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ABSTRACT:
Directional beams have extensive applications in communication and sound reproduction. This paper investigates
the theoretical maximum directivity of infinitely flanged open-ended waveguides and the radiation pattern synthesis.
We derive a rigorous solution for the maximum directivity factor of a flanged aperture with arbitrary shape by pro-
jecting its surface velocity on the waveguide modes, enabling the creation of a directional beam in any desired direc-
tion. We present case studies for a three-dimensional circular waveguide and a bidimensional waveguide. The
theoretical beam that is obtained in a subspace spanned by all the propagating modes can then be synthesized by a
group of incident modes or a point-source array within the waveguide. The optimality of the beam is demonstrated
by comparing it with Gaussian shaded modes radiated from the waveguide. If the evanescent modes are taken into
account, the maximum directivity factor increases with considerable loss to the radiation efficiency. Nevertheless,
the optimum aperture velocity dominated by its evanescent components is capable of precise beam steering in
extreme directions and could be useful for designing material-filled horns. Our work provides benchmark directivity
factors and patterns for the practical design of horn antennas. In addition, we present a generalized form of
Bouwkamp’s impedance theorem. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0020052
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I. INTRODUCTION

Directional sound radiation is desired in applications
such as underwater acoustic communication, targeted warn-
ing, and public address. Various active and passive
approaches have been developed for generating directional
beams, e.g., loudspeaker arrays1,2 based on the linear modu-
lation of relative source strengths, parametric acoustic
arrays3 exploiting the nonlinear interactions, acoustic
horns,4 metasurfaces,5 and metamaterial lenses.6 As the
directivity factor is a common metric to measure the direc-
tivity, directional beams can be achieved by performing
numerical optimization with respect to it.7 In addition, rigor-
ous and closed-form solutions of the maximum directivity
factor have been studied for acoustic line source arrays8 and
spherical arrays.9 In this paper, we conduct a fundamental
investigation into the maximum directivity of a flanged
aperture by modal decomposition, followed by a study on
the synthesis of the optimal patterns via guided waves.

The subject of sound radiation from open-ended wave-
guides has been studied intensively, e.g., rigorous analysis
of end reflection and far-field diffraction from
unflanged10–14 and infinitely flanged waveguides,15,16 and a
semi-analytical approach to the generalized radiation impe-
dances of waveguides with arbitrary wall thickness.17 For
flanged waveguides, Rayleigh’s diffraction theory18 has also

been extensively used for the analysis of modal radiation
efficiency,19 generalized radiation impedances and reflection
coefficients,20,21 and far-field directivity patterns.14,22 Other
than these forward analyses of radiation, inverse design of
waveguides for super-directivity is of great practical impor-
tance, e.g., metamaterial lens antenna.23 However, to the
best of our knowledge, the theoretical maximum directivity
factor of an acoustic aperture is still an open question. The
lack of this maximum value and a benchmark directivity
pattern would challenge the design and assessment of super-
directive waveguides. The axial directivity is usually bench-
marked against a piston vibrator,24 but it is questionable
whether a uniform velocity distribution is the optimum
solution.

Polo-L!opez et al.25 have studied the directivity maximi-
zation of an electromagnetic aperture antenna, to which our
work can be analogous. In their study, the physical optics
approximation (POA)26 is implicitly used, which neglects
the scattering of incident fields on the aperture and assumes
the fields diffracted into the sideline directions vanish. As
the antenna engineering community is mainly interested in
moderate- to high-gain designs, the POA is often applied
with success.26 In acoustics, however, the low-frequency
behavior is deemed highly significant, and it is, thus, essen-
tial to develop a rigorous theory applicable to all frequen-
cies. They performed maximization in a subspace spanned
by all the propagating waveguide modes25 and, in a later
conference paper,27 studied the contribution of evanescenta)Electronic mail: hao.dong@univ-lemans.fr
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modes to the maximum directivity, but only for the axial
direction at a high frequency. In this case, they found that
the inclusion of evanescent modes does not induce any
improvement in the directivity.

In this work, we use a similar approach to determine the
maximum directivity of acoustic flanged open-ended wave-
guides while avoiding the POA. We propose a rigorous and
algebraic solution to the global maximum directivity factor,
applicable to any cross section shape, frequency, and direc-
tion. The directivity maximization in the propagating sub-
space is explored for a three-dimensional circular waveguide
and a bidimensional waveguide. Then we synthesize the opti-
mal radiation pattern by multimodal incident waves or an
array of point sources within the waveguide. We derive alge-
braic and well-conditioned solutions for these sound sources
and compare the theoretical and synthesized beams. To fur-
ther demonstrate the optimality of the synthesized beam, we
compare it with a cluster of Gaussian shaded modes radiated
from the waveguide. Finally, we show that it is reasonable to
discard the evanescent modes in the maximization process
for designing a hollow waveguide, but the cause is not as
explained for the electromagnetic aperture.27 It is instead
related to the radiation efficiency and practical feasibility of
the optimum aperture velocity distribution.

II. FORMULATIONS AND THEORETICAL OPTIMAL
PATTERNS

A. Modal directivity function

We present a modal formulation of the far-field directiv-
ity of an aperture with arbitrary shape mounted in an infinite
rigid baffle, as illustrated in Fig. 1. Throughout the paper, we
consider time-harmonic linear sound propagation with a time
dependence e!ixt. For simplicity, the following parameters
are transformed to be dimensionless: spatial dimensions,
including the wavelength, are normalized by a typical

dimension parameter of the aperture, the particle velocity v
normalized by the speed of sound c, and the sound pressure p
normalized by q0c2, where q0 is the density of air. The sound
pressure radiated from the aperture can be expressed by
Rayleigh’s diffraction formula (Neumann type),18

pðrÞ ¼ !ik

ð ð

S

vz x0; y0; 0
" # eikjr!r0 j

2pjr ! r0j
dx0dy0; (1)

where k is the wavenumber, vz is the normal velocity distri-
bution on S, and r0 ¼ ðx0; y0; 0Þ. In the far field, Eq. (1) is
approximated by its leading-order term28

pðr; h;/Þ ¼ !ikDðh;/Þ e
ikr

r
; (2)

where Dðh;/Þ is the directivity function,

Dðh;/Þ ¼ 1

2p

ð ð

S

vz x0; y0; 0
" #

e!i kxx0þkyy0ð Þdx0dy0; (3)

with kx ¼ k sin h cos / and ky ¼ k sin h sin /. Equation (3)
relates the two-dimensional Fourier transform, or angular
spectrum,28 of the aperture velocity to the far-field radiation.

To couple the radiated field with the propagation within
the waveguide, we project the aperture velocity on a
complete set of rigid waveguide modes as vzðx; y; 0Þ
¼
P1

n¼0 vnunðx; yÞ.29,30 fung are the Neumann eigenfunc-
tions, solutions of ðr2

? þ c2
nÞun ¼ 0 in S, where r2

? is the
transverse Laplacian and cn 2 R the transverse wavenum-
bers. They also satisfy the orthogonality hun;umi ¼ dnm,
with the inner product defined as hf ; gi &

Ð Ð
Sf 'gdS.

Substituting this modal expansion into Eq. (3) yields
Dðh;/Þ ¼

P1
n¼0 vn!nðh;/Þ, where !nðh;/Þ ¼ ð1=2pÞhun;

e!ik?(xi is the modal directivity function, with x ¼ ðx; yÞ,
and k? ¼ ðkx; kyÞ the components of the wave vector in the
xy plane.

We note a general property regarding the contribution
of each mode to the axial radiation (h¼ 0). For the funda-
mental mode u0 ¼ 1=

ffiffiffi
S
p

with c0 ¼ 0, it follows that
!0ð0; 0Þ ¼ 1= 2p

ffiffiffi
S
p" #

, whereas for all the higher-order
modes, !nð0; 0Þ ¼ ð1=2pÞhun; 1i ¼ 0. Since only the piston
mode contributes to the axial radiation, it is a reasonable
guess for the optimum velocity function for the axial maxi-
mum directivity.

B. Maximum directivity factor

The modal expansions of the velocity and directivity func-
tion can be, respectively, written in matrix form as vz ¼ vTu
and D ¼ vT! with column vectors v & ðvnÞ, / & ðunÞ, and
! & ð!nÞ. In the far field, the radial velocity can be derived as
vr ¼ ððikr ! 1Þ=ikrÞp from Eq. (2). The radial intensity is
then Irðr; h;/Þ ¼ 1

2 jpj
2 and can be rewritten in matrix form as

Ir ¼
k2

2r2
v†A'v; (4)

FIG. 1. (Color online) Coordinate system used to formulate sound radiation
from a flanged aperture S, assumed to be the opening of a semi-infinite
waveguide. The radius vector r is denoted by (x, y, z) or ðr; h;/Þ.
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where the matrix A ¼ !!† is Hermitian and of rank one. It
also follows that A is semi-positive definite as Ir ) 0 for all
v 6¼ 0.

The total radiated power W can then be calculated as
W ¼

Ð 2p
0 d/

Ð p=2
0 Irðr; h;/Þr2 sin hdh and written in matrix

form,

W ¼ k2

2
v†C'v; (5)

with the Hermitian matrix

C ¼
ð2p

0

d/
ðp=2

0

!!† sin hdh (6)

being positive definite because W> 0 for all v 6¼ 0. In the
literature, C was termed the coupling matrix.31,32

Next, we demonstrate that C is strictly real through an
alternative derivation of the radiated power. Indeed, it can
also be calculated by integrating the normal intensity over
the aperture,

W ¼
ð ð

S

1

2
Re pv'ð ÞdS ¼ 1

2
Re v†Z†

r v
" #

; (7)

where Zr is the radiation impedance matrix defined
by Zr;nm ¼ hum; funi, with the linear operator f such that
p ¼ fvz given by Eq. (1). Zr being symmetric, Eq. (7) is sim-
plified to

W ¼ 1

2
v†Rrv (8)

with Rr ¼ ReðZrÞ the radiation resistance. Comparing Eqs.
(5) and (8) gives

C ¼ 1

k2
Rr: (9)

Therefore, C is real and non-singular. It should be noted that
the identity (9) is a discrete form of an operator-form iden-
tity derived by Cunefare and Currey.31 In addition, when
restricted to the plane wave mode, this identity,
Rr;00 ¼ k2Cr;00, is exactly the Bouwkamp’s impedance theo-
rem4,33 for a flanged vibrating piston. Equation (9) can,
hence, be regarded as the generalized Bouwkamp’s imped-
ance theorem for flanged sources with an arbitrary velocity
distribution. We also note that the coupling matrix C
becomes diagonalized when employing the POA.25

The directivity factor is defined as the ratio of the inten-
sity in a specified direction to the intensity that would be
produced at the same position by a point source radiating
the same power,4

Qðh;/Þ ¼ Irðr; h;/Þ
W=2pr2

: (10)

Here, we assume the point source is radiated into the half
space. Substituting Eqs. (4) and (5) into Eq. (10) yields

Qðh;/Þ ¼ 2p
v†A'ðh;/Þv

v†Cv
: (11)

The properties of matrices A and C guarantee that Eq. (11)
is a generalized Rayleigh quotient.34 Therefore, Q has a
global maximum Qmax that is equal to 2pkmax, where kmax is
the largest eigenvalue of the generalized eigenvalue
problem

A'v ¼ kCv; (12)

and the eigenvector vopt corresponding to kmax represents the
optimum aperture velocity function voptðx; yÞ ¼ vT

optuðx; yÞ.
Equation (12) has only one positive eigenvalue. This can be
proved by transforming the generalized eigenvalue problem
into a normal one through the Cholesky decomposition
C ¼ QTQ, where Q is a non-singular, real, upper triangle
matrix. Let x ¼ Qv, and then Eq. (12) becomes

Q!TA'Q!1x ¼ kx; (13)

where Q!TA'Q!1 is a rank-one, semi-positive definite
Hermitian matrix. Therefore, except for its maximum eigen-
value kmax > 0, all the other eigenvalues are zeros.

Solving the optimum velocity in the complete space of
square integrable functions necessitates incorporation of an
infinite number of modes, but in fact, the maximization can
only be performed in a finite-dimensional modal subspace.
We will show that a reasonable choice of the subspace is the
one consisting of all propagating modes (cn * k) at a given
frequency and that there is no need to incorporate a large
number of evanescent modes into the maximization in view
of practicality. Even before specific analyses, one could
expect good potential of the propagating subspace for gener-
ating a directional beam at high frequencies, since its dimen-
sion increases with frequency. The effect of including
evanescent modes in the maximization will be inspected in
Sec. IV B. In the following, we illustrate the theoretical
maximum directivity obtained within the propagating sub-
space in the context of a circular cylindrical waveguide and
a bidimensional waveguide.

C. Case study: Circular waveguide

We consider a circular waveguide and take the origin at
the center of its opening. We choose the duct radius as the
normalization constant. Denote the transverse modes as umn

and the modal directivity functions as !mn ¼ ð1=2pÞhumn;
e!ik?(xi, with subscripts m 2 Z the azimuthal order and
n 2N the radial order (see supplementary material35 for
explicit expressions). The two-dimensional Fourier trans-
form in Eq. (3) is now expressed in terms of the radial wave-
number kq ¼ jjk?jj ¼ k sin h and the azimuthal angle /.
Before solving the maximum directivity factor, we briefly
recall the radiation characteristics of the modes (see
Baddour et al.14 for thorough discussions). Figures 2(a) and
2(b) show the magnitude spectra of umn as a function of kq

for the first few modes with m¼ 0 and m¼ 2. The spectra
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are partitioned into radiating and non-radiating components
by the wavenumber k (exemplified by k¼ 12 in the figures).
The radiating spectrum for kq * k is mapped into the far-
field directivity function through h ¼ sin!1ðkq=kÞ, as shown
in Figs. 2(c) and 2(d). For clarity, we plot these axisymmet-
ric patterns in a quadrant and separate the propagating and
evanescent modes on either side of the 0+ axis. First, it is
shown that both propagating and evanescent modes radiate
to the far field, but radiation of the cutoff modes is much
weaker and is concentrated near the sideline directions
(h ¼ 90+). Second, the general properties mentioned in Sec.
II A are manifested: Only the piston mode radiates into the
axial direction. In addition, we can observe alternating max-
ima and minima in the spectrum, which determine the orien-
tation of the main and side lobes.

For a desired direction ðhd;/dÞ, the maximum directiv-
ity factor Qmax is solved in the propagating subspace. The
matrix A ¼ !!† is evaluated at ðhd;/dÞ; the coupling
matrix CðkÞ can be calculated from Eq. (6) or through the
Bouwkamp’s impedance theorem, Eq. (9) (see Zorumski20

and supplementary material35 for the radiation impedance
matrix). Note that the evaluation of matrix C by numerical
integration at many frequencies is time-consuming. We use
an alternative multimodal approach17 to facilitate efficient
computation of the radiation impedance matrix by using the
PML (see supplementary material35 for parameters used for
computation). More than this, as will be shown in Sec. III,
this approach is also used for visualization of the sound field
near the aperture.

Let us now investigate the optimal beam patterns for
the on-axis (hd ¼ 0) and off-axis directions (hd 6¼ 0). As

mentioned above, the piston mode u00 is a reasonable guess
for the optimum velocity for hd ¼ 0. The axial directivity
factor of a vibrating piston Qpis can be calculated by
substituting v ¼ ½1; 0; 0;…-T into Eq. (11),

Qpis ¼
k2

2! 2J1ð2kÞ=k
: (14)

Figure 3(a) compares Qmaxð0Þ with Qpis. It is shown that
Qpis almost reaches the theoretical maximum value. Note
that Qmax jumps to a value slightly higher than Qpis when
passing through the cutoff wavenumbers, which is due to
the participation of a new cuton mode and is related to the
Wood’s anomalies.36 For hd ¼ 0, only the axisymmetric
modes contribute to the optimal pattern, so the jumps only
occur at c0n. Figure 3(b) shows the optimum directivity pat-
terns in the xz plane at several frequencies. Note that for a
circular electromagnetic radiating aperture, the directivity
factor from a uniform electric field, Quni ¼ ð2p=kÞ2, is
regarded as the highest attainable value, although it is
obtained under both the POA and transverse electromag-
netic assumption.26 Polo-L!opez et al.25,27 verify that the
maximum directivity factor indeed cannot exceed Quni,
regardless of whether the evanescent modes are included. In
the acoustic case, however, we show that Qpis, without any
approximation, is not unsurpassed, especially if the evanes-
cent modes are taken into account (see Sec. IV B); even
Qmax . Qpis is possible.

Realizing off-axis optimal beams necessitates a more
sophisticated arrangement of modes with orders m 6¼ 0.
Note that due to rotational symmetry, the maximum

FIG. 2. (Color online) [(a) and (b)] Angular spectra of the first few modes for m¼ 0 and m¼ 2, respectively. The dashed line partitions the spectra into radi-
ating (solid line) and non-radiating (dashed line) components. [(c) and (d)] Corresponding modal directivity patterns as a function of h at k¼ 12, with cuton
and cutoff modes on either side of the 0+ axis.
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directivity factor is independent of the azimuthal angle /d.
Changing /d simply results in a rotation of the optimal
beam pattern about the z axis. Figures 3(c) and 3(d) show
the optimum directivity patterns obtained at k¼ 16 for sev-
eral hd. It is shown that the optimal beam becomes more
directional as it is steered from the sideline to the axial
direction. Moreover, for small off-axis angles, the beam is
steered precisely to the desired direction, and its mainlobe
exhibits good symmetry; in contrast, near the sideline direc-
tions, the mainlobe slightly deviates from the target angle,
with its symmetry degraded as well. As will be shown in
Sec. IV B, participation of the evanescent modes allows pre-
cise beam steering into these extreme directions.

D. Case study: Bidimensional waveguide

Since analyzing two-dimensional wave propagation
often brings simplification without loss of physical insights,
we also study the directivity maximization for a bidimen-
sional waveguide. The geometry is illustrated in Fig. 4. We
choose the duct height as the normalization constant. The
problem simulates a baffled strip radiator. The directivity is
now indicated by the angle h. Similar to the three-
dimensional case, we may derive the matrix-form far-field
directivity factor,

QðhÞ ¼ p
v†A'ðhÞv

v†Cv
; (15)

where the matrices A ¼ !!† and C ¼
Ð p=2
!p=2 AðhÞdh.

Similarly, we can derive the generalized Bouwkamp’s
impedance theorem that relates C with Rr,

C ¼ 2p
k
Rr: (16)

We refer the reader to supplementary material35 for the
above derivations, closed-form expressions of the radiation

FIG. 3. (Color online) (a) Comparison of Qmaxð0Þ and Qpis as a function of frequency. (b) Optimum directivity patterns for hd ¼ 0+ in the xz plane at several
frequencies. (c) Optimum directivity patterns in the xz plane at k¼ 16 for different target hd marked with dotted lines. For clarity, the figure shows patterns
for either /d ¼ 0+ (for hd ¼ 0+; 30+; 60+, and 90+) or /d ¼ 180+ (for hd ¼ 15+; 45+, and 75+). (d) Three-dimensional optimum patterns steered to directions
ð30+; 0+Þ and ð60+; 180+Þ at k¼ 16. In (b)–(d), jjvoptjj ¼ 1.

FIG. 4. A bidimensional flanged open-ended waveguide and its coordinate
system.
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impedances, and a discussion on the identity (16). We point
out that unlike the circular aperture, the identity (16) does
not obviously hold and cannot be easily proved, e.g., by a
trivial change of variables. In turn, an infinite number of
integral identities are deduced from it.

In terms of solving the maximum directivity, again, for
fast numerical computation, the radiation impedances are
computed with the PML-multimodal method.17 The charac-
teristics of the modal directivity functions and results of the
theoretical optimal beams are also presented in the supple-
mentary material35 for reference.

III. SYNTHESIS OF OPTIMAL PATTERNS

A. Synthesis with incident waves

We present an algebraic expression of a group of inci-
dent modes that would synthesize the theoretical optimum
directivity pattern. Suppose that the directivity factor in Eq.
(11) has been maximized in a subspace spanned by all prop-
agating modes at a given frequency. The resulting vector
vopt, of length Np, gives then the propagating components of
the aperture velocity, and one looks for the incident pressure
field pþ that gives rise to this modal content of the propagat-
ing velocity field.

Given the incident pressure field pþ at the output
(z¼ 0), the total velocity field is

vopt

ve

& '
¼ Yc I! Rð Þpþ; (17)

where Yc is the characteristic admittance matrix, which is
diagonal with elements

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! c2

n

p
=k,

R ¼ Iþ ZrYcð Þ!1 ZrYc ! Ið Þ (18)

is the reflection matrix, and ve is the evanescent velocity
field (truncated at length Ne for computation). By blocking
matrices Yc and ðI! RÞ according to the dimensions of vopt

and ve, Eq. (17) can be rewritten as

vopt

ve

" #

¼
Yc;1 O

O Yc;2

" #
B1 B2

B3 B4

" #
p̂þ
0

" #

; (19)

where p̂þ represents the first Np components of pþ (the eva-
nescent components of the incident field are assumed to be
zero at the output). The unknowns p̂þ and ve can then be
solved as

p̂þ ¼ B!1
1 Y!1

c;1vopt (20)

and

ve ¼ Yc;2B3p̂þ: (21)

As the incoming waves comprise only the propagating
modes, the energy flux in the waveguide can be decomposed
into right-going and left-going components, from which we

can evaluate the transmission efficiency of the directional
system,37

tW ¼ 1!
Re p†

!Ycp!
" #

Re p†
þYcpþ

( ) : (22)

We present the synthesis results of the circular wave-
guide. The optimum velocity vopt is first grouped by the azi-
muthal order m so that Eqs. (20) and (21) are solved for
each individual order. In the computation, the total number
of modes in the waveguide is Np þ Ne ¼ 20 for each m,
which guarantees Ne ) 15 for any m throughout our consid-
ered frequency range k * 16. The evanescent field in the
vicinity of the aperture will cause deviation from the theo-
retical results. We inspect the differences between the theo-
retical and synthesized directivity factors as well as the
corresponding directivity patterns. The total velocity field
v ¼ vopt þ ve is substituted into Eq. (11) to calculate the syn-
thesized directivity factor Qsynðhd;/dÞ. The results are
shown in Figs. 5(a) and 5(b). We have verified that the
numerical errors of the PML-multimodal method in both
Qsyn and Qmax due to the truncation of the modal series
are negligible compared to the physical discrepancies
jQsyn ! Qmaxj shown in Fig. 5(a). The theoretical maximum
directivity factor has been realized by incident modes with
good agreement. The synthesized pressure field near the
opening for ðhd;/dÞ ¼ ð30+; 0+Þ at k¼ 16 is shown in
Fig. 5(c), exhibiting a directional beam with a near-planar
wavefront and emission of many regularly distributed side-
lobes. The results suggest that by only maximizing the
directivity factor, a regular beam pattern can be generated
and synthesized with incident propagating modes. In this
sense, our study has provided physically achievable bench-
mark radiation patterns that can be used as design objectives
for aperture antennas.

The transmission coefficients tW of the incident modes
for different target directions are inspected in Fig. 6. Except
for the dips near the cutoff wavenumbers due to strong scat-
tering, the power transmission is globally high, indicating
good radiation capacity of the directional system.

Radiation pattern synthesis for a bidimensional wave-
guide can be realized and analyzed in a similar way. The
results are briefly presented in the supplementary material.35

B. Synthesis with point sources

From a practical point of view, it is meaningful to
investigate the radiation pattern synthesis by a realizable
source inside the waveguide such as an array of point sour-
ces, rather than the more theoretical multimodal incident
wave. For simplicity, this problem is studied in the bidimen-
sional case. The synthesis problem is stated as finding a con-
figuration of an array of point sources in the semi-infinite
waveguide, including the number, locations, and source
strengths, to reconstruct the incident modal amplitudes p̂þ
at the open end given by Eq. (20). The solution is not
unique; therefore, to restrict the problem, we consider a
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linear arrangement of point sources located on a transversal
line upstream from the opening, far enough to ensure that all
the evanescent waves emitted by the sources are negligible
at the opening. From the modal representation of the
Green’s function in the waveguide, we can express p̂þ;n in
terms of the contribution from M point sources,

XM!1

m¼0

kQm
unðxmÞ
!2ikz;n

eikz;njzsj ¼ p̂þ;n; 0 * n * Np ! 1; (23)

where kz;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! c2

n

p
is the axial wavenumber, and

ðxm; zsÞ and Qm are, respectively, the coordinates and
strength (complex) of the mth source. Equation (23) can be
rewritten in matrix form,

Eq ¼ c; (24)

where Enm ¼ unðxmÞ; cn ¼ !2ikz;np̂þ;ne!ikz;njzsj=k, and
q ¼ ðQnÞ. Let M ¼ Np, and equally space the sources on the
transversal line, that is, let xm ¼ ! 1

2þ ðm=ðNp ! 1ÞÞ for
0 * m * Np ! 1, and then the linear algebraic equation has
a unique solution q ¼ E!1c. More importantly, the condi-
tion number of the matrix E is well controlled with such
arrangement, even for a high dimension (see supplementary
material35 for the condition number analysis).

The field emitted by the point sources (before being
scattered by the opening) is then given by

pðx; zÞ ¼
XM!1

m¼0

X1

n¼0

kQm
unðxmÞ
!2ikz;n

eikz;njz!zsj; (25)

FIG. 5. (Color online) Results of beam pattern synthesis for a circular waveguide. (a) Comparison of the Qmax and Qsyn for different hd. (b) Comparison of
the theoretical and synthesized patterns for ð30+; 0+Þ and ð60+; 180+Þ at k¼ 16 in xz plane [corresponding to Fig. 3(c)]. (c) Real part (left) and magnitude
(right) of the pressure field in the xz plane generated by incident propagating modes for the directivity synthesis in ð30+; 0+Þ at k¼ 16, computed by the
PML-multimodal method. In (b) and (c), jjvoptjj ¼ 1.

FIG. 6. (Color online) Transmission
efficiency of the incident waves that
synthesize optimal beams in different
directions.
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which incorporates evanescent waves near the sources, and
the number of modes is truncated at 30 for computation at
our studied frequency (k¼ 30, Np ¼ 10). For verification
purpose, the results have been validated by the finite ele-
ment method (FEM), using ðxm; zs;QmÞ as model inputs
(Fig. 7 and Mm. 1).

Mm. 1. Beam steering achieved by a point-source array in
a bidimensional waveguide at k¼ 30.

IV. TWO COMMENTS ON THE OPTIMALITY

A. Comparison with Gaussian shaded modes

In this section, we introduce an alternative method for
creating a directional beam via a cluster of Gaussian shaded
modes and compare it with our proposed synthesized beam
(multimodal incidence) within the framework of a bidimen-
sional waveguide. A group of Gaussian shaded modes prop-
agating in the waveguide shows ray-like behavior at high
frequencies.38,39 As illustrated in Fig. 8, the beam is propa-
gating at an angle h0 ¼ sin!1ðn0p=kÞ with respect to the z

axis, where n0 is the order of its central mode. Letting its
propagation trajectory pass through the origin, we intuitively
create a directional beam steered to the h0 direction. Its
modal amplitudes can be obtained by weighting those of the
Green’s function in the waveguide by a Gaussian window
centered at the n0th mode,38,39

pnðzÞ ¼
unðxsÞ
!2ikz;n

eikz;njz!zsje!ðn!n0Þ2=2r2

; (26)

where (xs, zs) are coordinates of the point source, and r
is the standard deviation of the Gaussian distribution.
For comparison with the synthesized beam, in this study,
only the propagating modes are used to construct the
beam (0 * n * Np ! 1). Equation (26) describes an inci-
dent field consisting of two beams directed at angles
6h0. A single beam can be obtained by placing the
source on one of the walls. After emitting from the
source, it is reflected between the walls Nr times before
the aperture diffraction. Figure 8 shows the case of
Nr ¼ 1, where the source coordinates can be determined
from the geometrical relations.

For a given center mode n0, the directivity factor of the
Gaussian shaded modes targeted at angle h0 is dependent on
the number of reflections Nr and the standard deviation r.
An optimal beam with the highest directivity factor is then
obtained by solving a two-parameter optimization problem.
Figure 9(a) compares the directivity factor of the synthe-
sized beam (by modal incidence) with that of the optimized
Gaussian shaded modes for 1 * n0 * Np ! 1. Note that in
the case of n0 ¼ 0 (thus, h0 ¼ 0), the beam is not well-
defined since zs ! !1. It is clear that the Gaussian shaded
modes do not allow continuous beam steering, and as
expected, at these discrete steering angles, the beam is
always less directional than the synthesized beam.
Nevertheless, the variation of its directivity factor follows
closely that of the synthesized beam. Figure 9(b) compares
their sound fields at k¼ 30 for n0 ¼ 4 (h0 ¼ 24:8+), with the
source location for the optimized Gaussian shaded modes
(Nr ¼ 0; r ¼ 0:90) and the trajectory marked out. The near
field and sidelobes of the synthesized modes display more
regular pattern than the Gaussian shaded modes, which
might account for the higher directivity.

FIG. 7. (Color online) Pressure field near the opening of a bidimensional waveguide for beam pattern synthesis. hd ¼ 30+ at k¼ 30. (a) Synthesis with multi-
modal incidence, jjpþjj¼ 1; (b) synthesis with point sources; (c) FEM validation of (b).

FIG. 8. (Color online) Schematic diagram of the propagation trajectory and
source location for intuitively building a directional beam. xs ¼ 1

2 ð!1ÞNr ; zs

¼ !ð2Nr þ 1ÞL0, and L0 ¼ 1
2 cot h0.
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B. Effect of evanescent modes

In this section, we inspect the influence of evanescent
modes on the directivity maximization problem. We recall
the definition of the radiation efficiency of a given velocity
distribution v(x, y) on a surface S,19,28,40

s ¼ W
1

2

ð ð

S

jvðx; yÞj2dS
; (27)

where W is the actual radiated power given by Eq. (8), and
the denominator is an assumed reference power, defined as
the power radiated by a portion S of an infinite planar piston
vibrating with the root-mean-square (rms) value of the
actual velocity on S. Equation (27) can be simplified as

s ¼ v†Rrv (28)

by normalization such that jjvjj ¼ 1. Equation (28) indicates
that the radiation efficiency of each individual mode is given
by the corresponding diagonal element of the radiation resis-
tance matrix. The radiation efficiency of an evanescent
mode is much lower than a propagating mode.19

By solving the maximization problem in a subspace
spanned by all propagating modes and at least one evanes-
cent mode, we examine the variations of the maximum
directivity factor Qmax, radiation efficiency s of the optimum

velocity, and the proportion of evanescent components in
the velocity jjvejj2=jjvoptjj2 as a function of Ne. Without loss
of generality, we study the bidimensional aperture and pre-
sent the results in Fig. 10(a). The participation of evanescent
modes results in an elevation of Qmax, particularly at lower
frequencies, where Qmax in the axial direction can signifi-
cantly surpass Qpis. Moreover, the results show a significant
decrease in the radiation efficiency accompanied by a rapid
increase in the proportion of evanescent components, even
for small values of Ne. According to Eq. (27), a decrease in
efficiency corresponds to a lower radiated power for a given
rms velocity. Figure 10(b) exemplifies the optimum directiv-
ity patterns for Ne * 3 (plotted for jjvoptjj ¼ 1). As the
sound intensity Irðr; hÞ / jDðhÞj2 at given radial distance
and frequency, a decrease in the radiated power is mani-
fested by the “shrinking” of the directivity pattern.

An aperture velocity distribution dominated by evanes-
cent modes can be difficult to implement in hollow wave-
guides. Even if it is possible, the system is likely inefficient.
In contrast, in Sec. III, we have demonstrated that the opti-
mum velocity obtained in the propagating subspace is physi-
cally achievable and exhibits good transmission efficiency.
Therefore, for traditional hollow horn antennas, it is reason-
able to maximize the directivity in the propagating subspace
and use the results for design. Nevertheless, in some cases
with Ne ) 1, the efficiency still remains at a practical level.
For example, as shown in Fig. 10(b), hd ¼ 90+ case, the

FIG. 9. (Color online) (a) Comparison of the directivity factors of the optimized Gaussian shaded modes for h0 ¼ sin!1ðn0p=kÞ and the theoretical and syn-
thesized (by modal incidence) directivity factors in h0 in a bidimensional waveguide. (b) Comparison of the magnitude pressure field between the synthe-
sized beam (Q¼ 13.6) and the Gaussian shaded modes (Q¼ 12.0) at k¼ 30, for n0 ¼ 4; h0 ¼ 24:8+, corresponding to the dashed line in (a). jjpþjj¼1.
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assistance of the first evanescent mode (orange line) does
not significantly reduce the efficiency compared to Ne ¼ 0
(blue line) but in turn steers the mainlobe precisely into the
desired sideline direction. According to Fig. 10(a), the opti-
mal velocity for Ne ¼ 1 is dominated by its evanescent com-
ponents with a weight factor of 0.73. It could be achieved
when the waveguide is filled with structured media through
which evanescent modes can be effectively emitted.

Figure 10(a) shows that the increase in Qmax with Ne

slows down for smaller angles and higher frequencies. The
previous work on the electromagnetic aperture27 only stud-
ied the case of hd ¼ 0 at a high frequency (Np ¼ 77), and
the results showed a trend of convergence similar to the pre-
sent case of hd ¼ 0; Np ¼ 20, showing limited contribution
of the evanescent modes. However, our analysis reveals
more complicated reasoning for discarding them in the max-
imization. It will be relevant in the future to conduct similar
comprehensive analysis for the electromagnetic aperture.

We also note that any orthogonal basis defined on aper-
ture surface can be used for the directivity maximization,
and the aforementioned properties of the solution will not be
affected by such a choice. Indeed, projecting the transverse
Laplacian with the boundary condition onto an orthogonal
basis always leads to propagating and evanescent modes.
The use of rigid waveguide modes is more suited for cou-
pling the propagation models in horns.37,41

V. CONCLUSION

The directivity factor of a flanged planar source, i.e., an
aperture or a solid vibrating surface, has been formulated as

a generalized Rayleigh quotient, which guarantees a global
maximum in a given modal subspace. Using the transverse
modes of a rigid waveguide as the expansion basis, an
important finding is the formation of the radiation-efficient
and -inefficient optimum velocity distributions depending
on whether the evanescent modes are included in the maxi-
mization. It is reasonable to benchmark a hollow waveguide
antenna design against an optimal pattern obtained in the
propagating subspace. The theoretical pattern can be effec-
tively synthesized by a group of incident modes or a
point-source array within the waveguide, and these direc-
tional systems exhibit good transmission properties. When
the velocity subspace is enlarged with the evanescent
modes, the maximized directivity factor increases at the
expense of radiation efficiency, and the optimum velocity
will be dominated by its evanescent components. As a
result, it is not practical to realize these patterns via hollow
waveguides. However, the evanescent modes are crucial for
precise beam steering in extreme directions. These patterns
could be achieved if the waveguide is designed by filling
structured media near its opening. In addition, we have
derived rigorous integral expressions of the multimodal
radiation impedances for a flanged bidimensional wave-
guide. An infinite number of integral identities are deduced
from the generalized Bouwkamp’s impedance theorem.

The present fundamental theory has provided bench-
mark directivity factors and patterns for subsequent explora-
tions of structure design, such as horn antenna design by
shape optimization41 or filling metamaterials.23 The formu-
lations are also applicable to unflanged waveguides, subject
to the evaluation of free-field modal directivity functions.

FIG. 10. (Color online) (a) Dependence of log10ðQmaxÞ, s, and jjvejj2=jjvoptjj2 on Ne at k ¼ 0:5p (Np ¼ 1), 9:5p (Np ¼ 10), and 19:5p (Np ¼ 20) for different
target directions. (b) Typical optimum directivity patterns for incremental Ne. The bidimensional aperture is studied.
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