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Old and New Perspectives on Optimal Scaling

Hervé Abdi, Agostino Di Ciaccio, & Gilbert Saporta

Abstract Processing in machine learning qualitative variables having a very large
number of modalities is an opportunity to revisit the theory of optimal scaling and
its applications. This revisitation starts with the pioneers of scaling in statistics,
psychometrics, and psychology before moving on to more contemporary treatments
of scaling that fall within the realm of machine learning and neural networks.

1 Introduction

Qualitative variables are ubiquitous in many fields but genetic and human sciences
(especially psychology) have been some of the first disciplines to routinely incorpo-
rate qualitative variables in their practice. This importance of qualitative variables
prompted Stevens (a psychologist) to create in 1946 the now classic typology of
measurement scales. In this typology, qualitative (also called categorical) variables
come in two varieties:
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• Nominal variables, so called because the modalities—also named levels or
categories—of a nominal variable are “names.” Formally, a nominal variable
corresponds to a partition of a set.

• Ordinal variables (a nominal variable whose modalities are ordered); formally,
an ordinal variable corresponds to a pre-order on a set.

Because most multivariate statistical methods are designed for quantitative vari-
ables (in Stevens’s typology: interval and ratio scales), an obvious problem is to
optimally transform a qualitative variable into a quantitative variable. This problem
being relevant for several disciplines, similar procedures to solve it were indepen-
dently developed multiple times and therefore come under different names with
scaling, quantification, coding, and encoding being favourites. So, a nominal or or-
dinal variable is quantified, (en)coded, or scaled when its modalities are replaced by
numbers having at least the properties of an interval scale.

Note that the terms coding, and encoding are ambiguous because they can refer
either to the transformation of a qualitative variable into a numerical variable (quan-
tification) or to a way of representing a qualitative variable such as, for example,
disjunctive coding.

The problem of transforming qualitative variables into quantitative variables has
a long history. In statistics, its history goes back to the early contributions of major
figures such as Hirschfeld (1935), Horst (1935), who coined the named “reciprocal
averaging,” Fisher (1940), and Hayashi (1950). In psychology (and of course psycho-
metrics) early contributions of other major figures include Guttman (1941, 1944),
Festinger (1947), and even Coombs in his classic work a Theory of Data (1964,
see also, Coombs, 1948). The statisticians were mostly interested in maximising the
(squared) correlation between sets of variables; but the psychologists (influenced
by factor analytic models) were concerned about scaling (i.e., estimating a quan-
titative latent variable or factor from qualitative measurements). The maximisation
approach of the statisticians would lead to (simple) correspondence analysis whereas
the factorial approach of the psychologists would lead to multiple correspondence
analysis (see, for details, the historical review of Lebart & Saporta, 2014).

This early work matured in the 1970s and early 1980, which were the years of
the search for optimal codes (called factor scores or scaling scores) in supervised or
unsupervised contexts, an endeavour where researchers such as de Leeuw (1973),
Nishisato (1980), Takane (1980), Tenenhaus (1988), and Young (1976, 1978, 1981,
see also Tenenhaud and Young, 1981) distinguished themselves. This research was
then implemented by commercial software with procedures such as prinqual and
transreg for sas, or categories for spss.

In the next 30 years or so, after this first foray in the theory of optimal scaling,
the topic did not generate much research: routine applications involved computing
predictive scores, such as risk scores in banking and insurance. However, recent
interest in the scaling problem was reignited by the availability of massive data sets.
Nowadays, machine learning researchers and practitioners need to handle categorical
data (which are ill-suited for most machine learning algorithms such as neural
networks) that often have large numbers of modalities (e.g., from dozens or even
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hundreds of modalities, such as postal codes; for details, see, e.g., Hancock &
Khoshgoftaar, 2020).

This new interest in qualitative data stimulated the development of several coding
methods—mostly developed in the ignorance of the early work of statisticians and
psychometricians. As an illustration of this trend, Di Ciaccio (2023) recently reported
that the popular Python package scikit-learn offers seventeen different methods
that he categorised into three groups:

• methods where the encoding of a variable does not depend on the other variables,
in particular the response (e.g., hash encoding),

• methods where the encoding only depends on the response (e.g., conditional
mean), and

• One-Hot Encoding (ohe), which is nothing more than the usual disjunctive rep-
resentation with as many indicators as modalities (see Equation ??).

The large size of certain categorical data sets raises problems of stability and
overfitting—problems that were neglected in classical statistical applications where
the number of modalities was typically small and the learning-testing methodology
rarely used. Because of their different view points, the confrontation of the early
approach of the statisticians and psychometricians with the newer approach from
data scientists could foster a renewal of coding methods for qualitative data (for
details, see Meulman et al., 2019).

The rest of the chapter is organized as follows: Sections 2 and 3 are devoted to
notations and to the mathematical structures of quantifications. Section 4 describes
early works from 1935 till the 1960s. Section 5 is devoted to the “golden seven-
ties” dominated by optimal scaling (performed with alternating least squares) and
Nishisato’s dual scaling. Section 6 describes how machine learning has taken over
the problem of encoding, with its connection to multivariate statistics and how this
can foster a re-interpretation of correspondence analysis from a non-linear point of
view.

2 Matrix representation of categorical encoding and notations

When dealing with 𝐼 observations it is often practical to represent a nominal variable
as a binary group matrix (called a complete disjunctive coding matrix) denoted by
X whose rows are observations and whose columns represent the modalities of the
nominal variable1.

For example, consider a sample with 𝐼 = 5 observations, denoted {𝑆1, . . . , 𝑆5},
and a nominal scale with 𝐽 = 3 modalities: {1, 2, 3} that could be, for example,
{disagree, neutral, agree}, with the following answers for these five observations

𝑋 = [1, 2, 3, 1, 2]T , (1)

1 As noted above, and developed later on, this is a procedure rediscovered in machine learning
under the name of one hot encoding.
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then the group matrix would be equal to

X =




𝑆1 1 0 0
𝑆2 0 1 0
𝑆3 0 0 1
𝑆4 1 0 0
𝑆5 0 1 0

=
[
11, 12, 13

]
. (2)

where, for example,11 = [1, 0, 0, 1, 0]T is the indicator variable for the first category.
In this chapter, the following notations are used:

- 𝐼 is the number of units/observations {1, 2, . . . , 𝑖, . . . , 𝐼},
- 𝑋 is a nominal variable, namely a sequence of 𝐼 modalities,
- x is a quantification of 𝑋 (i.e., a real vector of length 𝐼),
- 𝐾 is the number of nominal variables,
- 𝐽 is the number of modalities, of a variable, {1, 2, . . . , 𝑗 , . . . , 𝐽},
- 𝐽𝑘 is the number of modalities of the 𝑘th variable (when 𝐾 > 1),
- X is the disjunctive matrix, (of dimensions 𝐼 × 𝐽) for variable 𝑋 ,
- 𝐿 is the dimension of a vector space {1, 2, . . . , ℓ, . . . , 𝐿},
- a𝑘 is the single category quantification of variable 𝑘 (i.e., a real vector of lenght
𝐽𝑘),

- A𝑘 is the category quantification array on 𝐿 dimensions (of dimensions 𝐽𝑘 × 𝐿),
- q𝑘 is the vector of a single quantified variable 𝑘 , (a real vector of Lenght 𝐼),
- Q𝑘 is the quantified array of variable X𝑘 (of dimensions 𝐼 × 𝐿) for 𝐿 dimensions.

3 The structure of quantifications

Quantifying or encoding a categorical variable can be written using simple transfor-
mations that we explicitly define in the following sections.

3.1 Categorical encoding

Let 𝑋 be a nominal variable with 𝐽 unordered modalities {1, . . . , 𝑗 , . . . 𝐽} and x a
quantification of 𝑋 using at most 𝐽 distinct values

{
𝑎1, . . . , 𝑎 𝑗 , . . . 𝑎𝐽

}
. Then, if 1 𝑗

denotes the indicator variable of the 𝑗 th category, we have:

x =

𝐽∑︁
𝑗=1
𝑎 𝑗1 𝑗 . (3)

Quantifying 𝑋 boils down to defining a linear combination (with the weights 𝑎 𝑗
being called the code or scale values) of the indicator variables. When there is no
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constraint on the 𝑎 𝑗 weights, the set of possible quantifications x is a vector subspace
W with dimension 𝐽.

Because
𝐽∑︁
𝑗=1

1 𝑗 = 1, (4)

(with 1 begin a commensurable vector of 1s) the set Δ of constant variables (which is
a one-dimensional subspace) is included into W. If x is required to have zero mean,
then

x ∈
{
Δ⊥ ∩W

}
. (5)

Note that the encoding from Equation ?? is redundant because the value of any
1 𝑗 variable can be deduced from the values of the other (𝐽 − 1) variables. Another
possibility could be to use only 𝐽 − 1 indicator variables as done, for example, with
the dummy coding scheme used in the general linear model and logistic regression.
We will not use this coding scheme here so that all modalities play the same role.

3.2 Ordinal encoding

If there is a natural order between the modalities (i.e., a pre-order on the set of
responses) it is natural to require that

𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝐽 .

Let us consider the following reparametrisation:

𝑎1 = 𝑏1, 𝑎2 = 𝑏1+𝑏2, . . . , 𝑎𝐽 = 𝑏1+· · ·+𝑏 𝑗+· · ·+𝑏𝐽 with

{
𝑏1 ∈ R
𝑏2, . . . , 𝑏𝐽 ≥ 0;

(6)

then

x =

𝐽∑︁
𝑗=1
𝑎 𝑗1 𝑗

= 𝑏111 + (𝑏1 + 𝑏2)12 + · · · + (𝑏1 + 𝑏2, . . . )1𝐽
= 𝑏1 (11 + 12 + · · · + 1𝐽 ) + 𝑏2 (12 + · · · + 1𝐽 ) + · · · + 𝑏𝐽1𝐽
= 𝑏1 + 𝑏2 (12 + · · · + 1𝐽 ) + · · · + 𝑏𝐽1𝐽

= 𝑏1 +
𝐽∑︁
𝑗=2

𝑏 𝑗z 𝑗 (7)

where
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z 𝑗 =

𝐽∑︁
ℓ= 𝑗

1ℓ . (8)

The variable x is thus a linear combination of 𝐽 − 1 variables with non negative
coefficients, which is the definition of a convex polyhedral cone (see, e.g., Tenenhaus,
1988), plus one unconstrained constant term. In other words, x belongs to the direct
sum of Δ and an (𝐽 − 1) convex polyhedral cone C𝐽−1, and so:

x ∈ {Δ ⊕ C𝐽−1} . (9)

Note: if we also require that x has zero mean, the constant 𝑏1 will be negative.

3.3 Two simple optimal scaling problems

Let 𝑌 be a numerical response variable. What is the optimal way to quantify a
qualitative variable 𝑋 in order to best predict 𝑌 in the least-squares sense?

If 𝑋 is categorical, the solution2 is given by the projection of 𝑌 onto the subspace
W spanned by the set of the indicator variables 1 𝑗 . In other words, the optimal
solution is obtained by performing a multiple regression without intercept of 𝑌 onto
the set of the 1 𝑗 . Because the 1 𝑗 are orthogonal, the solution is easily found: The
optimal scores 𝑎 𝑗 are the conditional means for each modality �̄� 𝑗 .

If 𝑋 is ordinal, the solution is less straightforward because we have to project 𝑌
onto a polyhedral cone instead of a vector subspace. However, because the cone
is convex (cf. Equation ??), the solution is unique and boils down to computing a
multiple regression

𝑌 = 𝑏1 +
𝐽∑︁
𝑗=2

𝑏 𝑗z 𝑗 (10)

with positivity constraints for the 𝑏 𝑗 coefficients (for 𝑗 > 1, cf. Equation ??). The
solution of this constrained optimisation problem can be found using some efficient
numerical methods such as the pool adjacent violators algorithm (see, e.g., Kruskal,
1964; Tenenhaus, 1988; de Leeuw et al., 2009).

3.4 Crisp coding, fuzzy coding, spline coding

Transforming a numerical variable into a qualitative variable by splitting it into
classes, and then recoding this variable according to the previously mentioned prin-
ciples, is a low cost way of non-linearly transforming a numerical variable.

Coding with Equation ??—called here crisp-coding—has the disadvantage of
introducing discontinuities that can loose some information from the original vari-

2 Called target encoding in machine learning.
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able. To alleviate this problem, various kinds of fuzzy encodings can be used—a
procedure equivalent to defining membership functions for neighbouring intervals.
Crisp-coding and piecewise-linear encoding (which is a fuzzy coding) are particular
cases of linear combinations of spline functions as illustrated in Figure ?? that shows
examples of splines of, respectively, Degrees 0 and 1 associated to (discontinuous)
crisp-coding and piecewise continuous linear transformations.

Fig. 1 Basis spline functions of 0 and 1 degrees.

An additional example of spline function is suggested by Ramsay (1988) who ad-
vocates the use of monotonous spline functions. Gallego (1982), who also considers
fuzzy coding, uses trapezoidal encodings as illustrated in Figure ??.

Fig. 2 Trapezoidal encoding (from Gallego, 1982).

4 Early works

Quantifying a qualitative variable on its own makes little sense if it is not linked
to a goal, such as explaining another variable. Statisticians were concerned very
early on with the search for non-arbitrary quantifications by seeking to optimise
specific criteria (which were, most of the time, expressed as maximising squared
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scalar products such as correlations). The early works were naturally concerned with
the case of two categorical variables and their associated contingency table.

4.1 The case of bivariate distributions

Hirschfeld (1935, p. 520)—better known under his American identity of Hartley—is
apparently the first researcher to ask the following question (and to answer it):

It is well known that the correlation theory for such a distribution gives much better results
if both regressions are linear [. . . ]. Given a discontinuous distribution 𝑝𝑣𝑞 , is it always
possible to introduce [. . . ] new values for the variates 𝑥𝑣, 𝑦𝑞 , such that both regressions are
linear?

Later on (and without reference to Hirschfeld), as summarised by Lancaster (1957,
pp. 289–290):

In 1940 Fisher considered contingency tables from the point of view of discriminant analysis.
Suppose that ‘scores,’ i.e. arbitrary variate values, are assigned to the rows and also to the
columns of a contingency table: what are the best scores to assign to the rows so that a linear
function of them will best differentiate the classes determined by the columns, and vice
versa. This turns out to be a problem in maximizing the correlation between the scores and
the required correlations are those known as ‘canonical’ in the sense of Hotelling (1936).

Lancaster was referring to the algorithm described by Fisher (1940, p. 426),
and now considered as an early example of alternating least squares or dual scaling,
applied to the (now) famous table cross-tabulating the eye and hair colours of Scottish
schoolchildren (from the county of Caithness):

. . . starting with arbitrarily chosen scores for eye colour, determining from these average
scores for hair colour, and using these latter to find new scores for eye colour.

This “optimal coding” algorithm converges to the solution given by the coordinates
of the rows and columns along the first axis of the correspondence analysis of the
contingency table.

Maung (1941, p. 200)—who was interested in the higher order encodings cor-
responding to the successive pairs of canonical variables—attributes to Fisher a
formula giving the value of each cell in the contingency table from the margins, the
canonical correlations, and the successive codings. This formula—also called the
RC canonical correlation model—is none other than the well-known reconstitution
formula of correspondence analysis. Williams (1952) is also a notable reference
about the development of significance tests for canonical correlations.

Further details on the relationship between optimal scaling and correspondence
analysis are given in Saporta (1975), Nishisato (2006, Chapter 3), Lebart and Saporta
(2014), and many others, including Hill (1974), and Beh and Lombardo (2014).
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4.2 Lancaster’s theorem

The search for optimal scores is unexpectedly related to the problem of transforming
a given probability distribution into a normal distributions. Lancaster (1957) showed
that the (squared) correlation coefficient between the two components of a bivariate
normal vector cannot be increased regardless of the (non-linear) transformations that
can be applied to them. This result inspired the following comments to Kendall and
Stuart (1961, pp. 568–569):

We may ask: What scores should be allotted to the categories in order to maximize the
correlation coefficient between the two variables? Surprisingly enough, it emerges that these
‘optimum’ scores are closely connected with the transformation of the frequencies in the table
to bivariate normal frequencies [. . . ] And the theoretical implication of the [Lancaster’s]
result is clear: if we seek separate scoring systems for the two categorized variables such as to
maximize their correlation, we are basically trying to produce a bivariate normal distribution
by operations upon the margins of the table.

4.3 Quantifying more than two attributes: Guttman, Hayashi

Guttman (1941), in a famous paper, referred to the method of reciprocal averaging (as
described by Horst, 1935), and proposed to simultaneously quantify 𝐾 categorical
variables in such a way that they are as similar as possible and that their means are as
dispersed as possible. The rationale behind this criterion was that such an approach
would be optimal when the 𝐾 variables, collected in a multiple choice questionnaire,
measured more or less the same construct (as in a factor analysis model with only
one latent variable). When the total variance is fixed, this amounts to maximizing
the measure of internal consistency as described below.

Let X = [X1 | . . . |X𝑘 | . . . |X𝐾 ] be the supermatrix of all 𝐾 disjunctive matrices,
a𝑘 the category quantification vector of variable 𝑋𝑘 , a the supervector concatenating
all category quantifications, z𝑘 = X𝑘a𝑘 the corresponding vector of object scores
and

z̄ =
1
𝐾

𝐾∑︁
𝑘=1

z𝑘 =
1
𝐾

Xa (11)

the vector of average object scores.
Guttman (1941) showed that the scores, which maximise the variance of z̄ under

a scaling constraint for a, are given by the coordinates of the modalities of the 𝐾
variables along the first axis of what will later be called Multiple Correspondence
Analysis (mca). On this occasion, Guttman coined the term “chi-square metric” now
routinely associated to correspondence analysis.

Independently, Hayashi (1950) developed an approach similar to Guttman’s under
the name of Type III quantification. Three other types of quantification using (or not)
an external response variable were also developed by Hayashi. Tanaka (1979) and
Takeuchi et al. (1982, Chapter 8) are useful references for the Japanese contributions.
A bit later Slater (1960) proposed a method to analyse personal preference data that
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represents these data in a multi-dimensional space where observations and stimuli
can be represented simultaneously, and, as noted by Nishisato (1978, p. 263), his
approach was “essentially the same as Guttman’s but the close relationship between
them was apparently left unnoticed.”

5 The golden seventies

The 1970s were a particularly fertile period for the development of optimal scaling
and the journal Psychometrika was the privileged venue for publishing on this topic
with no less than 145 articles published between 1968 and 1982 using the keywords
“Optimal Scaling” (799 using the same keywords without dates and 199 using only
the keywords “Dual Scaling”). It is therefore impossible to be exhaustive.

5.1 The Alternating Least Squares (ALS) approach for optimal scaling

In his 1981 Presidential Address to the Psychometric Society’s Spring Meeting,
Young (1981) returned at length to his work carried out in collaboration with, on one
hand de Leeuw and Takane and, with, on the other hand, Tenenhaus. He reflected
that these collaborations constituted an important new stream, because:

Optimal scaling is a data analysis technique which assigns numerical values to observation
categories in a way which maximizes the relation between the observations and the data
analysis model while respecting the measurement character of the data (Young 1981, p.
358).

A large number of algorithms were then developed using the alternating least squares
(als) approach, which consists in separating the parameters of the problem into two
sets:

1. the model parameters, and
2. the data parameters (the codings).

The optimisation then proceeds by obtaining the least squares estimates of the model
parameters while assuming that the data parameters are constant. One then switches
to the other set: obtaining the least squares estimates of the data parameters given
the model parameters and so on until convergence. Even though convergence to a
local optimum is guaranteed, convergence to a global optimum is not guaranteed
because convergence depends upon the initial values (i.e., there are multiple local
optima where the search could converge). Note that the als approach can also be
applied to regression or predictive type problems which are now called supervised
approaches, whereas the pioneers were not particularly interested in these methods.

Morals type algorithms (Young et al., 1976) make it possible to carry out
multiple regressions by transforming both a response 𝑌 and the predictors 𝑋1, . . . ,
𝑋𝑘 , . . . , 𝑋𝐾 with monotonic or non-monotonic optimal transformations according to
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the nature of the variables by using successions of projections on vector subspaces or
cones. Denoting by 𝜓 and 𝜑1, . . . , 𝜑𝐾 the transformations of the original variables,
the optimisation problem is the following:

max
𝜓,𝜑1 ,𝜑2 ,...,𝜑𝐾

𝑅2 [𝜓(𝑌 ); 𝜑1 (𝑋1) , 𝜑2 (𝑋2) , . . . , 𝜑𝐾 (𝑋𝐾 )] . (12)

Transformed variables are usually constrained to be standardized in order to avoid
degeneracy.

The prinqual (Bouroche et al., 1977) and princals (Young et al., 1978) algo-
rithms implement a principal component analysis of 𝐾 coded qualitative variables
while respecting the nominal or ordinal nature of these variables. However, the op-
timality criterion is not as obvious as is the maximisation of the (squared) multiple
correlation in multiple regression, because this is an unsupervised problem. The most
commonly used criterion maximises the percentage of variance explained by the first
𝐿 principal components 𝐶1, . . . , 𝐶𝐿 (the default value is 𝐿 = 2 in the prinqual pro-
cedure of sas because two-dimensional displays are the ones most frequently used).
Formally the maximisation problem can be expressed as the solution of:

max
𝜑1 ,𝜑2 ,...,𝜑𝑘
𝐶1 ,...,𝐶𝐿

𝐾∑︁
𝑘=1

𝐿∑︁
ℓ=1

𝑟2 (
𝜑𝑘 (𝑋𝑘) , 𝐶ℓ

)
. (13)

Note that if 𝐿 = 1, the solution for 𝐾 nominal variables is identical to the solution
provided by the first dimension of multiple correspondence analysis, (i.e., this is
the solution of the problem from Guttman, 1941). However, there is a fundamental
difference between the alorithms of the prinqual-type—which look for unique
codings of categorical variables—and the algorithms of the mca and homals types—
which look for as many codings as the number of dimensions of the data (for more,
see Gifi, 1990).

In the late 1980’s, Van Buuren and Heiser (1989) developed groupals, a method
for optimising simultaneously a clustering of units and quantifications of categorical
variables, which was taken up almost 30 years later by van de Velden et al. (2017)
for their development of cluster correspondence analysis.

5.2 Dual scaling: Nishisato’s synthesis

In the 1970’s Nishisato (originally a psychologist, later turned into a psychometri-
cian) revisits the problem of the quantification of qualitative variables (both nominal
or ordinal) and integrates the two quantification traditions (i.e., statistics and psy-
chometrics). Faced with so many names for equivalent methods, Nishisato preferred
the appellation of dual scaling. In his early book, Nishisato (1980) presents an
early synthesis of these two branches in the first chapter dedicated to the history
of the “scaling” problem for qualitative variables—a review that remains one of
the best sources for its origins and early efforts but that also often suggests future
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developments. Nishisato anchors dual scaling in the early psychometric approach of
Horst (1935) and Guttman (1941), but also integrates Maung’s (1941) and Fisher’s
contributions (i.e., “additive scoring,” 1940). Nishisato describes dual scaling as a
maximisation problem as previously defined by Bock (1960) as an approach that:

assign[s] numerical values to alternatives, or categories, so as to discriminate optimally
among the objects (Bock, 1960; p. 1).

From this definition, Nishisato generalised and adapted the dual scaling method-
ology to a wider set of data types whose extension can only be compared to the,
then, contemporary, French developments. For the specific problem of quantify-
ing a set of nominal variables, Nishisato uses the super matrix approach described
in Equation ??, and derives from there the equations and properties of multiple
correspondence analysis.

5.3 A success story: credit scoring

Credit scoring techniques are used to check if a loan applicant is worthy of credit.
Using historical data on whether or not debtors have correctly repaid their instal-
ments, the problem reduces for numerical predictors to an application of a supervised
classification method such as discriminant analysis or logistic regression.

However, for individual applicants, most of the predictors are categorical variables
such as gender, marital, and employment status. Scoring methods assign a score to
each modality of a variable so that the addition of these partial scores best separates
the two groups. Because the quantification of each predictor is equivalent to defining a
linear combination of the indicators of its modalities, the optimal solution is obtained
from a discriminant analysis using the columns of the associated disjunctive table as
predictors:

X = [X1 | . . . |X𝑘 | . . . |X𝐾 ] . (14)

Because X is not of full rank, Bouroche et al. (1977) proposed to replace it by
the 𝑃 best components z𝑝 of the multiple correspondence analysis of X. Here “best
components” means the components that best predict the target, instead of the ones
with the largest eigenvalues. Fisher’s linear discriminant function is then computed
as and re-decomposed as a linear combination of all indicator variables which gives
the optimal scores—a procedure similar to “principal component regression” for
qualitative instead of quantitative variables. The previous method known as disqual
(see Niang & Saporta, 2006, for a detailed illustration of disqual) as well as logistic
regression (which eliminates an indicator in each X𝑘) are routinely used by banks,
insurance companies, and so on: Optimal coding has become transparent!

The interest of scores compared to black box approaches is to lead to easily
interpretable decision rules—a feature now socially required.
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6 Machine learning and variable encoding

In the machine learning terminology the modality quantification (or encoding) can
be obtained by “embedding” the modalities in a low-dimensional space. For neural
networks, a well-known embedding is called word-embedding (see, e.g., Bengio
et al., 2003). Embedding in Natural Language Processing (NLP which is the set of
techniques that use machine learning to analyse textual data) is a vector representation
of the words in such a way that words which frequently appear in similar contexts are
close to each other. It is possible to use the same approach for representing modalities
in a vector space, in order to use models that require numerical data. Using neural
networks, interesting connections appear with the optimal scaling methods described
in the previous paragraphs. One of the advantages of the approach showed here is
the ability to analyse categorical variables with hundreds of modalities, as long as
the number of observations is adequate.

It is convenient to distinguish the supervised case, in which we need to predict a
quantitative target 𝑌, from the unsupervised case, in which we do not have a target
variable. In the supervised case, quantification is only a tool for applying the model
to qualitative data and generally has no interest in itself: The best quantification
is the one that best predicts the target. By contrast, in the unsupervised case, the
interest is precisely in the quantifications of the modalities: here the embedding of
the modalities, and eventually of the units, should best represent the information
present in the data.

6.1 Traditional encoding methods

In addition to the approaches described in the previous paragraphs, other methods
have been proposed to encode categorical variables (for details, see the review by
Hancock & Khoshgoftaar, 2020). These are simple and popular methods because
they can be used for qualitative data with both classical models and machine learning
algorithms. These methods either:

1. only use the target,
2. consider the target and other variables, or
3. do not consider any other data than the variable to be quantified.

In the latter case (i.e., ignoring the data), a criterion is chosen that does not use
other data and the result is usually a single numeric variable. This way, there is no
risk of overfitting, but the encodings obtained cannot be unambiguously interpreted.
Such methods include: The label encoder—which assigns a different integer to each
modality—and the ordinal encoder—which constrains the assignments to respect
the natural modality order. The hash encoder uses a hash function to embed the 𝐽
modalities of a variable into a small number of dimensions, but multiple values can
be represented by the same hash value—an effect known as a collision. Because
this encoder is extremely efficient, it is sometimes used with big data sets when the
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number of modalities of some variables is very high. But, in these cases, it is not
possible to perform a reverse lookup to determine what the input was and so the
quantifications provided by collision could be meaningless.

There are many methods that use the target to obtain a numerical coding of the
modalities in such a way that the availability of other explanatory variables does not
influence the coding. The result of such a procedure can be either

1. a single numeric variable for regression tasks (whose dimensionality would be
the same as the dimensionality of the original data) or

2. multiple numerical variables that can then be used for classification.

Applying target-based encoding often produces data leakage—a problem leading
to overfitting and poor predictive performance. To correctly work, this method needs
large amounts of data, a small number of categorical variables, and the same target
distribution in training and test data sets. To overcome data leakage, it has been
suggested to add noise, or to use cross-validation techniques, or other forms of
regularisation. The simple target encoder—a popular method for regression tasks—
belongs to this group. This method assigns the conditional mean target value to each
modality of the explanatory variable.

For classification tasks, where the target is also categorical, the explanatory
categorical variable is encoded with 𝐽 new variables (where 𝐽 is the number of
classes of the target). These variables contain the relative conditional frequencies of
each class given the modality of the categorical variable.

Other methods in this approach are based on the contrast between some modalities
and other modalities of the variable, these methods are called contrast encoders (an
approach often used in the general linear model framework for testing specific
predictions). For example, the Helmert encoder requires a quantitative target and
ordered levels of the categorical variable; this encoder generates a set of contrasts
where each modality is compared in turn to all the subsequent ones. This method is
also routinely used in multiple regression and analysis of variance.

A favourite method to analyse qualitative variables is the, previously mentioned,
one hot encoding which assigns one indicator matrix to each variable. Note that
ohe differs from dummy coding that excludes one modality of the variable (to avoid
multicollinearity). But, when applying machine learning models it is necessary to
include all the modalities, otherwise the omitted modality disappears—a standard
problem (called “the dummy variable trap”) in multiple regression when using
dummy coding (see, e.g., Darlington & Hayes, 2017).

In fact, one hot encoding is not a real quantification method, but just a binary
transformation of the original data. Using ohe makes is possible to take into account
the other explanatory variables because the quantifications are obtained as parameters
of a model. The main drawback of ohe follows from the tendency of indicator
variables to cause overfitting. Moreover, if a variable has many modalities, ohe
generates a large number of new features and a sparse array in which the new
indicator variables are perfectly independent—an unrealistic assumption. Ohe is
used in the optimal scaling approach (see morals in Section ??) but is also widely
used in machine learning.
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6.2 Non-linear encoding in the supervised case

In the supervised case, modality quantifications are generally just a tool for applying
a predictive model. The best quantification will therefore be the one that gives the
best predictions for the model used.

As shown in Section ??, morals makes it possible to perform a multiple regres-
sion considering optimal transformations of the variables. Let X𝑘 (of dimensions
𝐼 × 𝐽𝑘) be the indicator matrix of variable 𝑘 , and 𝑌 a numerical response variable.
If we have 𝐾 categorical explanatory variables, morals defines the residual sum of
squares (rss) as:

rss =

y −
𝐾∑︁
𝑘=1

𝛽𝑘X𝑘a𝑘

2

=

y −
𝐾∑︁
𝑘=1

𝛽𝑘q𝑘

2

(15)

where q𝑘 = X𝑘a𝑘 is the vector of the quantified 𝑘th variable, a𝑘 is the vector with
the (single) quantification of the modalities of the 𝑘th variable, with the centering
and normalisation constraints:

1Tq𝑘 = 0,
1
𝐼

qT
𝑘q𝑘 = 1, 𝑘 = (1, 2, ..., 𝐾). (16)

The algorithm then defines the following optimisation problem, solved by an alter-
nating least squares algorithm:

min
a1 ,a2 ,...a𝐾
𝛽1 ,𝛽1 ,...,𝛽𝐾

y −
𝐾∑︁
𝑘=1

𝛽𝑘X𝑘a𝑘

2

. (17)

With only explanatory nominal variables—unless a different normalisation of
the parameters is used—morals essentially corresponds to a linear regression with
ohe. This approach is likely to overfit data sets with few observations or when
variables have many modalities. It is also possible to obtain multiple quantifications
by creating copies of the variables (see, e.g., Gifi, 1990). However, this approach
would increase the number of free parameters and having more parameters to fit the
data would worsen the overfitting problems of morals.

In machine learning, and specifically for neural networks, ohe encoding is often
used to analyse categorical variables. All the dummies of all the variables, put
together, constitute the input of the network. However, this method is not an optimal
choice because it greatly increases the size of the dataset by adding orthogonal binary
variables.

A different and more adequate strategy (proposed by Di Ciaccio, 2020) is de-
scribed below. Let 𝐿 be the chosen dimensionality of the embedding space. To
explicitly introduce the quantification of modalities in a neural network, it is pos-
sible to define an architecture which provides a distinct input for each categorical
variable. Each input will be of the ohe type and will be followed by a “dense layer”
(the classical fully connected layer) with 𝐿 neurons without bias and with a linear
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Fig. 3 Supervised neural network for two nominal explicative variables

activation function. Layers and activation functions are the basic elements of a neu-
ral network (for definition of these terms see, e.g., Abdi et al., 1999; or Bengio et
al., 2003). The output of this step is an array Q𝑘 (of dimensions 𝐼 × 𝐿) for each
variable, which gives the 𝐿-dimensional quantification of X𝑘 , while the modality
quantifications are given by A𝑘 . In the next layer, the outputs, coming from all the
variables, must be concatenated. At this point, we can add the classical layers of a
neural network, for example, one dense layer with 𝑆 neurons and activation function
𝜎 (usually non-linear, chosen by the researcher), and one output dense layer with
only one neuron and a linear activation function 𝜑 (if 𝑌 is quantitative). The final
network architecture is showed in Figure ??. The corresponding neural network can
be defined as:

ŷ = 𝛽0 +
𝑆∑︁
𝑠=1

𝛽𝑠𝜎

(
𝐾∑︁
𝑘=1

𝐿∑︁
ℓ=1

X𝑘a𝑘ℓ𝑤𝑘ℓ𝑠 + 𝑤0𝑠

)
. (18)

Conversely, in the classical ohe encoding:

ŷ = 𝛽0 +
𝑆∑︁
𝑠=1

𝛽𝑠𝜎

(
𝐾∑︁
𝑘=1

X𝑘w𝑘𝑠 + 𝑤0𝑠

)
. (19)

The function 𝜎 is the activation function of the dense layer with 𝑆 neurons and is
usually non-linear. The embedding dimension is given by 𝐿, while 𝑆 is the number
of neurons which determines the adaptive capacity of the network. In Equation ??,
X𝑘a𝑘ℓ is equal to q𝑘ℓ , which is the ℓth column of Q𝑘 .
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A relevant difference between the two expressions is the different number of
parameters. If the qualitative variables have more than two modalities and if 𝐿 = 2,
there are fewer parameters in Equation ??. Even if the variables have many modalities
(e.g., 100 or 200), the embedding of Equation ?? makes it possible to perform the
analysis without difficulty because it involves a smaller number of parameters. Di
Ciaccio (2023) showed how this approach—compared to ohe or target encoding—
leads, with neural networks, to much better predictions. Other works that consider a
comparison between different techniques in the supervised approach are, for example,
Di Ciaccio (2023) and Potdar et al. (2017).

6.3 Non-linear encoding in the unsupervised case

In the unsupervised case, the quantifications can be the true goal of the analysis and
must therefore highlight the information present in the data. The modalities can be
represented in a vector space obtaining multiple quantifications, as in the case for
homals and mca.

With homals or mca, the modalities are “optimally” encoded by using the eigen-
vectors with the largest eigenvalues of the correlation matrix. In mca, the problem
is solved analytically, while in homals, the problem is solved numerically. This
numerical variant offers great flexibility in machine learning. The mca / homals
approaches are linear methods that give a map where both units and variables are
represented in a low 𝐿-dimensional Euclidean space in such a way that an observed
unit is relatively close to the modalities that characterise it and away from the modal-
ities that do not. In this representation, the modality embeddings are the centres of
gravity of the units that share the same modality.

Let Z (of Dimensions 𝐼 × 𝐿) be the score matrix (the observations coordinates
on the vector space), X𝑘 (of dimensions 𝐼 × 𝐽𝑘) the indicator matrix of variable 𝑘 ,
A𝑘 (of dimensions 𝐽𝑘 × 𝐿) the multiple quantification of the modalities, and U𝑘 the
unitary matrix (of dimensions 𝐿 × 𝐿). The homals loss finds the object scores Z
and the quantifications A𝑘 so that:

min
A1 ,A2 ,...,A𝐾

Z

loss =

𝐾∑︁
𝑘=1

∥Z − X𝑘A𝑘 ∥2 (20)

with the centring and normalisation constraints u′Z = 0, Z′Z = 𝐼U, to avoid the
trivial solutions: Z = 0, A𝑘 = 0. The loss function in Equation ?? can be written
as:
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loss =

𝐾∑︁
𝑘=1

∥Z − X𝑘A𝐾 ∥2=

𝐾∑︁
𝑘=1

X𝑘 − ZA+
𝑘

2

=

𝐾∑︁
𝑘=1

X𝑘 − X̂𝑘

2
=

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝐽𝑘∑︁
𝑗=1

(
𝑥𝑖𝑘 𝑗 − �̂�𝑖𝑘 𝑗

)2 (21)

where X̂𝑘 is the best “reconstruction” of X𝑘 and A+
𝑘

the Moore-Penrose inverse of
A𝐾 . Considering that, to minimize this loss, Z has to be the mean of the 𝐾 matrices
X𝑘A𝐾 , the modality quantifications A𝐾 are the only parameters to estimate.

The previous expression suggests an alternative formulation as an autoencoder
neural network (an autoencoder, also called an autoassociator, associates a pattern
to itself, often as a way of de-noising a signal; an autoencoder can also be seen as
a non-linear version of principal component analysis; for more, see Bengio et al.,
2003). Within our framework, an autoencoder is a particular neural network able to
minimise the loss:

min
𝜎,𝜑

𝐿 (X, 𝜎(𝜑(X))) (22)

where 𝜑 and 𝜎 introduce some constraints in the reconstruction of X and the loss
penalises the difference between X and X̂. Using the Residual Sum of Squares (rss),
Equation ?? becomes:

min
𝜎,𝜑

∥X − 𝜎(𝜑(X)∥2 (23)

where 𝜑maps the indicator array X to an 𝐿-dimensional latent space (the bottleneck),
𝜎 maps this representation to the output, which is the same as the input. Considering
only linear 𝜑, 𝜎, and a low embedding of dimension 𝐿, the architecture of the cor-
responding autoencoder for only two nominal variables is shown in Figure ??. This
neural network includes only dense layers (also called standard or fully connected
layers).

The first layer is composed by two dense sub-layers with 𝐿 neurons for each
variable and linear activation function. The output layer has two dense sub-layers
with as many neurons as the number of modalities of the corresponding variable and
a linear activation function. The autoencoder produces the modality quantification
A1 and A2 on 𝐿 dimensions (usually 𝐿 = 2 or 3). The score matrix Z is the mean
of the quantified variables Q1 and Q2 on 𝐿 dimensions. To obtain the same results
as homals, the score matrix Z needs to be orthonormalised and column centred. Of
course, actually performing all these computations would not make sense, because
with much less effort we can use the elegant analytical solution provided by mca or
the alternating least squares algorithm of homals.

The neural network architecture shown in Figure ?? highlights two constraints:

1. the weights of the output layer are the inverse weights of the first layer, and
2. for all layers, the activation function is linear.

Moreover, the loss function of homals is based on the classical rss, which may not
be the best choice to compare X̂𝑘 to X𝑘 . It is possible to extend the previous approach
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Fig. 4 An autoencoder that reproduces homals

by eliminating these two constraints and introducing a better loss function. The new
architecture of the autoencoder for only two nominal variables and dimension 𝐿 is
shown in Figure ??.

Fig. 5 Autoencoder to extend homals to non-linear encoding

Note that in the output layer there is a new parameter matrix W𝑘 (of dimensions
𝐿 × 𝐽𝑘) and the activation function is now Softmax (see Bengio et al., 2003)—the
same function as used in multinomial logistic regression. Specifically, Softmax is a
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function, denoted 𝜎:R𝐽 → (0, 1)𝐽 , defined as

𝜎(v) 𝑗 =
𝑒𝑣 𝑗

𝐽∑︁
𝑚=1

𝑒𝑣𝑚

, 𝑗 = 1, . . . , 𝐽 and v = (𝑣1, 𝑣2, . . . , 𝑣𝐽 ) . (24)

This way, X̂𝑘 contains, for each unit, the estimated probability of assuming the
different modalities of variable 𝑘 . Then, the categorical cross-entropy 𝐻

(
X𝑘 , X̂𝑘

)
(also called logistic loss) is more appropriate to compare the reconstructed array to
the indicator array X𝑘 :

𝐾∑︁
𝑘=1

𝐻

(
X𝑘 , X̂𝑘

)
= −

𝐼∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝐽𝑘∑︁
𝑗=1
𝑥𝑖𝑘 𝑗 log �̂�𝑖𝑘 𝑗 = −

𝐾∑︁
𝑘=1

𝐼∑︁
𝑖=1

log
(
𝜎 (z𝑖W𝑘)

)
xT
𝑖𝑘 (25)

where z𝑖 is the 𝑖th row vector of Z (with length 𝐿). Then the minimisation problem
becomes:

min
W1 ,W𝑘 ,...,W𝐾

Z

𝐾∑︁
𝑘=1

𝐻
(
X𝑘 , 𝜎 (ZW𝑘)

)
. (26)

Considering that, by definition, Z is the mean of X𝑘A𝐾 , the modality quan-
tifications A𝐾 and the weights W𝐾 are the parameters to estimate. The non-linear
encoding achieved in this way can be much more effective than the encoding provided
by homals / mca. Note that both methods (i.e., homals and its non-linear exten-
sion) use the same ohe coding of the categorical variables as input. However, the
parametrisation is different and the extension includes more parameters, a non-linear
transformation, and a different objective function.

As a simple example, consider only two categorical variables, 𝑋 and𝑌 , each with
5 modalities denoted (respectively) by (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) and (𝑎, 𝑏, 𝑐, 𝑑, 𝑒), which,
together, produce the contingency table shown in Table ?? (from Di Ciaccio, 2023).
The strong associations of the pairs of modalities (𝐴, 𝑎), (𝐵, 𝑏), (𝐶, 𝑐), (𝐷, 𝑑),
(𝐸, 𝑒) are evident because of the dominant cell frequencies that appear in the main
diagonal of the table.

Table 1 A contingency table showing the association between variables 𝑋 and 𝑌 .

𝑋/𝑌 𝑎 𝑏 𝑐 𝑑 𝑒 Total

𝐴 801 100 100 100 100 1201
𝐵 100 800 100 100 100 1200
𝐶 100 100 800 100 100 1200
𝐷 100 100 100 800 100 1200
𝐸 100 100 100 100 800 1200

Total 1201 1200 1200 1200 1200 6001
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Fig. 6 Categorical encoding for CA (left) and non-linear extension (right) on data of Table.??, first
two components.

We would therefore expect a representation on two components that highlights
these associations: a representation where strongly associated pairs are close to each
other and equally far away from the other modalities. By applying mca, the first four
components have the same eigenvalue and are all necessary to obtain a satisfactory
representation of the modalities. This is a feature of the matrix being symmetric;
see Beh and Lombardo (2022). Figure ?? shows the result obtained from the first
two components of mca (on the left) and with the non-linear version just described
(on the right). Note how—with the presence of only one more unit for the pair
(𝐴, 𝑎)—mca creates, on the first two dimensions, a configuration hard to interpret.
By contrast, non-linear extension shows, with only two axes, a representation of the
associations very consistent with the data in the table.

7 Conclusion and perspectives: towards a renewal of optimal
coding methods

Transforming qualitative variables into numerical variables is once again a hot topic
in part because the profusion of (qualitative) variables with a large number of
modalities often found in big data analytics applications.

The statisticians who developed optimal scaling methods were not very concerned
about the overfitting and instability issues that could arise from the use of a large
number of indicators because these statisticians often worked with low dimensional
data (they, however, developed very efficient algorithms in the linear case). The
disqual method was certainly a method of regularisation by projection onto a
low-dimensional subspace, but this aspect remained secondary to the objective of
calculating scores. Similarly, the work of Russolillo (2012) uses optimal scaling to
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be able to apply pls regression and pls path modeling to qualitative data without
really focusing on the regularising effect of projection onto the pls components.

It is only very recently (see Meulman et al, 2019) that regularisation by Ridge,
lasso, or Elastic Net has been combined with morals-type optimal scaling
regression—a combination that opens up many new opportunities.

Largely independently, machine learning practitioners confronted with these high-
dimensional problems have developed—without always being concerned with op-
timality or robustness—a large number of techniques, some of them arbitrary, or
some of them being a rediscovery of known techniques. However, we have noticed
that an approach based on neural networks leads to satisfactory results not only in
supervised but also in unsupervised approaches. In the latter case, an autoencoder
network minimising the cross-entropy with the consideration of non-linear links may
give better results than the least-squares minimisation at the origin of the alternating
least-squares methods.
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