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Resilient State Estimation for Nonlinear Discrete-Time Systems via

Input and State Interval Observer Synthesis

Mohammad Khajenejad, Zeyuan Jin, Thach Ngoc Dinh and Sze Zheng Yong

Abstract— This paper addresses the problem of resilient
state estimation and attack reconstruction for bounded-
error nonlinear discrete-time systems with nonlinear obser-
vations/constraints, where both sensors and actuators can be
compromised by false data injection attack signals/unknown
inputs. By leveraging mixed-monotone decomposition of non-
linear functions, as well as affine parallel outer-approximation
of the observation functions, along with introducing auxiliary
states to cancel out the effect of the attacks/unknown inputs,
our proposed observer recursively computes interval estimates
that by construction, contain the true states and unknown
inputs of the system. Moreover, we provide several semi-definite
programs to synthesize observer gains to ensure input-to-state
stability of the proposed observer and optimality of the design
in the sense of minimum H∞ gain.

I. INTRODUCTION

State estimation and unknown input reconstruction are

indispensable in various engineering applications such as air-

craft tracking, fault detection, attack detection and mitigation

in cyber-physical systems (CPS) and urban transportation

[1]–[3]. Particularly, set-membership approaches have been

proposed for bounded-error systems to provide hard accuracy

bounds, which is especially useful for obtaining robustness

guarantees for safety-critical systems. Moreover, since at-

tackers may be strategic in adversarial settings, the ability to

simultaneously estimate states and inputs without imposing

any assumptions on the unknown inputs/attack signals is

desirable and often crucial.

Literature review. Numerous studies in the literature have

investigated secure estimation, i.e., how to accurately esti-

mate the states of a system when it is under attack or subject

to adversarial signals. For instance, secure state estimation

and control problem was addressed in the presence of false

data injection attacks on both the actuators and sensors in

[4], in which a χ2 detector was proposed to detect malicious

attacks. The research in [5] proposed a sliding-mode ob-

server to simultaneously estimate system states and attacks,

while the work in [6] provided a projected sliding-mode

observer-based estimation approach to reconstruct system

states. Further, the work in [7] reconstructed attack signals

from the equivalent output injection signal using a sliding-

mode observer, while in [8], an attack was considered as

an auxiliary state and estimated by employing a robust
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switching Luenberger observer assuming sparsity. However,

all the aforementioned works considered stochastic/Gaussian

noise and hence do not apply to the bounded-error setting

we consider in this paper, where noise/disturbance signals

are assumed to be distribution-free and bounded.

A related body of literature that could be applied to

resilient state estimation in the bounded-error setting is that

of unknown input interval observers. Particularly, the works

in [9]–[11] considered the problem of designing unknown

input interval observers for continuous-time linear parameter

varying (LPV), uncertain linear time-invariant (LTI) and

discrete-time switched linear systems, respectively, where

the authors in [9] formulated the necessary Metzler property

as part of a semi-definite program. A similar problem was

considered for nonlinear continuous-time systems with linear

observations in [12]. However, these approaches are not

suitable for general discrete-time nonlinear systems and the

unknown input signal does not affect the output/measurement

equation (needed for representing false data injection attacks

on the sensors) in either of the works in [9]–[12].

On the other hand, while our previous works [13], [14]

do consider the design of state and unknown input interval

observers for nonlinear discrete-time systems with nonlinear

observations, no stabilizing gains were synthesized in [13],

[14]. We aim to address this shortcoming in this paper.

Contributions. By leveraging a combination of mixed-

monotone decomposition of nonlinear functions [15], [16]

and parallel affine outer-approximation of observation func-

tions [17], we synthesize a resilient interval observer, i.e.,

a discrete-time dynamical system that by construction, si-

multaneously returns interval-valued estimates of states and

unknown inputs (representing false data injection signals on

both the actuators and sensors) for a broad range of nonlinear

discrete-time systems with nonlinear observations. Our pro-

posed design is a significant improvement to our previous

input and state interval observer designs [13], [14], in which

no stabilizing gains were considered and so the stability

of the previous observer designs only hinged upon some

dynamical systems properties. Moreover, in contrast to many

unknown input (interval) observer designs in the literature,

our design considers arbitrary unknown input signals with

no assumptions of a priori known intervals, being stochastic

with zero mean (as is often assumed for noise) or bounded.

Further, we provide sufficient conditions for the input-to-

state-stability of the proposed observer, which at the same

time ensures the optimality of the design in the sense of

minimum H∞ gain by solving semi-definite programs.

http://arxiv.org/abs/2309.13889v1


II. PRELIMINARIES

Notation. ∨ denotes the logical disjunction (the OR truth-

functional operator). R
n,Rn×p,Dn,N,Nn,R≥0 and R>0

denote the n-dimensional Euclidean space and the sets of

n by p matrices, n by n diagonal matrices, natural numbers

(including 0), natural numbers from 1 to n, non-negative

and positive real numbers, respectively, while Mn denotes

the set of all n by n Metzler matrices, i.e., square matrices

whose off-diagonal elements are non-negative. Euclidean

norm of a vector x ∈ R
n is denoted by ‖x‖2,

√
x⊤x. For

M ∈ R
n×p, Mij denotes M ’s entry in the i’th row and the

j’th column, M⊕ , max(M,0n,p), M
⊖ = M⊕ −M and

|M | , M⊕ +M⊖, where 0n,p is the zero matrix in R
n×p,

while sgn(M) ∈ R
n×p is the element-wise sign of M with

sgn(Mij) = 1 if Mij ≥ 0 and sgn(Mij) = −1, otherwise.

M ≻ 0 and M ≺ 0 (or M � 0 and M � 0) denote that M is

positive and negative (semi-)definite, respectively. Further, a

function f : S ⊆ R
n → R, where 0 ∈ S, is positive definite

if f(x) > 0 for all x ∈ S \{0}, and f(0) = 0. Finally,

an interval I , [z, z] ⊂ R
n is the set of all real vectors

z ∈ R
nz that satisfies z ≤ z ≤ z (component-wise), where

‖z − z‖∞ , maxi∈{1,··· ,nz} |zi| is the interval width of I.

Next, we review some related results and definitions.

Proposition 1 (Jacobian Sign-Stable Decomposition [15,

Proposition 2]). If a mapping f : Z ⊂ R
nz → R

p has Ja-

cobian matrices satisfying Jf (x) ∈ [Jf , J
f
], ∀z ∈ Z , where

Jf , J
f ∈ R

p×nz are known matrices, then the mapping f
can be decomposed into an additive remainder-form:

∀z ∈ Z, f(z) = Hz + µ(z), (1)

where the matrix H ∈ R
p×nz satisfies

∀(i, j) ∈ Np × Nnz
, Hij = Jfij ∨Hij = J

f

i,j , (2)

and µ(·) and Hz are nonlinear and linear Jacobian sign-

stable (JSS) mappings, respectively, i.e., the signs of each

element of their Jacobian matrices do not change within their

domains (Jνij(·) ≥ 0 or Jνij(·) ≤ 0, ν(z) ∈ {µ(z), Hz}).

Definition 1 (Mixed-Monotonicity and Decomposition Func-

tions). [18, Definition 1], [19, Definition 4] Consider the

discrete-time dynamical system xk+1 = g(xk), with initial

state x0 ∈ X0 , [x0, x0]⊂ R
n. Furthermore, g : X ⊂

R
n → R

n is the vector field, and X is the entire state space.

A function gd : X × X → R
n is a discrete-time mixed-

monotone decomposition mapping for the vector field g if it

satisfies the following conditions: i) gd(x, x) = g(x), ii) gd
is monotone increasing in its first argument, i.e., x̂ ≥ x ⇒
gd(x̂, x

′) ≥ gd(x, x
′), and iii) gd is monotone decreasing in

its second argument, i.e., x̂ ≥ x⇒ gd(x
′, x̂) ≤ gd(x

′, x).

Proposition 2 (Tight and Tractable Decomposition Functions

for JSS Mappings). [15, Proposition 4 & Lemma 3] Suppose

µ : Z ⊂ R
nz → R

p is a JSS mapping on its domain. Then,

for each µi, i ∈ Np, its tight decomposition function is:

µd,i(z1, z2) = µi(D
iz1 + (In −Di)z2), (3)

for any ordered z1, z2 ∈ Z , with a binary diagonal matrix

Di that is determined by the vertex of the interval [z1, z2]
that minimizes the function µi (if z1 < z2) or the vertex of

the interval [z2, z1] that maximizes µi (if z2 ≤ z1), i.e.,

Di = diag(max(sgn(J
µ

i ),01,nz
)).

Moreover, if the JSS mapping µ is a remainder term of a

JSS decomposition of a function f as discussed in Propo-

sition 1, then for any interval domain z ≤ z ≤ z, with

z, z, z ∈ Z and ε , z − z, the following inequality holds:

δµd, µd(z, z)− µd(z, z) ≤ Fµε, with Fµ , 2max(Jf −
H,0p,nz

)−Jf+H and H ∈ R
p×nz given in Proposition 1.

Consequently, by applying Proposition 2 to the Jacobian

sign-stable decomposition obtained using Proposition 1, a

tight and tractable decomposition function can be obtained

(cf. details in [15]). Furthermore, in the case that the mapping

is not JSS, a tractable algorithm has been introduced in [20,

Algorithm 1] to compute tight remainder-form decomposi-

tion functions for a very broad class of nonlinear functions.

Definition 2 (Embedding System). [16, Definition 6] For

a discrete-time dynamical system xk+1 = g(xk) defined

over mapping g : X ⊂ R
n → R

n with a corresponding

decomposition function gd(·), its embedding system is a 2n-

dimensional system with initial condition
[

x⊤0 x⊤0
]⊤

defined

as
[

x⊤k+1 x⊤k+1

]⊤
=

[

g⊤
d
(xk, xk) g⊤d (xk, xk)

]⊤
.

Note that according to [20, Proposition 3], the embedding

system in Definition 2 with decomposition function gd cor-

responding to the dynamics xk+1 = g(xk) has a state framer

property, i.e., its solution is guaranteed to frame the unknown

state trajectory xk , i.e., xk ≤ xk ≤ xk for all k ∈ N.

Next, we will briefly restate our previous result in [17],

tailoring it specifically for intervals to help with computing

affine bounding functions for our functions.

Proposition 3. [17, Affine Outer-Approximation] Consider

the function g(.) : B ⊂ R
n → R

m, where B is an interval

with x, x,VB being its maximal, minimal and set of vertices,

respectively. Suppose AB, AB, eB, eB, θB is a solution of the

following linear program (LP):

min
θ,A,A,e,e

θ (4)

s.t Axs + e+ σ ≤ g(xs) ≤ Axs + e− σ,

(A−A)xs + e− e− 2σ ≤ θ1m, ∀xs ∈ VB,

where 1m ∈ R
m is a vector of ones and σ can be computed

via [17, Proposition 1] for different function classes. Then,

ABx+ eB ≤ g(x) ≤ ABx+ eB, ∀x ∈ B.

Corollary 1. By taking the average of upper and lower affine

abstractions and adding/subtracting half of the maximum

distance, it is straightforward to “parallelize” the above

upper and lower abstractions as Agx + ǫ ≤ g(x) ≤
Agx + ǫ, or equivalently g(x) = Agx + ǫ, ǫ ∈ [ǫ, ǫ],
where Ag , (1/2)(A + A), ǫ , (1/2)(e + e − θ1m) and

ǫ , (1/2)(e+e+θ1m). We call Ag and ǫ the parallel affine

outer-approximation slope and outer-approximation error of

function g on B, respectively.



III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time

system with unknown inputs and bounded noise

xk+1 = f(xk) +Wwk +Gdk,
yk = h(xk) + V vk +Hdk,

(5)

where at time k ∈ N, xk ∈ X ⊂ R
n, dk ∈ R

p and yk ∈ R
l

are the state vector, unknown input vector, and measurement

vector, respectively. The process and measurement noise

signals wk ∈ R
n and vk ∈ R

l are assumed to be bounded,

i.e., wk ∈ W , [w,w}, vk ∈ V , [v, v] with known lower

and upper bounds, w, w and v, v, respectively. We also

assume that lower and upper bounds for the initial state,

x0 and x0, are available, i.e., x0 ≤ x0 ≤ x0. The functions

f : Rn → R
n, h : Rn → R

l and matrices W , V , G and H
are known and of appropriate dimensions, where G and H
encode the locations at which the unknown input (or attack)

signal can affect the system dynamics and measurements.

Note that no assumption is made on H to be either the zero

matrix (no direct feedthrough), or to have full column rank

when there is direct feedthrough (in contrast to [13]).

Unknown Input (or Attack) Signal Assumptions. The un-

known inputs dk (representing false data injection attack

signals) are not constrained to follow any model nor to

be a signal of any type (random or strategic), hence no

prior ‘useful’ knowledge of the dynamics of dk is available

(independent of {dℓ} ∀k 6= ℓ, {wℓ} and {vℓ} ∀ℓ). We also

do not assume that dk is bounded or has known bounds and

thus, dk is suitable for representing adversarial attack signals.

Next, we briefly introduce a similar system transformation

as in [3], which will be used later in our observer structure.

System Transformation. Let pH , rk(H). Similar to

[3], by applying singular value decomposition, we have

H =
[

U1 U2

]

[

Ξ 0
0 0

] [

E ⊤
1

E ⊤
2

]

with E1 ∈ R
p×pH , E2 ∈

R
p×(p−pH ), Ξ ∈ R

pH×pH (a diagonal matrix of full rank; so

we can define S , Ξ−1), U1 ∈ R
l×pH and U2 ∈ R

l×(l−pH ).

Then, since D ,
[

E1 E2

]

is unitary:

dk = E1d1,k + E2d2,k, d1,k = E⊤
1 dk, d2,k = E⊤

2 dk. (6)

Finally, by defining T1 , U⊤
1 , T2 , U⊤

2 , the output equation

can be decoupled, by which system (5) can be rewritten as:

xk+1 = f(xk) +Wwk +G1d1,k +G2d2,k,
z1,k = h1(xk) + V1vk + Ξd1,k,
z2,k = h2(xk) + V2vk,

(7)

where hi(xk) = Tih(xk), ∀i ∈ {1, 2} and Ki , TiKi, ∀K ∈
{V,G}, ∀i ∈ {1, 2}.

Moreover, we assume the following, which is satisfied for

a broad range of nonlinear functions [21]:

Assumption 1. Functions f, h have bounded Jacobians over

the state space X with known/computable Jacobian bounds.

Assumption 2. The JSS decomposition of h2(xk) via Propo-

sition 1 given by h2(xk) = C2xk+ψ2(xk) is such that ψ2 is

JSS and further, C2G2 has full column ranka. Consequently,

there exists M2 , (C2G2)
† such that M2C2G2 = I .

aIn the special case that G = 0, we would require G2 to be empty (and
this does happen when H has full rank), in which case C2G2 being full
rank is satisfied by assumption.

Assumption 3. (Only needed when the observations are

nonlinear, i.e., if ψ2(xk) 6= 0) The entire state space X ⊂ R
n

is bounded. Moreover, Ag is invertible, where Ag ∈ R
n×n is

the parallel affine outer-approximation slope (cf. Proposition

3 and Corollary 1) of the function g(x) , x+G2M2ψ2(x)
over the entire state space.

Further, we formally define the notions of framers, cor-

rectness and stability that are used throughout the paper.

Definition 3 (Interval Framers). Given the nonlinear plant

(5) (equivalently (7)), the sequences {xk, xk}∞k=0 ⊂ R
n and

{dk, dk}∞k=0 ⊂ R
p are called upper and lower framers for

the states and inputs of the system in (5), respectively, if

∀k ∈ N, ∀wk ∈ W , ∀vk ∈ V , νk ≤ νk ≤ νk, ∀ν ∈ {x, d}.
In other words, starting from the initial interval x0 ≤ x0 ≤
x0, the true state of the system in (5), xk, and the unknown

input dk are guaranteed to evolve within the interval flow-

pipe [xk, xk] and bounded within the interval [dk, dk], for

all (k, wk, vk) ∈ N×W × V , respectively. Finally, any

dynamical system (i.e., tractable algorithm) that returns

upper and lower framers for the states and unknown inputs

of system 5 is called a resilient interval framer for (5).

Definition 4 (Framer Error). Given state and input framers

{xk ≤ xk}∞k=0 and {dk ≤ dk}∞k=1, the sequences {exk ,

xk − xk}∞k=0 and {edk , dk − dk}∞k=1 are called the state

and input framer errors, respectively. It easily follows from

Definition 3 that eνk ≥ 0, ∀k ∈ N, ∀ν ∈ {x, d}.
Definition 5 (Input-to-State Stability and Interval Observer).

An interval framer is input-to-state stable (ISS), if the framer

state error (cf. Definition 4) is bounded as follows:

∀k ∈ N, ‖exk‖2 ≤ β(‖ex0‖2, k) + α(‖δ‖ℓ∞), (8)

where δ , [(δw)⊤ (δv)⊤]⊤ , [(w − w)⊤ (v − v)⊤]⊤, β
and α are functions of classesb KL and K∞, respectively,

and ‖δ‖ℓ∞ , supk∈N ‖δk‖2 = ‖δ‖2 is the ℓ∞ signal norm.

An ISS resilient interval framer is called a resilient interval

observer.

Definition 6 (H∞-Optimal Resilient Interval Observer). A

resilient interval framer design is H∞-optimal if the H∞

gain of the framer error system G̃, i.e., ‖G̃‖H∞
is minimized,

where ‖G̃‖H∞
, sup {‖ex‖ℓ2

‖δ‖ℓ2

, δ 6= 0}, and ‖s‖ℓ2 ,
√

∑∞
0 ‖sk‖22 is the ℓ2 signal norm for s ∈ {ex, δ}.

Using the above, we aim to address the following problem.

Problem 1. Given the nonlinear system in (5), as well

as Assumptions 1–3, synthesize an ISS and H∞-optimal

resilient interval observer (cf. Definitions 3–6).

IV. RESILIENT INTERVAL OBSERVER DESIGN

In this section, we describe the proposed resilient interval

observer as well as analyze its correctness and ISS properties.

bA function α : R≥0 → R≥0 is of class K if it is continuous, positive
definite, and strictly increasing and is of class K∞ if it is also unbounded.
Moreover, λ : R≥0 → R≥0 is of class KL if for each fixed t ≥ 0, λ(·, t)
is of class K and for each fixed s ≥ 0, λ(s, t) decreases to zero as t → ∞.



A. Interval Framer Design

Our strategy for designing resilient interval observers in

the presence of unknown inputs has three steps. First, we

obtain an equivalent representation of the system in (5)

by introducing some auxiliary state variables, such that

the equivalent system is not affected by the attack signal.

Then, inspired by our previous work on synthesizing interval

observers for nonlinear systems [15], [16] we will design

embedding systems (cf. Definition 2) for the equivalent

system representation, which returns state framers. Finally,

we obtain input framers (with a one-step delay since d2,k
does not appear in the measurements z1,k and z2,k in (7)) as

functions of the computed state framers.

First, note that from (7) and with S , Ξ−1, d1,k can be

computed as a function of the state at current time as follows:

d1,k = S(z1,k − h1(xk)− V1vk). (9)

Next, we introduce an auxiliary state variable as:

ξk ,xk−N(z2,k − V2vk − ψ2(xk)) = (I−NC2)xk, (10)

where the equality follows from (7) and Assumption 2.

Moreover, N ∈ R
n×(l−p̃) is a to-be-designed gain to cancel

out the effect of the unknown input in the state equation.

This is done through the following lemma.

Lemma 1. Suppose Assumption 2 holds and let N =
G2M2 = G2(C2G2)

† and S , Ξ−1. Then, the value of

the auxiliary state ξk at time step k+1 can be computed as:

ξk+1=(I−NC2)(f(xk)+G1S(z1,k−h1(xk)−V1vk)+Wwk). (11)

Proof. By plugging d1,k from (9) into (7), we obtain

xk+1=f(xk)+G1S(z1,k−h1(xk)−V1vk)+Wwk+G2d2,k. (12)

This, together with the second equality in (10) and the above

choice of N such that (I−NC2)G2 = 0, returns (11). �

The evolution of the auxiliary state ξk in (11) is inde-

pendent of the unknown input and hence, we can compute

propagated framers for ξk leveraging embedding systems (cf.

Proposition 2). However, we do not have a way of directly

retrieving the propagated framers for the original states, i.e.,

{xk, xk} in terms of {ξ
k
, ξk} from the second equality of

(10), since I−NC2 = I−G2(C2G2)
†C2 can be shown to be

not invertible. To overcome this difficulty, given Assumption

3, we introduce a new auxiliary state:

γk , xk − Λ(N(z2,k − V2vk)− ǫk), (13)

with Λ , A−1
g , where Ag and ǫk ∈ [ǫ, ǫ] are parallel affine

outer-approximation slope and approximation error of the

mapping g(x) , x+G2M2ψ2(x) on the entire space X (cf.

Proposition 3, Corollary 1 and Assumption 3).

Proposition 4. Given Assumption 3, the two auxiliary states

γk and ξk are linearly related as:

γk = Λξk. (14)

Proof. Computing parallel affine outer-approximation of the

mapping g(xk) = Agxk + ǫk and applying (10), we obtain

g(xk) , xk +Nψ2(x) = ξk +N(z2,k − V2vk)

⇒Agxk = ξk +N(z2,k − V2vk)− ǫk, ǫk ∈ [ǫ, ǫ],

from which and given Assumption 3 (that Ag is invertible,

with Λ = A−1
g ), we have

xk = Λ(ξk +N(z2,k − V2vk)− ǫk), ǫk ∈ [ǫ, ǫ]. (15)

Plugging xk from (15) into (13) returns the results. �

We are now ready to propose an input and state resilient

interval framer, i.e., the following discrete-time dynamical

system (16)–(18), which by construction, outputs/returns

framers for the original states {xk}∞k=0 and the unknown

input signal {dk}∞k=1 of system (5). The details of the framer

construction/design will be provided in the proof of Theorem

1. The proposed resilient interval framer is as follows:

γ
k+1

=(A−LC2)
⊕γ

k
−(A−LC2)

⊖γk+ρd(xk, xk)

+D⊖ǫ−D⊕ǫ+L⊖ψ2,d(xk, xk)−L⊕ψ2,d(xk, xk)

+V̂ ⊖v − V̂ ⊕v + Ŵ⊖w − Ŵ⊖w + ẑk,
γk+1=(A−LC2)

⊕γk−(A−LC2)
⊖γ

k
+ρd(xk, xk)

+D⊖ǫ−D⊕ǫ+L⊖ψ2,d(xk, xk)−L⊕ψ2,d(xk, xk)

+V̂ ⊖v − V̂ ⊕v + Ŵ⊕w − Ŵ⊖w+ẑk,

(16)

xk=γk+ΛNz2,k+Λ
⊖ǫ−Λ⊕ǫ+(ΛNV2)

⊖v−(ΛNV2)
⊕v,

xk=γk+ΛNz2,k+Λ
⊖ǫ−Λ⊕ǫ+(ΛNV2)

⊖v−(ΛNV2)
⊕v,

(17)

dk−1= Φ⊕xk − Φ⊖xk + κd(xk−1, xk−1)+Azz1,k−1

+A⊕
v v −A⊖

v v +Φ⊖w − Φ⊕w,
dk−1= Φ⊕xk − Φ⊖xk + κd(xk−1, xk−1)+Azz1,k−1

+A⊕
v v −A⊖

v v +Φ⊖w − Φ⊕w,

(18)

where S , Ξ−1, N = G2M2 and Λ , A−1
g . Furthermore,

L ∈ R
n×(l−pH ) is an arbitrary matrix (observer gain) which

will be designed later in Theorem 2 to yield stability and

optimality of the proposed framers. Moreover, A ∈ R
n×n

and ρ : X ⊂ R
n → R

n are obtained by applying JSS

decompositions (cf. Proposition 1) on the mapping f̃(x) ,
Λ(I−NC2)(f(x)−G1Sh1(x)), while ψ2,d and ρd are tight

decomposition functions for the JSS mappings ρ and ψ2,

respectively, computed through Proposition 1. Further,

V̂, (A− LC2)ΛNV2 + LV2 + Λ(I −NC2)G1SV1,

Φ, E2M2C2, Av , (ΦG1 − E1)SV1, Az , (E1−ΦG1)S,

D, (A− LC2)Λ, Ŵ , Λ(I −NC2)W,
ẑk, Λ(I −NC2)G1Sz1,k + (L+ (A− LC2)ΛN)z2,k,

(19)

and κd is the decomposition function of the mapping κ(x) ,
(ΦG1 − E1)Sh1(x) − Φf(x), computed via [19, Theorem

1]. Finally, Ag and ǫk ∈ [ǫ, ǫ] are computed via Corollary 1.

The following theorem formalizes the state and input

framer/correctness property of the proposed resilient interval

observer (16)–(18) with respect to the original system (5).

Theorem 1. Suppose Assumptions 1–3 hold. Then, the

sequences {xk, xk}∞k=0 and {dk, xk}∞k=1 obtained from the

system (16)–(18), construct framers for the states and un-

known input signal of (5), respectively, i.e., νk ≤ νk ≤
νk, ∀ν ∈ {x, d}, ∀k ∈ N, ∀wk ∈ W , ∀vk ∈ V .

Proof. From (11) and (14), we obtain

γ+k =Λ(I−NC2)(f(xx)+G1S(z1,k−h1(xk)−V1vk)+Wwk).

Adding the zero term L(z2,k−C2xk−ψ2(xk)−V2vk) to the

right hand side of the above equation and applying mixed-

monotone decompositions on the mapping f̃(x) , Λ(I −
NC2)(f(x)−G1Sh1(x)) to decompose it as f̃(x) = Ax+
ρ(x) (cf. Proposition 1 for more details), yields:

γk+1=(A−LC2)xk+ρ(xk)−Lψ2(xk)−Ṽ vk+W̃wk+z̃k, (20)



where Ṽ , Λ(I−NC2)G1SV1+LV2, W̃ , Λ(I−NC2)W
and z̃k , Λ(I−NC2)G1Sz1,k+Lz2,k. Then, by computing

xk in terms of γk from (13) and plugging it back into the

linear terms in the right-hand side of (20), we obtain

γk+1 = (A− LC2)γk + ρ(xk)− Lψ2(xk)

−V̂ vk + Ŵwt −Dǫk + ẑk,
(21)

with V̂ , D, Ŵ and ẑk given in (19). Next, by applying Propo-

sition 2 and [22, Lemma 1], we construct the embedding

system (16) for (21), which implies γ
k
≤ γk ≤ γk, ∀k ∈ N,

by construction. Further, the results in (17) follow from

applying [22, Lemma 1] on (13) to compute framers of xk
in terms of the framers of γk.

To obtain input framers, note that multiplying both sides of

(12) by M2C2 together with Assumption 2 yields d2,k−1 =
M2C2(xk − f(xk−1) + G1Sh1(xk−1) + G1S(V1vk−1 −
z1,k−1)−Wwk−1). This, along with (6) and (9), leads to

dk−1 = Φxk+κ(xk−1)+Azz1,k−1+Avvk−1−ΦWwk−1. (22)

The input framers in (18) are obtained by leveraging [19,

Theorem 1] to compute a decomposition function for the

nonlinear function κ, as well as applying [22, Lemma 1] to

bound the linear terms in the right-hand side of (22). �

B. ISS and H∞-Optimal Interval Observer Synthesis

Next, we provide sufficient conditions to guarantee the

stability of the proposed framers, i.e., we seek to synthesize

the observer gain L to ensure input-to-state stability (ISS)

of the observer state error, exk , xk − xk in the sense of

Definition 4, while ensuring that the design is optimal in the

sense of minimizing the H∞ gain (cf. Definition 5).

First, we derive the observer error dynamics as follows.

Lemma 2. Consider the nonlinear system (5) and suppose

all assumptions in Theorem 2 hold. Then, the state framer

error dynamics of the resilient interval observer (16)–(18)

and its nonlinear comparison system are as follows:

exk+1= |A− LC2|exk + δρk + |L|δψ2

k + |Ŵ |δw
+(|Va − LVb| − |A− LC2||ΛNV2|+ |ΛNV2|)δv
+(|Λ|+ |Da − LDb| − |A− LC2||Λ|)δǫ
≤ (|A− LC2|+ F ρ + |L|Fψ2

)exk + |Ŵ |δw
+(|Va − LVb| − |A− LC2||ΛNV2|+ |ΛNV2|)δv
+(|Λ|+ |Da − LDb| − |A− LC2||Λ|)δǫ,

(23)

where δζk , ζd(xk, xk) − ζd(xk, xk), ∀ζ ∈ {ψ2, ρ}, δs ,

s − s, ∀s ∈ {w, v, ǫ}, and F ζ , ∀ζ ∈ {ψ2, ρ} are computed

through Proposition 2. Moreover,

Va , AΛNV2 + Λ(I −NC2)G1SV1,

Vb , (C2ΛN − I)V2, Da , AΛ, Db , C2Λ.
(24)

Proof. It follows from (16) that the dynamics of eγk , γk −
γ
k

is given by eγk+1 = |A−LC2|eγk + δρk+ |L|δψ2

k +|V̂ |δv+
|Ŵ |δw + |D|δǫ. This, combined with exk = eγk + |Λ|δǫ +
|ΛNV2|δv (followed from (17)) results in the equality in (23),

which together with the facts that δζk ≤ F ζe
x
k, ∀ζ ∈ {ρ, ψ2}

(cf. Proposition 2), yields the inequality in (23). �

Further, by leveraging slightly different approaches to

derive an upper linear comparison system for the nonlinear

error comparison system (23), we derive different sets of

sufficient conditions to guarantee the ISS property of the

proposed observer, as well as to ensure the optimality of the

design in the sense of minimum H∞ gain, as follows.

Theorem 2 (ISS & H∞-Optimal Resilient Interval Ob-

server Synthesis). Consider system (5) (equivalently the

transformed system (7)) and suppose Assumptions 1–3 hold.

Moreover, suppose there exist matrices R
n×n ∋ P ∗ ≻

0n,n,Γ
∗ ∈ R

n×(l−pH )
≥0 and η∗ ∈ R>0 such that −P ∗ ∈ Mn

and the tuple (P ∗,Γ∗, η∗) solves the following problem:

min
{η,P,Γ}

η

s.t.









P PÃ− ΓC̃ P B̃ − ΓD̃ 0
∗ P 0 I
∗ ∗ ηI 0
∗ ∗ ∗ ηI









≻0, (P,Γ) ∈ C,
(25)

where the matrices Ã, B̃, C̃, D̃, as well as the corresponding

additional set of constraints C can be either of the following:

(i) C={(P,Γ) | P
[

A Va Da

]

−Γ
[

C2 Vb Db

]

≥ 0}, if:

Ã = A+ F ρ, C̃ = C2 − Fψ2
,

B̃ =
[

Va + (I −A)|ΛNV2| |Ŵ | Da + (I −A)|Λ|
]

,

D̃ =
[

Vb − C2|ΛNV2| 0 Db − C2|Λ|
]

.

(ii) C = {(P,Γ) | Γ
[

C2 Vb Db

]

≥ 0}, if

Ã = |A|+ F ρ, C̃ = −C2 − Fψ2
,

B̃ =
[

|Va|+(I−|A|)|ΛNV2| |Ŵ | (I−|A|)|Λ|+|Da|
]

,

D̃ =
[

C2|ΛNV2| − Vb 0 C2|Λ| −Db

]

.

(iii) C = {(P,Γ) |PA− ΓC2 ≥ 0}, if:

Ã = A+ F ρ, C̃ = C2 − Fψ2
, D̃ =

[

−V2 0 0
]

,

B̃ =
[

|Λ(I−NC2)G1SV1|+|ΛNV2| |Ŵ | |Λ|
]

.

Then, the proposed resilient interval framer (16)–(18) with

the corresponding gain L = (P ∗)−1Γ∗, is a resilient ISS

input and state interval observer in the sense of Definition 5

and also is H∞-optimal (cf. Definition 6). Finally, in any of

the above cases, the LMI in (25) is feasible only if the linear

comparison system (Ã, B̃, C̃, D̃) is detectable.

Proof. We will show that in each of the cases (i)–(iii),

given the corresponding constraint set C, a linear comparison

system for the observer state error dynamics (23) can be

computed in the following form:

exk+1 ≤ (Ã− LC̃)exk + (B̃ − LD̃)w̃, (26)

with w̃ ,
[

δv⊤ δw⊤ δǫ⊤
]⊤

, where the detectability of

the pair (Ã, C̃) is a necessary condition for stabilizing the

comparison system. If this can be shown, then using the

results in [23, Section 9.2.3], the solution (P ∗,Γ∗) to the

program in (25) returns the optimal observer gain L∗ =
(P ∗)−1Γ∗ for the linear comparison system (26), and hence,

for the original error dynamics (23) in the minimum H∞

gain sense with an H∞ gain of η∗ (cf. Definition 6). This

implies that the above linear comparison system (26) satisfies

the following asymptotic gain (AG) property [24]:

lim sup
k→∞

‖exk‖2≤α(‖δ̃‖ℓ∞), ∀ex0 , ∀0≤δ̃≤[(δw)⊤ (δv)⊤ (δǫ)⊤]⊤,

where δ̃ is any realization of the augmented noise and outer-

approximation error interval width and α is any class K∞

function that is lower bounded by η∗δ̃. On the other hand,

by setting δ = 0, the LMIs in (25) reduce to their noiseless

counterparts in [15, Eq. (19)]. Hence, by [15, Theorem 2],



the comparison system (26) is 0-stable (0-GAS), which in

addition to the AG property above is equivalent to the ISS

property for (26) by [24, Theorem 1-e]. Thus, the designed

observer is also ISS. So, what remains to complete the proof

is to show that the comparison system (26) can indeed be

computed in each of the cases as follows.

Case (i). Consider the nonlinear comparison system in

(23). By satisfying the constraint set C, we enforce −P to

be Metzler, as well as PÃ−ΓC̃, PVa−ΓVb and PVa−ΓVb
to be non-negative. Also, Γ is non-negative by assumption.

Consequently, since P is positive definite, it becomes a non-

singular M-matrix, i.e., a square matrix whose negation is

Metzler and whose eigenvalues have non-negative real parts,

and hence is inverse-positive [25, Theorem 1], i.e., P−1 ≥ 0.

Therefore, L = P−1Γ ≥ 0, A−LC2 = P−1(PA−ΓC2) ≥
0, Va − LVb = P−1(PVa − ΓVb) ≥ 0 and Da − LDb =
P−1(PDa − ΓDb) ≥ 0, because they are matrix products

of non-negative matrices. So, |L| = L, |A − LC2| = A −
LC2, |Va−LVb| = Va−LVb and |Da−LDb| = Da−LDb,

which turns (23) into the form of (26).

Case (ii). By applying the triangle inequality, the compar-

ison system in (23) can get upper bounded again as

exk+1≤ (|A|+ |LC2|+ F ρ + |L|Fψ2
)exk + |Ŵ |δw

+(|Va|+|LVb| − |LC2||ΛNV2|+(I − |A|)|ΛNV2|)δ
v

+((I − |A|)|Λ|+ |Da|+ |LDb| − |LC2||Λ|)δ
ǫ.

(27)

By a similar argument as in Case (i), enforcing −P to be

Metzler along with the constraints set C results in |LC2| =
LC2, |LVb| = LVb and |LDb| = LDb, and hence turns (27)

into the form of (26).

Case (iii). Note that by the triangle inequality, |Va −
LVb| = |(A− LC2)ΛNV2 + LV2 + Λ(I −NC2)G1SV1| ≤
|(A − LC2)||ΛNV2| + |L||V2| + |Λ(I −NC2)G1SV1|, and

|Da − LDb| = |(A−LC2)Λ| ≤ |(A−LC2)||Λ|. These two

combined with (23) yield

exk+1≤ (|A−LC2|+F ρ+|L|Fψ2
)exk+|Ŵ |δw+|Λ|δǫ

+(|L||V2|+|ΛNV2|+|Λ(I −NC2)G1SV1|)δ
v.

(28)

The rest of the proof is to enforce that A− LC2 and L are

non-negative to turn (28) into the form of (26), which is

similar to the the proofs of the previous two cases. �

V. ILLUSTRATIVE EXAMPLE

We now illustrate the effectiveness of our proposed re-

silient observer using a three-area power system [2, Figure

1], where each control area consists of a generator and load

buses with transmission lines between areas. The nonlinear

continuous-time model of the buses is slightly modified

based on [26], with the subscript i being the bus number:

ḟ1(t) = − 1
m1

(φi(t)− (PM1
(t) + d1(t))) + w2,1(t),

ḟi(t) = − 1
mi

(φi(t)− PMi
(t)) + w2,i(t), i ∈ {2, 3},

θ̇i(t) = fi(t) + w1,i(t), i ∈ {1, 2, 3},
with φi(t) , Difi(t) +

∑

l∈Si
Pil(t) + PLi

(t)), where θi
is the phase angle, fi is the angular frequency, mi = 0.01,

Di = 0.11, PMi
(t) is the mechanical power (the control

input), PLi
(t) is a known power demand, Si is the set of

neighboring buses of i, and the nonlinear tie line power flow

equation is as follows: Pil(t) = −Pli(t) = til sin(θi(t) −
θl(t)), with til = 1. Only the actuator of Control Area 1 is

attacked and the false data injection signal is d1(t).

On the other hand, the output equation is given as follows:

yi(t) = [θi(t) fi(t)]
⊤ + vi(t), i ∈ {1, 3},

y2(t) = [θ2(t) f2(t)]
⊤ + d2(t) + v2(t),

where only the sensor y2(t) is injected with a false data

signal d2(t). Thus, the concatenated attack/unknown input

signal is d(t) = [d1(t) d2(t)]
⊤ and the G and H matrices in

(5) corresponding to the attack locations are given by G =
[

0 0 0 0 0 0
0 1 0 0 0 0

]⊤

and H =

[

0 0 0 0 0 0
0 0 0 1 0 0

]⊤

.

In our simulations, the forward Euler method is used

to discretize the system dynamics with a sampling time

dt = 0.01s and both PMi
(t) and PLi

(t) were set to be

identically zero. Moreover, for i = 1, . . . , 3, the process

noise wi(t) and the measurement noise vi(t) were assumed

to be bounded within the bounds
[

[

−50 −50
]⊤
,
[

50 50
]⊤

]

and
[

[

−0.5 −0.5
]⊤
,
[

0.5 0.5
]⊤

]

, respectively.

For the sake of comparison, we first applied our previous

input and state observer [14] that does not have stabilizing

gains to the above example, which we found to not be able

to yield stable interval estimates (i.e., the framer interval

width diverges). On the other hand, when implementing the

proposed observer in (16)–(18), the optimization problem in

(25) was solved with the additional linear constraints in Case

(iii), and we obtained the following observer gain:

L =













0.70 0 0.27 0 0
0 0 0.38 0 0
0 0.83 73.19 0 0

−0.0022 0.0084 174.55 0.0056 −0.0001
0 0 0.14 0.70 0.005

0.0050 0.0098 0.11 0.01 0.62













.

As shown in Figures 1 and 2, all the states and attack sig-

nals are bounded by the framers computed by the proposed

observer, demonstrating its correctness and ability to obtain

resilient state estimates and to reconstruct attack signals.

Finally, as shown in Figure 3, the actual state and input

estimation error sequences (i.e., the framer interval widths)

converge to steady-state values, demonstrating the input-to-

state stability of the proposed interval observer.

VI. CONCLUSION

In this paper, the problem of resilient state estimation

and attack reconstruction for nonlinear discrete-time systems

with nonlinear observations/constraints, that are subject to

bounded noise signals, was addressed. In the considered

setting, both sensors and actuators could be affected by at-

tack signals/unknown inputs. By introducing auxiliary states,

as well as taking advantage of mixed-monotone decom-

position of nonlinear functions and affine parallel outer-

approximation of the observation functions, the proposed ob-

server was shown to be correct, i.e., it recursively computes

interval estimates that by construction, contain the true states

and unknown inputs of the system. Further, several semi-

definite programs were provided to synthesize the proposed

observer gains that guarantee input-to-state stability of the

observer and optimality of the proposed interval observer

design. Future work will include alternative designs for

minimizing L1 gain, similar to [27], as well as an extension

to continuous-time nonlinear systems and hybrid systems.



Fig. 1: States: θi, fi, and their upper and lower framers

θi, θ1, f i, f i, returned by the proposed approach.

Fig. 2: Attack signals: d1, d2, and their upper and lower

framers d1, d1, d2, d2, returned by the proposed approach.
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