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Optimal Scaling: New Insights Into an Old Problem 
 

Gilbert Saporta 

Abstract Processing qualitative variables with a very large number of categories 
in Machine Learning is an opportunity to revisit the theory of optimal scaling and its 
applications. 
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1 A Brief History 

Coding (or scoring) a qualitative variable consists in assigning numerical values to 
its modalities, thus transforming it into a discrete numerical variable allowing the 
use of methods designed for numerical data. Scoring qualitative variables has a long 
history going back to Hirschfeld [8], Fisher [4], Williams [17], Guttman [6], 
Hayashi [7,16], among others. It was the origin of correspondence analysis [11,13]. 

It is interesting to note, as did Kendall & Stuart [9], that Lancaster's theorem 
[10] implies that the search for separate scoring systems for two categorised 
variables such as to maximise their correlation, comes down to trying to produce a 
bivariate normal distribution by operations upon the marginal distributions. 

The 1970s and early 1980s were a particularly fertile period for the development 
of optimal scaling (ie scoring) in supervised and unsupervised contexts, performed 
with alternating least squares between model parameters and data parameters (the 
codings) [5,18]. 

Then, for almost 40 years, the topic did not generate much research; applications 
became routine, such as risk scores in banking and insurance [2,15]. 
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2 Machine Learning and Variable Encoding 

With the availability of massive data, machine-learning researchers and practitioners 
were confronted with categorical data, ill-suited to neural networks with moreover a 
large number of categories (eg zip codes). 

Generally ignoring the old works of statisticians, dozens of encoding methods 
[14], some quite arbitrary or rediscovered, have flourished in ML literature, like 
Hash encoding, methods where the encoding only depends on the response variable 
(conditional average), as well as the One-Hot Encoding (OHE). OHE is nothing else 
than the well-known disjunctive form of categorical variables with as many 
indicators as categories. It should be noted that OHE is more a representation of 
categories than an encoding, since it is not a transformation into a single numerical 
variable. A. Di Ciaccio [3]  proposes a review of encoding methods from the point 
of view of a statistician. 

Machine Learning also offers methods adapted to massive data. Linear methods 
can be modelled by neural networks, which in this case are not very efficient 
computationally, but the use of networks such as auto-encoders with nonlinear links 
and minimising cross-entropy may give better results than the ALS methods [1].  

One of the essential contributions of Machine Learning lies in the learning-
validation approach to avoid overfitting. A large number of categories for some 
variables raises problems of stability and overfitting. These issues were neglected in 
usual statistical applications where the number of modalities is small. [12] shows 
how regularization may be applied in the context of regression with optimal scaling 
features. 

3 Conclusions and Perspectives 

The confrontation of Statistics and Machine Learning worlds allows us to 
consider a renewal of the coding methods, from both a theoretical and a practical 
point of view. It must be emphasised that there is no optimal coding per se: it 
depends on the problem and on the criterion to be optimised.  
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