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Abstract
The pressure reciprocity technique for calibration of Laboratory Standard microphones provides
the basis for primary measurement standards for sound pressure. This calibration method is
described in the International Electrotechnical Commission (IEC) standard 61094-2:2009 where
the key aspect relating to the calculation of the acoustic transfer admittance of couplers was
recently completed and clarified in the amendment IEC 61094-2:2009/AMD1:2022. Three
models are currently provided for calculating this quantity: the low-frequency solution suitable
to low frequencies, the extended low-frequency solution suitable to low and medium
frequencies, and the broadband solution suitable to medium and high frequencies. It is
established that neither of these models is correct for all frequencies routinely considered in
many National Metrology Institutes, namely from 2Hz to 25 kHz, so that a transition must be
made. Based on the fundamental equations of acoustics in thermoviscous fluid, this paper
provides a unified formulation for the acoustic transfer admittance of cylindrical cavities. Under
the common quasi-plane wave approximation, this paper provides a new form of solution for the
Fourier equation, not restricted by any assumption on the pressure variation and leading to a
new form of propagation equation in the coupler. Two techniques are used to solve the problem,
the Laplace Adomian Decomposition Method and a stepped duct approximation technique.
Numerical results are presented, providing substantial evidence to support the validity of these
formulations. A high level of agreement is observed between the two models, approximately
10−6 dB for the amplitude and 10−4 degrees for the phase, excluding the resonance frequencies
of couplers. Finally, this paper evaluates the compatibility of the extended low-frequency
solution provided in the IEC amendment with the fundamental equations established in this
study. A new simplified solution is provided, highlighting discrepancies in the application of the
heat conduction corrective factor as compared to the guidelines outlined in the IEC amendment.
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1. Introduction

The pressure reciprocity calibration method as specified in
the International Electrotechnical Commission (IEC) Standard
61 094-2:2009 [1] is currently used worldwide for absolute
pressure calibration of laboratory standard (LS) microphones,
and provides the basis for primary measurement standards for
sound pressure. This method, which is based on the use of
closed couplers, is routinely applied by the national metrology
institutes (NMIs) at frequencies from 2Hz up to 25 kHz [2]. In
the most usual configuration, the pressure reciprocity method
requires three reciprocal microphones coupled by pairs using a
cavity, generally with a cylindrical shape. The coupler ends are
closed by the microphone diaphragms, with one being used as
a transmitter and the other one as a receiver. The product of the
microphone sensitivities is determined from electrical meas-
urements and from analytical calculation of the acoustic trans-
fer admittance of the system. Finally, this operation is repeated
with the remaining paired combinations of microphones.

Calculation of the acoustic transfer admittance is a key
aspect of microphone pressure reciprocity calibration. The
acoustic transfer admittance, defined as the ratio of the short-
circuit volume velocity produced by the transmitter micro-
phone to the sound pressure acting on the diaphragm of the
receiver microphone has been extensively explored and dis-
cussed considering both influence of heat conduction and
viscous losses [3–14]. The IEC Standard 61 094-2:2009 [1]
provides two formulations for calculation of the acoustic
transfer admittance: (i) the broadband solution, which con-
siders both thermal and viscous effects in plane wave couplers
and is applicable to medium and high frequencies (plane-
wave couplers have cavity diameters equal to the diameters
of the microphone front cavities [1]), and (ii) the low-
frequency solution where the influence of the heat con-
duction losses is expressed in terms of a complex correc-
tion factor ∆H to the geometrical volume V of the coupler.
Driven by the demand for traceable calibrations at infra-
sonic frequencies [15, 16], significant efforts were carried
out recently to improve and extend the validity of the low-
frequency solution to frequencies below 2Hz, leading to the
publication in 2022 of an amendment of the IEC stand-
ard 61 094-2:2009/AMD1:2022 [17]. Specifically, this amend-
ment replaces the existing low-frequency solution with a new
one, and also introduces a new model referred to hereafter
as the extended low-frequency solution. This amendment was
motivated by recent publications: (i) Vincent et al’s work in
[13], which provides a clarified and improved analytical for-
mulation of the correction factor ∆H, and (ii) Sandermann

Olsen’s work in [14], which presents a method for expanding
the applicability of the solution proposed by Vincent et al
to medium frequencies. The approach of calculation for this
extended solution involves calculating the transfer admittance
through the transmission line model, i.e. equation (4) of IEC
61 094-2:2009 where the correction factor∆H is applied to the
cross sectional area, S in the characteristic acoustic admittance
of plane wave coupler Ya,0 = S/(ρ0c0) (where ρ0 is the dens-
ity of the gas enclosed and c0 the adiabatic speed of sound)
and where the propagation constant is fixed to k= 0+ jω/c0
(where ω is the angular frequency). The validity of this solu-
tion is mainly supported by its convergence with a solution
provided by a finite element software. However, it would be
beneficial to reinforce its reliability by developing an analyt-
ical model that establishes the limitations of the solution.

In summary, the IEC Standard 61 094-2:2009 and its recent
amendment IEC 61 094-2:2009/AMD1:2022 provide three
models for calculating the acoustic transfer admittance of
cylindrical cavities, (i) the low-frequency solution (outlined
in [17]) which is assumed to be valid at low frequencies
where λ > 100 3

√
V (with λ representing the wavelength) cor-

responding to frequencies below [300Hz–700Hz] for plane-
wave couplers commonly used for reciprocity calibrations,
(ii) the extended low-frequency solution (outlined in [17])
which is assumed to be valid at low and medium frequencies
where λ > 25ℓ (where ℓ is the length of the cavity) corres-
ponding to frequencies below [1000Hz–3450Hz] for the same
plane-wave couplers, and (iii) the broadband solution (out-
lined in [1]) which is assumed to be valid at high frequencies
where λ < 16ℓa (where a is the radius of the cavity and the
factor 16 being an empirical factor, expressed in m−1) corres-
ponding to frequencies above [175Hz–1150Hz] for the same
plane-wave couplers.

The pressure reciprocity calibration of LS microphones in
the frequency range 2Hz–25 kHz is the norm now in many
NMIs. Therefore, it can be established that neither of the stand-
ardized models is correct at all frequencies of interest. In fact,
there is only just a frequency range where low and high fre-
quency solutions can be considered reasonably accurate so that
a transition must be made. In the [14], the author recommend
as a compromise for calibrations to make a gradual trans-
ition between the solutions in a range of frequencies where
both solutions are assumed to be valid. Although using this
approach may be appropriate, it would be beneficial to use a
valid unified formulation of the acoustic transfer admittance.
Therefore, it is the aim of this paper to propose such uni-
fied formulation of the acoustic transfer admittance of cyl-
indrical cavities relevant for reciprocity calibration of LS
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microphones in the widest frequency range, and not restricted
by any assumption about the relative size of the wavelength
and coupler dimensions.

After establishing the fundamental equations of the prob-
lem, the paper presents two techniques for solving it: the
Laplace Adomian decomposition method (LADM) and a
stepped duct approximation technique. The resulting expres-
sions for the acoustic transfer admittance for cylindrical cav-
ities (commonly referred to as plane wave couplers) are given
and calculated for several couplers commonly used for reci-
procity calibrations. The results obtained are compared to
those given in the IEC standard. Finally, this paper evalu-
ates the compatibility of the extended low-frequency solu-
tion provided in the IEC amendment with the fundamental
equations established in this study. It is important to men-
tion that, while the paper includes results and discussions
related to high frequencies, where the influence of radial wave-
motion cannot be disregarded in comparison to calibration
uncertainties [18], the current formulation does not specific-
ally address this issue. The conclusion further reflects on this
crucial matter.

2. The equation of propagation for the quasi plane
wave approximation

The considered domain Ω is a cylindrical cavity (length ℓ,
radius a) closed at one end z= 0 by the diaphragm of a trans-
mitter microphone driven by a velocity vt and at the other end
z= ℓ by the diaphragm of a receiver microphone (figure 1).

The variables describing the dynamic and thermodynamic
states of the fluid are the particle velocity v, the entropy vari-
ation σ, the pressure variation p, the density variation ρ, and
the temperature variation τ . The parameters that specify the
properties and nature of the fluid are the ambient values of the
density ρ0, the static pressure P0, the shear viscosity coeffi-
cient µ, the bulk viscosity coefficient η, the thermal diffus-
ivity of the enclosed gas αt, the coefficient of thermal con-
ductivity λt, the specific heat coefficient at constant pressure
and constant volume per unit of mass CP and CV respect-
ively, the specific heat ratio γ, and the increase in pressure
per unit increase in temperature at constant density β. The
complete set of linearized homogeneous equations governing
small-amplitude disturbances of the fluid includes the follow-
ing equations:

• The Navier–Stokes equation

1
c0

∂v
∂t

+
1
ρ0c0

∇p= ℓv∇(∇· v)− ℓ ′v∇× (∇× v) , (1)

where ℓv and ℓ ′v are characteristic lengths defined as

ℓv =
1
ρ0c0

(
4
3
µ+ η

)
and ℓ′v =

µ

ρ0c0
.

• The Fourier equation for heat conduction, taking into
account the thermodynamic law expressing the entropy

Figure 1. Coupler geometry with the two microphones.

variation σ as function of the independent variables
p and τ , (

∂

∂t
−αt∇2

)
τ =

γ− 1
βγ

∂p
∂t
. (2)

• The conservation of mass equation, taking into account the
thermodynamic law expressing the density variation as func-
tion of the independent variable p and τ with ρ= (p−
βτ)γ/c20,

ρ0c0∇· v+ γ

c0

∂

∂t
(p−βτ) = 0 . (3)

The acoustic pressure inside the cavity should be the solution
of this set of three equations with the requirement of regular
behavior at the cylinder center (the field remains finite at r= 0)
and with the boundary conditions at the surface of the domain
presented hereafter when required.

Several simplifying hypothesis can be made, summarized
as follows: (i) as the system has an axial symmetry, the acous-
tic field is assumed to be independent of the azimuthal com-
ponent θ, (ii) the radial component r of the particle velocity
vr vanishes, as it is much lower than the axial component z,
and thus the pressure variation p does not depend on the radial
coordinate r (quasi-plane wave approximation), (iii) since the
shear viscosity effects are important, the spatial derivative of
the particle velocity with respect to the axial coordinate z in
the Navier–Stokes equation is much smaller than the derivat-
ive with respect to the radial coordinate r.

These approximations allow us to simplify the Navier–
Stokes equation (1) since only the axial component needs to
be considered. It takes the following approximated form:[

1
c0

∂

∂t
− ℓ ′v

1
r
∂

∂r
r
∂

∂r

]
vz(r,z) =− 1

ρ0c0

∂

∂z
p(z) . (4)

To this differential equation are associated the two follow-
ing conditions on the particle velocity:

vz remains finite at r= 0 ,

vz(a,z) = 0, ∀z ∈ [0, ℓ] .
(5)
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The solution to the set of equations (4) and (5) can be writ-
ten for a harmonic motion (the factor ejωt is omitted):

vz(r,z) =
j

k0c0ρ0

∂

∂z
p(z)

[
1− J0(kvr)

J0(kva)

]
, (6)

where J0 is the 0th-order cylindrical Bessel’s function of the
first kind and the expressions of thewavenumber kv (associated
with the vertical movement due to viscosity effects) is given by

kv =
1− j√

2

√
k0/ℓ ′v , (7)

where k0 = ω/c0 is the adiabatic wavenumber. The average
value of vz over the section S= πa2 of the cavity is given by

⟨vz(z)⟩S =
2π
S

ˆ a

0
vz(r,z)rdr ,

=
j

k0ρ0c0

∂

∂z
p(z) [1−Kv] ,

(8)

with

Kv =
2
kva

J1(kva)
J0(kva)

, (9)

where J1 is the 1st-order cylindrical Bessel’s function of the
first kind.

As no approximations are formulated for the temperature
variation τ (excepting the axial symmetry of the system), the
Fourier equation (2) takes the general form:[

∂

∂t
−αt

(
∂2

∂z2
+

1
r
∂

∂r
r
∂

∂r

)]
τ(r,z, t) =

γ− 1
βγ

∂p
∂t
. (10)

The pressure variation is associated with a temperature
variation in the fluid that is responsible for a heat transfer from
the fluid to the boundaries. The resulting perturbation of the
acoustic wave takes the form of attenuation due to dissipa-
tion of the thermal energy. For most applications involving
solid walls, the product of the heat capacity of the wall by its
thermal conductivity is significantly greater than its equival-
ent product for the fluid. As a result, the boundary condition
on the temperature variation at the interface between the fluid
and the solid walls is commonly approximated in the literat-
ure as an isothermal boundary condition [19]. It is worth not-
ing that this approximation may require reevaluation in future
work, particularly regarding low frequencies (below 1Hz) and
at boundaries featuring thin walls, such as microphone dia-
phragms [20]. However, this specific issue is beyond the scope
of the present paper. Consequently, the following conditions
on the temperature variation are associated with the differen-
tial equation (10):

τ remains finite at r= 0, ∀z ∈ [0, ℓ] ,

τ(a,z) = 0, ∀z ∈ [0, ℓ] ,

τ(r,0) = 0 and τ(r, ℓ) = 0 , ∀r ∈ [0,a] .

(11)

The Fourier equation (10) subject to the boundary con-
ditions (11) has been extensively discussed in the liter-
ature in the context of reciprocity calibration of micro-
phones [10, 12, 13, 21]. Especially, [13] provides further
details on the methodologies and assumptions used to solve
this equation, which have led to the broadband and low-
frequency solutions discussed above. In brief, the approach
leading to the broadband solution is based on the plane wave
propagation theory in infinite cylindrical tubes, where the spa-
tial derivative of the temperature variation τ with respect the
z-coordinate is neglected in the Fourier equation. Then, heat
conduction effects at the end of the coupler are considered by
adding thermal boundary layer admittances in the boundary
conditions of the problem. This approach turns out to be inap-
propriate at the lower frequency range, and especially at infra-
sonic frequencies [12, 13]. On the other hand, the approach
that leads to the low-frequency solution is based on solv-
ing the Fourier equation, as proposed by Gerber [5]. This
solution assumes uniform pressure variation inside the cav-
ity, which as expected, is not appropriate for the highest fre-
quency range. Thus, finding an appropriate solution to the
Fourier equation is crucial to achieve the objective of a uni-
fied formulation valid across a wide frequency range. For this
purpose, the inhomogeneous Fourier equation (10) is solved
without making the aforementioned assumptions. Specifically,
the Duhamel’s principle is used to convert the problem with a
source to an initial value problem (see for example [22]). The
detailed calculations are provided in appendix A. Then, the
solution of equation (10) subject to conditions (11) takes the
general form:

τ(r,z) =
γ− 1
βγ

+∞∑
m=1

+∞∑
n=1

4J0 ( jnr/a)
jnℓJ1( jn)

sin
(mπ
ℓ
z
)

· 1

1+ αt
jω

[(
mπ
ℓ

)2
+
( jn
a

)2] ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz ,

(12)

with jn the roots of J0( jn) = 0 and where the pressure variation
p(z) must remain in the integral part as long as it is assumed
as non-uniform inside the cavity. The average value of τ(r,z)
over the section of the cavity is given by

⟨τ(z)⟩S =
2π
S

ˆ a

0
τ(r,z)rdr ,

=
γ− 1
βγ

+∞∑
m=1

+∞∑
n=1

am,n sin
(mπ
ℓ
z
)

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz , (13)

where

am,n =
8
j2nℓ
Fm,n , (14)
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with

Fm,n =
1

1+ αt
jω

[(
mπ
ℓ

)2
+
( jn
a

)2] . (15)

Taking the average value across the section of the cavity,
the conservation of mass equation (3) takes the form:

∂

∂z
⟨vz(z)⟩S+

jω

ρ0c20
γ
(
p(z)−β ⟨τ(z)⟩S

)
= 0 . (16)

Combining equations (8) and (13) with equation (16) leads
to the following propagation equation along the axis of the cyl-
indrical cavity:

∂2

∂z2
p(z) = ZvYhaγp(z)−ZvYha (γ− 1)

·
+∞∑
m=1

+∞∑
n=1

am,n sin
(mπ
ℓ
z
)ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz ,

(17)

where

Zv =
1
S
jk0ρ0c0
1−Kv

, (18)

and

Yha = S
jk0
ρ0c0

. (19)

Finally, the following boundary conditions (evoking
equations (8) and (18)) are associated to the propagation
equation:

− 1
Zv

∂p
∂z

= Svt at z= 0 , (20a)

1
Zv

∂p
∂z

=−Yrp at z= ℓ , (20b)

where Yr is the acoustic admittance of the receiver
microphone.

3. Solutions for the acoustic transfer admittance

3.1. The general analytical solution

The propagation equation (17) takes the form of a linear
Fredholm integro-differential equation of the second kind.
The Adomian decomposition method (ADM), introduced by
Adomian in the 80s [23] is a commonmethod used to solve lin-
ear and non-linear integro-differential equations. This method
generates a solution in the form of a series whose terms are
determined by a recursive relation. In the present problem, the
modified form of LADM [24] is particularly relevant, as it gen-
erates a solution that closely approximates the intended solu-
tion from the first iteration. Initially, equation (17) is rewritten
in a form that enables easier interpretation

∂2

∂z2
p(z) =−χ2

t p(z)+α
+∞∑
m=1

+∞∑
n=1

am,n sin
(mπ
ℓ
z
)

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz , (21)

where

χt =
√
−ZvYhaγ =

ω

c0

√
γ

1−Kv
, (22)

is the ‘isothermal’ wavenumber which includes viscosity
effects, and

α=−ZvYha (γ− 1) = χ2
t −χ2

a , (23)

with

χa =
√

−ZvYha =
ω

c0

√
1

1−Kv
, (24)

the ‘adiabatic’ wavenumber which includes viscosity effects.
The first step in the LADM is to apply the Laplace trans-

form operator to the propagation equation (21), resulting in a
simplified propagation equation that takes the form of an integ-
ral equation (see appendix B for details):

p(z) = p(0)cos(χtz)+
p ′(0)
χt

sin(χtz)

+α
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz , (25)

where p(0) and p ′(0) are constants fixed by the boundary con-
ditions ((20a) and (20b)) (see appendix C for details) and

ϕm(z) =
1
χt

χt sin
(
mπ
ℓ z

)
−
(
mπ
ℓ

)
sin(χtz)

χ2
t −

(
mπ
ℓ

)2 . (26)

It is worth noting that the first two terms in the equation (25)
represent the plane wave solution for an isothermal regime.
The ADM assumes that the solution to equation (25) can be
represented in the form of an infinite series given by

p(z) =
+∞∑
k=0

pk(z) , (27)

where the terms pk(z) are calculated recursively. Then, these
terms pk(z) are given by (see appendix B for details)

p0(z) = p(0)cos(χtz)+
p ′(0)
χt

sin(χtz) , (28)

for k= 0, and

pk(z) = p(0)αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)βk,m

+
p ′(0)
χt

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β
′
k,m , (29)
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for k⩾ 1 where

βk,m =
+∞∑
ν=1

+∞∑
µ=1

aν,µβk−1,νψm,ν , (30a)

β ′
k,m =

+∞∑
ν=1

+∞∑
µ=1

aν,µβ
′
k−1,νψm,ν , (30b)

are the recursive relations, the first terms being given by

β1,m =
mπ
ℓ ((−1)m cos(χtℓ)− 1)

χ2
t −

(
mπ
ℓ

)2 , (31a)

β ′
1,m =

mπ
ℓ (−1)m sin(χtℓ)

χ2
t −

(
mπ
ℓ

)2 , (31b)

and where

ψm,ν = δm,ν
ℓ/2

χ2
t −

(
mπ
ℓ

)2
−

1
χt

mπ
ℓ

νπ
ℓ (−1)m sin(χtℓ)(

χ2
t −

(
νπ
ℓ

)2)(
χ2
t −

(
mπ
ℓ

)2) , (32)

with δm,ν the Kronecker delta.
As mentioned in the introduction, the quantity of interest

for the pressure reciprocity calibration method is the acous-
tic transfer admittance YT defined as the quotient of the short-
circuit volume velocity produced by the microphone used as a
transmitter by the sound pressure acting on the diaphragm of
the microphone used as a receiver [1], namely

YT =
Svt−Ytp(0)

p(ℓ)
, (33)

where Yt is the acoustic admittance of the transmitting micro-
phone. By invoking equations (C.5) and (C.7) for p(0) and p(ℓ)
respectively, the acoustic transfer admittance takes the follow-
ing form for the general analytical solution

YT =−
(
χt
Zv

−Yt
C0 +ZvYrD0

A0 +ZvYrB0

)
·
(
D0 −B0

C0 +ZvYrD0

A0 +ZvYrB0

)−1

, (34)

where the constants A0, B0, C0 and D0 are given by (C.6a),
(C.6b), (C.6c) and (C.6d) respectively.

The differences between the acoustic transfer admittances
derived from the IEC standards [1, 17] (i.e. the low-frequency
solution, the extended low-frequency solution and the broad-
band solution) in comparison to the general analytical solu-
tion (34) are presented in figures 2 and 3. These results are
presented for the dimensions of common LS1 and LS2 plane-
wave couplers specified in table 1. In these numerical res-
ults, the acoustic admittances of the microphones were cal-
culated using a lumped parameter model as described in [1],
considering the nominal parameters of LS B&K microphones

specified in table 2. Note that this model for the acoustic
admittances of the microphones does not take into account
heat conduction effects in the cavity behind the diaphragm
of microphones. These effects could significantly contrib-
ute to the reciprocity calibration results at lower frequen-
cies, typically below 2Hz [9, 15]. However, these effects
do not really matter when the purpose is to compare mod-
els of acoustic transfer admittances of cylindrical cavities,
with the same acoustic admittances of the microphones in
each case. Thus, the numerical results presented in the figures
clearly show the equivalences of the general analytical solu-
tion (34) with the standardized models. These equivalences
are observed within the frequency ranges where the stand-
ardized models are considered valid, namely (i) at low fre-
quencies for the low-frequency solution, (ii) at low and mid
frequencies for the extended low-frequency solution, and (iii)
at mid and high frequencies for the broadband solution. This
provides evidence supporting the validity of the general ana-
lytical solution as a unified formulation of the acoustic trans-
fer admittance. Note that the low-frequency solutions remain
equivalents despite not being presented for frequencies below
0.1Hz. Small deviations are observed specifically at the axial
resonance frequencies of the couplers, i.e. the region above
10 kHz. It is important to mention that these differences are
several orders of magnitude smaller than the measurement
uncertainty at these frequencies. As the closed tube system is
underdamped, the acoustic transfer admittance is highly sens-
itive to input parameters at resonance frequencies. Thus, inher-
ent differences in the models being compared can account for
these deviations. For example, the broadband model in the
IEC standard makes use of ‘large tube’ asymptotic approx-
imations for both the propagation constant and the char-
acteristic admittance, whereas these approximations are not
used in the present model. Note that the finite calculation of
the three sums (Nk,Nm,ν ,Nn,µ) in equations (27), (29), (30a)
and (30b) does not contribute to these deviations, as the val-
ues (Nk,Nm,ν ,Nn,µ) were chosen large enough to ensure the
convergence of the solution.

The figure 4 presents an example of convergence study
for a LS1 coupler (ℓ= 18.9 mm), i.e. the number of itera-
tions (Nk,Nm,ν ,Nn,µ) required as function of frequency for
the convergence of the acoustic transfer admittance within
a tolerance of 0.001 dB for the amplitude and 0.01 degree
for the phase. At 2 Hz, the study shows the expected results
with (Nk,Nm,ν ,Nn,µ) = (1,20,14) and increasing significantly
with frequency, reaching (Nk,Nm,ν ,Nn,µ)= (10,1600,1000) at
30 kHz. It is worth noting that the calculation of the solution
can require substantial power computing resources, essentially
due to the nested double sum in the recursive equations (29),
(30a) and (30b). However, these resources can be optim-
ized firstly by implementing a frequency dependence of the
number of iterations required to converge to an accurate solu-
tion. The convergence study suggests that utilizing the fre-
quency dependencies Nk = ⌈0.2f 0.42⌉, Nm,ν = ⌈30f 0.42⌉ and
Nn,µ = ⌈15f 0.42⌉ is effective in achieving a solution within a
tolerance of 0.001 dB for the amplitude and 0.01 degree for
the phase. In addition, notable enhancements in the perform-
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Figure 2. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from the IEC models (broken lines:
low-frequency solution, dotted lines: extended low-frequency
solution and solid lines: broadband solution) in comparison to the
general analytical solution (34), for LS1 couplers a= 9.3mm,
ℓ= 11.4mm (red curves) and ℓ= 18.9mm (black curves). The
results presented for the two low-frequency models are limited to
frequencies below 5 kHz.

ance of the algorithm can be achieved by focusing on efficient
memory allocation, especially when considering relevant pre-
processing calculations. Thus, when using such an optimized
algorithm, the solution can be calculated in just a few seconds
for a typical frequency range covering 1/3 octave frequencies
between 2Hz and 25 kHz. An example of Python code that
has been optimized in this way is provided as supplementary
material.

3.2. The general semi-analytical numerical solution

This section provides an alternative method based on a numer-
ical technique to solve the problem addressed in section 2.
The technique consists of a stepped duct approximation where
short discs of width ∆ℓ are considered, and the sound pres-
sure within them can be assumed to be uniform, p(zi)≈
p(zi +∆ℓ). This approximation allows in particular to extract
the sound pressure p(z) from the integral part in the solution
of the Fourier equation (13). Thus, the integral part in that
equation applies to a simple sine function, straightforwardly
calculable as

ˆ ℓ

0
sin

(mπ
ℓ
z
)
dz=

ℓ

mπ
[1− (−1)m] .

Figure 3. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from the IEC models (broken lines:
low-frequency solution, dotted lines: extended low-frequency
solution and solid lines: broadband solution) in comparison to the
general analytical solution (34), for LS2 couplers a= 4.65mm,
ℓ= 5.7mm (red curves) and ℓ= 10.4mm (black curves). The
results presented for the two low-frequency models are limited to
frequencies below 10 kHz.

Table 1. Plane-wave coupler parameters (the lengths include the
front cavity depth of the two LS microphones).

Parameters LS1 microphones LS2 microphones

Length (ℓ) 18.9mm 11.4mm 10.4mm 5.7mm
Radius (a) 9.3mm 9.3mm 4.65mm 4.65mm

Table 2. Microphone parameters.

Parameters
LS1 LS2

B&K Type 4160 B&K Type 4180

Equivalent Volume 148mm3 9.3mm3

Resonnance frequency 8500Hz 23 000Hz
Loss factor 1.08 1.05

Noting that the previous integral is equal to zero for even
m terms, the solution (13) of the Fourier equation is locally
given by

⟨τ(z)⟩S = p(z)
γ− 1
βγ

Ep(z) , ∀z ∈ [zi,zi+∆ℓ] , (35)

where

Ep(z) =
+∞∑
m=0

+∞∑
n=1

bm,n sin

(
(2m+ 1)π

ℓ
z

)
, (36)
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Figure 4. Number of iterations (Nk,Nm,ν ,Nn,µ) as function of
frequency required for the convergence within a tolerance of
0.001 dB for the amplitude and 0.01 degree for the phase of the
acoustic transfer admittance, for a LS1 coupler ℓ= 18.9mm and
a= 9.3mm. (a) dotted line: Nk terms required in (27) for the
isothermal to adiabatic correction, (b) solid line: Nm,ν terms
required for the axial eigenvalues and (c) broken line: Nn,µ terms
required for the radial eigenvalues.

and (evoking equation (14))

bm,n =
8/π

(m+ 1/2)j2n
F2m+1,n , (37)

where F2m+1,n is given by (15) withm replaced by 2m+ 1. For
a short width ∆ℓ, the function Ep(z) with z ∈ [zi,zi+∆ℓ] can
be approximated by its average value across ∆ℓ as

Ep(z)≈ ⟨Ep(zi)⟩∆ℓ =
1
∆ℓ

ˆ zi+∆ℓ

zi

Ep(z)dz

=
ℓ

∆ℓ

+∞∑
m=0

+∞∑
n=1

bm,n

cos
(

(2m+1)π
ℓ zi

)
(2m+ 1)π

−
cos

(
(2m+1)π

ℓ (zi+∆ℓ)
)

(2m+ 1)π

 . (38)

Therefore, combining equations (8), (35) and (38) with
equation (16) to remove the variable ⟨τ(z)⟩S, denoting w(z) =
S⟨vz(z)⟩S the axial acoustic volume velocity, leads to the pair
of equations:

∂

∂z
p(z)+ Zvw(z) = 0 , ∀z ∈ [zi,zi+∆ℓ] , (39a)

∂

∂z
w(z)+ Yh(zi)p(z) = 0 , ∀z ∈ [zi,zi+∆ℓ] , (39b)

where the impedance Zv is given by equation (18) and the
admittance Yh(zi) is locally a constant at z ∈ [zi,zi+∆ℓ],
given by

Yh(zi) = S
jk0
ρ0c0

∆H(zi) , (40)

Figure 5. Two-port transmission line model of the complete
reciprocity system, consisting of the two microphones and the
coupling cavity.

with

∆H(zi) = γ− (γ− 1)⟨Ep(zi)⟩∆ℓ . (41)

Note the notation used above is chosen to be similar to the
one commonly used in the community involved in reciprocity
calibration of microphones [1, 17].

The set of equations (39a) and (39b) takes the form of the
usual pair of transmission line equations which can be rep-
resented as a two-port network. Thus, for a length ∆ℓ of uni-
form transmission line, the interrelated relationships between
the sound pressure and volume velocity are given by the usual
ABCD parameters matrix (see for example [25])[

p(zi)
w(zi)

]
=

[
Ai Bi
Ci Di

]
·
[
p(zi+∆ℓ)
w(zi+∆ℓ)

]
. (42)

with (the hyperbolic notation is preferred here to align with
the notation used in IEC 61 094-2 [1])[
Ai Bi
Ci Di

]
=

[
cosh(χi(zi)∆ℓ) 1

Yi(zi)
sinh(χi(zi)∆ℓ)

Yi(zi)sinh(χi(zi)∆ℓ) cosh(χi(zi)∆ℓ)

]
,

(43)
where

χi(zi) = j
√
−ZvYh(zi) = j

ω

c0

√
∆H(zi)
1−Kv

, (44)

is the complex propagation constant and

Yi(zi) =

√
Yh(zi)
Zv

=
S
ρ0c0

√
(1−Kv)∆H(zi) , (45)

is the characteristic admittance, both locally constants in z ∈
[zi,zi+∆ℓ]. For the complete system, consisting of the two
microphones and the coupling cavity, the equivalent model for
which is shown in figure 5, the matrix chain of the two-port
network takes the form[

p(0)
Svt

]
=

[
A B
C D

]
·
[
1 0
Yr 1

]
·
[

p(ℓ)
−wr = 0

]
, (46)

with [
A B
C D

]
=

N−1∏
i=0

[
Ai Bi
Ci Di

]
, (47)
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Figure 6. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from the IEC models (broken lines:
low-frequency solution, dotted lines: extended low-frequency
solution and solid lines: broadband solution) in comparison to the
general semi-analytical numerical solution (49), for LS1 couplers
a= 9.3mm, ℓ= 11.4mm (red curves) and ℓ= 18.9mm (black
curves). The results presented for the two low-frequency models are
limited to frequencies below 5 kHz.

where N is the number of segments of width ∆ℓ con-
sidered to mesh the axial dimension of the cavity. Thus, from
equation (46) the two following equations can be provided

p(0) = (A+Yr ·B)p(ℓ) , (48a)

Svt = (C+Yr ·D)p(ℓ) . (48b)

Finally, combining the set of equations (48a) and (48b)
with (33) leads to the following form for the acoustic trans-
fer admittance of the cavity

YT = C+YrD+YtA+YrYtB . (49)

Similarly to the results presented in the previous section,
the differences between the acoustic transfer admittances
derived from the three IEC standards [1, 17] and the gen-
eral semi-analytical numerical solution (49) are presented in
figures 6 and 7. These results are presented for the dimen-
sions of the LS1 and LS2 plane-wave couplers specified in
table 1. These comparisons indicate that the general semi-
analytical numerical solution (49) is equivalent to the stand-
ardized models within the frequency ranges where they are

Figure 7. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from the IEC models (broken lines:
low-frequency solution, dotted lines: extended low-frequency
solution and solid lines: broadband solution) in comparison to the
general semi-analytical numerical solution (49), for LS2 couplers
a= 4.65mm, ℓ= 5.7mm (red curves) and ℓ= 10.4mm (black
curves). The results presented for the two low-frequency models are
limited to frequencies below 10 kHz.

considered valid. This provides evidence supporting the valid-
ity of the general semi-analytical numerical solution as a uni-
fied formulation of the acoustic transfer admittance. The small
deviations observed at high frequencies, particularly at the
axial resonance frequencies of the coupler, are also attributed
here to the inherent differences in the models being compared.
Note that the finite calculation of the double sum (Nm,Nn) in
equation (38), and the finite meshing considered in the trans-
mission line matrix (47) do not contribute to the deviations,
as the values were chosen large enough to ensure the con-
vergence of the solution. Here, for the large LS1 coupler, the
number of terms (Nm,Nn) required to converge to a solution
within a tolerance of 0.001 dB and 0.01 degree are (Nm,Nn)=
(10,14) at 2Hz, increasing significantly with frequency to
reach (Nm,Nn) = (800,1000) at 30 kHz. The meshing of the
axial dimension of the cavity requires special attention due
to the stepped duct approximation. In particular, two factors
must be considered: (i) the assumption of uniform sound pres-
sure in a slice of duct, where its variation increases with
frequency. This requires a finer meshing at higher frequen-
cies to accurately model the acoustic behavior, and (ii) the
assumption of averaging the function ⟨Ep(zi)⟩∆ℓ across the
width ∆ℓ of a slice of duct, where its variation increases
near the thermal boundary layers at z= 0 and z= ℓ due to
the isothermal boundary condition τ = 0 (see figure 8). In this
multiscale problem, the mesh must be refined where needed,
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Figure 8. Modulus of the function Ep(z) at 2Hz (dotted line), 1 kHz
(broken line) and 25.1 kHz (solid line) as function of the z-axis for a
LS2 coupler, ℓ= 10.4mm and a= 4.65mm.

which is a non-trivial task because the boundary layer thick-
ness varies with frequency. In the bulk of the domain, the field
is smooth and varies with the acoustic wavelength, which is
larger by several order of magnitude than the thermal bound-
ary layer thickness given by

δh =

√
2αt
ω
. (50)

Using an anisotropic mesh with a finer width ∆ℓ near the
boundaries ends of the cavity is of interest here. This approach
reduces errors in the solution by using fine meshing exactly
where it is needed, while simultaneously conserving comput-
ing resources. To calculate the results presented in figures 6
and 7, the bulk of the domain was meshed with a minimum
of ten elements (N= 10), which increases as function of fre-
quency according to the formula N= ⌈10ℓω/c0⌉ (equival-
ent to ten elements per wavelength). At the ends of the cav-
ity, the domain width, delimited by four times the thermal
boundary layer thickness δh, was meshed with ten elements.
This basic parameterization is sufficient to calculate a solu-
tion within a tolerance of 0.001 dB and 0.01 degrees at 1/3
octave frequencies between 2Hz and 25 kHz in just a few
seconds. An example of Python code for the calculation of
the acoustic transfer admittance is provided as supplementary
material. Finally, the level of agreement between the general
semi-analytical numerical solution (49) and the general ana-
lytical solution (34) is approximately 10−6 dB for the amp-
litude and 10−4 degrees for the phase across a wide frequency
range when using the parameterizations of the models presen-
ted above. At the axial resonance frequencies of the couplers,
the level of agreement reaches maximums of 10−4 dB for the
amplitude and 10−3 degrees for the phase.

3.3. The simplified analytical solution

The results presented in the previous sections provide evidence
to support the validity of the two solutions proposed in this
paper for covering the complete frequency range of interest for

pressure reciprocity calibrations of microphones. The funda-
mental equations of the problem having been established, this
final section is dedicated to analyzing the extent of a simplified
solution, based on similar assumptions that led to establishing
the extended low-frequency solution implemented in the IEC
standard 61 094-2:2009/AMD1:2022 [17]. As mentioned in
the introduction, the extended low-frequency solution, motiv-
ated by the work in [14] uses the transmission line model,
i.e. equation (4) of IEC 61 094-2 [1] as the framework for the
solution. Then, based on observations of numerical results, the
author highlights that accurate solutions can be obtained at
low and medium frequencies when the correction factor ∆H
(equation (A.1) of [17]) is applied to the cross-sectional area,
S in the characteristic admittance Ya,0 = S/(ρ0c0) and when
the propagation constant is fixed to k= 0+ jω/c0.

It is important to note that the correction factor ∆H, as
given by equation (A.1) in [17], is derived from one of the two
solutions for the Fourier equation provided by Gerber in [5].
Recently, it has been clarified in [13] that of the two solutions
given by Gerber, the one appropriate for pressure reciprocity
calibrations is

∆H = γ− (γ− 1)Ep , (51)

whereEp is a complex quantity, given by equation (A.2) in [17]
for a cylindrical cavity. Note that Ep is provided by Gerber in
[5] by assuming a uniform sound pressure within the cavity
and by averaging the temperature variation τ over the volume
of the cavity, neglecting the local dependencies between the
temperature variation and the sound pressure. While these
assumptions are suitable for models at low frequencies where
the sound pressure can be considered uniform in the coupler as
in [5, 13, 15], the general solution (13) presented in this paper
for the Fourier equation (10) demonstrates a more intricated
relationship between temperature variation and sound pres-
sure, indicating that these assumptions may not hold when
dealing with high frequencies. On the other hand, the decreas-
ing effects of heat conduction losses with increasing frequency
on the sound pressure solution could mitigate the impact of
such inappropriate assumptions in the Fourier equation.

Hereafter, we intend to study non-homogeneous simplify-
ing assumptions on the fundamental equations presented in
section 2. Specifically, in the Fourier equation, the pressure
variation is assumed to depend only on the average of the tem-
perature variation across the volume, and the pressure vari-
ation is assumed to be uniform within the cavity. However,
these assumptions do not apply to the Navier–Stokes equation.
The uniform sound pressure assumption within the cavity
allows, similarly to equation (35), to extract the sound pressure
p(z) from the integral part in equation (12). Thus, the averaged
value of τ across the volume of the cavity is given by

τ = ⟨τ⟩V ≈ p(z)
γ− 1
βγ

Ep , (52)

with

Ep =
+∞∑
m=0

+∞∑
n=1

8/π2

(m+ 1/2)2 j2n
F2m+1,n , (53)
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where F2m+1,n is given by (15) with m replaced by 2m+
1. Note that the set of equations (15), (52) and (53) are
equivalent to equations (A.1), (A.2) and (A.3) provided in
[17]. Therefore, similarly to the demonstration provided in
the previous section, combining equations (8) and (52) with
equation (16) to remove the variable τ , the simplified pair of
transmission line equations are given by

∂

∂z
p(z)+ Zvw(z) = 0 , ∀z ∈ [0, ℓ] , (54a)

∂

∂z
w(z)+ Yha∆Hp(z) = 0 , ∀z ∈ [0, ℓ] , (54b)

where the impedance Zv, the admittance Yha and the correc-
tion factor ∆H are respectively given by equations (18), (19)
and (51). In the context of this simplified problem, the matrix
chain representing the two-port network takes the form[

p(0)
Svt

]
=

[
cosh(χsℓ) 1

Ys
sinh(χsℓ)

Ys sinh(χsℓ) cosh(χsℓ)

]
·
[
1 0
Yr 1

]
·
[

p(ℓ)
−wr = 0

]
,

(55)

where the complex propagation constant is given by

χs = j
√
−ZvYha∆H = j

ω

c0

√
∆H

1−Kv
, (56)

and the characteristic admittance

Ys =

√
Yha∆H

Zv
=

S
ρ0c0

√
(1−Kv)∆H . (57)

Equations (56) and (57) reveal a discrepancy in the applica-
tion of the corrective factor∆H, as compared to the guidelines
outlined in IEC standard 61 094-2:2009/AMD1:2022. At first,
equation (57) suggests that the cross-sectional area S in the
characteristic admittance needs to be corrected using

√
∆H

instead of ∆H. Furthermore, equation (56) reveals that the
correction factor

√
∆H should be applied to the complex

propagation constant, while the standard prescribes the use
of the adiabatic propagation constant jω/c0. Finally, the cor-
rection of both the propagation constant and the characteristic
admittance by the factor 1/

√
(1−Kv) and

√
(1−Kv) respect-

ively, allows to retain the information of viscosity losses in
the model, which could improve the solution, especially at
medium and high frequencies.

Thus, from equation (55) the two following equations can
be provided

p(0) =

(
cosh(χsℓ)+

Yr
Ys

sinh(χsℓ)

)
p(ℓ) , (58a)

Svt = (Ys sinh(χsℓ)+ Yr cosh(χsℓ))p(ℓ) . (58b)

Finally, combining the set of equations (58a) and (58b)
with (33) leads to the well known form (as provided in [1])
for the acoustic transfer admittance

YT = (Yr+Yt)cosh(χsℓ)+ Ys

(
1+

YtYr
Y2s

)
sinh(χsℓ) . (59)

For the comparisons mentioned hereafter, the general ana-
lytical solution (34) is considered as the reference solution.
The differences between the acoustic transfer admittances
derived from equation (59) and the IEC extended low-
frequency solution, in comparison to the reference solution
are presented in figures 9 and 10. These results are presen-
ted for the plane-wave couplers specified in table 1. The
figures clearly show the equivalences of the solution at low and
medium frequencies. Note that the solutions remain equival-
ents despite not being presented for frequencies below 100Hz.
Moreover, it can be observed that using equation (59) to cal-
culate the acoustic transfer admittance results in lower devi-
ations at high frequencies compared to the IEC extended low-
frequency solution. Therefore, the validity of the solution
is extended by a few kilohertz. It essentially deviates from
the reference solution near the axial resonance frequencies
of the coupler, which was expected, due to the simplifying
assumptions made to solve the Fourier equation. These devi-
ations should be evaluated in relation to the measurement
uncertainty in order to define the usable frequency range for
the given solution. It should be noted that the use of short
couplers is of particular interest here, as the resonance fre-
quencies shift to higher frequencies as the length of the coupler
decreases.

4. Conclusion

The IEC standard 61 094-2 [1] and its recent amendment [17]
establish the principle for pressure calibration of LS micro-
phones using the reciprocity technique. Calculation of the
acoustic transfer admittance is a key aspect of microphone
pressure reciprocity calibration. Three models are currently
provided in the IEC standards for calculating the acoustic
transfer admittance of cylindrical cavities and it is estab-
lished that neither of these models is correct for all frequen-
cies routinely considered in many NMIs, namely from 2Hz
to 25 kHz. In fact, there is only just a frequency range where
low and high frequency models can be considered reasonably
accurate so that a transition must be made.

Based on the fundamental equations of acoustics in ther-
moviscous fluids, this paper is intended to provide a unified
formulation for the acoustic transfer admittance of cylindrical
cavities, which is relevant for reciprocity calibration of LS
microphones across a wide frequency range. For this purpose,
the problem is considered using the common quasi-plane wave
approximation, whereby the quantities are averaged over the
radial axis of the cavity, thereby eliminating the dependence
on radial coordinates. This paper specifically provides a new
solution for the Fourier equation that is not restricted by the
usual assumption of uniform pressure within the cavity. Thus,
the integration of this solution and the solution of the Navier–
Stokes equation in the conservation of mass equation leads to
a new propagation equation, expressed as a linear Fredholm
integro-differential equation of the second kind. The LADM
is utilized to solve this equation, resulting in a solution in
the form of a series whose terms are determined by a recurs-
ive relation. Moreover, a semi-analytical numerical technique
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Figure 9. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from equation (59) (solid line), the IEC
extended low-frequency solution (dotted line) in comparison to the
general analytical solution (34), for LS1 couplers a= 9.3mm,
ℓ= 11.4mm (red curves) and ℓ= 18.9mm (black curves).

is used to solve the same problem. The technique involves
a stepped duct approximation, where the problem is locally
solved as a transmission line problem. Consequently, the entire
system, comprising the two microphones and the coupling
cavity, is evaluated using a matrix chain of the equivalent two-
port network. The numerical results provide evidence support-
ing the validity of these formulations as unified formulations
that covers the targeted frequency range for pressure recipro-
city calibration of LS microphones. A high level of agreement
is observed between the two models, approximately 10−6 dB
for the amplitude and 10−4 degrees for the phase across a wide
frequency range when using the parameterizations of the mod-
els presented in this paper. At the axial resonance frequencies
of the couplers, the level of agreement reaches maximums of
10−4 dB for the amplitude and 10−3 degrees for the phase.

Finally, this paper evaluates the compatibility of the exten-
ded low-frequency solution provided in the IEC standard
with the fundamental equations established in this study. To
achieve such a formulation, non-homogeneous simplifying
assumptions are considered for the Fourier and Navier–Stokes
equations. Specifically, in the Fourier equation, the pressure
variation is assumed to depend only on the average of the tem-
perature variation across the volume, neglecting local depend-
encies, and the pressure variation is assumed to be uniform
within the cavity. These assumptions, however, do not apply
to the Navier–Stokes equation. This methodology leads to a
solution highlighting discrepancies in the application of the
corrective factor∆H, as compared to the guidelines outlined in
amendment 1 of the standard IEC 61 094-2 [17]. Furthermore,

Figure 10. Difference for the magnitude level in dB (upper graph)
and phase in degrees (lower graph) between the acoustic transfer
admittances derived from equation (59) (solid line), the IEC
extended low-frequency solution (dotted line) in comparison to the
general analytical solution (34), for LS2 couplers a= 4.65mm,
ℓ= 5.7mm (red curves) and ℓ= 10.4mm (black curves).

the obtained solution indicates how applying the corrective
factor relative to viscous effects to improve the solution, par-
ticularly at high frequencies. In fact, the results presented in
this paper offer numerical evidence that the solution proposed
can be extended to higher frequencies. This kind of simplified
analytical solution may be useful in many applications that
deal with low and medium frequencies. However, incorpor-
ating non-homogeneous simplifying assumptions in the fun-
damental equations generates a model where restrictions are
challenging to define. Thus, the validity of such a model must
be assessed in relation to the measurement uncertainty, using
the more rigorous solutions presented in this paper.

The primary objective of this work is to provide a unified
formulation of the acoustic transfer admittance of cylindrical
cavities for calibration of LS microphones by using the reci-
procity technique. However, its applicability can be expanded
to other calibration methods involving acoustic admittances
of cylindrical cavities, as for example the calculable piston-
phone [15, 26]. It is relevant to note also that the matter of
radial wave motion is not discussed here. However, at high
frequencies, their influence is not negligible in the calibration
process, compared to the calibration uncertainties [18]. The
radial wave motion results in a non-uniform pressure distribu-
tion over the microphone diaphragm, deviating from the quasi
plane wave assumption made in this paper. At the highest fre-
quencies, radial wave motion can never be avoided but can
be corrected as suggested in the IEC standard 61 094-2 [1].
These corrections essentially rely on the works provided in the
[18, 21], which take the form of analytical expressions based

12
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on the assumption that the displacement function of the micro-
phone diaphragms corresponds to idealized movements of the
microphone diaphragms or on empirical data. It is accepted
in the community involved in reciprocity calibration of micro-
phones that the reliability of these corrections needs to be con-
solidated with further work [14]. However, given the current
state of the art, the same methodology routinely applied can
be used to correct radial wave motion in the models presented
in this paper.

Appendix A. Solution of the inhomogeneous
Fourier equation

The system defined by the inhomogeneous Fourier
equation (10) subject to the boundary conditions (11) can
be expressed as following:

(
∂

∂t
−αt∇2

)
τ(r,z, t) = Φ(z, t), ∀(r,z) ∈ Ω, t> 0 ,

τ remains finite at r= 0 ,

τ(a,z, t) = 0, ∀z ∈ [0, ℓ], t> 0 ,

τ(r,0, t) = 0 and τ(r, ℓ, t) = 0, ∀r ∈ [0,a], t> 0 ,

τ(r,z,0) = 0, ∀(r,z) ∈ Ω, t= 0 ,
(A.1)

where

Φ(z, t) =
γ− 1
βγ

∂

∂t
p(z, t) . (A.2)

Duhamel’s principle (see for example [22]) asserts that the
solution to problem (A.1) is given by

τ(r,z, t) =
ˆ t

0
τh(r,z, t− u,u)du , (A.3)

where τh is solution of the homogeneous problem given by:

(
∂

∂t
−αt∇2

)
τh(r,z, t,u) = 0, ∀(r,z) ∈ Ω, t> u ,

τh remains finite at r= 0 ,

τh(a,z, t,u) = 0, ∀z ∈ [0, ℓ], t> u ,

τh(r,0, t,u) = 0 and τ(r, ℓ, t,u) = 0, ∀r ∈ [0,a], t> u ,

τh(r,z,u,u) = Φ(z,u), ∀(r,z) ∈ Ω, t= u ,
(A.4)

with Φ(z,u) as the initial source at time t= u. The homogen-
eous problem (A.4) is solved by using themethod of separation
of variables (see for example [22]) where τh takes the special
form

τh(r,z, t,u) = f(r)g(z)h(t) . (A.5)

When taking into account the boundary conditions (A.4),
the solutions for each of these functions can be obtained as
follows:

h(t) = e−σ2
t αtt , (A.6a)

f(r) =
+∞∑
n=1

AnJ0 (σrr) , (A.6b)

g(z) =
+∞∑
m=1

Bm(u)sin(σzz) , (A.6c)

where σr = jn/a, with jn are the roots of J0( jn) = 0, σz = mπ/ℓ
and σ2

t = σ2
r +σ2

z . The coefficients An and Bm(u) are determ-
ined by the initial data of the auxiliary problem (A.4), namely:

An =
⟨1|J0(σrr)⟩S

⟨J0(σrr)|J0(σrr)⟩S
=

2
jnJ1( jn)

, (A.7)

and

Bm(u) =
⟨Φ(z,u)|sin(σzz)⟩ℓ
⟨sin(σzz)|sin(σzz)⟩ℓ

=
2
ℓ

ˆ ℓ

0
Φ(z,u)sin

(mπ
ℓ
z
)
dz .

(A.8)

Then, combining equations ((A.6a), (A.6b), (A.6c))
and (A.7), (A.8) with (A.9), the solution of the homogeneous
problem (A.4) is given by

τh(r,z, t,u) =
+∞∑
m=1

+∞∑
n=1

2
jnJ1( jn)

J0 ( jnr/a)

· 2
ℓ
sin

(mπ
ℓ
z
)ˆ ℓ

0
Φ(z,u)sin

(mπ
ℓ
z
)
dz

· e−αtt
[
( mπℓ )

2
+( jna )

2
]
. (A.9)

By Duhamel’s principle (A.3), evoking (A.9) and (A.2), the
solution of the inhomogeneous problem (A.1) is given by

τ(r,z, t) =
γ− 1
βγ

+∞∑
m=1

+∞∑
n=1

4J0 ( jnr/a)
jnℓJ1( jn)

· sin
(mπ
ℓ
z
)ˆ ℓ

0
sin

(mπ
ℓ
z
)

·
ˆ t

0

∂

∂t
p(z,u)e

−αt(t−u)
[
( mπℓ )

2
+( jna )

2
]
dudz ,

(A.10)

where the integral on du represents a convolution product
which can be expressed by using the convolution theorem as a
simple product in the Fourier domain. Thus, by using the basic
properties of the Fourier transform, the integral part takes the
form

ˆ t

0

∂

∂t
p(z,u)e

−αt(t−u)
[
( mπℓ )

2
+( jna )

2
]
du

= p(z,ω)
jω

jω+αt

[(
mπ
ℓ

)2
+
( jn
a

)2] , (A.11)

where p(z,ω) = F (p(z, t)) (F being the Fourier transform
operator).

13
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Finally, the solution of τ(r,z) for a harmonic motion (the
factor e jωt is omitted) is given by:

τ(r,z) =
γ− 1
βγ

+∞∑
m=1

+∞∑
n=1

4J0 ( jnr/a)
jnℓJ1( jn)

sin
(mπ
ℓ
z
)

· 1

1+ αt
jω

[(
mπ
ℓ

)2
+
( jn
a

)2] ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz .

(A.12)

Appendix B. Solution of the propagation
equation (21) by the LADM

The Laplace transform (denoted byLz) is applied on both sides
of equation (21), namely

Lz

[
∂2

∂z2
p(z)

]
=−χ2

tLz [p(z)]

+Lz

[
α

+∞∑
m=1

+∞∑
n=1

am,n sin
(mπ
ℓ
z
)

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz

]
. (B.1)

Using the basic properties of the Laplace transform and not-
ing that the integral part of the equation is a constant, the pre-
vious equation takes the form

s2Lz [p(z)]− sp(0)− p ′(0)+χ2
tLz [p(z)]

= +α
+∞∑
m=1

+∞∑
n=1

am,nLz

[
sin

(mπ
ℓ
z
)]

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz , (B.2)

where p(0) and p ′(0) are constants given by the boundary con-
ditions (20a) and (20b). Then, rearranging the terms of the
equation and invoking the Laplace transform of the sine func-
tion yields straightforwardly

Lz [p(z)] =
s

s2 +χ2
t
p(0)+

1
s2 +χ2

t
p ′(0)

+α
1

s2 +χ2
t

+∞∑
m=1

+∞∑
n=1

am,n

(
mπ
ℓ

)
s2 +

(
mπ
ℓ

)2
·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz . (B.3)

Hence, applying the inverse Laplace transform on both
sides of equation (B.3), p(z) is given by

p(z) = p(0)cos(χtz)+
p ′(0)
χt

sin(χtz)

+α
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
p(z)dz , (B.4)

with

ϕm(z) = L−1
z

[
1
χt

χt
s2 +χ2

t

(
mπ
ℓ

)
s2 +

(
mπ
ℓ

)2
]

=
1
χt

χt sin
(
mπ
ℓ z

)
−
(
mπ
ℓ

)
sin(χtz)

χ2
t −

(
mπ
ℓ

)2 ,

(B.5)

for χt ̸= mπ/ℓ. Since χt is a complex quantity, singularit-
ies χt = mπ/ℓ are not expected to occur. Therefore, to pre-
vent unnecessary complexity in the formulation, the following
equations exclude them.

The ADM [23] assumes that the solution of equation (B.4)
can be represented in the form of an infinite series:

p(z) =
+∞∑
k=0

pk(z) . (B.6)

Then, replacing the general form of the solution (B.6)
in (B.4), Adomian decomposition satisfies the following recur-
rence relation

p0(z) = p(0)cos(χtz)+
p ′(0)
χt

sin(χtz) , (B.7)

for k= 0 and

pk(z) = α
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)

·
ˆ ℓ

0
sin

(mπ
ℓ
z
)
pk−1(z)dz , (B.8)

for k⩾ 1. Hence substituting equation (B.7) in (B.8), the term
p1(z) is given by

p1(z) = p(0)α
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β1,m

+
p ′(0)
χt

α
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β
′
1,m , (B.9)

with (noting that cos(mπ) = (−1)m)

β1,m =

ˆ ℓ

0
sin

(mπ
ℓ
z
)
cos(χtz)dz

=
mπ
ℓ ((−1)m cos(χtℓ)− 1)

χ2
t −

(
mπ
ℓ

)2 , (B.10a)

β ′
1,m =

ˆ ℓ

0
sin

(mπ
ℓ
z
)
sin(χtz)dz

=
mπ
ℓ (−1)m sin(χtℓ)

χ2
t −

(
mπ
ℓ

)2 . (B.10b)

Combining the solution (B.9) for p1(z) with the recursive
relation (B.8), the next term p2(z) is given by

p2(z) = p(0)α2
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β2,m
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+
p ′(0)
χt

α2
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β
′
2,m , (B.11)

with

β2,m =
+∞∑
ν=1

+∞∑
µ=1

aν,µβ1,νψm,ν , (B.12a)

β ′
2,m =

+∞∑
ν=1

+∞∑
µ=1

aν,µβ
′
1,νψm,ν , (B.12b)

and

ψm,ν =

ˆ ℓ

0
sin

(mπ
ℓ
z
)
ϕν(z)dz

= δm,ν
ℓ/2

χ2
t −

(
mπ
ℓ

)2
−

1
χt

mπ
ℓ

νπ
ℓ (−1)m sin(χtℓ)(

χ2
t −

(
νπ
ℓ

)2)(
χ2
t −

(
mπ
ℓ

)2) , (B.13)

with δm,ν the Kronecker delta. Hence, the next terms pk(z) take
the general form:

pk(z) = p(0)αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)βk,m

+
p ′(0)
χt

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(z)β
′
k,m , (B.14)

where

βk,m =
+∞∑
ν=1

+∞∑
µ=1

aν,µβk−1,νψm,ν , (B.15a)

β ′
k,m =

+∞∑
ν=1

+∞∑
µ=1

aν,µβ
′
k−1,νψm,ν , (B.15b)

are the recursive relations, the first terms being given
by (B.10a) and (B.10b).

Appendix C. Determination of the constants p(0),
p ′(0) and p(ℓ)

The boundary condition (20a) on diaphragm of the transmitter
microphone at z= 0 provides directly the constant

p ′(0) =
∂

∂z
p(0) =−ZvSvt . (C.1)

The constant p(0) is given by the second boundary condi-
tion (20b) on diaphragm of the receiver microphone at z= ℓ

∂

∂z
p(ℓ) =−ZvYrp(ℓ) . (C.2)

Evoking equations (B.6), (B.7) and (B.14) and their deriv-
atives with respect to the coordinate z, produces the relation

− p(0)χt sin(χtℓ)+ p ′(0)cos(χtℓ)

+ p(0)
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕ
′
m(ℓ)βk,m

+
p ′(0)
χt

+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕ
′
m(ℓ)β

′
k,m

=−ZvYrp(0)cos(χtℓ)−ZvYr
p ′(0)
χt

sin(χtℓ) (C.3)

−ZvYrp(0)
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(ℓ)βk,m

−ZvYr
p ′(0)
χt

+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(ℓ)β
′
k,m ,

with

ϕ ′
m(z) =

mπ
ℓ cos

(
mπ
ℓ z

)
−
(
mπ
ℓ

)
cos(χtz)

χ2
t −

(
mπ
ℓ

)2 . (C.4)

Rearranging the terms in equations (C.3) and using (C.1)
yields straightforwardly

p(0) =
ZvSvt
χt

C0 +ZvYrD0

A0 +ZvYrB0
, (C.5)

with

A0 =−χt sin(χtℓ)+
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕ
′
m(ℓ)βk,m , (C.6a)

B0 = cos(χtℓ)+
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(ℓ)βk,m , (C.6b)

C0 = χt cos(χtℓ)+
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕ
′
m(ℓ)β

′
k,m , (C.6c)

D0 = sin(χtℓ)+
+∞∑
k=1

αk
+∞∑
m=1

+∞∑
n=1

am,nϕm(ℓ)β
′
k,m . (C.6d)

Finally, invoking expressions (B.6), (B.7), (B.14)
and (C.6b), (C.6d), the pressure p(ℓ) is given by

p(ℓ) = p(0)B0 +
p ′(0)
χt

D0 . (C.7)
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