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Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval Observer Synthesis

This paper addresses the problem of resilient state estimation and attack reconstruction for boundederror nonlinear discrete-time systems with nonlinear observations/constraints, where both sensors and actuators can be compromised by false data injection attack signals/unknown inputs. By leveraging mixed-monotone decomposition of nonlinear functions, as well as affine parallel outer-approximation of the observation functions, along with introducing auxiliary states to cancel out the effect of the attacks/unknown inputs, our proposed observer recursively computes interval estimates that by construction, contain the true states and unknown inputs of the system. Moreover, we provide several semi-definite programs to synthesize observer gains to ensure input-to-state stability of the proposed observer and optimality of the design in the sense of minimum H∞ gain.

I. INTRODUCTION

State estimation and unknown input reconstruction are indispensable in various engineering applications such as aircraft tracking, fault detection, attack detection and mitigation in cyber-physical systems (CPS) and urban transportation [START_REF] Liu | Robust estimation and fault detection and isolation algorithms for stochastic linear hybrid systems with unknown fault input[END_REF]- [START_REF] Yong | Simultaneous input and state set-valued observers with applications to attack-resilient estimation[END_REF]. Particularly, set-membership approaches have been proposed for bounded-error systems to provide hard accuracy bounds, which is especially useful for obtaining robustness guarantees for safety-critical systems. Moreover, since attackers may be strategic in adversarial settings, the ability to simultaneously estimate states and inputs without imposing any assumptions on the unknown inputs/attack signals is desirable and often crucial.

Literature review. Numerous studies in the literature have investigated secure estimation, i.e., how to accurately estimate the states of a system when it is under attack or subject to adversarial signals. For instance, secure state estimation and control problem was addressed in the presence of false data injection attacks on both the actuators and sensors in [START_REF] Chen | Resilient state estimation and control of cyber-physical systems against false data injection attacks on both actuator and sensors[END_REF], in which a χ 2 detector was proposed to detect malicious attacks. The research in [START_REF] Wu | Secure estimation for cyber-physical systems via sliding mode[END_REF] proposed a sliding-mode observer to simultaneously estimate system states and attacks, while the work in [START_REF] Mousavinejad | A novel cyber attack detection method in networked control systems[END_REF] provided a projected sliding-mode observer-based estimation approach to reconstruct system states. Further, the work in [START_REF] Corradini | Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes[END_REF] reconstructed attack signals from the equivalent output injection signal using a slidingmode observer, while in [START_REF] Lu | Secure state estimation for cyber-physical systems under sparse sensor attacks via a switched Luenberger observer[END_REF], an attack was considered as an auxiliary state and estimated by employing a robust M. Khajenejad is with the University of California, San Diego, CA, USA. Z. Jin is with Arizona State University, Tempe, AZ, USA. T.N. Dinh is with Conservatoire National des Arts et Métiers (CNAM), CEDRIC-Laetitia, Paris, France. S.Z. Yong is with Northeastern University, Boston, MA, USA. (e-mail: mkhajenejad@ucsd.edu, zjin43@asu.edu, ngocthach.dinh@lecnam.net, s.yong@northeastern.edu).
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switching Luenberger observer assuming sparsity. However, all the aforementioned works considered stochastic/Gaussian noise and hence do not apply to the bounded-error setting we consider in this paper, where noise/disturbance signals are assumed to be distribution-free and bounded.

A related body of literature that could be applied to resilient state estimation in the bounded-error setting is that of unknown input interval observers. Particularly, the works in [START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L∞-gain criteria[END_REF]- [START_REF] Marouani | Unknown input interval observers for discrete-time linear switched systems[END_REF] considered the problem of designing unknown input interval observers for continuous-time linear parameter varying (LPV), uncertain linear time-invariant (LTI) and discrete-time switched linear systems, respectively, where the authors in [START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L∞-gain criteria[END_REF] formulated the necessary Metzler property as part of a semi-definite program. A similar problem was considered for nonlinear continuous-time systems with linear observations in [START_REF] Wei | Hybrid observer design for nonlinear systems with unknown inputs[END_REF]. However, these approaches are not suitable for general discrete-time nonlinear systems and the unknown input signal does not affect the output/measurement equation (needed for representing false data injection attacks on the sensors) in either of the works in [START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L∞-gain criteria[END_REF]- [START_REF] Wei | Hybrid observer design for nonlinear systems with unknown inputs[END_REF].

On the other hand, while our previous works [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF], [START_REF]Simultaneous input and state interval observers for nonlinear systems with rank-deficient direct feedthrough[END_REF] do consider the design of state and unknown input interval observers for nonlinear discrete-time systems with nonlinear observations, no stabilizing gains were synthesized in [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF], [START_REF]Simultaneous input and state interval observers for nonlinear systems with rank-deficient direct feedthrough[END_REF]. We aim to address this shortcoming in this paper.

Contributions. By leveraging a combination of mixedmonotone decomposition of nonlinear functions [START_REF] Khajenejad | Interval observer synthesis for locally Lipschitz nonlinear dynamical systems via mixedmonotone decompositions[END_REF], [START_REF] Khajenejad | H∞-optimal interval observer synthesis for uncertain nonlinear dynamical systems via mixed-monotone decompositions[END_REF] and parallel affine outer-approximation of observation functions [START_REF] Singh | Mesh-based affine abstraction of nonlinear systems with tighter bounds[END_REF], we synthesize a resilient interval observer, i.e., a discrete-time dynamical system that by construction, simultaneously returns interval-valued estimates of states and unknown inputs (representing false data injection signals on both the actuators and sensors) for a broad range of nonlinear discrete-time systems with nonlinear observations. Our proposed design is a significant improvement to our previous input and state interval observer designs [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF], [START_REF]Simultaneous input and state interval observers for nonlinear systems with rank-deficient direct feedthrough[END_REF], in which no stabilizing gains were considered and so the stability of the previous observer designs only hinged upon some dynamical systems properties. Moreover, in contrast to many unknown input (interval) observer designs in the literature, our design considers arbitrary unknown input signals with no assumptions of a priori known intervals, being stochastic with zero mean (as is often assumed for noise) or bounded. Further, we provide sufficient conditions for the input-tostate-stability of the proposed observer, which at the same time ensures the optimality of the design in the sense of minimum H ∞ gain by solving semi-definite programs.

II. PRELIMINARIES

Notation. ∨ denotes the logical disjunction (the OR truthfunctional operator). R n , R n×p , D n , N, N n , R ≥0 and R >0 denote the n-dimensional Euclidean space and the sets of n by p matrices, n by n diagonal matrices, natural numbers (including 0), natural numbers from 1 to n, non-negative and positive real numbers, respectively, while M n denotes the set of all n by n Metzler matrices, i.e., square matrices whose off-diagonal elements are non-negative. Euclidean norm of a vector x ∈ R n is denoted by

x 2 √ x ⊤ x. For M ∈ R n×p , M ij denotes M 's entry in the i'th row and the j'th column, M ⊕ max(M, 0 n,p ), M ⊖ = M ⊕ -M and |M | M ⊕ + M ⊖ , where 0 n,p is the zero matrix in R n×p , while sgn(M ) ∈ R n×p is the element-wise sign of M with sgn(M ij ) = 1 if M ij ≥ 0 and sgn(M ij ) = -1, otherwise.
M ≻ 0 and M ≺ 0 (or M 0 and M 0) denote that M is positive and negative (semi-)definite, respectively. Further, a function f : S ⊆ R n → R, where 0 ∈ S, is positive definite if f (x) > 0 for all x ∈ S \{0}, and f (0

) = 0. Finally, an interval I [z, z] ⊂ R n is the set of all real vectors z ∈ R nz that satisfies z ≤ z ≤ z (component-wise), where z -z ∞ max i∈{1,••• ,nz} |z i | is the interval width of I.
Next, we review some related results and definitions.

Proposition 1 (Jacobian Sign-Stable Decomposition [15, Proposition 2]). If a mapping f : Z ⊂ R nz → R p has Ja- cobian matrices satisfying J f (x) ∈ [J f , J f ], ∀z ∈ Z, where J f , J f ∈ R p×nz are
known matrices, then the mapping f can be decomposed into an additive remainder-form:

∀z ∈ Z, f (z) = Hz + µ(z), (1 
) where the matrix H ∈ R p×nz satisfies

∀(i, j) ∈ N p × N nz , H ij = J f ij ∨ H ij = J f i,j , (2 
) and µ(•) and Hz are nonlinear and linear Jacobian signstable (JSS) mappings, respectively, i.e., the signs of each element of their Jacobian matrices do not change within their domains (J ν ij (•) ≥ 0 or J ν ij (•) ≤ 0, ν(z) ∈ {µ(z), Hz}). Definition 1 (Mixed-Monotonicity and Decomposition Functions). [18, Definition 1], [START_REF] Yang | On sufficient conditions for mixed monotonicity[END_REF]Definition 4] Consider the discrete-time dynamical system x k+1 = g(x k ), with initial state x 0 ∈ X 0 [x 0 , x 0 ]⊂ R n . Furthermore, g : X ⊂ R n → R n is the vector field, and X is the entire state space. A function g d : X × X → R n is a discrete-time mixedmonotone decomposition mapping for the vector field g if it satisfies the following conditions: i)

g d (x, x) = g(x), ii) g d is monotone increasing in its first argument, i.e., x ≥ x ⇒ g d (x, x ′ ) ≥ g d (x, x ′ ), and iii) g d is monotone decreasing in its second argument, i.e., x ≥ x ⇒ g d (x ′ , x) ≤ g d (x ′ , x).
Proposition 2 (Tight and Tractable Decomposition Functions for JSS Mappings). [15, Proposition 4 & Lemma 3] Suppose µ : Z ⊂ R nz → R p is a JSS mapping on its domain. Then, for each µ i , i ∈ N p , its tight decomposition function is:

µ d,i (z 1 , z 2 ) = µ i (D i z 1 + (I n -D i )z 2 ), (3 
) for any ordered z 1 , z 2 ∈ Z, with a binary diagonal matrix

D i that is determined by the vertex of the interval [z 1 , z 2 ] that minimizes the function µ i (if z 1 < z 2 ) or the vertex of the interval [z 2 , z 1 ] that maximizes µ i (if z 2 ≤ z 1 ), i.e., D i = diag(max(sgn(J µ i ), 0 1,nz ))
. Moreover, if the JSS mapping µ is a remainder term of a JSS decomposition of a function f as discussed in Proposition 1, then for any interval domain z ≤ z ≤ z, with z, z, z ∈ Z and ε z -z, the following inequality holds:

δ µ d µ d (z, z) -µ d (z, z) ≤ F µ ε, with F µ 2 max(J f - H, 0 p,nz )-J f +H and H ∈ R p×nz given in Proposition 1.
Consequently, by applying Proposition 2 to the Jacobian sign-stable decomposition obtained using Proposition 1, a tight and tractable decomposition function can be obtained (cf. details in [START_REF] Khajenejad | Interval observer synthesis for locally Lipschitz nonlinear dynamical systems via mixedmonotone decompositions[END_REF]). Furthermore, in the case that the mapping is not JSS, a tractable algorithm has been introduced in [20, Algorithm 1] to compute tight remainder-form decomposition functions for a very broad class of nonlinear functions.

Definition 2 (Embedding System). [START_REF] Khajenejad | H∞-optimal interval observer synthesis for uncertain nonlinear dynamical systems via mixed-monotone decompositions[END_REF]Definition 6] For a discrete-time dynamical system x k+1 = g(x k ) defined over mapping g : X ⊂ R n → R n with a corresponding decomposition function g d (•), its embedding system is a 2ndimensional system with initial condition

x ⊤ 0 x ⊤ 0 ⊤ defined as x ⊤ k+1 x ⊤ k+1 ⊤ = g ⊤ d (x k , x k ) g ⊤ d (x k , x k ) ⊤ .
Note that according to [20, Proposition 3], the embedding system in Definition 2 with decomposition function g d corresponding to the dynamics x k+1 = g(x k ) has a state framer property, i.e., its solution is guaranteed to frame the unknown state trajectory x k , i.e., x k ≤ x k ≤ x k for all k ∈ N.

Next, we will briefly restate our previous result in [START_REF] Singh | Mesh-based affine abstraction of nonlinear systems with tighter bounds[END_REF], tailoring it specifically for intervals to help with computing affine bounding functions for our functions. 

s.t Ax s + e + σ ≤ g(x s ) ≤ Ax s + e -σ, (A -A)x s + e -e -2σ ≤ θ1 m , ∀x s ∈ V B , (4) 
where 1 m ∈ R m is a vector of ones and σ can be computed via [START_REF] Singh | Mesh-based affine abstraction of nonlinear systems with tighter bounds[END_REF]Proposition 1] for different function classes. Then,

A B x + e B ≤ g(x) ≤ A B x + e B , ∀x ∈ B.
Corollary 1. By taking the average of upper and lower affine abstractions and adding/subtracting half of the maximum distance, it is straightforward to "parallelize" the above upper and lower abstractions as

A g x + ǫ ≤ g(x) ≤ A g x + ǫ, or equivalently g(x) = A g x + ǫ, ǫ ∈ [ǫ, ǫ], where A g (1/2)(A + A), ǫ (1/2 
)(e + e -θ1 m ) and ǫ (1/2)(e + e + θ1 m ). We call A g and ǫ the parallel affine outer-approximation slope and outer-approximation error of function g on B, respectively.

III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time system with unknown inputs and bounded noise

x k+1 = f (x k ) + W w k + Gd k , y k = h(x k ) + V v k + Hd k , (5) 
where at time k ∈ N, x k ∈ X ⊂ R n , d k ∈ R p and y k ∈ R l are the state vector, unknown input vector, and measurement vector, respectively. The process and measurement noise signals

w k ∈ R n and v k ∈ R l are assumed to be bounded, i.e., w k ∈ W [w, w}, v k ∈ V [v, v]
with known lower and upper bounds, w, w and v, v, respectively. We also assume that lower and upper bounds for the initial state, x 0 and x 0 , are available, i.e., x 0 ≤ x 0 ≤ x 0 . The functions f : R n → R n , h : R n → R l and matrices W , V , G and H are known and of appropriate dimensions, where G and H encode the locations at which the unknown input (or attack) signal can affect the system dynamics and measurements. Note that no assumption is made on H to be either the zero matrix (no direct feedthrough), or to have full column rank when there is direct feedthrough (in contrast to [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF]). Unknown Input (or Attack) Signal Assumptions. The unknown inputs d k (representing false data injection attack signals) are not constrained to follow any model nor to be a signal of any type (random or strategic), hence no prior 'useful' knowledge of the dynamics of d k is available (independent of {d ℓ } ∀k = ℓ, {w ℓ } and {v ℓ } ∀ℓ). We also do not assume that d k is bounded or has known bounds and thus, d k is suitable for representing adversarial attack signals.

Next, we briefly introduce a similar system transformation as in [START_REF] Yong | Simultaneous input and state set-valued observers with applications to attack-resilient estimation[END_REF], which will be used later in our observer structure. System Transformation. Let p H rk(H). Similar to [START_REF] Yong | Simultaneous input and state set-valued observers with applications to attack-resilient estimation[END_REF], by applying singular value decomposition, we have

H = U 1 U 2 Ξ 0 0 0 E ⊤ 1 E ⊤ 2 with E 1 ∈ R p×pH , E 2 ∈ R p×(p-pH ) , Ξ ∈ R pH ×pH (a diagonal matrix of full rank; so we can define S Ξ -1 ), U 1 ∈ R l×pH and U 2 ∈ R l×(l-pH ) .
Then, since D E 1 E 2 is unitary:

d k = E 1 d 1,k + E 2 d 2,k , d 1,k = E ⊤ 1 d k , d 2,k = E ⊤ 2 d k . (6) Finally, by defining T 1 U ⊤ 1 , T 2 U ⊤ 2
, the output equation can be decoupled, by which system (5) can be rewritten as:

x k+1 = f (x k ) + W w k + G 1 d 1,k + G 2 d 2,k , z 1,k = h 1 (x k ) + V 1 v k + Ξd 1,k , z 2,k = h 2 (x k ) + V 2 v k , (7) 
where

h i (x k ) = T i h(x k ), ∀i ∈ {1, 2} and K i T i K i , ∀K ∈ {V, G}, ∀i ∈ {1, 2}.
Moreover, we assume the following, which is satisfied for a broad range of nonlinear functions [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF]: Assumption 1. Functions f, h have bounded Jacobians over the state space X with known/computable Jacobian bounds.

Assumption 2. The JSS decomposition of h 2 (x k ) via Propo- sition 1 given by h 2 (x k ) = C 2 x k + ψ 2 (x k ) is such that ψ 2 is JSS and further, C 2 G 2 has full column rank a . Consequently, there exists M 2 (C 2 G 2 ) † such that M 2 C 2 G 2 = I.
a In the special case that G = 0, we would require G 2 to be empty (and this does happen when H has full rank), in which case C 2 G 2 being full rank is satisfied by assumption.

Assumption 3. (Only needed when the observations are nonlinear, i.e., if ψ 2 (x k ) = 0) The entire state space X ⊂ R n is bounded. Moreover, A g is invertible, where A g ∈ R n×n is the parallel affine outer-approximation slope (cf. Proposition 3 and Corollary 1) of the function g(x) x + G 2 M 2 ψ 2 (x) over the entire state space.

Further, we formally define the notions of framers, correctness and stability that are used throughout the paper. Definition 3 (Interval Framers). Given the nonlinear plant (5) (equivalently [START_REF] Corradini | Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes[END_REF]), the sequences

{x k , x k } ∞ k=0 ⊂ R n and {d k , d k } ∞
k=0 ⊂ R p are called upper and lower framers for the states and inputs of the system in [START_REF] Wu | Secure estimation for cyber-physical systems via sliding mode[END_REF], respectively, if

∀k ∈ N, ∀w k ∈ W, ∀v k ∈ V, ν k ≤ ν k ≤ ν k , ∀ν ∈ {x, d}.
In other words, starting from the initial interval x 0 ≤ x 0 ≤ x 0 , the true state of the system in (5), x k , and the unknown input d k are guaranteed to evolve within the interval flowpipe [x k , x k ] and bounded within the interval

[d k , d k ], for all (k, w k , v k ) ∈ N × W × V,
respectively. Finally, any dynamical system (i.e., tractable algorithm) that returns upper and lower framers for the states and unknown inputs of system 5 is called a resilient interval framer for [START_REF] Wu | Secure estimation for cyber-physical systems via sliding mode[END_REF]. 

Definition 4 (Framer Error). Given state and input framers

{x k ≤ x k } ∞ k=0 and {d k ≤ d k } ∞ k=1 , the sequences {e x k x k -x k } ∞ k=0 and {e d k d k -d k } ∞ k=1 are
where δ , δ = 0}, and s ℓ2

[(δ w ) ⊤ (δ v ) ⊤ ] ⊤ [(w -w) ⊤ (v -v) ⊤ ] ⊤ ,
∞ 0 s k 2 2
is the ℓ 2 signal norm for s ∈ {e x , δ}. Using the above, we aim to address the following problem.

Problem 1. Given the nonlinear system in (5), as well as Assumptions 1-3, synthesize an ISS and H ∞ -optimal resilient interval observer (cf. .

IV. RESILIENT INTERVAL OBSERVER DESIGN

In this section, we describe the proposed resilient interval observer as well as analyze its correctness and ISS properties.

b A function α : R ≥0 → R ≥0 is of class K if it is continuous, positive definite, and strictly increasing and is of class K∞ if it is also unbounded. Moreover, λ : R ≥0 → R ≥0 is of class KL if for each fixed t ≥ 0, λ(•, t) is of class K and for each fixed s ≥ 0, λ(s, t) decreases to zero as t → ∞.

A. Interval Framer Design

Our strategy for designing resilient interval observers in the presence of unknown inputs has three steps. First, we obtain an equivalent representation of the system in (5) by introducing some auxiliary state variables, such that the equivalent system is not affected by the attack signal. Then, inspired by our previous work on synthesizing interval observers for nonlinear systems [START_REF] Khajenejad | Interval observer synthesis for locally Lipschitz nonlinear dynamical systems via mixedmonotone decompositions[END_REF], [START_REF] Khajenejad | H∞-optimal interval observer synthesis for uncertain nonlinear dynamical systems via mixed-monotone decompositions[END_REF] we will design embedding systems (cf. Definition 2) for the equivalent system representation, which returns state framers. Finally, we obtain input framers (with a one-step delay since d 2,k does not appear in the measurements z 1,k and z 2,k in ( 7)) as functions of the computed state framers.

First, note that from [START_REF] Corradini | Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes[END_REF] and with S Ξ -1 , d 1,k can be computed as a function of the state at current time as follows:

d 1,k = S(z 1,k -h 1 (x k ) -V 1 v k ). (9) 
Next, we introduce an auxiliary state variable as:

ξ k x k -N (z 2,k -V 2 v k -ψ 2 (x k )) = (I -N C 2 )x k , ( 10 
)
where the equality follows from ( 7) and Assumption 2. Moreover, N ∈ R n×(l-p) is a to-be-designed gain to cancel out the effect of the unknown input in the state equation. This is done through the following lemma.

Lemma 1. Suppose Assumption 2 holds and let

N = G 2 M 2 = G 2 (C 2 G 2 ) † and S Ξ -1 .
Then, the value of the auxiliary state ξ k at time step k + 1 can be computed as:

ξ k+1 =(I-N C2)(f (x k )+G1S(z 1,k -h1(x k )-V1v k )+W w k ). (11)
Proof. By plugging d 1,k from ( 9) into (7), we obtain

x k+1 =f (x k )+G1S(z 1,k -h1(x k )-V1v k )+W w k +G2d 2,k . (12)
This, together with the second equality in [START_REF] Wang | A novel unknown input interval observer for systems not satisfying relative degree condition[END_REF] and the above choice of N such that (I-N C 2 )G 2 = 0, returns [START_REF] Marouani | Unknown input interval observers for discrete-time linear switched systems[END_REF].

The evolution of the auxiliary state ξ k in ( 11) is independent of the unknown input and hence, we can compute propagated framers for ξ k leveraging embedding systems (cf. Proposition 2). However, we do not have a way of directly retrieving the propagated framers for the original states, i.e., {x k , x k } in terms of {ξ k , ξ k } from the second equality of (10), since

I -N C 2 = I -G 2 (C 2 G 2 ) † C 2 can
be shown to be not invertible. To overcome this difficulty, given Assumption 3, we introduce a new auxiliary state:

γ k x k -Λ(N (z 2,k -V 2 v k ) -ǫ k ), (13) 
with Λ A -1 g , where A g and ǫ k ∈ [ǫ, ǫ] are parallel affine outer-approximation slope and approximation error of the mapping g(x) x + G 2 M 2 ψ 2 (x) on the entire space X (cf. Proposition 3, Corollary 1 and Assumption 3). Proposition 4. Given Assumption 3, the two auxiliary states γ k and ξ k are linearly related as:

γ k = Λξ k . ( 14 
)
Proof. Computing parallel affine outer-approximation of the mapping g(x k ) = A g x k + ǫ k and applying [START_REF] Wang | A novel unknown input interval observer for systems not satisfying relative degree condition[END_REF], we obtain

g(x k ) x k + N ψ 2 (x) = ξ k + N (z 2,k -V 2 v k ) ⇒A g x k = ξ k + N (z 2,k -V 2 v k ) -ǫ k , ǫ k ∈ [ǫ, ǫ],
from which and given Assumption 3 (that A g is invertible, with Λ = A -1 g ), we have

x k = Λ(ξ k + N (z 2,k -V 2 v k ) -ǫ k ), ǫ k ∈ [ǫ, ǫ]. (15)
Plugging x k from (15) into (13) returns the results.

We are now ready to propose an input and state resilient interval framer, i.e., the following discrete-time dynamical system ( 16)- [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF], which by construction, outputs/returns framers for the original states {x k } ∞ k=0 and the unknown input signal {d k } ∞ k=1 of system [START_REF] Wu | Secure estimation for cyber-physical systems via sliding mode[END_REF]. The details of the framer construction/design will be provided in the proof of Theorem 1. The proposed resilient interval framer is as follows:

γ k+1 =(A-LC 2 ) ⊕ γ k -(A-LC 2 ) ⊖ γ k +ρ d (x k , x k ) +D ⊖ ǫ-D ⊕ ǫ+L ⊖ ψ 2,d (x k , x k )-L ⊕ ψ 2,d (x k , x k ) + V ⊖ v -V ⊕ v + Ŵ ⊖ w -Ŵ ⊖ w + ẑk , γ k+1 =(A-LC 2 ) ⊕ γ k -(A-LC 2 ) ⊖ γ k +ρ d (x k , x k ) +D ⊖ ǫ-D ⊕ ǫ+L ⊖ ψ 2,d (x k , x k )-L ⊕ ψ 2,d (x k , x k ) + V ⊖ v -V ⊕ v + Ŵ ⊕ w -Ŵ ⊖ w+ẑ k , (16) 
x k = γ k +ΛN z 2,k +Λ ⊖ ǫ-Λ ⊕ ǫ+(ΛN V2) ⊖ v-(ΛN V2) ⊕ v, x k = γ k +ΛN z 2,k +Λ ⊖ ǫ-Λ ⊕ ǫ+(ΛN V2) ⊖ v-(ΛN V2) ⊕ v, ( 17 
)
d k-1 = Φ ⊕ x k -Φ ⊖ x k + κ d (x k-1 , x k-1 )+A z z 1,k-1 +A ⊕ v v -A ⊖ v v + Φ ⊖ w -Φ ⊕ w, d k-1 = Φ ⊕ x k -Φ ⊖ x k + κ d (x k-1 , x k-1 )+A z z 1,k-1 +A ⊕ v v -A ⊖ v v + Φ ⊖ w -Φ ⊕ w, (18) 
where S Ξ -1 , N = G 2 M 2 and Λ A -1 g . Furthermore, L ∈ R n×(l-pH ) is an arbitrary matrix (observer gain) which will be designed later in Theorem 2 to yield stability and optimality of the proposed framers. Moreover, A ∈ R n×n and ρ : X ⊂ R n → R n are obtained by applying JSS decompositions (cf. Proposition 1) on the mapping f (x) Λ(I -N C 2 )(f (x) -G 1 Sh 1 (x)), while ψ 2,d and ρ d are tight decomposition functions for the JSS mappings ρ and ψ 2 , respectively, computed through Proposition 1. Further,

V (A -LC2)ΛN V2 + LV2 + Λ(I -N C2)G1SV1, Φ E2M2C2, Av (ΦG1 -E1)SV1, Az (E1-ΦG1)S, D (A -LC2)Λ, Ŵ Λ(I -N C2)W, ẑk Λ(I -N C2)G1Sz 1,k + (L + (A -LC2)ΛN )z 2,k , (19) 
and κ d is the decomposition function of the mapping κ(x)

(ΦG 1 -E 1 )Sh 1 (x) -Φf (x), computed via [19, Theorem 1]. Finally, A g and ǫ k ∈ [ǫ, ǫ] are computed via Corollary 1.
The following theorem formalizes the state and input framer/correctness property of the proposed resilient interval observer ( 16)-( 18) with respect to the original system (5).

Theorem 1. Suppose Assumptions 1-3 hold. Then, the sequences {x k , x k } ∞ k=0 and {d k , x k } ∞ k=1 obtained from the system (16)- [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF], construct framers for the states and unknown input signal of (5), respectively, i.e.,

ν k ≤ ν k ≤ ν k , ∀ν ∈ {x, d}, ∀k ∈ N, ∀w k ∈ W, ∀v k ∈ V.
Proof. From ( 11) and ( 14), we obtain

γ + k =Λ(I-N C 2 )(f (x x )+G 1 S(z 1,k -h 1 (x k )-V 1 v k )+W w k ). Adding the zero term L(z 2,k -C 2 x k -ψ 2 (x k )-V 2 v k )
to the right hand side of the above equation and applying mixedmonotone decompositions on the mapping f (x) Λ(I -N C 2 )(f (x) -G 1 Sh 1 (x)) to decompose it as f (x) = Ax + ρ(x) (cf. Proposition 1 for more details), yields:

γ k+1 =(A-LC 2 )x k +ρ(x k )-Lψ 2 (x k )-Ṽ v k + W w k +z k , ( 20 
)
where

Ṽ Λ(I -N C 2 )G 1 SV 1 + LV 2 , W Λ(I -N C 2 )W and zk Λ(I -N C 2 )G 1 Sz 1,k + Lz 2,k
. Then, by computing x k in terms of γ k from [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF] and plugging it back into the linear terms in the right-hand side of (20), we obtain

γ k+1 = (A -LC2)γ k + ρ(x k ) -Lψ2(x k ) -V v k + Ŵ wt -Dǫ k + ẑk , (21) 
with V , D, Ŵ and ẑk given in [START_REF] Yang | On sufficient conditions for mixed monotonicity[END_REF]. Next, by applying Proposition 2 and [22, Lemma 1], we construct the embedding system ( 16) for [START_REF] Yang | Tight decomposition functions for mixed monotonicity[END_REF], which implies γ k ≤ γ k ≤ γ k , ∀k ∈ N, by construction. Further, the results in ( 17) follow from applying [22, Lemma 1] on ( 13) to compute framers of x k in terms of the framers of γ k .

To obtain input framers, note that multiplying both sides of ( 12) by M 2 C 2 together with Assumption 2 yields

d 2,k-1 = M 2 C 2 (x k -f (x k-1 ) + G 1 Sh 1 (x k-1 ) + G 1 S(V 1 v k-1 - z 1,k-1 ) -W w k-1
). This, along with ( 6) and ( 9), leads to

d k-1 = Φx k +κ(x k-1 )+Azz 1,k-1 +Avv k-1 -ΦW w k-1 . (22)
The input framers in [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF] are obtained by leveraging [START_REF] Yang | On sufficient conditions for mixed monotonicity[END_REF]Theorem 1] to compute a decomposition function for the nonlinear function κ, as well as applying [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF]Lemma 1] to bound the linear terms in the right-hand side of [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF].

B. ISS and H ∞ -Optimal Interval Observer Synthesis

Next, we provide sufficient conditions to guarantee the stability of the proposed framers, i.e., we seek to synthesize the observer gain L to ensure input-to-state stability (ISS) of the observer state error, e x k x k -x k in the sense of Definition 4, while ensuring that the design is optimal in the sense of minimizing the H ∞ gain (cf. Definition 5).

First, we derive the observer error dynamics as follows. Lemma 2. Consider the nonlinear system [START_REF] Wu | Secure estimation for cyber-physical systems via sliding mode[END_REF] and suppose all assumptions in Theorem 2 hold. Then, the state framer error dynamics of the resilient interval observer (16)- [START_REF] Abate | Tight decomposition functions for continuous-time mixed-monotone systems with disturbances[END_REF] and its nonlinear comparison system are as follows:

e x k+1 = |A -LC 2 |e x k + δ ρ k + |L|δ ψ2 k + | Ŵ |δ w +(|V a -LV b | -|A -LC 2 ||ΛN V 2 | + |ΛN V 2 |)δ v +(|Λ| + |D a -LD b | -|A -LC 2 ||Λ|)δ ǫ ≤ (|A -LC 2 | + F ρ + |L|F ψ2 )e x k + | Ŵ |δ w +(|V a -LV b | -|A -LC 2 ||ΛN V 2 | + |ΛN V 2 |)δ v +(|Λ| + |D a -LD b | -|A -LC 2 ||Λ|)δ ǫ , ( 23 
)
where δ ζ k ζ d (x k , x k ) -ζ d (x k , x k ), ∀ζ ∈ {ψ 2 , ρ}, δ s s -s, ∀s ∈ {w, v, ǫ}, and F ζ , ∀ζ ∈ {ψ 2 , ρ} are computed through Proposition 2. Moreover, V a AΛN V 2 + Λ(I -N C 2 )G 1 SV 1 , V b (C 2 ΛN -I)V 2 , D a AΛ, D b C 2 Λ. (24) 
Proof. It follows from ( 16) that the dynamics of [START_REF] Singh | Mesh-based affine abstraction of nonlinear systems with tighter bounds[END_REF]) results in the equality in [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF], which together with the facts that δ ζ k ≤ F ζ e x k , ∀ζ ∈ {ρ, ψ 2 } (cf. Proposition 2), yields the inequality in [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF].

e γ k γ k - γ k is given by e γ k+1 = |A -LC 2 |e γ k + δ ρ k + |L|δ ψ2 k +| V |δ v + | Ŵ |δ w + |D|δ ǫ . This, combined with e x k = e γ k + |Λ|δ ǫ + |ΛN V 2 |δ v (followed from
Further, by leveraging slightly different approaches to derive an upper linear comparison system for the nonlinear error comparison system [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF], we derive different sets of sufficient conditions to guarantee the ISS property of the proposed observer, as well as to ensure the optimality of the design in the sense of minimum H ∞ gain, as follows.

Theorem 2 (ISS & H ∞ -Optimal Resilient Interval Observer Synthesis). Consider system (5) (equivalently the transformed system [START_REF] Corradini | Robust detection and reconstruction of state and sensor attacks for cyber-physical systems using sliding modes[END_REF]) and suppose Assumptions 1-3 hold. Moreover, suppose there exist matrices

R n×n ∋ P * ≻ 0 n,n , Γ * ∈ R n×(l-pH ) ≥0
and η * ∈ R >0 such that -P * ∈ M n and the tuple (P * , Γ * , η * ) solves the following problem: min

{η,P,Γ} η s.t.     P P Ã -Γ C P B -Γ D 0 * P 0 I * * ηI 0 * * * ηI     ≻0, (P, Γ) ∈ C, (25) 
where the matrices Ã, B, C, D, as well as the corresponding additional set of constraints C can be either of the following:

(i) C = {(P, Γ) | P A V a D a -Γ C 2 V b D b ≥ 0}, if: à = A + F ρ , C = C 2 -F ψ2 , B = V a + (I -A)|ΛN V 2 | | Ŵ | D a + (I -A)|Λ| , D = V b -C 2 |ΛN V 2 | 0 D b -C 2 |Λ| . (ii) C = {(P, Γ) | Γ C 2 V b D b ≥ 0}, if à = |A| + F ρ , C = -C 2 -F ψ2 , B = |V a |+(I-|A|)|ΛN V 2 | | Ŵ | (I-|A|)|Λ|+|D a | , D = C 2 |ΛN V 2 | -V b 0 C 2 |Λ| -D b . (iii) C = {(P, Γ) | P A -ΓC 2 ≥ 0}, if: à = A + F ρ , C = C 2 -F ψ2 , D = -V 2 0 0 , B = |Λ(I-N C 2 )G 1 SV 1 |+|ΛN V 2 | | Ŵ | |Λ| .
Then, the proposed resilient interval framer (16)-( 18) with the corresponding gain L = (P * ) -1 Γ * , is a resilient ISS input and state interval observer in the sense of Definition 5 and also is H ∞ -optimal (cf. Definition 6). Finally, in any of the above cases, the LMI in [START_REF] Plemmons | M-matrix characterizations. I: nonsingular Mmatrices[END_REF] is feasible only if the linear comparison system ( Ã, B, C, D) is detectable.

Proof. We will show that in each of the cases (i)-(iii), given the corresponding constraint set C, a linear comparison system for the observer state error dynamics [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF] can be computed in the following form:

e x k+1 ≤ ( Ã -L C)e x k + ( B -L D) w, (26) 
with w δ v⊤ δ w⊤ δ ǫ⊤ ⊤ , where the detectability of the pair ( Ã, C) is a necessary condition for stabilizing the comparison system. If this can be shown, then using the results in [23, Section 9.2.3], the solution (P * , Γ * ) to the program in [START_REF] Plemmons | M-matrix characterizations. I: nonsingular Mmatrices[END_REF] returns the optimal observer gain L * = (P * ) -1 Γ * for the linear comparison system [START_REF] Kim | Attack-resilient estimation of switched nonlinear cyber-physical systems[END_REF], and hence, for the original error dynamics [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF] in the minimum H ∞ gain sense with an H ∞ gain of η * (cf. Definition 6). This implies that the above linear comparison system (26) satisfies the following asymptotic gain (AG) property [START_REF] Sontag | New characterizations of input-to-state stability[END_REF]:

lim sup k→∞ e x k 2 ≤α( δ ℓ∞ ), ∀e x 0 , ∀0≤ δ≤[(δ w ) ⊤ (δ v ) ⊤ (δ ǫ ) ⊤ ] ⊤ ,
where δ is any realization of the augmented noise and outerapproximation error interval width and α is any class K ∞ function that is lower bounded by η * δ. On the other hand, by setting δ = 0, the LMIs in [START_REF] Plemmons | M-matrix characterizations. I: nonsingular Mmatrices[END_REF] reduce to their noiseless counterparts in [15, Eq. ( 19)]. Hence, by [15, Theorem 2],

the comparison system ( 26) is 0-stable (0-GAS), which in addition to the AG property above is equivalent to the ISS property for ( 26) by [24, Theorem 1-e]. Thus, the designed observer is also ISS. So, what remains to complete the proof is to show that the comparison system (26) can indeed be computed in each of the cases as follows.

Case (i). Consider the nonlinear comparison system in [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF]. By satisfying the constraint set C, we enforce -P to be Metzler, as well as P Ã -Γ C, P V a -ΓV b and P V a -ΓV b to be non-negative. Also, Γ is non-negative by assumption. Consequently, since P is positive definite, it becomes a nonsingular M-matrix, i.e., a square matrix whose negation is Metzler and whose eigenvalues have non-negative real parts, and hence is inverse-positive [25, Theorem 1], i.e., P -1 ≥ 0. Therefore, [START_REF] Duan | LMIs in control systems: analysis, design and applications[END_REF] into the form of [START_REF] Kim | Attack-resilient estimation of switched nonlinear cyber-physical systems[END_REF].

L = P -1 Γ ≥ 0, A -LC 2 = P -1 (P A -ΓC 2 ) ≥ 0, V a -LV b = P -1 (P V a -ΓV b ) ≥ 0 and D a -LD b = P -1 (P D a -ΓD b ) ≥ 0, because they are matrix products of non-negative matrices. So, |L| = L, |A -LC 2 | = A - LC 2 , |V a -LV b | = V a -LV b and |D a -LD b | = D a -LD b , which turns
Case (ii). By applying the triangle inequality, the comparison system in ( 23) can get upper bounded again as Case (iii). Note that by the triangle inequality, |V a -

e x k+1 ≤ (|A| + |LC2| + F ρ + |L|F ψ 2 )e x k + | Ŵ |δ w +(|Va|+|LV b | -|LC2||ΛN V2|+(I -|A|)|ΛN V2|)δ v +((I -|A|)|Λ| + |Da| + |LD b | -|LC2||Λ|)δ ǫ . ( 27 
LV b | = |(A -LC 2 )ΛN V 2 + LV 2 + Λ(I -N C 2 )G 1 SV 1 | ≤ |(A -LC 2 )||ΛN V 2 | + |L||V 2 | + |Λ(I -N C 2 )G 1 SV 1 |, and |D a -LD b | = |(A -LC 2 )Λ| ≤ |(A -LC 2 )||Λ|. These two combined with (23) yield e x k+1 ≤ (|A-LC2|+F ρ+|L|F ψ 2 )e x k +| Ŵ |δ w +|Λ|δ ǫ +(|L||V2|+|ΛN V2|+|Λ(I -N C2)G1SV1|)δ v . ( 28 
)
The rest of the proof is to enforce that A -LC 2 and L are non-negative to turn (28) into the form of [START_REF] Kim | Attack-resilient estimation of switched nonlinear cyber-physical systems[END_REF], which is similar to the the proofs of the previous two cases.

V. ILLUSTRATIVE EXAMPLE

We now illustrate the effectiveness of our proposed resilient observer using a three-area power system [2, Figure 1], where each control area consists of a generator and load buses with transmission lines between areas. The nonlinear continuous-time model of the buses is slightly modified based on [START_REF] Kim | Attack-resilient estimation of switched nonlinear cyber-physical systems[END_REF], with the subscript i being the bus number:

ḟ1 (t) = -1 m1 (φ i (t) -(P M1 (t) + d 1 (t))) + w 2,1 (t), ḟi (t) = -1 mi (φ i (t) -P Mi (t)) + w 2,i (t), i ∈ {2, 3}, θi (t) = f i (t) + w 1,i (t), i ∈ {1, 2, 3}, with φ i (t) D i f i (t) + l∈Si P il (t) + P Li (t))
, where θ i is the phase angle, f i is the angular frequency, m i = 0.01, D i = 0.11, P Mi (t) is the mechanical power (the control input), P Li (t) is a known power demand, S i is the set of neighboring buses of i, and the nonlinear tie line power flow equation is as follows: P il (t) = -P li (t) = t il sin(θ i (t)θ l (t)), with t il = 1. Only the actuator of Control Area 1 is attacked and the false data injection signal is d 1 (t).

On the other hand, the output equation is given as follows:

y i (t) = [θ i (t) f i (t)] ⊤ + v i (t), i ∈ {1, 3}, y 2 (t) = [θ 2 (t) f 2 (t)] ⊤ + d 2 (t) + v 2 (t),
where only the sensor y 2 (t) is injected with a false data signal d 2 (t). Thus, the concatenated attack/unknown input signal is d(t) = [d 1 (t) d 2 (t)] ⊤ and the G and H matrices in (5) corresponding to the attack locations are given by G = 0 0 0 0 0 0 0 1 0 0 0 0 ⊤ and H = 0 0 0 0 0 0 0 0 0 1 0 0 ⊤ .

In our simulations, the forward Euler method is used to discretize the system dynamics with a sampling time dt = 0.01s and both P Mi (t) and P Li (t) were set to be identically zero. Moreover, for i = 1, . . . , 3, the process noise w i (t) and the measurement noise v i (t) were assumed to be bounded within the bounds -50 -50

⊤ , 50 50 ⊤ and -0.5 -0.5 ⊤ , 0.5 0.5 ⊤ , respectively.

For the sake of comparison, we first applied our previous input and state observer [START_REF]Simultaneous input and state interval observers for nonlinear systems with rank-deficient direct feedthrough[END_REF] that does not have stabilizing gains to the above example, which we found to not be able to yield stable interval estimates (i.e., the framer interval width diverges). On the other hand, when implementing the proposed observer in ( 16)-( 18), the optimization problem in [START_REF] Plemmons | M-matrix characterizations. I: nonsingular Mmatrices[END_REF] was solved with the additional linear constraints in Case (iii), and we obtained the following observer gain: As shown in Figures 1 and2, all the states and attack signals are bounded by the framers computed by the proposed observer, demonstrating its correctness and ability to obtain resilient state estimates and to reconstruct attack signals. Finally, as shown in Figure 3, the actual state and input estimation error sequences (i.e., the framer interval widths) converge to steady-state values, demonstrating the input-tostate stability of the proposed interval observer.

VI. CONCLUSION In this paper, the problem of resilient state estimation and attack reconstruction for nonlinear discrete-time systems with nonlinear observations/constraints, that are subject to bounded noise signals, was addressed. In the considered setting, both sensors and actuators could be affected by attack signals/unknown inputs. By introducing auxiliary states, as well as taking advantage of mixed-monotone decomposition of nonlinear functions and affine parallel outerapproximation of the observation functions, the proposed observer was shown to be correct, i.e., it recursively computes interval estimates that by construction, contain the true states and unknown inputs of the system. Further, several semidefinite programs were provided to synthesize the proposed observer gains that guarantee input-to-state stability of the observer and optimality of the proposed interval observer design. Future work will include alternative designs for minimizing L 1 gain, similar to [START_REF] Pati | L 1 -robust interval observer design for uncertain nonlinear dynamical systems[END_REF], as well as an extension to continuous-time nonlinear systems and hybrid systems. 
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 3 [START_REF] Singh | Mesh-based affine abstraction of nonlinear systems with tighter bounds[END_REF] Consider the function g(.) : B ⊂ R n → R m , where B is an interval with x, x, V B being its maximal, minimal and set of vertices, respectively. Suppose A B , A B , e B , e B , θ B is a solution of the following linear program (LP): min θ,A,A,e,e θ

  ) By a similar argument as in Case (i), enforcing -P to be Metzler along with the constraints set C results in |LC 2 | = LC 2 , |LV b | = LV b and |LD b | = LD b , and hence turns (27) into the form of (26).
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 1 Fig.1: States: θ i , f i , and their upper and lower framers θ i , θ 1 , f i , f i , returned by the proposed approach.

Fig. 2 :

 2 Fig. 2: Attack signals: d 1 , d 2 , and their upper and lower framers d 1 , d 1 , d 2 , d 2 , returned by the proposed approach.

  called the state and input framer errors, respectively. It easily follows from Definition 3 that e ν k ≥ 0, ∀k ∈ N, ∀ν ∈ {x, d}. Definition 5 (Input-to-State Stability and Interval Observer).

	An interval framer is input-to-state stable (ISS), if the framer
	state error (cf. Definition 4) is bounded as follows:
	∀k ∈ N, e x k 2 ≤ β( e x 0 2 , k) + α( δ ℓ∞ ),

  β and α are functions of classes b KL and K ∞ , respectively, and δ ℓ∞ sup k∈N δ k 2 = δ 2 is the ℓ ∞ signal norm. An ISS resilient interval framer is called a resilient interval observer. Definition 6 (H ∞ -Optimal Resilient Interval Observer). A resilient interval framer design is H ∞ -optimal if the H ∞ gain of the framer error system G, i.e., G H∞ is minimized, where G H∞ sup {
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