of the population (be it humans or legal entities) 

proliferate in public and private authorities. They are recognized as a valuable 
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commodity for policy and business purposes. Unfortunately, they are also valuable for 

malevolent purposes and are frequently targets of attempts to steal them. Legislation is 

very demanding: the custodians of personal / business data databases can face severe 

penalties, as well as reputational damage, if data are stolen. Consequences are more 

severe if the identities of individual persons / entities are revealed. Custodians are 

obliged to protect the identity of the subjects of the data, irrespectively of whether the 

data are intended to be shared or not with authorities or researchers. 

Anonymization and pseudonymization are two classes of measures for protecting 

data subjects’ identities. While anonymization is considered irreversible and 

pseudonymization reversible, the proliferation of huge amounts of data generated and 

collected by devices and software tools pushes the boundary between anonymized and 

pseudonymized data towards the latter. What is anonymous today may not be 

anonymous tomorrow. 

According to this view, which we share, all datasets carry reidentification risk. The 

QaR method (AFNOR, 2020) proposes a measure of the reidentification risk of a 

dataset and a statistical technique, based on extreme-value theory, to estimate it. This 

risk has great value. It is a gauge of the effectiveness of whatever disclosure control the 

custodians apply to the data; it could be reported to regulatory authorities to 

demonstrate the custodians’ level of care for the data subjects’ privacy; it can be used 

to calculate an insurance premium against unauthorized disclosure or the amount of 

money that custodians need in their balance sheet to cover potential financial damages 

due to such disclosure. 

Béra et al. (2022) present software they have developed to implement the QaR 

method and identify directions for future research related to the method. Investigation 

along one of these directions, the quantification of the contribution of each record to 

the dataset’s risk are discussed in this paper. 

Section 2 presents the QaR method. Section 3 describes the exact computation of 

record’s contribution to dataset risk, its significance, and its computational demands. It 

also presents four proxies that have been investigated and their results on a test dataset. 

The results are promising but additional investigation is needed; these needs are 

outlined in section 4. 

2 The QaR method 

Consider a (pseudo)anonymized dataset consisting of 𝐿 records and 𝑁 variables. Each 

record contains data on a single individual (person or company) and each column 

corresponds to one attribute (e.g., sex, age, last year’s total income, country of birth 

etc.). 

To identify individuals, an intruder will try to match records of the dataset with 

records in not anonymous datasets to which the intruder has access. Attempts to 

matching will be made by examination of combinations of variables in the 

(pseudo)anonymized dataset, identification of records with unique values for these 

combinations and identification of the exact same combinations of values in the not 

anonymous datasets. 
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The existence of records with unique combinations of values in the 

(pseudo)anonymized dataset is not a sufficient condition for reidentification. It is, 

however, a necessary one. The more such records are in the (pseudo)anonymized 

dataset the greater its reidentification risk is. 

We call each set of 𝑝 columns, with indices 𝑗1, 𝑗2, … , 𝑗𝑝, where 1 ≤ 𝑗1 < 𝑗2 < ⋯ ,<

𝑗𝑝 ≤ 𝑁, a quasi-identifier of size p. We denote this quasi-identifier as 𝑄(𝑗1, 𝑗2, … , 𝑗𝑝), 

or, for brevity, 𝑄(𝑗), 𝑗 = 1,2, … , 𝑁𝑝, where 𝑁𝑝 = (
𝑁
𝑝
). We associate with each quasi-

identifier its reidentification risk 

𝜃(𝑗) = 𝜃[𝑄(𝑗1, 𝑗2, … , 𝑗𝑝)] =
𝛨[𝑄(𝑗1, 𝑗2, … , 𝑗𝑝)]

𝐿
=
𝛨(𝑗)

𝐿
 

where 𝛨(𝑗) is the number of distinct values assumed by the quasi-identifier in the 

dataset. 

Clearly, 0 ≤ 𝜃 ≤ 1. The closer 𝜃 is to 1, the more unique records exist in the dataset 

with respect to their values for the quasi-identifier. Therefore, the greater the risk that 

individuals will be reidentified based on this quasi-identifier. 

Taking in turn each of the quasi-identifiers of size 𝑝 formed by the columns of the 

dataset and computing the reidentification risk associated with each one, we obtain a 

set of risks 𝜃(𝑗), 𝑗 = 1,2, … , 𝑁𝑝. 

The QaR method treats this set as a random sample from a distribution of risks and 

defines the reidentification risk of the dataset as an upper quantile of this distribution. 

More precisely, the reidentification risk, 𝑇(𝑝, 𝛼), of the dataset is the 1 − 𝛼 quantile 

of the distribution of risks associated with the quasi-identifiers of size p. The 

interpretation of the measure is as follows: the probability that a quasi-identifier of size 

p will have a reidentification risk associated with it that is larger than 𝑇(𝑝, 𝛼) is 𝛼. 

The estimation of 𝑇(𝑝, 𝛼) relies on extreme value theory. Its estimate is not an 

empirical quantile of the computed 𝜃; it is, instead, an estimate obtained by fitting a 

distribution on a monotonic transformation of the most extreme 𝜃. 

More precisely, the empirical 1 − 𝜋𝑢 quantile, 𝑢, of the 𝜃 is computed. This 

empirical quantile is computed with definition 8 of Hyndman and Fan (1996). 

Only those 𝜃 which satisfy 𝜃 > 𝑢 are retained and a monotonic transformation of 

them is computed, as follows: 

𝑙(𝑗) = {
ln (

𝜃(𝑗)

1 − 𝜃(𝑗)
) − ln (

𝑢

1 − 𝑢
) , if 𝜃(𝑗) > 𝑢

NULL , if 𝜃(𝑗) ≤ 𝑢

 

A Generalised Pareto Distribution (GPD henceforth; see McNeil et al (2005), sec. 

7.2) is fitted on the 𝑙(𝑗) which are not NULL. The reader is reminded that the GPD has 

cumulative distribution function (c.d.f.)  

𝑃(𝑋 ≤ 𝑥) = 𝐺𝜉,𝛽(𝑥) =

{
 
 

 
 
1 − (1 +

𝜉𝑥

𝛽
)
−
1
𝜉
, 𝜉 ≠ 0

1 − exp (−
𝑥

𝛽
) , 𝜉 = 0

 

where 𝛽 > 0, 𝑥 ≥ 0 when 𝜉 ≥ 0, and 0 ≤ 𝑥 ≤ −𝛽/𝜉 when 𝜉 < 0. 
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Estimates of scale 𝛽 and shape 𝜉 are obtained with the method of probability-

weighted moments; see Hosking and Wallis (1987). The estimator of 𝑇(𝑝, 𝛼) is given 

by 

�̂�(𝑝, 𝛼) = 𝑒𝑥𝑝 (𝑙𝑛 (
𝑢

1 − 𝑢
) +

�̂�

𝜉
[(
𝛼

𝜋𝑢
)
−�̂�

− 1])

/ {1 + 𝑒𝑥𝑝 (𝑙𝑛 (
𝑢

1 − 𝑢
) +

�̂�

𝜉
[(
𝛼

𝜋𝑢
)
−�̂�

− 1])} 

Parameters 𝑝, 𝛼 and 𝜋𝑢 are a choice of the user. Usual values are 𝑝 = 3, 𝛼 = 0.01 

or 𝛼 = 0.001, and 𝜋𝑢 = 0.05. 

3 The contribution of a record to dataset risk and proxies of it 

The contribution of a record to the dataset’s risk is the change in the risk due to the 

removal of the record from the dataset with all other records remaining the same. We 

denote the risk of the dataset without record 𝑖, 𝑖 = 1,2, … , 𝐿, as �̂�(𝑝, 𝛼: 𝑖) and the 

contribution of record 𝑖 to the risk as 𝐷𝑇(𝑖) = �̂�(𝑝, 𝛼) − �̂�(𝑝, 𝛼: 𝑖). 
The quantification of records’ contribution serves many purposes. The withdrawal 

of a few with the largest contributors may render the dataset a lot safer. Furthermore, 

the contribution of a record can be considered as a proxy of the risk of identifying the 

statistical unit this record corresponds to. Finally, the investigation offers additional 

insights into the properties of the QaR method itself. 

A ‘proper’ backward elimination of records would require that at each step, say 𝑠,  

• the record with the highest contribution, say 𝑖𝑠, is removed from the dataset, 

• the dataset’s risk becomes �̂�𝑠(𝑝, 𝛼) = �̂�𝑠−1(𝑝, 𝛼: 𝑖𝑠), where �̂�0(𝑝, 𝛼) = �̂�(𝑝, 𝛼), 
the original dataset’s risk, and 

• the process moves to the next step. 

This process can be very expensive computationally in very large datasets. Suppose 

that one wants to remove 𝑆 records. The process requires the computation of dataset 

risk for  

1 +∑(𝐿 − 𝑠 + 1)

𝑆

𝑠=1

 

different datasets. Once for the original dataset, and as many times as the records 

still in the dataset at each subsequent step. It may even be very expensive to compute 

𝐷𝑇(𝑖) = �̂�(𝑝, 𝛼) − �̂�(𝑝, 𝛼: 𝑖) only for the first step of the process. 

Proxies to 𝐷𝑇 can substitute for the computation of 𝐷𝑇 in a backward elimination 

process. They can even be computed only on the original dataset and by just those 

values indicate which block of records to remove without making distinct elimination 

steps. 
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3.1 Test data and experimental setup 

A small, amenable dataset was used in the tests presented in this paper. It is an extract 

from edition 1.3 of Round 10 of the European Social Survey (ESS10 henceforth), 

consisting of variables that are of ordinal scale at least. Records containing special 

values were removed. The final dataset consists of 𝐿 = 12129 records and 𝑁 = 18 

variables. Its risk was computed as �̂�(3,0.01) = 0.1948661. 

The contribution of each record to this risk was computed and will be examined 

together with the different discussed proxies. 

3.2 Contribution to the original dataset risk as an indicator of the records to 

remove in backward elimination 

To avoid backward elimination’s demanding computational requirements, one can take 

the computed contributions 𝐷𝑇(𝑖) of the records to the original dataset’s risk, sort the 

records in decreasing order of contribution and remove those with the largest ones. 

This implies the assumption that the record with the 𝑠th highest contribution to the 

original dataset’s risk is the record that would be selected at step 𝑠 of a proper backward 

elimination. 

The following figure shows the impact on the dataset’s risk of removing records in 

blocks of 100, from removing the top 100 most contributing ones up to removing the 

top 2500 most contributing ones, i.e., approximately 20% of the records. We consider 

that removing more than 20% of the records would render a dataset useless for the 

purposes for which it was created. 

 

 

 

Fig. 1. Reduction of the ESS10 dataset risk, as a proportion of the original dataset’s risk, due to 

the removal of records based on their contribution 𝐷𝑇(𝑖) to the original risk. 

It can be observed that removing the 2500 most contributing records to the original 

dataset’s risk leads to a dataset whose risk is almost 32% smaller than the original ones. 

‘Along the way’, however, the reduction does not follow a monotonic pattern. For 
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instance, removing the top 200 records leads to a reduction of 3.5%, while removing 

the 300 top records leads to a reduction of 2.7%. In other words, the dataset with the 

300 top records removed has a larger risk than the dataset with 200 records removed. 

3.3 A record’s uniqueness pattern as proxy for its contribution to risk 

Let 

𝑈(𝑖, 𝑗) = {
1 if record 𝑖 is unique with respect to quasi-identifier 𝑗
0 if record 𝑖 is not unique with respect to quasi-identifier 𝑗

 

 

𝜃(𝑗: 𝑖) be the reidentification risk of quasi-identifier 𝑗 when record 𝑖 has been removed 

from the dataset, and 

𝛨(𝑗: 𝑖) be the number of distinct values assumed by the quasi-identifier in the dataset 

when record 𝑖 has been removed from it. It can be expressed as a function of 𝑈(𝑖, 𝑗) 
and 𝛨(𝑗): 
𝛨(𝑗: 𝑖) = 𝑈(𝑖, 𝑗)[𝛨(𝑗) − 1] + [1 − 𝑈(𝑖, 𝑗)]𝛨(𝑗). 
 

The contribution of the record to the risk of the quasi-identifier is computed as 

follows: 

 

𝜃(𝑗) − 𝜃(𝑗: 𝑖) =
𝐻(𝑗)

𝐿
−
𝐻(𝑗: 𝑖)

𝐿 − 1

=
𝐿𝐻(𝑗) − 𝐻(𝑗) − 𝐿{𝑈(𝑖, 𝑗)[𝛨(𝑗) − 1] + [1 − 𝑈(𝑖, 𝑗)]𝛨(𝑗)}

𝐿(𝐿 − 1)

=
𝐿𝑈(𝑖, 𝑗) − 𝛨(𝑗)

𝐿(𝐿 − 1)

 

However, 𝛨(𝑗) = 𝐿𝜃(𝑗) and therefore, 

 

𝜃(𝑗) − 𝜃(𝑗: 𝑖) =
𝑈(𝑖, 𝑗) − 𝜃(𝑗)

𝐿 − 1
⇔ 𝜃(𝑗: 𝑖) = 𝜃(𝑗) +

𝜃(𝑗) − 𝑈(𝑖, 𝑗)

𝐿 − 1
 

 

The following observations can be made: 

• If the record is unique with respect to the quasi-identifier, its removal decreases the 

quasi-identifier’s risk. 

─ The smaller the quasi-identifier’s risk in the complete dataset, the greater will be 

the risk reduction by removal of the unique record. 

─ If a record is unique with respect to all quasi-identifiers, its removal will move all 

𝜃(𝑗), and therefore the threshold 𝑢 too, downwards. It will, arguably, lead to a 

reduction of the dataset’s risk. 

• If the record is not unique with respect to the quasi-identifier, its removal increases 

the quasi-identifier’s risk. 

─ The greater the quasi-identifier’s risk in the complete dataset, the greater will be 

the risk increase by removal of the not unique record. 
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─ If a record is not unique with respect to any quasi-identifier, its removal will move 

all 𝜃(𝑗), and therefore the threshold 𝑢 too, upwards. It will, arguably, lead to an 

increase of the dataset’s risk. 

How do we choose between two records which are unique with respect to the same 

number of quasi-identifiers but not for the same quasi-identifiers? We examine this by 

using the two following record metrics: 

𝑈∗(𝑖) =∑𝑈(𝑖, 𝑗)[1 − 𝜃(𝑗)]

𝑗

 

and 

𝑈+(𝑖) =∑𝑈(𝑖, 𝑗)𝜃(𝑗)

𝑗

 

𝑈∗ favors records which are unique for quasi-identifiers with small risk, while 𝑈+ 

favors records which are unique for quasi-identifiers with large risk. 

Computing 𝑈∗ and 𝑈+ on the ESS10 dataset shows strong positive correlation 

between them. The Pearson correlation coefficient is 0.9490, while the Kendall one is 

0.9248. 

 

Fig. 2. Values of 𝑈∗ and 𝑈+ for the records of the ESS10 dataset. The lines represent the 

average values of 𝑈∗ and 𝑈+. 

A second remark is that 6273 records, 51.7% of the total, have 𝑈∗(𝑖) = 𝑈+(𝑖) = 0. 

More than half of the records are not unique for any quasi-identifier of size 3, which is 

consistent with the dataset’s relatively low �̂�(3,0.01). 
Given the strong correlation, we examine the relationship of 𝐷𝑇(𝑖) with 𝑈+(𝑖) only. 
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Fig. 3. Values of 𝑈+ and 𝐷𝑇 for the ESS10 dataset. 

The correlation between 𝑈+ and the contribution of a record to the risk of the dataset 

is strong. The Pearson correlation coefficient is 0.5205, while the Kendall one is 0.6628.  

What is remarkable in the plot is the appearance of two clusters of points, very 

similar in shape and well separated from each other. The correlation between 𝐷𝑇 and 

𝑈+ in either cloud would arguably be even higher than in the dataset as a whole. At the 

moment of writing these lines the investigation about the causes of the clustering or 

whether it appears in other datasets is ongoing. 

The results indicate that 𝑈+ can be a good indicator of records that will reduce the 

dataset risk when removed. This is corroborated by the two figures that follow. 

 

Fig. 4. Boxplots of 𝐷𝑇 in the ESS10 dataset. 

Most of the 250 records with the highest values of 𝑈+ (Fig. 4) would lead to a 

reduction of risk if removed, and a much greater one than the majority of records. 
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Fig. 5. Reduction of the ESS10 dataset risk, as a proportion of the original dataset’s risk, due to 

the removal of records based on their value of 𝑈+. 

It can be observed (Fig. 5) that removing the 2500 records with the largest values of 

𝑈+ leads to a dataset whose risk is almost 48% smaller than the original one’s. 

Moreover, each additional block of 100 records removed leads to additional reduction 

of the dataset’s risk. 

3.4 Record entropy as proxy for its contribution to risk 

Consider a record 𝑖, 𝑖 = 1,2, … , 𝐿 and a quasi-identifier 𝑗, 𝑗 = 1,2, … , 𝑁𝑝. Let the 

record’s values for this quasi-identifier be 𝑥𝑖,𝑗1 , 𝑥𝑖,𝑗2 , … , 𝑥𝑖,𝑗𝑝. 

Compute the value of the empirical 𝑝-variate cumulative distribution function of the 

quasi-identifier for this record: 

F(𝑖, 𝑗) =
1

𝐿
∑𝟙 (𝑥𝑟,𝑗1 ≤ 𝑥𝑖,𝑗1 , 𝑥𝑟,𝑗2 ≤ 𝑥𝑖,𝑗2 , … , 𝑥𝑟,𝑗𝑝 ≤ 𝑥𝑖,𝑗𝑝)

𝐿

𝑟=1

 

where 𝟙 is the indicator function. 

As an extra step of standardization, take the empirical cumulative distribution 

function of the computed 𝑝-variate function: 

H(𝑖, 𝑗) =
1

𝐿
∑𝟙 (F(𝑟, 𝑗) ≤ F(𝑖, 𝑗))

𝐿

𝑟=1

 

 

Subsequently, split interval [0,1] into √𝑁𝑝 intervals 𝐼𝑚, 𝑚 = 1, 2, … , √𝑁𝑝, where 

𝐼𝑚 = [(𝑚 − 1)  ∗  1/√𝑁𝑝  , 𝑚 ∗ 1/√𝑁𝑝 ]. The intervals have width 1/√𝑁𝑝. 

For each record 𝑖 define 𝑝𝑚
𝑖  as the proportion of values of H(𝑖, 𝑗), 𝑗 = 1,2, … , 𝑁𝑝, 

that fall into 𝐼𝑚. 

We then compute the entropy 𝐸(𝑖) of each record 𝑖 as 
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𝐸(𝑖) = ∑ 𝐸𝑚
𝑖

√𝑁𝑝

𝑚=1

 

with 

𝐸𝑚
𝑖 = {

− 𝑝𝑚
𝑖  𝑙𝑜𝑔(𝑝𝑚

𝑖 ), 𝑝𝑚
𝑖 > 0

          0              , 𝑝𝑚
𝑖 = 0

 

 

The following diagram shows the relationship between 𝐷𝑇(𝑖) and 𝐸(𝑖) on the 

ESS10 dataset.  

 

 

Fig. 6. Values of 𝐸 and 𝐷𝑇 for the ESS10 dataset. 

A trumpet like shape is evident. The entropy of the records has no evident 

relationship with their contribution to the dataset’s risk. The lack of relationship 

between contribution to risk and entropy is explained by the fact that a record that is 

unique for several quasi-identifiers may have very small values in all of them (small 

entropy), very large values in all of them (small entropy, again) or large – average – 

small values depending on the quasi-identifier (large entropy). 

The following figure even shows a negative relationship with risk. 
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Fig. 7. Reduction of the ESS10 dataset risk, as a proportion of the original dataset’s risk, due to 

the removal of records based on their entropy. 

It can be observed that removing records based on their entropy leads to negative 

reduction, i.e., to increase of the dataset’s risk. Removing the 2500 records with the 

largest entropies leads to a dataset with 12% largest risk. 

An additional disadvantage of entropy is that it requires that the variables reported 

in the dataset are at least ordinal. With nominal variables no empirical cumulative 

distribution can be computed. 

3.5 Record contents as predictors of its contribution to risk 

In this section we examine whether the values of the variables in a record can predict 

the record’s contribution to dataset risk. 

Partial least squares (PLS) regression with the records’ 𝐷𝑇 as response variable and 

the 18 variables of the dataset as explanatory variables gave a model with a very poor 

R². 

For this reason, PLS regression was then applied with a binary response variable: 

𝑆(𝑖) = {
 1, 𝐷𝑇(𝑖) > 0

 0, 𝐷𝑇(𝑖) < 0
 

This binning turns the approach into a classification problem. 

The number of factors for the PLS regression is 3. We tested the robustness of the 

results by selecting at random 75% of the records for training and keeping the remaining 

25% records for testing. 

The AUC for the two models (test vs training) remains stable: 0.7063 on test data, 

0.7059 on training data. 

 

Fig. 8. Performance of PLS regression as a tool for predicting the sign of a record’s 

contribution to dataset risk. 
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The following figure shows the impact on dataset risk of the removal of records in 

blocks of 100, based on their contribution to dataset risk as predicted by PLS regression. 

 

Fig. 9. Reduction of the ESS10 dataset risk, as a proportion of the original dataset’s risk, due to 

the removal of records based on their contribution to dataset risk as predicted by PLS 

regression. 

The result shows a positive but limited effect. Removal of the top 2500 records leads 

to a dataset whose risk is 5% smaller than the original one’s. 

4 Conclusions 

The records’ contribution to the original dataset risk or the records’ 𝑈+ metric on the 

original dataset give quite good indication of which records would be removed in a 

proper backward elimination. They provide large computational gains as the former 

requires only 𝐿 + 1 computations of dataset risk, while the latter requires none. 

The entropy and the PLS regression-based metrics, on the other hand, do not help 

identify impactful records to remove. The following figure brings together the 

performance of these metrics. 
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Fig. 10. Reduction of the ESS10 dataset risk, as a proportion of the original dataset’s risk, due 

to the removal of records, selected according to several alternative criteria. 

These results remain to be verified in additional and larger datasets. Several 

additional investigations remain to be made: 

• Select blocks of records to remove with proper backward elimination and with 

computation of 𝑈+ in each step and compare the change of dataset risk with that 

achieved when selecting the blocks to remove according to the initial values of 𝑈+. 

• Study theoretically the impact of a record’s removal on quasi-identifier risks and 

dataset risk. For instance, can one set an upper bound on the reduction of risk that 

can be achieved by removing a record or by removing 𝑆 records? The computation 

of such a bound would help assess whether it is worthwhile to attempt removing 

records. 

• Understand the emergence of the clusters in the plot of 𝐷𝑇 versus 𝑈+. 

• Find ways to recompute quickly matrix 𝑈 after each record’s removal. This matrix 

is a component of the computation of 𝑈+ and of the the quasi-identifiers’ new risks. 

Its quick computation could speed up the execution of proper backward elimination. 

• Attempt to improve the performance of the PLS regression-based metric by fitting a 

quadratic polynomial of the dataset variables. In relation to this, try to combine 

entropy and PLS regression by defining a ‘filtered entropy’ being, e.g., equal to 0 

for records predicted by PLS regression to increase risk and equal with the original 

entropy for records predicted by PLS regression to reduce risk. 

• Search for other record metrics which are more highly correlated with risk reduction. 
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