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Abstract—Neural networks are widely used in the literature
in a variety of fields and for a large number of applications. A
major challenge in their use is the need to identify and process
hyperparametric values. Grid Search is a widely used technique
for meeting this task. It systematically searches for values in
a predefined range of hyperparameters. However, selecting the
appropriate range of hyperparameters can be difficult, as the
search space can be vast, resulting in an extensive number of
combinations to be tested. It is more suited to short, fast searches
for hyperparameter values, within ranges that are known to be
generally efficient. In this paper, we present an improvement to
Grid Search using BootBOGS, a bootstrap-based approach to
hyperparameter optimization. BootBOGS is a hybrid approach
that combines bootstrap and Bayesian Search with the Grid
Search technique to perform an efficient search in hyperparam-
eter space. Bayesian Search is used to initialize hyperparameter
ranges. Bootstrap is used to explore the distribution of model
performance for each hyperparameter combination and to reduce
its variance, enabling us to better understand the margins of
these hyperparameters and to reduce these ranges. Grid Search
is then used to refine the selection of hyperparameters. To
evaluate the effectiveness of the proposed approach, a set of
computational experiments are carried out on four different
datasets from classification problems, for which we compared
BootBOGS to several other strategies: Grid Search, Random
Search, and Bayesian Optimization. The results show that our
method is able to find better hyperparameter configurations in
terms of predictive quality with a reasonable runtime and lead
to more robust and reliable hyperparameter tuning processes.

Index Terms—Grid Search, Bayesian Search, hyperparameter
tuning, MLP, Bootstrap.

I. INTRODUCTION

In many areas of machine learning, neural networks and
more specifically multi-layer perceptron neural networks are
proving effective in solving the problem of classification. MLP
classifiers require the use of hyperparameters that must be
defined beforehand. The setting of these hyperparameters is a
crucial phase in their development. It significantly influences a
model’s performance and its ability to generalize to new data.
Among these techniques, Grid Search has always played a pre-
dominant role (Figure 1) and is widely used. However, it does
have some limitations. As models become more complex and
datasets increase in size, the limits of traditional Grid Search
have become obvious. Despite its conceptual simplicity, Grid
Search struggles with the challenges posed by intricate models
operating in high-dimensional parameter spaces. The manual

specification of hyperparameters and the lack of adaptability
hinder its efficiency in finding optimal configurations.

To address this issue, the main contribution of this work is to
propose a novel hybrid method called BootBOGS. BootBOGS
combines bootstrapping on hyperparameters with Bayesian
optimization and Grid search. On the basis of empirical perfor-
mance models, BootBOGS is evaluated alongside established
and widely used strategies, including Grid search, Random
search, and Bayesian optimization, across four datasets. This
evaluation encompasses various metrics, such as accuracy,
AUC, G-mean, and F2. This comprehensive assessment reveals
both the strengths and limitations of BootBOGS, offering valu-
able insights to inform future advancements and explorations
in the field. Furthermore, we have made the code for this
experiment open-source, with the aim of contributing to future
developments.

Fig. 1: Popularity index over years 1

II. CONTEXT AND RELATED WORK

Hyperparameter tuning for neural networks is a key area of
research aimed at optimizing the performance and improving
the efficiency of neural network models. Research continues to
develop in this area, presenting innovative methods and tools
to meet this challenge. (1) presents Random Search as a simple
and more efficient approach in hyperparameter optimization,
compared to the Grid Search experiments of (2). (3) have
developed the Hyperband algorithm, which uses a combination
of random sampling and successive halving to efficiently
allocate resources to different hyperparameter configurations.

1Source: Google Trends for Three Hyperparameter Tuning Methods in
Computer Science Worldwide from 2013 to 2023 [accessed 4 Sep, 2023]
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(4) combines Hyperband with Bayesian Optimization in a
multi-fidelity optimization method BHBO. Predictive hyper-
parameter optimization is used by (5) to predict the final
performance of a machine learning system based on the early
termination of poor performance. (6) presents an approach
based on Bayesian Optimization with Gaussian Processes for
selecting MLP model hyperparameters for state estimation
purposes.

A. Problem of search space

The parameters are the weights of the connections in the
neural network that are learned during the training stage.
Hyperparameters are external configurations that cannot be
estimated from data, and which are set by trainers and refined
by tuning ((7)). They must be carefully optimized to obtain
the best possible performance. The choice can be made on
the basis of previously published recommendations in the
literature for the same data set, expertise or trial-and-error that
can guide the selection of hyperparameters, particularly with
limited training data.

Recent advancements in hyperparameter tuning have
spurred the development of advanced strategies that enhance
Grid Search techniques. To perform a search in the hyper-
parameters space, Grid Search builds a model for each com-
bination of hyperparameter values and evaluates each model.
However, it makes no assumptions about the search space; the
user must specify a fixed range of values to search in. This
selection plays a key role in the quality of the resulting model,
as well as in the efficiency and convergence speed of the
development process. The problem arises when dealing with
hyperparameters which domains are continuous, leading to
exponential growth in the combinations of possible values. The
vast multidimensional space resulting from combinations of
many hyperparameters presents an even greater challenge. The
challenge is to select the right ranges for each hyperparameter.
The most used optimization methods, namely Grid Search,
Random Search, and Bayesian Search are described below.

B. Grid Search

Grid Search (GS) is a commonly used hyperparameter
optimization technique that involves testing different combi-
nations of hyperparameters in a cartesian way to determine
the best one for a given problem. All combinations have the
same probability of impact on the process. The range for
each hyperparameter is generally determined by the developer,
along with a step for moving from one hyperparameter value
to another. The number of hyperparameter combinations grows
exponentially with the search space ((1)), resulting in heavy
computational costs. In addition, Grid Search may exploit
many insignificant hyperparameter areas or fail to find the best
hyperparameters if it is not included in the selected search
space.

C. Random Search

Random search (RS) (8) is a hyperparameter tuning tech-
nique that involves randomly sampling hyperparameters from

a defined search space and evaluating the algorithm’s perfor-
mance. It is a simple and efficient method of hyperparameter
tuning (9) allowing a large hyperparameter search space to be
explored with fewer iterations than Grid Search. Compared to
Grid Search, Random search is particularly useful when the
search space is large and the relationship between hyperpa-
rameters and model performance is complex (1).

D. Bayesian Search

Bayesian Optimization (BO) is an algorithm that effectively
optimizes objective functions with high evaluation costs based
on Bayes’ Theorem ((10), (11)). BO significantly reduces the
number of trials (12) and errors when tuning hyperparameters
compared to Grid Search or Random Search (13). The key
idea behind Bayesian optimization is to build a probabilistic
model of the objective function (14), which is typically the
validation accuracy or loss of the model. This probabilistic
model is updated as new evaluations of the objective function
are made, allowing the algorithm to intelligently choose the
next set of hyperparameters on the basis of prior samples
((15)). (16) introduce a model-based sequential Bayesian op-
timization approach, called Tree-structured Parzen Estimator
(TPE), It uses a tree-structured search process to iteratively
split the space of hyperparameters into regions with a high and
low probability of containing good hyperparameters and then
evaluates the objective function at the best hyperparameters
within the high-probability regions.

E. Overview

Table I provides an overview of the advantages and dis-
advantages of these different optimization methods.Each ap-
proach has merits that meet specific characteristics of the
problem.

TABLE I: Advantages and disadvantages of optimization
method.

Method Advantages Disadvantages

Grid
Search

Guaranteed to find the
best combination if it ex-
ists within the selected
search space.
Simple and transparent.

Computationally expensive,
especially with large search
spaces.
Inefficient when hyperparame-
ters are not equally important.
Limited to predefined hyperpa-
rameter values.

Random
Search

Efficient in terms of com-
putation time.
Better exploration of the
search space compared to
Grid Search.

No guarantee of finding the
best combination.
Randomness may lead to sub-
optimal solutions in some
cases

Bayesian
Search

Efficient and intelligent
exploration of the search
space.
Typically requires fewer
iterations to find good hy-
perparameters.

More complex to implement
than Grid and Random Search.
May require tuning additional
parameters for the probabilis-
tic model.

In short, Random Search presents itself as a quick and
direct approach to explore hyperparametric spaces, but with
randomness in optimization. Grid Search offers full coverage
but can extend calculation time. Bayesian Optimization estab-
lishes a trade-off by using probabilistic models to strategically



maneuver the research space and adjust its approach based
on historical assessments. The choice of the most appropriate
technique depends on factors such as the complexity of the
problem, the available computing resources, and the delicate
balance between exploration and exploitation.

III. METHODOLOGY

The motivation behind developing a new hyperparameter
optimization method is rooted in the limitations of existing
methods. This novel approach aims to combine their strengths,
and thus optimize classical Grid Search. The method we
propose, BootBOGS, uses bootstrap with Bayesian Search to
select efficient hyperparameter ranges for Grid Search, in order
to perform an efficient search in hyperparameter space. In
the following, we provide information and details about the
BootBOGS methodology used on the MLP-based model.

A. Selection of MLP’s hyperparameters

MLP’s hyperparameters are selected from three distinct
types: those pertaining to the network’s structural configura-
tion, those governing the learning and optimization process,
and those responsible for introducing regularization effects. In
our study, we deliberately singled out one key hyperparameter
from each of these categories. Within the first category, we
elected to manipulate the number of nodes in each layer,
recognizing that this choice is intrinsically intertwined with
the nature of the dataset, including factors like the number
of hidden layers and the activation functions applied. In the
second category, our focus was on hyperparameters such as
the learning rate, loss function, batch size, optimizer, and loss
function. Among these, we gave precedence to the learning
rate, as the others primarily relate to the dataset’s feature
correlations. Lastly, for the third category, we considered
the dropout rate, primarily due to its linkage with feature
correlations within the dataset, denoted as Lambda. These
meticulous selections aim to optimize our neural network’s
performance by fine-tuning critical aspects of its configuration
and learning process.

B. Bootstrap Resampling

Bootstrap (17) is a statistical inference technique that has
become increasingly popular in recent years, due to its versa-
tility and ability to provide reliable estimates of uncertainty in
statistical analyses. It is widely used to estimate the sampling
distribution of a quantity or to build confidence intervals by
generating new data sets through resampling with the replace-
ment of the original data set. Percentile bootstrap confidence
intervals are a valuable statistical tool that can be used to esti-
mate the uncertainty or variability of sample statistics such as
mean. Achieved through resampling from the original dataset,
these intervals come into their own when the true distribution
of data remains unknown or when dealing with small sample
sizes. One of the remarkable attributes of these intervals is
their applicability across a spectrum of scenarios, regardless
of the underlying distribution’s complexity. In the realm of
hyperparameter optimization, these confidence intervals offer

an insightful approach to identifying the optimal parameter
values.

C. Proposed Method

The algorithm 1 gives us an overview of the step-by-step
process of the proposed method.

Algorithm 1: BootBOGS
Split dataset, utilize only the train dataset for the bootstrap

step
Choose the range of search space for hyperparameters
repeat 2 times

1) repeat 10 times
- Bootstrap sampling train set with Stratified

K-Folds cross-validator
- Apply HyperOpt TPE and store the combination

of hyperparameters
- Get the AUC score performance for the test set

end
2) Calculate 68% confidence interval from the list of

scores (AUC)
3) Remove hyperparameter values combinations that

have score out of this confidence interval
4) Create a new search space of HyperOpt TPE based

on this new list of hyperparameters
end
Use the new reduced search space for Grid Search

First, after splitting the dataset into trainning and testing
sets, Bootstrap resampling is applied, iterating this process
n times on the training set. It appears as a dynamic tool,
allowing a complete exploration of performance variations
through various combinations of hyperparameters. This iter-
ative technique not only provides a holistic understanding
of the ranges in which these hyperparameters work but also
facilitates the identification of optimal values that give better
model performance. Here, We choose n equal 10. At each
iteration, Bayesian optimization, and more specifically the
tree structure of the Hyperband Parzen (TPE) estimator, is
used with HyperOpt, a hyperparametric optimization library,
to identify optimal parameter combinations in the resampled
training set. HyperOpt TPE efficiently navigates through the
hyperparameter space, rapidly converging toward promising
parameter regions. Subsequently, this optimal combination is
used within the test set to compute the AUC score. From
these values, we derive a confidence interval that provides a
measure of the statistical significance of our results. At this
step, striking the delicate balance between hyperparameters
and model performance requires a discerning strategy. A
bootstrap confidence interval of the 68% percentile of AUC
values is used within a region of ± 1 standard deviation.
This confidence interval provides a region within ±1 stan-
dard error of the mean. This narrower interval provides a
reliable range in which optimal hyperparameters are likely to
reside. Expanding the perspective and opting for a broader
CI 95% could also be considered, but should not be taken
lightly, since it has the potential to inadvertently dilute the
precision of the analysis. We proceed with a second round
of bootstrap sampling, employing the new search space to



iteratively fine-tune the hyperparameters. This dual-iteration
process substantially narrows down the scope of exploration,
leading to a more focused and efficient search for optimal
hyperparameter values. The Grid Search is then used on the
new reduced search space to select the best hyperparameters
from the search space.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we detail the experiments used to validate the
proposed BootBOGS method on four available real datasets
from various application domains. We compare BootBOGS’
results to three traditional approaches, classical Grid Search,
Random Search, and Bayesian Optimization. The proposed
method is also compared with the most recent studies carried
out on the same data sets.

A. Experimental Settings

BootBOGS is coded in Python language using the packages
sci-kit-learn, TensorFlow, and Keras. The training model was
run on a computer with Intel(R) Core(TM) i5 - 1.70GHz
processor and 8GB RAM. The main hyperparameters of
the model are shown in Table II. As shown in Table III,
BootBOGS focuses on the value intervals of the following
three hyperparameters: dropout, learning rate, and number of
neurons in the hidden layer. The number of neurons in the
experiments is chosen according to the rule of thumb (18) that
considers the number of neurons as a power of two, 2k, and the
maximum number of hidden neurons as 2k−1, where k is the
number of input elements. This approach can help simplify the
calculation of the number of neurons and reduce the number
of values to consider during hyperparameter tuning. We’ve
established a dropout range between 0.0 and 0.5 to strike a
balance between retaining valuable information and preventing
overfitting.

TABLE II: Main model hyperparameters.

Hyperparameter Hyperparameter Value

Kernel normal
Activation function Relu
Activation function in output layer sigmoid
Batch size 32
Epoch 100
Optimizer Adam
Loss function binary cross entropy

TABLE III: Hyperparameters range for experiments.

Hyperparameter Min value Max value

Dropout rate 0.0 0.5
Learning rate 0.001 0.1
number of neurons 4 144

The code of our experiments can be accessed with the
following link: https://github.com/thiphan94/BootBOGS.

B. Datasets

We use four datasets of binary classification tasks in order
to validate BootBOGS. The first dataset, known as the Di-
abetes PIMA dataset (19), sourced from Kaggle, comprises
768 instances, characterized by eight characteristics including
glucose level, blood pressure, and body mass index (BMI),
together with a target variable that denotes the presence or
absence of diabetes.

The second dataset, the German Credit dataset (20), is
related to the evaluation of credit risk. Comprising 1,000 in-
stances, each housing 21 attributes, this dataset is instrumental
in determining if a loan applicant is a favorable or risky credit
candidate.

The third dataset, the Taiwan Bankruptcy Prediction dataset
(21), encapsulates financial ratios extracted from Taiwanese
companies’ annual reports. With 6819 instances and 96 at-
tributes, this dataset is commonly used to predict whether a
company is likely to go bankrupt.

The fourth dataset used is the Polish Bankruptcy dataset
from the third year (22). This compilation of financial indi-
cators is designed to predict corporate bankruptcy. Sourced
from the UCI Machine Learning Repository, it encompasses
data from Polish companies, featuring 10,503 instances and
64 attributes.

Table IV lists the number of attributes, the number of
instances, and the relative size of the majority class for each
dataset.

TABLE IV: Datasets used in our experiments.

Dataset Attrs Size Majority class(%)

Diabetes (19) 8 768 65.1
German Credit (20) 21 1000 70

Taiwan Bankruptcy (21) 96 6819 96.77
Polish Bankruptcy (third year) (22) 64 10503 95.3

The flowchart in Figure 2 gives us a visual representation
of the step-by-step process of data preprocessing.

In the context of data preprocessing, missing value imputa-
tion is a critical process where missing data points in a dataset
are filled using various techniques. In some datasets, we chose
to use median imputation as a method to handle missing
values. This approach involves replacing missing values with
the median value of the corresponding feature. Moving on
to another preprocessing step, the identification and manage-
ment of outliers plays a significant role in the preparation
of a data set for machine learning models. Outliers, which
are data points substantially different from the majority, can
distort relationships between features and the target variable,
negatively affecting model performance. To address outliers in
the diabetes dataset, we adopted the Interquartile Range (IQR)
method. This method involves identifying observations with
values greater than 1.5 times the IQR and classifying them as
outliers. These outliers are then removed from the dataset to
prevent undue influence on the subsequent modeling process.

The next pre-processing step is feature selection, a crucial
process to improve the interpretability and efficiency of the

https://github.com/thiphan94/BootBOGS


Fig. 2: Data Preprocessing.

model. For this dataset, we used three distinct techniques for
feature selection: random variable, permutation, and SHAP.
Employing the Random Forest algorithm, a widely used
technique for gauging feature importance, we adopted three
strategies:
• Built-in Scikit-learn Method with a Random Feature: This

approach leverages Scikit-learn’s built-in feature selection
method using Random Forest. It identifies pertinent fea-
tures that significantly contribute to the model’s predictive
capability. A random feature is introduced as a reference
point against which the importance of the actual features
is assessed. The lower importance of a real feature com-
pared to the random feature might indicate a chance-driven
significance, necessitating further scrutiny.

• Permutation Feature Importance: This technique involves
shuffling the values of a single feature and assessing its
impact on the model’s performance. Features demonstrating
substantial influence on model performance are regarded as
important for prediction.

• Random Forest Feature Importance with SHAP: SHAP is a
comprehensive approach for interpreting machine learning
model outputs. It evaluates the importance of features by
considering all possible combinations of features. This
method provides a nuanced understanding of each feature’s
contribution to model predictions.
Furthermore, since all datasets are imbalanced, meaning that

there are significantly more instances of negative cases (class
0) in the datasets than positive ones (class 1), we applied
SMOTE-Tomek (23) which combines the strengths of SMOTE
and Tomek links. It first applies SMOTE to over-sample the
minority class, creating synthetic instances. Then, Tomek links
are used to identify and remove ambiguous samples that
might cause misclassification. The result is a balanced dataset

that preserves the distinctive characteristics of both classes.
SMOTE-Tomek helps models generalize better by providing
a more balanced training set, reducing bias, and improving
their ability to capture the minority class. SMOTE-Tomek is
applied to datasets with a high majority class ratio, where the
relative size of the majority class exceeds the critical threshold
of 70% with scaling features. Note that before applying the
resampling technique, each dataset is split into 80% training
set and 20% test set.

BootBOGS is evaluated using common metrics: accuracy,
AUC, G-Mean, and Fβ score for imbalanced datasets. Accu-
racy, calculated as the ratio of correctly classified instances to
the total, tends to favor the majority class. As such, it can lead
to suboptimal hyperparameter settings that neglect the minority
class and fail to capture rare but critical events. So, for an
imbalanced dataset, accuracy cannot be considered a reliable
measure. Complementary metrics are used, including Area
Under the Receiver Operating Characteristic Curve (AUC),
Geometric Mean (G-Mean), and another measure Fβ .

Geometric Mean (G-Mean) is defined as the square root of
the product of true positive rate (or recall) and true negative
rate (or specificity) and is formulated as follows:

G−Mean =
√
TPR× TNR (1)

Where true positive rate (TPR) and true negative rate (TNR)
are :

TPR(Recall) =
TP

TP + FN
(2)

TNR(Specificity) =
TN

TN + FP
(3)

Fβ score is a weighted harmonic mean of precision and
recall. The formula of Fβ is as follows (24):

Fβ-score =
TP

TP + 1
1+β2 (β2FN + FP )

(4)

Where TP, FP, and FN present the counts of true positives,
false positives, and false negatives, respectively. In our exper-
iments, we set the beta value beta for the Fβ score to 2. This
choice of F2 score allows us to emphasize the importance of
recall over precision.

Through the systematic application of these evaluation met-
rics, we obtained a comprehensive understanding of how well
BootBOGS performs hyperparameter optimization. These met-
rics not only allow us to quantify the quality of the resulting
models but also provide insights into their adaptability across
various scenarios, including situations with imbalanced class
distributions. The insights gained from these metrics play a
crucial role in validating the effectiveness of our approach
and its potential to redefine the landscape of hyperparameter
optimization for machine learning models.

V. RESULTS AND DISCUSSION

In this section, we evaluate the performance of BootBOGS
in various datasets using the metrics presented previously in
order to see how the proposed approach is an improvement



compared to the classical Grid search. The results in TableV
show the performances of the Grid Search method, Random
Search method, Bayesian method, and BootBOGS for the
datasets used in experiments.

TABLE V: Evaluation metrics of methods in various dataset.

Dataset Method AUC Accuracy G-Mean F2

Diabetes
GS 0.877 0.889 0.877 0.837
RS 0.901 0.913 0.90 0.867
BO 0.877 0.889 0.877 0.837

BootBOGS 0.914 0.921 0.914 0.888

German
Credit

GS 0.71 0.77 0.704 0.591
RS 0.691 0.755 0.673 0.54
BO 0.705 0.755 0.695 0.585

BootBOGS 0.735 0.79 0.723 0.612

Taiwan
Bankruptcy

GS 0.64 0.942 0.554 0.301
RS 0.75 0.932 0.732 0.468
BO 0.74 0.937 0.72 0.465

BootBOGS 0.67 0.944 0.61 0.361

Polish
Bankruptcy

GS 0.716 0.950 0.667 0.458
RS 0.762 0.94 0.736 0.483
BO 0.77 0.955 0.742 0.514

BootBOGS 0.757 0.953 0.726 0.556
Note: GS: Grid Search, RS: Random Search, BO: Bayesian search.

Fig. 3: Execution time (seconds) of four method through
various datasets

From the results shown in Table V, we can see that Boot-
BOGS always identifies hyperparameter values that yield bet-
ter results than traditional Grid Search across the four datasets,
evaluated based on AUC, Accuracy, and G-mean metrics and
F2 score. In the case of the Taiwan Bankruptcy and Polish
Bankruptcy datasets, BootBOGS’ performance is not the best
when compared to Random Search and Bayesian. However,
the achieved performance remains very close to theirs. The
fact that those datasets are significantly imbalanced class
distribution (96.77% for Taiwan Bankruptcy, 95.3% for Polish
Bankruptcy, as opposite to Diabetes with 65.1%, and Diabetes
with 65.1%) suggests that in scenarios where the majority
class dominates to such a degree, alternative optimization
methods may be more effective. Conversely, across all four
optimization methods, our approach consistently excels when
class imbalances are less pronounced.

A common performance statistic for assessing the effec-
tiveness of binary classification models, particularly when the
data is unbalanced, is the AUC-PR score (Area Under the
Precision-Recall Curve) (25). It evaluates a model’s ability to

distinguish between the positive and negative classes by taking
into account precision and recall. The AP score, which we now
know also represents the AUC-PR score, is shown in Figure
4.

(a) Diabetes dataset (b) South German dataset

(c) Taiwan Bankruptcy dataset (d) Polish Bankruptcy dataset

Fig. 4: Precision Recall curves of Grid Search and BootBOGS
through four datasets

In terms of speed of execution, figure 3 shows that Boot-
BOGS always reduces execution compared to Grid Search,
although it still takes more time than Random Search and
Bayesian. Time gain over Grid Search becomes quite signif-
icant for the Diabetes dataset (54.7%) and for the German
Credit dataset (37.3%).

A comparison of BootBOGS with previous research is
presented in Table VI. It shows the efficiency of our method
compared to other studies with the same datasets (information
such as hyperparameters values or performance metrics for
those works are provided when made available) by authors.
BootBOGS improves most of the performance metrics, even
though it uses the simple model of a neural network with only
one hidden layer and a small search space for hyperparameter
tuning.

VI. CONCLUSION

The proposed method BootBOGS presented in this paper
is an improved technique compared to Grid Search. The out-
comes of our study underscore the significance of intelligent
hyperparameter tuning in enhancing the predictive capabilities
of machine learning models. By strategically incorporating
bootstrap sampling, we have not only streamlined the search
process but also injected diversity into the hyperparameter
space, enabling more robust exploration.

Our experimental study has several limitations. One lim-
itation of our study is that our method was developed in
the context of binary classification. Acknowledging the binary
classification limitation, we fine-tuned our approach to excel



TABLE VI: Results comparison of different approaches using
various datasets.

Model & optimizer Hyperparameters Performance

Diabetes dataset
(26): MLP hidden layer:2 Accuracy: 84.11%
(NM) neurons: 64,32

dropout rate: 0.25,0.5
loss function: Adadelta

(27): MLP hidden layer:3 Accuracy:82%
(NM) neurons: 100, 100, 100 AUC: 78.7%
(28): MLP hidden layer:10 Accuracy: 77.6%
(NM) momentum: 0.9 AUC: 84.6%

learning rate: 0.003
MLP (1 hidden layer) neurons: 120 Accuracy: 92.1%
BootBOGS learning rate: 0.0283 AUC: 91.4%

dropout rate: 0.2

German Credit dataset
(29):MLP hidden layer: 3 Accuracy: 77.10%
Grid Search neurons: 16,64,8 AUC: 78.11%

batch size: 64
epoch: 250

(30):MLP hidden layer: 1 Accuracy: 87.10%
Genetic algorithm neurons: 7

a.f: tansig, purelin
t.f: traincgp

MLP (1 hidden layer) neurons: 120 Accuracy: 79.0%
BootBOGS learning rate: 0.0325 AUC: 76.48%

dropout rate: 0.2
a.f: ReLU
batch size: 32
epoch:100

Taiwan Bankruptcy dataset
(31): MLP NM Accuracy: 64.2%
(90% outliers)
(32): MLP hidden layer:1 Accuracy: 86.06%
Model selection neurons:5

a.f: logistic
epoch: 206
optimizer: Adam

MLP (1 hidden layer) neurons: 121 Accuracy: 94.4%
BootBOGS learning rate: 0.001 AUC: 67.5%

dropout rate: 0.0 F2: 36.1%
a.f: ReLU
epoch:100
optimizer: Adam

Polish Bankruptcy dataset
(33):Extreme Gradient NM Accuracy: 94%
Boosting
(34):Adaptive whale hidden layer: 1,2,3 Accuracy: 98.23%
optimization algorithm learning rate: 0.1
with deeplearning a.f: sigmoid
(AWOA-DL)
Whale optimization
MLP (1 hidden layer) neurons: 105 Accuracy: 95.3%
BootBOGS learning rate: 0.004 AUC: 75.7

dropout rate: 0.1
a.f: ReLU

Note: NM means that not mentioned, a.f: activation function, t.f: training function

in such scenarios. Another key direction for our work is the
extension of BootBOGS to multi-class classification problems.
This is a significant step forward in making BootBOGS
capable of addressing real-world problems. Its robustness and
adaptability allow us to identify the challenges associated with
its use in a regression framework. This limitation offers a clear
path for future research.

Moreover, the promising results obtained in this work pave
the way for several avenues to test the approach on complex
data such as images or text.

In our initial efforts, we fine-tuned just three key hyperpa-
rameters: the dropout rate, the learning rate, and the number
of neurons in the hidden layer. As our research advances and
we delve into more complex models, our plan is to broaden
our optimization efforts, encompassing a wider array of hy-
perparameters, in particular the number of hidden layers. This
expansion will further refine and enhance the performance of
our machine learning models.

And finally, the study focuses on MLP hyperparameters. In
terms of future work, a promising direction could be to extend
BootBOGS to other machine learning methods.
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