
HAL Id: hal-04214982
https://cnam.hal.science/hal-04214982v1

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Three-Stage Channel Estimation Approach for
RIS-Aided Millimeter-wave MIMO Systems

Mahmoud Naamani, Didier Le Ruyet, Hmaied Shaiek

To cite this version:
Mahmoud Naamani, Didier Le Ruyet, Hmaied Shaiek. A Three-Stage Channel Estimation
Approach for RIS-Aided Millimeter-wave MIMO Systems. 2023 IEEE Wireless Communica-
tions and Networking Conference (WCNC), Mar 2023, Glasgow, United Kingdom. pp.1-6,
�10.1109/WCNC55385.2023.10118931�. �hal-04214982�

https://cnam.hal.science/hal-04214982v1
https://hal.archives-ouvertes.fr


A Three-Stage Channel Estimation Approach for
RIS-Aided Millimeter-wave MIMO Systems

Mahmoud NAAMANI
CNAM,Cédric Laboratory

Paris, France
mahmoud.naamani@lecnam.net

Didier Le Ruyet
CNAM,Cédric Laboratory

Paris, France
didier.leruyet@lecnam.net

Hmaied SHAIEK
CNAM,Cédric Laboratory

Paris, France
hmaied.shaiek@cnam.fr

Abstract—Reconfigurable intelligent surfaces (RIS) is a
promising device made up of many passive elements that can
control the electromagnetic propagation environment by the
adjustment of the phase shifts of the reflecting elements. It
is considered as a potential technique to enhance coverage
and capacity in future 6G communications. However, channel
estimation in a RIS aided MIMO wireless communication system
is considered a challenging task due to the passive nature of the
RIS which implies that the individual or cascaded channels can
be estimated only at the Base Station (BS) or Mobile Station
(MS). To address this problem, we proposed a three-stage channel
estimation approach where we estimated the channel parameters
using compressive sensing (CS). Simulation results showed that
the performance of the proposed algorithm is similar to the ones
previously proposed as the two-staged approach, but with a lower
complexity.

Index Terms—Channel estimation, compressive sensing, mil-
limeter wave, reconfigurable intelligent surface.

I. INTRODUCTION

Reconfigurable intelligent surfaces are considered as the
key enablers to improve the coverage of the signal and
resolve the frequent blockage in the millimeter wave (mm-
Wave) multiple-input multiple-output (MIMO) communication
systems with low hardware cost and energy consumption. It
is a planar structure that controls the wireless communication
environment by tuning the coefficients of the RIS elements
[1] in order to achieve a specific targets, by example focusing
the signal towards the receiver [2]. The deployment of the
RIS is also accompanied by other benefits, such as improving
the physical layer security [3]. The promising performance
gain provided by the RIS depends on the accuracy of the
acquired channel state information (CSI), where a perfect CSI
guarantee an optimal design of the beamforming vectors at the
BS,MS, and RIS phase control matrix. The CSI includes the
BS-RIS and RIS-MS channels. In [4] the authors studied a RIS
aided multi-user MISO downlink communication, where the
results showed that the RIS improved the system throughput
by around 40%. In [5] through jointly optimizing the RIS
reflection coefficients, the fundamental capacity limit of RIS-
assisted point-to-point MIMO communication systems was

characterized. Results showed that the use of a RIS had
increased the capacity of the system. However, it is challenging
to acquire the CSI due to the passive nature of the RIS
which lacks the ability to transmit, receive or process pilot
signals, so channel estimation (CE) can only be done at the
level of the BS or MS. As the mmWave MIMO channel is
inherently sparse due to the limited number of distinguishable
paths, one widely used theory for CE is Compressive Sensing
(CS) which takes advantage of this sparsity and estimates the
channel with much less pilot overhead. CS is a well-known
signal processing technique where a signal that is sparse in a
known transform domain could be recovered by much fewer
samples than the usually required through finding solutions
to under-determined linear systems. In [6] channel estimation
is studied for downlink RIS-Aided mmWave MIMO system
having multi-antenna base station and mobile station where the
authors presented a two-staged iterative re-weighted approach
to find the estimates of the channel parameters. In [7] the
authors studied a two-staged channel estimation for RIS-Aided
mmWave MIMO System via atomic norm minimization.

In this paper we will study CE problem for a passive RIS-
aided mmWave MIMO system. Our approach relies on the
fact that the channel between the BS and the RIS is static,
thus it will not always be estimated. The channel estimation
procedure is divided into three stages where we will apply
OMP in every stage to estimate the channel parameters. In the
first stage we will estimate the angle of departure (AoD) at the
BS and consider it known for the rest of the CSI acquisition,
then in the second stage and using the estimated angle in the
first stage we will estimate the angle of arrival (AoA) at the
MS, and in the third stage we will estimate the rest of the
channel parameters. Finally we will provide numerical results
to validate the performance of our proposed approach.

This paper is organized as follows: Section II introduces
the channel model for the RIS-aided mmWave MIMO system,
followed by channel estimation procedure in Section III where
different CE stages are discussed. Section IV explains the
complexity of our algorithm. Section V shows the simulation
results, and finally Section VI draws out the conclusion.

Notation: (.)H , (.)T , and (.)∗ denote Hermitian trans-



pose, transpose, and conjugate, respectively. Small bold let-
ter denotes a vector, and capital bold letter denotes a
matrix. The Hadamard, Kronecker and KhatriRao prod-
ucts between two matrices A and B are denoted as
A ⊙ B,A ⊗ B, and A♢B respectively. AC♢BD =
(A⊗B) (C♢D) . AC ⊗ BD = (A⊗B) (C⊗D). The
function vec(A) creates a vector from matrix A by stacking its
columns.vec(ACB) =

(
BT ⊗A

)
vec(C). If C is a diagonal

matrix then vec(ACB) =
(
BT♢A

)
c̃ where c̃ is a vector

holding the diagonal of C. vec(B) returns the vectorized form
of the matrix B where vec(B)=b. B† represent the pseudo-
inverse of matrix B

II. CHANNEL MODEL

We consider a downlink RIS-aided mmWave MIMO system
which comprises one multi-antenna BS having NBS antenna
elements, one multi-antenna MS having NMS antenna ele-
ments, and a RIS having NRIS elements as shown in Fig. 1.
In our case we considered that the channel between the BS and
RIS is static, supposing that we have a static BS and RIS with
no mobility and mobile environment for the channel between
the RIS and MS. This implies that HB,R will not always
be estimated in the CE phase. For simplicity we considered
that the direct link between the BS and the MS is blocked.
Assuming a geometric channel model, HB,R represents the
channel between the BS and the RIS, HR,M represents the
channel between the RIS and the MS, and Ω represents the
RIS phase control matrix. HB,R∈ CNRIS×NBS is defined as:

Fig. 1. Down-Link Channel Model

HB,R =

lB,R∑
l=1

[
ρB,R

]
l
αR (ωA,RIS)l αB

H (ωD,BS)l

= AR (ωA,RIS) diag
(
ρB,R

)
AB

H (ωD,BS)

= AR (ωA,RIS)ρBAB
H (ωD,BS) (1)

With ρB = diag
(
ρB,R

)
. ωA,RIS(l) and ωD,BS(l) denote

the AoA at the RIS and the AoD at the BS for the
lth path respectively, ρB,R represents the propagation

path gain for the lth path, and lB,R is the number
of resolvable paths of the channel. AR (ωA,RIS) =[
αR (ωA,RIS)1 , ....,αR (ωA,RIS)lB,R

]
, αR (ωA,RIS)l , ∈

CNRIS×1 is the array response vector for the lth

path where αR (ωA,RIS)l = ej2π
d
λc

(k−1)sin(ωA,RIS(l))

for k = 1......NRIS , similarly αB (ωD,BS)l =

ej2π
d
λc

(k−1)sin(ωD,BS(l)) ∈ CNBS×1 where d is the antenna
element spacing and λc is the carrier wavelength
HR,M ∈ CNMS×NRIS is similarly derived :

HR,M =

lR,M∑
l=1

[
ρR,M

]
l
αM (ωA,MS)l α

H
R (ωD,RIS)l

= AM (ωA,MS) diag
(
ρR,M

)
AH

R (ωD,RIS)

= AM (ωA,MS)ρRA
H
R (ωD,RIS) (2)

With ρR = diag
(
ρR,M

)
. The composite channel H ∈

CNMS×NBS between the BS and MS through the RIS is
expressed as:

H = HR,MΩHB,R

= AM (ωA,MS)GAB
H (ωD,BS) (3)

Where G = ρRA
H
R (ωD,RIS)ΩAR (ωA,RIS)ρB ∈

ClR,M×lB,R and Ω ∈ CNRIS×NRIS is the phase control matrix
at the RIS. In this work we assume that two phase shifts are
possible {0, π}, so Ω which is a diagonal matrix is designed
for the training phase based on Hadamard matrix [8]- [9].

III. CHANNEL ESTIMATION PROCEDURE

Assuming that the channel suffers from block fading, for
the sounding procedure one coherence time interval is divided
into two sub-intervals, the first is for CE and the second for
data transmission. All channel parameters remains constant
within one coherence time. In our proposal, due to the static
nature of HB,R ωD,BS(l) will be estimated once within stage
1. Stage 2 and 3 will be repeated periodically to estimate the
remaining parameters as shown in Fig. 2.

Fig. 2. Sounding and CE procedure

For the channel estimation procedure the BS sends T = T1 +
T2 + T3 pilots ; xt ∈ CNBS×1, t = 1, ....T , which will be
reflected by the RIS through a phase control matrix Ωt and
will be received by the MS. At the MS we have the received
signal yt ∈ CNMS×1 as:

yt =
√
PHxt + nt

=
√
PHR,MΩtHB,Rxt + nt (4)

P is the transmit power and nt denotes the additive noise or
interference.



A. First Stage

For the first stage, we assume that the BS sends NBS x T1

matrix of pilot data; xt ∈ CNBS×1, t = i1, ....T1 with i1 = 1,
while the RIS holds a fixed reflection pattern Ω1. The received
signal at the MS is expressed as the following:

yt =
√
PHR,MΩ1HB,Rxt + nt (5)

Now stacking yt as Y1 = [yi1 , ......yT1 ], xt as X1 =
[xi1 , ......xT1 ], and nt as N1 = [ni1 , ......nT1 ] we get:

Y1 =
√
PHX1 +N1

=
√
PHR,MΩ1HB,RX1 +N1

=
√
PAM (ωA,MS)ρRA

H
R (ωD,RIS)

Ω1AR (ωA,RIS)ρBAB
H (ωD,BS)X1 +N1

=
√
PAM (ωA,MS)G1AB

H (ωD,BS)X1 +N1 (6)

Where G1 = ρRA
H
R (ωD,RIS)Ω1AR (ωA,RIS)ρB . To

obtain ω̂D,BS(l) the estimate of ωD,BS(l), we reformulated
(6) as an Angle of Arrival estimation problem as following:

Y
′

1 = X1Y
H
1

=
√
PAB (ωD,BS)G

H
1 AM

H (ωA,MS) +X1N
H
1

=
√
PAB (ωD,BS)S+X1N

H
1 (7)

where S = GH
1 AM

H (ωA,MS). ωD,BS(l) could be recovered
by applying any CS or AoA estimation algorithms on (7).
In our case we applied orthogonal matching pursuit (OMP)
algorithm to recover ωD,BS(l), where in order to get a sparse
representation of (7) we approximated the array response
matrices on a quantized grid as the following:

AB (ωD,BS) ≈ AD,BSQD,BS (8)

Where:
• AD,BS is an NBS×Ngrid matrix whose columns are the

BS array response vectors sampled on a grid of Ngrid

levels corresponding to the possible AoD.
• QD,BS is Ngrid × lB,R matrix where each column has a

single 1 in the position corresponding to ωD,BS(l)

Using (8) we could reformulate (7) as:

Y
′

1 ≈
√
PAD,BSQD,BSS+X1N

H
1

≈
√
PAD,BSC+X1N

H
1 (9)

With C = QD,BSS. Assuming that NB,S ≫ lB,R, the matrix
C1 will be low rank, and exhibits row sparsity, where we
could take advantage of this sparsity and apply OMP in order
to obtain ω̂D,BS(l) for l = 1......lB,R.

B. Second Stage

For the second stage, the BS sends NBS x T2 matrix of
pilot data ; xt ∈ CNBS×1, t = i2, ....T2 with i2 = T1 + 1,
while the RIS holds a fixed reflection pattern Ω2. The received
signal at the MS is:

yt =
√
PHR,MΩ2HB,Rxt + nt (10)

Now stacking yt as Y2 = [yi2 , ......yT2 ], xt as X2 =
[xi2 , ......xT2 ], and nt as N2 = [ni2 , ......nT2 ] we get:

Y2 =
√
PAM (ωA,MS)G2AB

H (ωD,BS)X2 +N2 (11)

Where G2 = ρRA
H
R (ωD,RIS)Ω2AR (ωA,RIS)ρB . Using

ω̂D,BS(l), the estimate of ωD,BS(l) for l = 1......lB,R obtained
in the first stage, we can vectorize Y2 in (11) as:

y
′

2 = vec(Y2)

≈
√
P (X2

T ⊗ IMS)(AB
∗ (ω̂D,BS)⊗AM (ωA,MS))g2 + n2

(12)

With n2 = vec(N2) and g2 = vec(G2). To apply CS, we
need to get a sparse representation of equation (12), for that
we approximate the array response matrices on a quantized
grid as following:

AM (ωA,MS) ≈ AA,MSQA,MS (13)

Where:
• AA,MS is an NMS ×Ngrid matrix
• QA,MS is Ngrid × lR,M matrix
Using the approximation in (13), y

′

2 in (12) could be written
as:

y
′

2 ≈
√
P (X2

T ⊗ IMS)(AB
∗ (ω̂D,BS)⊗AA,MS)q+ n2

(14)

where q = (I∗lBR
⊗ QA,MS)g2 is a sparse vector

having sparsity k = lB,RlR,M , where each non-zero
value corresponds to the angle representing ωA,MS(l).
(AB

∗ (ω̂D,BS) ⊗ AA,MS) is the dictionary containing the
quantized angles representing ωA,MS(l). Applying OMP
on (14) we obtain ω̂A,MS(l) the estimate of ωA,MS(l) for
l = 1......lR,M .

C. Third Stage

In the third stage the BS sends NBS x T3 matrix of pilot
data ; xt ∈ CNBS×1, t = i3, ....T3 with i3 = T1+T2+1, and
the RIS reflection pattern is varying with block index t .The
received signal at the MS is expressed as the following:

yt =
√
PHR,MΩtHB,Rxt + nt

=
√
PAM (ωA,MS)GtAB

H (ωD,BS)xt + nt

=
√
P (xt

T ⊗ IMS)(AB
∗ (ωD,BS)⊗AM (ωA,MS))gt + nt

(15)

With gt = vec(Gt). Using ω̂D,BS(l) for l = 1......lB,R and
ω̂A,MS(l) for l = 1......lR,M obtained from the first and second
stage, we rewrite yt in (15) as:

yt ≈
√
P (xt

T ⊗ IMS)(AB
∗ (ω̂D,BS)⊗AM (ω̂A,MS))gt + nt

= Btgt + nt (16)

Where Bt =
√
P (xt

T ⊗ IMS)(AB
∗ (ω̂D,BS) ⊗

AM (ω̂A,MS)). Assuming that we obtained an accurate



estimate of ωD,BS(l) and ωA,MS(l) in the first and second
stages, one can eliminate B from (16).

Bt
†yt = gt +Bt

†nt (17)

We introduce:

YB =
[
B†

i3
yi3 .... B†

T3
yT3

]T
(18)

NB =
[
B†

i3
ni3 .... B†

T3
nT3

]T
(19)

(YB) =
[
Ω̃i3 ......Ω̃T3

]T [
AT

R (ωA,RIS)♢A
H
R (ωD,RIS)

]T
ρT +NB

T (20)

With ρ = ρB ⊗ ρR and Ω̃t is a vector holding the diagonal
of Ωt. The kth column of YB in (20) is expressed as:

(YB):,k =
[
Ω̃i3 ......Ω̃T3

]T [
AT

R (ωA,RIS)♢A
H
R (ωD,RIS)

]T
ρT
:,k + (NB

T ):,k (21)

Then we approximated the angles at the RIS on a quantized
grid as the following:

AR (ωA,RIS) ≈ AA,RISQA,RIS (22)

AR (ωD,RIS) ≈ AD,RISQD,RIS (23)

Using (22) and (23), YB in (21) could be approximated as:

(YB):,k ≈ Ω
′ (
AT

A,RIS♢A
H
D,RIS

)
w:,k + (NB

T ):,k (24)

Where Ω
′
=

[
Ω̃i3 ......Ω̃T3

]T
, w = (QT

A,RIS ⊗QH
D,RIS)ρ

T
:,k

is a sparse vector where each column represents the kth

path, and (AT
A,RIS♢A

H
D,RIS) is the dictionary contain-

ing the quantized angles representing the difference be-
tween sin(ωD,RIS) and sin(ωA,RIS). The kth column of
[AT

R (ωA,RIS)♢AH
R (ωD,RIS)]

T could be expressed as

(
[AT

R (ωA,RIS)♢A
H
R (ωD,RIS)]

T
)
:,k

=

=
(
[AT

R (ωA,RIS)♢A
H
R (ωD,RIS)]k,:

)T
= αR (ωA,RIS)⊙αR

∗ (ωD,RIS)

= ej2π
d
λc

(k−1)(sin(ωA,RIS(l1))−sin(ωD,RIS(l2)))

= ej2π
d
λc

(k−1)dRIS(l) (25)

With dRIS(l) = sin(ωA,RIS(l1)) − sin(ωD,RIS(l2)) for l =
1......lB,RlR,M , l1 = 1......lB,R, and l2 = 1......lR,M .
Applying OMP on every column of (20), we obtain d̂RIS(l) =
sin(ω̂A,RIS(l1)) − sin(ω̂D,RIS(l2)) which represents the dif-
ference between the sine of the AoA and AoD at the RIS,
and β̂(l) which represents the estimation of the product of the
propagation path gain β(l) = ρR,M(l1)ρB,R(l2).

IV. COMPUTATIONAL COMPLEXITY

Orthogonal Matching Pursuit is an iterative greedy approach
that selects at each step the column which is mostly correlated
with the current residue. The most computationally intensive
steps of OMP are the sweeping stage for choosing the next
atom and updating the residue through Least Square (LS). In
our complexity analysis we considered only the multiplication
operations.
For simplicity, let us consider a simple case of OMP taking
into account the following signal:

y = Au+ n (26)

Where y ∈ CNMS×1, A ∈ CNMS×Ngrid is the dictionary
matrix of size Ngrid , and u ∈ CNgrid×1 is the l-sparse vector.
In the kth iteration, the OMP algorithm has a complexity of
O(NgridNMS+NMSk+NMSk

2+k3) [10]. In the two-stage
approach for the estimation of the AoD and AoA at the BS
and MS respectively a dictionary of size N2

grid is used. In the
three stage approach for the estimation of the AoD at the BS
a dictionary of size Ngrid is used and for the estimation of the
AoA at the MS a dictionary of size lB,RNgrid is used. For the
estimation of the angle difference at the RIS and the product
of propagation path gain, the dictionary size used is 2Ngrid

for both approaches. Since Ngrid ≫ lB,R the complexity in
the two-stage approach will be much more higher than the
complexity in the three-stage one.

V. SIMULATION RESULTS

In this section, we evaluated the MSE performance of the
parameters estimation in the different stages. The simulation
parameters used are as follows: Carrier frequency= 30 GHz,
NBS = NMS = 32, NRIS = 64, lB,R = 1, and lR,M = 2.
For quantizing different angles we used a grid having 1.5◦

resolution. For the first stage we also examined a grid with
0.1◦ resolution and an adaptive grid where as a first step we
used a 1.5◦ resolution grid then based on the estimated angle
ω̂ obtained, we reapplied OMP with a grid resolution of 0.1◦

for the angle range ∈ [ω̂ − 1.5, ω̂ + 1.5]. The AoD and AoA
at the BS, MS, and RIS are generated randomly between ∈[
0, π

2

]
, nt follows CN (0, σ2), SNR is defined as P

σ2 , and 4000
realizations are used for averaging. The MSEs of different
parameter estimation are defined as:

MSE(ωD,BS) =
E
[∑lB,R

l=1

∣∣ωD,BS(l) − ω̂D,BS(l))
∣∣2]

lB,R

(27)

MSE(ωA,MS) =
E
[∑lR,M

l=1

∣∣ωA,MS(l) − ω̂A,MS(l))
∣∣2]

lR,M

(28)

MSE(dRIS) =

E
[∑lB,RlR,M

l=1

∣∣∣dRIS(l) − d̂RIS(l))
∣∣∣2]

lB,RlR,M

(29)

MSE(β) =

E
[∑lB,RlR,M

l=1

∣∣∣β(l) − β̂(l))
∣∣∣2]

lB,RlR,M

(30)



The MSE performance of the OMP for different grid resolu-
tions are shown in Fig. 3. A better MSE is obtained with higher
grid resolution. Furthermore, the noise error floor decreased
with the increase of the grid resolution . The MSE performance
of the OMP algorithm for the estimation of the AoD at BS and
AoA at MS is shown in Fig 4. The MSE for the estimation
of the difference of the sine of the angles at the RIS is shown
in Fig 5, and the MSE for the estimation of the product of
the propagation path gain is shown in Fig 6. As benchmark,
we provide the two-stage channel estimation approach in [6].
Simulation results showed that for the estimation of the AoD
at BS and the AoA at MS we have reached almost the same
performance in the three-stage channel estimation approach
compared to the two-stage approach for a grid resolution of
1.5◦ , as same MSE is obtained. A small error is observed
between the two-stage and three-stage approaches as in the
two-stage the best pair is chosen for the AoD at BS and the
AoA at MS, whereas in the three-stage algorithm the AoA
is estimated based on the AoD obtained from the previous
stage. Almost the same results are obtained for the recovery
of the difference between the AoA and AoD at the RIS, but
with a small error for the same reason explained above. For
the estimation of the product of the propagation path gain,
simulation results showed also almost the same results for both
approaches. However, the advantage gained in the three-stage
approach is on the complexity side as shown in Section IV.
Simulation results also showed that when using an adaptive
grid of 1.5◦ then refining it to 0.1◦ we were able to reach the
same performance as using a fixed grid with 0.1◦ resolution,
which leaves an option to optimize our algorithm for future
work.

Fig. 3. AoD estimation for different grid resolution

VI. CONCLUSION

We studied the CE problem for the RIS-aided mmWave
MIMO systems. We proposed a three-stage approach where we
applied compressive sensing to estimate the channel parame-
ters. Simulation results showed that our proposed approach
reached the same performance as the two-stage previously
proposed, but the advantage of splitting the channel estimation

Fig. 4. AoD and AoA estimation at the BS and MS respectively

Fig. 5. Angular difference estimate at the RIS

Fig. 6. Product of propagation path gain

procedure into three steps is clearly seen in terms of the
complexity of the algorithm.
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