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ARTICLE INFO ABSTRACT

Keywords: Recent refactoring of the GPUSPH codebase have uncovered some of the limitations of the official CUDA
GPUSPH compiler (nvcc) offered by NVIDIA when dealing with some C++ constructs, which has shed some new
SPH light on the relative importance of the neighbors list construction and traversal in SPH codes, presenting new
CU]?A_ . possibility of optimization with surprising performance gains. We present our solution for high-performance
8::11121;12110"5 neighbors list construction and traversal, and show that a 4x speedup can be achieved in industrial applications.

Neighbors list

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian, meshless
numerical method for computational fluid dynamics originally created
for astrophysics [1,2], and that has since grown to cover a wide range
of fields [3] thanks to its ability to handle complex flows [4]. The
Lagrangian, meshless nature of the method makes it particularly apt
for free surface flows, violent flows, temperature-dependent fluids and
non-Newtonian fluids [5-7].

One feature that makes the standard weakly-compressible form of
SPH (WCSPH) particularly attractive from a computational point of
view is the embarrassingly parallel nature of the method: the time
evolution of each particle can be computed directly from the properties
of the particle itself and those of its immediate neighborhood, without
requiring the solution of any linear system, leading to straightforward
implementation on massively parallel hardware.

In the last decades, graphic processing units (GPUs) have become
a cheap alternatives to traditional CPU clusters as consumer-friendly
parallel computing hardware [8,9]. The mass adoption of GPUs as
computing solutions has been spearheaded by NVIDIA with CUDA, a
runtime library with an associated single-source extension to the C++
programming language that makes it relatively easy to write software
that can run on their GPUs [10].

GPUSPH was the first code to leverage the capabilities of CUDA
with an implementation of WCSPH that could run entirely on NVIDIA
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GPUs [11], later followed by other open-source SPH codes with varying
degrees of support for both CPU and GPU parallelization [12-14].
Throughout its history, performance has always been a priority in the
development of GPUSPH, hence the choice to focus on a GPU-only
implementation, and its expansion to multi-GPU [15] and multi-node
(GPU clusters) [16] systems.

One of the key aspects of SPH as a Lagrangian meshless method
is the neighbors list: this is an auxiliary data structure whose purpose
is to reduce the computational complexity of the method from O(N?)
(where N is the number of particles in a simulation) to O(M N), where
M is the (maximum) number of neighbors a particle interacts with,
determined by the influence radius of the smoothing kernel that gives
the method its name. The neighbors list construction is known to take
a sizeable portion of the runtime of an SPH implementation, and a
common strategy to reduce this impact is to avoid rebuilding it at every
time-step, reducing the rebuilds with either a fixed frequency, or based
on some measure of flow deformation, possibly in conjunction with
larger search radii [17,18].

Following a refactoring of the GPUSPH codebase in version 5, aimed
at improving the design and performance of the code [18,19] leverag-
ing the growing support for more recent revisions of the C++ standard
in CUDA, we have uncovered an interesting compiler-related bottleneck
in our neighbors list construction and traversal codes that prevented it
from scaling as expected on more recent GPU architectures.
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The analysis and resolution of this bottleneck, that we present
here, improves overall performance by a factor of 4, provides addi-
tional insights on the neighbors list management for SPH and other
meshless methods running on GPU, and lays the ground for additional
optimizations to be explored in the future.

This paper presents the details about how the issue was uncovered,
the solution we have implemented to avoid it, and additional optimiza-
tions that have been explored as part of the process, including detailed
performance comparisons.

Although some of the finer details are specific to the design adopted
in GPUSPH, we believe that sharing our findings with researchers
both within and outside of the SPH community will help drive a
better understanding of the impact of the neighbors list management
in SPH and other meshless methods, illustrate possible strategies to
improve robustness and performance, underline that beyond algorithm
and hardware improvements there is an untapped potential to improve
performance purely by changing coding strategies, and show how
exploring the wider compiler ecosystem can be a means to identify
potentially problematic parts in scientific codes.

We will go into detail about some of the specifics of the GPUSPH im-
plementation, including its use of some more advanced C++ features.
While the paper is written to be as self-contained as possible, it does
assume that the reader is already familiar with the fundamentals of
C++ programming [20].

The paper starts with a brief introduction to the basics of WCSPH
(Section 2), how these map to the features offered by GPUSPH, and
how the development goals of the project affect their implementation
(Section 3), with a particular focus on our split-neighbors strategy (Sec-
tion 4) to provide all the background needed to follow the analysis and
optimizations that constitute the core novelty of the work presented
here.

In the main part of the paper we discuss the astonishing side effects
of introducing support for alternative toolchains and how it helped
identify additional bottlenecks in our code (Section 5), present the
approaches we have adopted to resolve these bottlenecks, improving
performance across all compilers (Section 6), and provide examples
of the benefits this can bring to industrial applications of GPUSPH
(Section 7). We discuss the implications of our results and draw our
conclusions in Section 8

2. Weakly-compressible SPH
2.1. A lightning introduction to the method

As a Lagrangian method for computational fluid dynamics, weakly-
compressible SPH is designed to solve the equations for the continuity
of mass
Dp
Dt
and momentum (Navier-Stokes equations)

Do VP lv vy tg @
Dt PP
where p represents the density, u the velocity, P the pressure, u the
dynamic viscosity, g the external body forces (e.g. gravity), and D/Dt
is the Lagrangian (total) derivative with respect to time.

The system of equations is closed by an equation of states that
relates the pressure P to the density p, typically Cole’s [21,22] equation
of state

Y
P(p)=3(<ﬂ> —1> 3)
Po

where p, is the at-rest density for the fluid, y the polytropic constant,
and B a coefficient related to the at-rest sound speed ¢, by B = pocg /7.
Weak compressibility is achieved under the assumption that ¢, > 10U,
where U is the maximum flow velocity, which ensures that relative
density variations will remain below 1%.

=—pV-u (€D)]
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Although the physical speed of sound of the fluid would be sufficient
to guarantee the weak-compressibility condition in many applications
with subsonic flows (Mach number <0.1), the spatial discretization of
WCSPH (that will be presented momentarily) is often paired with an ex-
plicit integration scheme, for which the physical speed of sound would
result in prohibitively small time-steps. In practical applications of
WCSPH a fictitious sound speed is usually preferred, chosen lower than
the physical one, but high enough to maintain the weakly-compressible
regime.

In this case, in the computation of U (and thus c;), one should take
into account not only the actual velocity experienced by the particles
due to the dynamics, but also the hydrostatic condition, defined by
the theoretical free-fall velocity experienced by a particle dropping
from the maximum fluid height to the lowest point: assuming g is the
magnitude of g and H is the maximum distance that can be traveled
by a particle in the direction of g, the hydrostatic condition can be
computed as \/2gH.

With SPH, the computational domain 2 is discretized by a set of
particles that act as interpolation nodes, but are free to move with
respect to each other. Any field f is then discretized by representing
it as a convolution with Dirac’s § distribution f(x) = f_Q f(y)é(y — x)dy,
approximating Dirac’s distribution by means of a family of smoothing
kernels W (r, h) parametrized by the smoothing length h in such a way
that lim;,_,, W = 6 in the sense of distributions, and finally discretizing
the integral as a summation over all the particles:

FE) = Y fxOW (x; =X, D)V, @
J

where V; represents the volume of particle i, and is frequently expressed
in terms of its mass and density as V; = m;/p;.

The smoothing kernel is usually chosen radial (i.e. depending only
on r = |[|r|]), with compact support (specifically, there exists k >
0 such that W(r,h) = OVr s.t. r > kh) and unitary (i.e. such that
Jo W (r, hydr = 1).

The compact support implies that the summation (4) only extends
to the neighborhood of x of radius kh (called the influence radius of the
kernel). The radial symmetry implies that W (r, h) = w(r, h) for some
function w, and that the kernel gradient can be written as VW (r, h) =
r F(r, h) where F(r,h) 2 (1/r)dw/dr, which is particularly convenient
when F can be written analytically without an explicit division by r,
improving numerical stability when r may become vanishingly small.

Using the standard SPH notation x;; = x; — x;, W;; = W(x;;, h),
Fyy = F(|x;|.h, and f,; = £(x) = f(x;) for any other field f, the SPH
discretization of the gradient of a field f at the position of particle j
which is far from the boundary of the domain can be written as

Vi) = Y, fO)F,Vixg ®)
J
although symmetrized expressions, obtained by adding/subtracting the

gradient of a constant field, are preferred, leading to expressions such
as

Vi) = Y (Fx)+ F(x)) FyVx, ©
7
or
OEDWRAZN @
7

The choice of the form for the discretization of the gradient leads
to a variety of different SPH formulations [3,23-25]. For example, a
common formulation, following Monaghan’s “golden rule”, expresses
Egs. (1) and (2) in discrete form as

Dp;

Dr =L Nl ®
Dy, 3 P B mp X uy;

= L L) xy 2Kk, x| Fy+e )
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while an alternative formulation taking ideas from Landrini [25] and
Morris [26] gives:

Dp; Pi

Du; ( P, + P; piP; )

i X +2——j;u; | Fi+g (€N
D i o, 0T p Mt ) B

Additionally, dissipative terms may be added to both the momen-
tum [3] and mass [27,28] conservation equations, to smooth out nu-
merical noise. The expression for the smoothing kernel and its gradient
can also be replaced by corrected versions that improve the consistency
and/or conservative properties of the discretized operators [29-32].

Near the boundaries, the smoothing kernel support is incomplete
and requires special treatment, and the treatment of boundary con-
ditions remains one of the Grand Challenges in SPH [33]. For solid
boundaries, several approaches have been proposed, including repul-
sive boundaries [3,34,35], static fluid-like particles [36,37], “dummy”
boundary particles with properties interpolated from the neighboring
fluids [38], semi-analytical approaches [39-41], and ghost particle
methods [42], each with different degrees of accuracy, stability, and
computational complexity.

2.2. From theory to implementation

Since the time derivatives of the particle properties in WCSPH can
be computed from the properties of the particle and its neighbors, the
method lends itself naturally to parallelization, especially when coupled
with an explicit integration scheme.

On stream processing hardware such as GPUs, there is a natural
mapping between work-items and particles that has been exploited for
SPH implementation even before the birth of GPGPU-enabled hard-
ware [9]. With this focus, we can talk about the central particle (the
one being processed by the work-item), and its neighbors, the particles
contained in the influence sphere of the central particle and that
participate in the summations on the right-hand side of Egs. (8)—(11)
(or any other discretized formulation of choice).

The main iteration of most numerical implementations of WCSPH
thus follows a scheme like the following:

neighbors search used to identify the neighbors of each particle;

computation of time derivatives computing Dp/Dt, Du/Dt, etc for
each particle;

integration computing the new density, velocity and position.

The computation of time derivatives and their integration may
happen multiple times per integration step, depending on the adopted
scheme (e.g. once for a simple forward Euler integration scheme, twice
in a predictor/corrector scheme, four times in a Runge-Kutta RK4
scheme). Additional steps may be necessary in special cases, too. For
example, density diffusion terms may be applied after the integration
step in certain formulations [43] or boundary conditions may need to
be computed by extrapolating SPH-averaged values from the fluid to
the boundary [26,38], or it may be necessary to compute the apparent
viscosity before the forces computation when modeling non-Newtonian
fluids [7,44].

On stream processing hardware, each of these steps will be en-
shrined in one or more computational kernels, functions associated with
the central particle, and parallelized over the entire system according
to the hardware capabilities. In most cases, the ideal storage system
for the particle properties themselves (position, velocity, mass, density,
apparent viscosity etc.) is that of a structure of arrays, where an indi-
vidual array is used for each property, optionally merging some scalar
and vector properties that are frequently used together: for example,
in GPUSPH we use a single 4-component vector data type to store 3D
position and mass, and another 4-component vector to store velocity

Advances in Engineering Software 196 (2024) 103711

and density. This is especially convenient for hardware such as GPUs,
but is actually useful on most modern CPU systems as well [18],
as it tends to naturally map array elements to the hardware vector
types. Conversely, particle data that requires more than 4 components
(e.g. symmetric tensors that require 6 components in 3D) may be
inefficient to access on GPUs; in this case it may be convenient to split
the storage into smaller units, such as a 4-component vector and a
2-component vector, or 3 2-component vectors, as illustrated in Fig. 1.

2.3. Optimizing the neighbors search

Each of the steps (with the possible exception of the integration
steps) requires one or more loops (usually for summations) over the
neighbors, pushing the need for an efficient neighbors search. The
main strategy to improve the neighbors search performance is to adopt
auxiliary data structures that help restrict the search space. Space
partitions using trees are more common in applications where the
smoothing length is variable: for example, n-trees (quadtrees in two
dimensions, octrees in three) to bucket particles that are close in space
are common in astrophysics, where they can be also used in support
for gravity computation [45,46]. A brief review of tree-based methods,
with some proposed enhancements, can be found in [47].

A straightforward auxiliary data structure that is very practical in
case of fixed smoothing lengths and that also has additional uses is a
simple grid of cells with side length no less than the influence radius
(Fig. 1). The grid itself is represented simply by its origin (coordinates
in 2D or 3D spaces), extents (dimensions in each coordinate direction),
and grid spacing (which may be different in each coordinate direction).
If particles are sorted in memory by the cell they belong to, bucketing
can be achieved simply by storing the indices of the first and last
particle in each cell. The particle sorting also brings performance
benefits related to the improved data locality [48].

The primary objective of this auxiliary grid is to limit the neighbors
search to the 9 (in 2D) or 27 (in 3D) cells around the central particle
cell, but the same data structure is also useful to implement efficient
multi-GPU and multi-node support [15,16] and uniform accuracy in
space without the need for extended precision [49,50], by relying on
local (cell-relative) particle positions.

Even with this improvements, the neighbors search can still be an
expensive procedure, due also to the cost of maintaining the auxiliary
data structures themselves, and/or to the particle sort. These costs
however can be amortized (at the expense of memory consumption)
by building a neighbors list per particle, to be rebuilt periodically [17].
The frequency at which the neighbors list needs to be rebuilt depends
on the dynamics of the problem, and can be reduced by using a
slightly larger radius for neighbors search compared to the actual
influence radius. As we shall see in the upcoming sections, the way the
neighbors list is stored, processed and built are essential details with
a significant influence on the computational performance of an SPH
implementation.

3. GPUSPH features
3.1. The SPH in GPUSPH

Born with the design goal of offering a simple, high-performance
implementation of classic WCSPH [11], later extended with the aim
to model lava flows [7,51], GPUSPH has since grown into a very
sophisticated engine for SPH, with the ultimate objective of becoming
a universal SPH computational engine, useful both for applications and
for research in the numerical method itself.

This objective has driven recent development of GPUSPH to cover a
growing swath of computational fluid dynamics for simple and complex
fluids, as well as a vast collection of SPH formulations, all while
striving for top performance, robustness and correctness. Satisfying
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Fig. 1. Grouping particles by reference cells with a cell-side which is not less than the neighbors search radius allows the search to be limited to the particles in the Moore
neighborhood of the cell to which the central particle belongs (top). This requires a sorting process where the actual particle data is moved in memory so that the particles in the
same cell are located next to each other. An additional array can be used to track the offset in memory where the data for the particles in each cell begins (bottom).

these goals concurrently poses a significant coding challenge, especially
in consideration of the vastness of the problem.

The SPH core of GPUSPH is the so-called “simulation framework”,
a collection of computational kernels specialized on the basis of user-
selectable options that determine every aspect of the simulation: the
equations to be solved (e.g. Navier-Stokes, heat, both), physical aspects
such as the rheological or turbulence model, and choices about the
details of the numerical model, such as the SPH formulation, the solid
boundary model, the smoothing kernel, etc.

The comprehensiveness of the framework can be remarked by look-
ing at the variety of options offered, summarized in Table 1 for the
latest publicly released version. The total number of possible theoret-
ical combinations, considering all options, is between 10° and 10'°,
and that is before including additional options that have not been
fully integrated in the public versions, such as coupling with the heat
equation [7,65], coupling with finite-element models [66], or kernel
gradient corrections [32,67]. Even though not all combinations are
currently supported, the ultimate objective remains to cover the widest
possible range. Still, to satisfy our goals of universality for both research
and applications, this must be achieved without any performance penalty
for unused options, and minimizing implementation complexity.

The lack of performance penalty for unused options is essential
for the usefulness of GPUSPH in applications, and translates into the
following maxim: the runtime of the program when a given framework
option is not used/enabled should be the same as if support for that
option had not been implemented in the code at all. This also means
that when adding new features, there should be no regression in the
runtime of any of the pre-existing options. This can be achieved by
doing as much work as possible at compile time, and helping the
compiler in producing optimal code by isolating code and variables
that are specific to an option. Some of the details about how this
is achieved in GPUSPH were discussed in [18,19]. A more in-depth
presentation of these technical computing aspects will be the focus of a
separate paper. We will only discuss here how this design choices have
affected the handling of the neighbors list, which is the main locus of
the optimizations presented in this paper.

3.2. The GPU in GPUSPH

GPUSPH was designed from the ground up to rely exclusively on
GPUs for the computational part [11]. To achieve this, the program
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Table 1

A summary of the framework options that can be set by the user when defining a
test case in GPUSPH, with relevant bibliographical references. Not all combinations
are supported. Some features are experimental and have not been fully merged into
the public version yet.

Dimensionality 1D, 2D, 3D

Smoothing kernel Quadratic, Cubic spline,

Wendland, Gaussian

WCSPH single-fluid [3],
WCSPH multi-fluid [25],
Grenier [23], Hu & Adams [24]

SPH formulation

Density diffusion (none),
Ferrari [52,53], Brezzi [43,54],
Molteni & Colagrossi [27],

Antuono (6-SPH) [28]

Lennard-Jones [3,34], Monaghan—Kajtar [35],
dynamic [36,37], dummy [38],
semi-analytical [39,40]

Boundary model

Periodicity (any combination of) X, Y, Z

Inviscid, Newton,

Granular [44],

Bingham [55], Papanastasiou [56],
Power-law [57],

Herschel-Bulkley [58], Alexandrou [59],
DeKee & Turcotte [60], Zhu [61]

Rheological models

Turbulence model (none),
k-¢ [62], Sub-Particle Scale (SPS) [63],

artificial viscosity (improperly) [3]

Viscous model Morris [26], Monaghan [3],

Espaiiol & Revenga [64]

Averaging operator Arithmetic, harmonic, geometric

Internal viscosity Dynamic
representation Kinematic

Miscellanea Adaptive time-stepping
(boolean flags) XSPH

Geometric planes support

Geometric natural topography support
Moving bodies support

Open boundaries support

Water depth computation

Density summation

Semi-analytical gamma quadrature
Internal energy computation
Multi-fluid support

Repacking

Implicit integration of the viscous term

execution is split into three phases: initialization, simulation, and data
storage.

The initialization phase runs on program startup, on the host CPU,
and it takes care of generating the initial particle distribution, either
from a geometric description of the domain or from data stored on disk
(e.g. when resuming an interrupted simulation).

After initialization, the worker threads are created, instantiating a
GPUWorker for each GPU selected for the simulation, and the domain
particles are distributed to the GPUs (i.e. the first and last particle
assigned to each GPU is computed). Each worker then allocates data
arrays on its GPU, forming the global buffer lists, and the buffer
contents are initialized by copying data over from the host, for the
subset of particles assigned to the specific device.

No further data exchange between the GPU and the host happens,
except for the following circumstances:

« after the particle sorting and neighbors list construction, the host
fetches information about the current number of particles, and
the maximum number of neighbors per particle; this information
is used to check if particles have been removed because they had
gone out of bounds, to track the new distribution of particles in
multi-GPU when particles cross from one device to an adjacent
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one, and to check that all neighbors could be accounted for
(issues with the number of neighbors typically indicate either
an incorrect initial particle distribution, or some issues with the
choice of formulation or its implementation);

the maximum allowed time-step (minimum over all the parti-
cles) is computed on device using a parallel reduction, and then
downloaded to the host, for time-keeping;

for fluid/structure interaction, the cumulative forces and torques
exerted by the fluid on each rigid body are computed on the GPU,
and downloaded to the host, to be passed to Project Chrono to
compute the motion of the rigid body; the updated position of
the center of mass and rotation of the rigid bodies is then copied
back to the GPU, where the information is used to move the body
particles accordingly.

For multi-GPU (both single- and multi-node) simulations, data is
transferred directly from device to device if possible, i.e. if the GPUs
can access each other’s memory either through peering (on one ma-
chine) or through GPUDirect in multi-node configurations where the
network setup supports it [15]. When this is not possible, data transfer
happens through a staging area on host, which can negatively affect
performance due to the additional memory copies.

Multi-GPU data transfers are explicitly marked by the integrator,
allowing the developer to choose when to transfer data, and which
data to transfer. These choices can be tuned to improve scaling by
overlapping computations and data transfer [15,16].

Finally, to allow data storage to disk, all particle data arrays get
downloaded to the host at fixed (simulated) time interval selected by
the user. The simulation is suspended during this process.

It should be noted also that the arrays are only allocated once during
the initialization phase. If the number of particles decreases during the
simulation, e.g. because some particles fly out of the computational do-
main, the contents of the arrays are compacted during sorting and the
additional entries are simply ignored. Allocations are made taking into
account the possibility of the number of particles increasing because of
open boundaries or in the multi-GPU case; in the open boundary case
the user has control on the maximum number of particles that may
be considered for the simulation, and in case of overflow the program
terminates, allowing the user to resume with a higher upper bound.
This avoids expensive reallocations at runtime.

4. The split neighbors list

One of the most significant performance boost from version 4 to
version 5 of GPUSPH is the split neighbors list processing, which has
brought a typical performance improvement between 15% and 30%,
depending on the combination of framework options and hardware
capabilities [18,19].

The idea for this strategy emerged from an analysis of the per-
formance of the forces computational kernel in version 4 which
revealed that despite the high density of computational operations in
the kernel, its runtime was still largely memory-bound. The main cause
for this was tracked down to the large number of variables that had to
be allocated during the processing of the particle-particle interactions,
which resulted in them overflowing the register banks of the GPU
multiprocessors, resulting in the usage of the much slower VRAM as
temporary storage (termed local memory in CUDA).

This large register pressure was ascribed to the monolithic nature
of the kernel and the disparity of behavior in the interaction between
particles of different types: indeed, for most boundary models fluid-
fluid particle interactions are different from fluid-boundary particle
interactions, but since particles are stored all together, and the neigh-
bors list also stored all neighbors together (without distinction of type),
during execution of the monolithic kernel each work-item would load
the data for the particle being processed, and then traverse the entire
neighbors list, deciding at runtime how to interact with each specific
neighbor, based on the neighbor type.
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This led to a growth in register usage, since the total number of
variables that needed to be allocated was no less than the union of the
variables needed for each of the particle—particle interaction types. This
approach also led to additional performance loss due to the runtime
decision about the kind of interaction, and the possible divergence of
execution code-paths due to disparity of interaction between pairs of
particles being processed concurrently, a well-known performance issue
on GPUs.

The solution we adopted for version 5 was to split the forces
kernel into a separate specialization for each of the particle-particle
interaction pairs: one for fluid to fluid, one for fluid to boundary, one
for boundary to fluid, etc. The split has been particularly meaningful
for the semi-analytical boundary conditions [39,40], that have three
different particle types, larger disparities in the treatment of different
pairs, and complex rules to decide which pairs should be computed:
even just moving most of the decision logic outside of the device-
side computational kernel to the host-side has given a measurable
performance gain of a few percents.

Reducing the complexity of the logic inside each instance of the
computational kernel (now one per pairwise combination of particle
types) gives more optimization opportunities to the compiler, especially
when most of the conditions end up depending only on the compile-
time parameters that define the framework options chosen by the user.
On the other hand, by itself this strategy is insufficient, since leaving
the kernel body and associated data structures unchanged still leaves
some inefficiencies, one of which is relevant to our discussion: when
all neighbors are stored together, it will be necessary to randomly skip
elements from the neighbors list during its traversal. This can be quite
costly, as it a likely source of divergence at the hardware level and leads
to work-items fetching neighbors indices in an inefficient, scattered
pattern. We have solved the issue by redesigning the way neighbors
are stored in the list, in such a way that all neighbors of the same type
are stored consecutively, while preserving GPU-optimal access patterns
and without increasing the storage requirements.

4.1. Efficient split neighbors list

Memory access is a significant bottleneck on most modern compu-
tational hardware, be it CPUs or GPUs. This is the main reason for the
growing, multi-layer caches of CPUs, and the introduction of L1 and L2
caches even on GPUs. Optimal memory access patterns can significantly
speed up an implementation, but the optimality of the patterns depends
not only on the nature of the algorithm, but also on the characteristics
of the hardware.

On a mostly sequential processor like a CPU, the best cache usage
is obtained by placing the data needed by a single thread in adjacent
memory locations. By contrast, on stream processing hardware like
GPUs, optimal access patterns require that adjacent memory locations
refer to data needed concurrently by different work-items.

Let us consider the case of the neighbors list, and let us denote by
n;(j) the index of the ith neighbor of the jth particle. When traversing
the neighbors list, a thread or work-item processing particle j will need
to read the index of the first neighbor (ny(j)), then the index of the
second neighbor (#,(;)), and so on.

For sequential hardware (such as CPUs), it is then optimal to lay
out the neighbors indices in memory grouping them by particle:

16(0), 11 0), ..., (0), no(1), ny (1), ..., (1), ... (12)

where k + 1 is the maximum number of neighbors per particle. This
will ensure that whenever a neighbor index is loaded from memory,
the following neighbors indices will be cached too.

Additionally, better performance can be achieved by using a fixed-
size neighbors list, obtained by precomputing the maximum number
of neighbors that a particle can have: this allows the indices of the
neighbors of each particle to be recoverable by simple computations,
without additional memory access, at the expense of some wasted
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memory. A special marker can be added to the list of neighbors of each
particle if it is not full, to indicate the actual end.

On GPUs, a more efficient memory layout is achieved when work-
items j,j + 1,... load the index of their respective first neighbor from
memory in adjacent memory locations. In this case it is therefore
optimal to lay out the neighbors indices in memory grouping them by
ordinal:

no(0), ng(1), ..., ng(p), n1(0), ny (1), ...,ny(p), ... 13)

where p is the number of particles.

We call this layout interleaved or neighbor-major, in contrast to
the sequential or particle-major layout used for CPUs, since from the
perspective of each particle, the next neighbor is not found with an
offset +1, but with an offset +p, with the memory in-between dedicated
to the same neighbor ordinal for the other particles (Fig. 2).

The layouts we described work very well when the entire neighbors
list must be traversed each time, but is sub-optimal when we want to
only traverse a scattered subset of the list (for example, as we do in
GPUSPH, considering only the neighbors of a given type).

To illustrate the approach we adopted to solve this issue, assume
at first that we have only two particle types (fluid and boundary), and
that when there are more neighbors of one type, there will be fewer of
the other type. This is consistent with the fact that a particle far from
the boundary will have a full neighborhood of fluid particles, but as it
gets closer to the boundary the number of fluid neighbors will decrease,
while the number of boundary neighbors will increase at a similar rate
(assuming a more-or-less uniform particle distribution).

The solution for the split neighbors list in this case is to collect all
neighbors of one type at the beginning of the list (from the first location
up), and all the neighbors of the other type at the end of the list (from
the last location down). If we denote by f; the ith fluid neighbor and
b; the ith boundary neighbor, from the perspective of a single particle,
the neighbors would then be stored as:

or f1s Fas s Fiys @ one @by o by by, b a4

where k, + 1 is the number of fluid neighbors, kj, + 1 the number of
boundary neighbors, and ® denotes the end-of-list marker. Of course
this single-particle perspective can then be implemented system-wide
using either the sequential layout, or with the interleaved layout.

The situation is more complex when the number of particle types
grows. In the case of a third type, for example (as is the case for the
semi-analytical boundary conditions with their vertex particles), the
neighbors list will need to be split into two fixed-size chunks, one
to store the first pair of types, and the other to store the remaining
type (Fig. 3); indicating as before with f;,b;,v; respectively the ith
fluid, boundary and vertex neighbor, and with k, the number of vertex
neighbors, the list as seen by each particle would be coded as:

Sos 15 o5 -

In this case, it is necessary to know the size of the chunk. In GPUSPH,
we store the (local) index of the first boundary neighbors index, know-
ing that the vertex neighbors will start at the next location.

,fkf,O,.A.,O,bkb,...,bz,bl,bo,uo,ul,uz,....Uk“O (15)

5. The compiler bottleneck

The use of more sophisticated C++ features in GPUSPH version 5
has driven us to test different compilers, with one of the primary
motivations being the more developer-friendly error messages that
modern C++ compilers provide. This has led us in particular to try
Clang [68], that has been working on built-in support for CUDA for
several years [69,70].

When the first Clang-compiled test case was run, a simple three-
dimensional dam break, it was quite surprising to see a nearly 1.5x
performance boost over the nvcc-compiled code . The performance
gain was confirmed across multiple (recent) hardware generations and
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Fig. 3. Split-neighbors-list layout in the neighbor-major order case.

compiler versions, with tests spanning Clang version 9 to 12 and nvcc
versions 10.1 to 11.4,

In what follows we will describe the analysis that led to the dis-
covery of the source of this discrepancy, the changes we introduced to
allow a similar performance gain across compilers, and the side-effect
this had on multi-GPU support. Detailed benchmarks on the net effect
of these improvements will be presented in Section 7.

5.1. Analysis of the performance difference

The test case used for the comparison is a three-dimensional dam-
break with in a 1.6 m X 0.67 m x 0.6 m domain. The initial water
volume occupies one side of the box, up to a height and depth of H =
0.4m. Framework options include Lennard-Jones boundary conditions
for the solid walls, artificial viscosity, and the Molteni & Colagrossi [27]
density diffusion model.

The simulations, consisting of 53,248 fluid and 30,388 boundary
(for a total of 83,648) particles at a resolution of 32 particles in
the H length (ppH), were only run for 1000 iterations, to gather
basic information about total runtime and per-command contributions
(Figs. 4-6). Data was not saved, since we were only interested in the
computational performance. The results illustrated in the plots Figs. 4-6
refers to execution on an NVIDIA GeForce GTX 1650 Max-Q.

The first comparison was done between nvcc 11.4 and Clang 12.
It was observed (Figs. 4 and 5), that many commands had in fact a
marginal performance regression with Clang, with the most significant
exception being the FORCES_SYNC command that runs the forces
computation kernels, that take up the lion’s share of the simulation
(Fig. 6), thanks also to the fact that FORCES_SYNC and EULER are run
twice per time-step, while the ancillary commands for neighbors list
construction (CALCHASH, SORT, REORDER, BUILDNEIBS), are only
run once every 10 time-steps.

A second surprising result came with the release of Clang 13, testing
on which resulted in performances within less than 20% of those
obtained when comping with nvcc (sometimes in excess, sometimes
in defect, depending on test case and GPU architecture). Compared to
the consistently improved performance of Clang 12 the results from
Clang 13 were considered a regression in the compiler, and reported
as an issue to the Clang developers [71].

A more thorough analysis of the forces kernels revealed that the
key to the performance differences was in the usage of the stack.
On GPU, use of the stack is particularly nefarious, as it involves the
use of appropriately reserved global memory, which is no less than two
orders of magnitude slower than registers, and can introduce significant
latency in hot-path code. As mentioned before, reducing this kind of
stack usage was indeed the reason for splitting the forces kernels into
multiple functions, one for each particle type pair.

Two elements were thus surprising about the stack usage still be-
ing reported for the forces (and many other) kernels: the first was
that, since all device functions are marked with the always_inline
attribute in GPUSPH, there should have been no stack usage at all,
once the excess variables had been eliminated; and the second was the
question why Clang up to version 12 managed to avoid it, whereas the
other compilers (all nvcc version and Clang 13 and higher) required
it.

While the latter remains a mystery to date, resolved in Clang 14
by introducing an additional optimization pass in the compilation of
CUDA code, the first question was answered by discovering the culprit
in the virtual inheritance involved in the definition of the neighbors list
iterators. Avoiding this was key to providing a significant performance
boost across compilers.

5.2. The return of the neighbors list: multi-type iterators

The split neighbors list described in Section 4.1 makes it very
efficient to traverse the list of a single neighbor type. An iterator simply
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Fig. 4. Average runtime (in ms) per command invocation of the largest contributors, by compiler, with the initial code.
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Fig. 5. Total cumulative runtime (in ms) for each command during the first 1000 simulation steps of the performance analysis test-case, by compiler, with the initial code.
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Fig. 6. Percent contribution by each command to the total runtime during the first 1000 simulation steps of the performance analysis test-case, by compiler, with the initial code.
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fluid+boundary

Fig. 7. Diamond inheritance of base classes with and without virtual inheritance through intermediate classes. In the standard case (left), two copies of the core class are inherited
by the multi-type iterator, making any reference to neibs_iterator_core ambiguous. With virtual inheritance (right), a single copy of the core class is inherited, making it
possible to access neibs_iterator_core unambiguous in the multi-type iterator.

needs to load the beginning of the chunk and the traversal direction
(based on the neighbor type), and then load each neighbor index in
sequence until the end-of-list marker is encountered.

When the same interaction needs to be computed with neighbors of
different types (as is the case frequently with dynamic boundary con-
ditions), the code necessary to traverse the neighbors list is made more
complex by the need to change the offset and direction of traversal
when one type is finished and the other begins, but aside from that
the behavior remains essentially the same.

To abstract all this from the developer, we implemented
neibs_iterator class templates that take care of all the internals,
and present a simple interface with methods to retrieve the current
neighbor’s index, its relative position to the central particle, and finally
a method to fetch the next neighbor and inform the caller when the
neighbors list is completed.

The core of all the iterators is the same: a set of variables indepen-
dent of the particle type, and the internal methods to fetch and decode
the neighbor information from the neighbors list. These are abstracted
in a dedicated neibs_iterator_core class.

All the single-type neibs_iterator class templates derive from
the core class, and simply implement on top of it the necessary detail
for the specific neighbor type, such as the computation of the chunk
start offset and the traversal direction.

The straightforward way to implement a multi-type iterator, which
is the solution we had adopted in version 5 of GPUSPH, is to create
a dedicated class that derives from the corresponding single-type it-
erators, and switches from one to the other as the end-of-list marker
is reached. This however leads to the infamous diamond inheritance
problem: since all the single-type iterators depend on the (same) core
class, and we want a single copy of the core class as (grand)parent of
the multi-type iterator, the single-type iterators have to declare the core
class as a virtual parent (Fig. 7).

This virtual inheritance, however, is in our case responsible for the
inefficiency experienced with nvcc and Clang 13, as the compiler fails
to fully de-virtualize the structure. Even worse, the negative impact
of the virtual inheritance affects single-type iterators too, even though
for them there would be no need for virtualization in the first place:
indeed, single-type iterators inherit virtually from the core class only
to support multi-type iterators. This is actually in conflict with one
of the principles behind the GPUSPH design, that the implementation
of a feature should not negatively affect other features (in this case,
the possibility to iterate over multiple types should not affect the
performance of iterating over a single type).

The new approach we have adopted in GPUSPH to avoid virtual
inheritance and its negative effects on GPU performance has been to
turn multiple inheritance into chain inheritance, leveraging the fact that
we iterate over neighbor types in a predefined order (Fig. 8).

fluid+boundary

Instead of distinguishing between single- and multi-type iterators,
we define a single class template for all iterators, with two template
parameters: the particle type of the ‘current’ iterator, and the class of
the ‘next’ iterator, with the template defining a class that derives from
the ‘next’ iterator: this base class is then used to delegate the retrieval
of the next neighbor when the current type is exhausted (Listings 1).

Listing 1: Nesting class template to implement multi-type neighbors
list iterators.

template<ParticleType ptype, typename NextIterator>
class nested_neibs_iterator : public NextIterator

using core = neibs_iterator_core;

bool next() {
if (core::current_type == ptype) {
// fetch the next meighbor of this type
bool has_next = fetch_next_neighbor();
if (has_next) return true;
// mo more meighbors: switch to next type
NextIterator: :reset();

}
// this type has finished, delegate to next iterator
return NextIterator::next();

}

/* rest of the class omitted for brevity */

By using the neibs_iterator_core as the “terminating” class,
(i.e. the NextIterator when there are no more types to process),
we ensure that all iterators inherit a single copy of it as (grand)parent
through the chain, without having to resort to virtual inheritance. By
adding to neibs_iterator_core a reset () method that inval-
idates current_type and a next() method that always returns
false, the nested_neibs_iterator implements both single- and
multi-type iterators with the same code, and the only distinction is
given by the nesting of the classes (Fig. 8).

As show in Figs. 9-11, the effect of the de-virtualization of the
neighbors iterator on the performances is impressive: the total runtime
for nvcc and Clang 13 dropped from over 10 s to less than 5 s, bringing
these compilers in line with the performance of Clang 12, that also
benefits (although in much smaller amounts) from the optimization.
Moreover, without the bottleneck created by the problematic virtual
inheritance, the proprietary optimizations in nvcc allow the compiler
to produce the fastest code among the ones we tested.

6. Too much of a good thing?

The impressive performance gains achieved by the rework of the
neighbors traversal, that in some sense completes the split-neighbors
implementation, have had some unintended consequences.

The first consequence has been an apparent decrease in the scaling
efficiency of GPUSPH across multiple GPUs: this is due to the fact that
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Fig. 8. Chain inheritance through nesting class templates. Single-type iterators derive directly from the core class, multi-type iterators derive from the other multi- or single-type
iterators. For multi-type iterators, the order of the nesting determines the order in which neighbor types are processed. On the middle, for example, fluid types are processed

before boundary types, whereas on the right boundary types are processed first.
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Fig. 9. Average runtime (in ms) per command invocation of the largest contributors, by compiler, with the devirtualized iterators.

high scalability relies on the forces computation taking enough time
to cover the cross-device data transfer time (see [15,16] for details):
with the forces computation being much faster, the amount of inner
particles that need to be processed to cover data transfers has grown
significantly, thus requiring much larger domains to achieve good
scaling. This of course is compensated by the fact that a single GPU now
manages to perform as well as 4 or 5 GPUs used to with the older code,
thereby reducing the need for multi-GPU or multi-node to very large
simulations, where the amount of inner particles becomes large enough
to preserve the scaling properties. Further details with examples are
discussed in Section 7.3

The second consequence of the forces kernels performance gain has
more of a psychological than computational weight: as shown in Fig. 9,
forces computation is not the slowest step of the simulation anymore:
although forces computation is still the kernel where most time is spent

10

overall (Fig. 11), its runtime for a single invocation is now comparable
to the runtime of the neighbors list construction.

In fact, for smaller simulations such as the one shown in this
analysis, a single run of the neighbors list construction can take more
time than a single forces computation, with the discrepancy growing
smaller as the number of particle increases, and forces computation still
taking longer (although not much so) than neighbors list construction
in the case of very large simulations.

In itself this effect is not particularly worrying, since the forces
kernel runs twice per step (due to the predictor/corrector integration
scheme), while the neighbors list construction only runs once every
10 steps (by default). As such, even when the two have comparable
runtime, forces computation still weight 20 times more than the neigh-
bors list construction, and optimization of the latter would be largely
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Fig. 10. Total cumulative runtime (in ms) for each command during the first 1000 simulation steps of the performance analysis test-case, by compiler, with the devirtualized

iterators.
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Fig. 11. Percent contribution by each command to the total runtime during the first 1000 simulation steps of the performance analysis test-case, by compiler, with the devirtualized

iterators.

unnecessary, since even a 50% speed-up would only affect the total
runtime of the simulation by less than 3%.

Still there is a psychological effect: knowing that building the neigh-
bors list takes longer than a single forces computation is frustrating
for a numerical code that should spend most of its time computing
(numerical) derivatives. Hence the need to optimize the neighbors list
construction.

6.1. Changing perspective: from the particle to the cell

As mentioned in Section 2.2, WCSPH with an explicit integrator
lends itself to a natural parallelization where each work-item is associ-
ated with a particle. This is also true for the neighbors list construction:
each particle looks for neighbors in the cells surrounding its own
(Section 2.3), adding them to the neighbors list according to their type
(Section 4.1).

This approach is trivial to implement, but leads to poor performance
due to the scattered global memory accesses and consequent large
latencies as the neighbors data is fetched, with the work-items unable
to proceed until the data becomes available and decisions about the

neighbors (Is it close enough? Which type does it belong to? Where
does it go in the list?) must be made.

The first optimization is to take advantage of the split-neighbors
layout to streamline the neighbors search. As particles are sorted in
memory by cell, and within the cell by particle type (and finally by
particle ID), we know that whenever looking at neighbors in a cell
the central particle will first see all fluid particles, then all boundary
particles, etc. Instead of a single loop going over all the particles in the
cell, we can thus split the code into multiple loops, one per particle
type.

Since the structure of the loop is largely the same, the loop can
be implemented as a function template, parametrized on the neighbor
type, taking care of all the neighbors of the given type, and returning
when the next neighbor is of a different type (or there are no more
neighbors). The instances of the function can be called in sequence,
following the in-cell sort order (Listing 2). This change alone has been
sufficient to give a performance gain in the order of 10% for the
neighbors list construction, due to the reduction in divergence and to
some control logic moving from runtime to compile time.

More significant improvements require a complete change in per-
spective. To explain how, we need to observe what happens at the
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Listing 2: Traversing the neighbors in a cell by particle type.

template<ParticleType nptype, /* omissis */ >
void neibsInCellOfType
(params_t const& params, var_t const& var, /* omissis */)

! /* from the neighbor loaded in var, keep processing all neighbors
* until the next loaded one is not of the same type
f:x{ ( ; var.is_neib_of_type<nptype>(params); var.next_neib())
/* process this neighbor */
}

template<typename params_t, /* omissis */>
void neibsInCell(params_t const& params, /* omissis */)

/* omissis */
var_t vars(params, /* omissis */);

// Load information about the first neighbor
var.load_neib_info(params);

// Process meighbors by type, leveraging the fact that
// within cells they are sorted by type.
// Each instance of neibsInCellOfType will process the neighbors
// of the given type, and return when the next loaded neighbor
// (if any) is of a different type
if (var.neib_type == PT_FLUID)

neibsInCell0fType<PT_FLUID, /* omissis */>

(params, var, /* omissis */);

if (var.neib_type == PT_BOUNDARY)
neibsInCell0fType<PT_BOUNDARY, /# omissis */>
(params, var, /* omissis */);

if (boundarytype == SA_BOUNDARY && var.neib_type == PT_VERTEX)
neibsInCell0fType<PT_VERTEX, /* omissis */>
(params, var, /* omissis */);

hardware level during the execution of the standard implementation
on GPU.

Consider two particles with consecutive indices. In many cases, they
will belong to the same cell, and process neighboring cells concurrently.
In fact, with the per-particle perspective adopted so far, they will pro-
cess the same particles in the neighboring cells concurrently: they will
load at the same time the first particle in the cell at offset (—1,—1,—1),
decide what to do with it, then move (at the same time) to the second
particle in the same cell, etc, until the neighboring cell is exhausted,
and then move to the next cell.

This is not an ideal access pattern: even assuming that the memory
controller supports broadcasting (so the neighboring particle data is
fetched for all work-items at the same time), the effective bandwidth is
limited, since each transaction only transfers the data of a single par-
ticle, whereas the controller on GPUs is designed to transfer data from
consecutive memory locations to consecutive-index work-items (which is
the reason why the neighbors list is stored in interleaved format on
GPU, as explained in Section 4.1).

To maximize throughput, we would need work-items to transfer
data corresponding to adjacent particles: for example, while the work-
item for particle i requests the data for the first particle from the cell
at offset (—1,—1,—1), the work-item from particle i + 1 should request
the data for the second particle in the cell, and so on. Of course, all
work-items would then need the information from the neighboring cell
particles, which have been loaded by other work-items: this data can
be exchanged by storing it on fast on-chip shared memory (accessible
by all the work-items in the same work-group).

To maximize the usefulness of this approach, we can switch from
a particle-based perspective to a cell-based perspective, leveraging the
fact that on NVIDIA GPUs work-items (a.k.a. CUDA threads) do not
execute independently, but proceed in lock-step grouped in 32-wide
sub-groups (a.k.a. warps).

The idea is thus to map each warp to a cell, and each work-item in
the warp to a particle in the cell. This guarantees that all work-items
in the same warp traverse the same neighboring cells, in lock-step.
Each work-item (from the same warp) then loads one particle from the
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neighboring cell into the shared memory, and all work-items (in the
warp) process the neighbors taking the data from the shared memory.

Compared to the naive thread-to-particle mapping, the warp-to-
cell mapping is considerably more complex to implement. One of the
main difficulties is that it is not possible to do early bail-outs: even
work-items that are not associated to active particles must process
the neighboring cells, to ensure that all neighbors data is correctly
loaded; this requires additional boolean variables to be carried around,
controlling whether the work-item must also process the neighbors, or
only contributes to the data retrieval.

Additionally, a cell may contain more particles than there are work-
items in the warp. Therefore, both the central particle selection and
the neighbor data loads are run in a “sliding window” fashion, until
exhaustion of the cell particles.

That being said, in the most common configuration of SPH smooth-
ing kernels with radius k = 2 and smoothing factors of h = 1.3, cells
in three-dimensional problems have less than 32 particles. This actually
leads to a sub-optimal usage of the hardware, since every running warp
will have some work-items masked out (typically, only the first 20 to
24 work-items in each warp will be active), leading to a hardware
efficiency of 75% or less, compared to the particle-based approach
where all work-items will be active and running.

Despite this inefficiency, however, the cell mapping comes out to
be around 50% faster than the particle-based approach, due to the sig-
nificant improvements in memory access patterns and the consequent
reduction in latency. This is consistent with Volkov’s findings about
the relative importance of latency and occupancy in gauging parallel
algorithms and their performance on GPU [72,73].

This performance gain (computed as the relative change in runtime,
i.e. Toiq/Tnew — 1, Where T4, Thew are the runtimes of the old and new
code) in the neighbors list construction runtime only has a modest
effect on the total runtime (Fig. 12), diminishing as the number of
particles grows larger.

As mentioned, this is expected, due to the lower frequency of
execution of the neighbors list construction in typical simulations, but
the benefits can become important if the list needs to be updated more
frequently.

7. An industrial test case

The performance gains presented so far are crucial in industrial
applications of SPH, for which hundreds of millions of particles are
typically employed, due to large domain sizes and/or fine resolutions.

We illustrate this in a real-world test case, showing performance
results including single-node and multi-node scaling performance be-
fore and after the recent optimizations, and validation of the simulation
results against experimental data.

7.1. Test case setup

The test case refers to a large-scale wave maker and basin with a
bounding box that is approximately 65 m x 85 m (Fig. 13). The wave is
generated by a caisson system to produce a nominal maximum wave
height H = 0.9 m with period T = 7.5 s. The water depth at the
caisson is d = 3.4 m and decreases to 0 m at the end of the basin with
a non-uniform reef bathymetry in-between.

For the SPH simulations, the Lennard-Jones boundary model was
used, with a geometric description of the basin bathymetry through
a Digital Elevation Model exerting a point-wise normal Lennard-Jones
force [7]. The water is assumed inviscid, and no turbulent or artificial
viscosity terms are included in the momentum equation. The Molteni &
Colagross density diffusion model [27] is used. The chosen SPH kernel
is the Wendland quintic with radius 2, and smoothing factor 1.3.

The hardware used for the run consists of 3 nodes with 3 RTX
3090 GPUs each. Each GPU is equipped with 24 GB of GDDR6X VRAM
running at 1.2 GHz wit a peak theoretical bandwidth of 936 GB/s,
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Wave maker

Fig. 13. Overhead view of the irregularly-shaped wave basin with variable bottom bathymetry used in the test case, including the location of the three wave gages used for the

comparison between the experimental and numerical data.

and 82 compute units with 128 shader processors each for a total of
10,496 “CUDA cores” per GPU, with a peak theoretical throughput
of around 30 TFLOPS for single-precision FMA. Due to the hardware
setup, peering between GPUs within a node was unavailable, lowering
the multi-GPU scaling performance, as discussed below. The nodes are
equipped with 1 Gbps network cards and are interconnected through a
24-port switch.

7.2. Validation

Comparison between the physical experiments and SPH simulations
were done comparing the water surface elevation and time-of-arrival
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at three distinct gage positions: near the caisson, where the peak wave
height is expected, and at the end of the ride (Fig. 14). Simulations
were run at three different resolutions, with inter-particle spacing
respectively Ap = 0.01,0.008,0.005m resulting respectively in (fluid +
boundary = total) 4+2.4 = 6.4,7.7+3.8 = 11.5 and 32 + 10 = 42 million
particles.

Even though the chosen options result in a quite simple model, the
results show good accuracy. Thanks to the choice of density diffusion
model, the simulation is stable over the simulated period despite the
absence of viscous dissipation in the momentum equation. As expected,
the match of the wave timing and crest height improve at higher
resolutions. The largest discrepancy is seen at the end-of-ride gage,
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(middle figure) and end-of-ride (bottom figure).

where excessive dissipation is observed even at higher resolutions. This
effect may be reduced with the adoption of better conservation models
such as the CCSPH model presented in [32], at the cost of higher
computational requirements.

7.3. Performance results

Metrics. Performance in GPUSPH is measured as of iterations times
particles per second (IPPS), or more commonly in MIPPS (10° IPPS), a
metric we first introduced in [16]. This can be easily computed for any
implementation as the number of particles in the simulation, multiplied
by the number of iterations, and divided by the total runtime. (GPUSPH
provides real-time feedback on the performance during execution.)

A rough conversion from IPPS to the PIPS (particle interactions per
second) metric used by other software [74] can be achieved, at least
for simpler boundary models, multiplying the value in MIPPS by the
average number of neighbors per particle, and then by 2 to account for
the predictor/corrector integration scheme. For example, 100 MIPPS on
a simulation with an average of 80 neighbors per particle corresponds
approximately to 16 GPIPS (1 GPIPS being 10° PIPS).

Single-GPU. In our performance analysis we start by comparing the
single-GPU performance across different resolutions before and after
introducing the neighbors list construction and traversal optimizations.
As show in Fig. 15, the performance ratio for this test case at the tested
resolutions is essentially constant, with the optimizations bringing a
consistent 4x speed-up to the code. The slight decrease in MIPPS at
higher resolutions is due to the higher percentage of fluid particles in
the total particle count, and the higher computational requirements of
fluid particles, for which the physical equations of motions have to
be solved, over boundary particles, that only contribute to the forces
applied to the fluid particles in their influence sphere.
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Multi-GPU. We can evaluate the strong scaling capability of GPUSPH
by comparing the performance of our code at given resolutions on a
growing number of device. This is usually achieved by looking at the
ratio T /(nT,) where T, represents the runtime with i devices. As our
preferred unit of measure is the number of iterations times particles
per second, the scaling efficiency can be likewise measured as P,/(nP))
where P, is the number of MIPPS achieved with i devices.

Due to the embarrassingly parallel nature of WCSPH with explicit
integration — as used in our tests — the only major factor impacting
scalability comes from the latency introduced between solver steps
when transferring data about neighbors to/from other devices. As
explained in [15,16], each device in GPUSPH holds a copy of the data
belonging to neighboring particles (“halo” particles) that reside on
other device, and this is updated after each computational kernel, with
the exception of the integration, which is a simple increment without
any neighbors list traversal, and is therefore done on the halo particles
with the forces data transferred from the neighboring devices after the
forces computation kernel.

Historically, the forces computation kernel has been the most com-
putationally expensive kernel, and this has been used to minimize the
impact of data transfer on scaling performance, by first computing the
forces on the particles to be transferred to other devices, and then
running the computation on the rest of the domain (inner particles)
while the computed forces are being copied. This allowed GPUSPH to
achieve nearly ideal scaling [16,75] under the condition that the time
needed to transfer the halo particles data is less than the time needed
to compute the forces on the inner particles.

This typically requires fast device-to-device transfers (e.g. through
peering for devices on the same node, or solutions such as GPU Direct in
multi-node configurations), and a sufficient number of inner particles.
With the speed-up of the forces kernel computations coming from
the optimized neighbors traversal code, we can expect the scaling
performance of the new code to degrade compared to the scaling
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performance of the old code, especially when the number of particles
(and particularly inner particles) is small. The effect will be particularly
evident in our tests due to the hardware configuration that prevents
device peering, and even more so in the multi-node cases due to
the higher latency and lower bandwidth of network data transfers
compared to transfers within the same node.

The results for 1 to 3 devices are shown in Fig. 16, separating the
single-node multi-GPU results (with all devices attached to the same
host machine) from the multi-node results, limited in this case to 1 GPU
per node.

In the single-node case, where data transfers are more efficient, all
tests show performance growing with the number of GPUs. The old
code has lower performance, but better scaling, with an efficiency of
around 70%, whereas the new code drops to an efficiency as low as
53% in the low resolution case (57% at the highest resolution).

This is due to the much faster forces computation kernel in the
new version of the code failing to fully cover the latency introduced
by the data transfer. The effect is even more evident in the multi-
node, 1 GPU per node case, where the overall performance of the code
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actually drops as the number of nodes grows, with the only exception
being the highest resolution case, where the workload for the forces
computation kernel is sufficient to cover at least part of the network
data transfers. Both versions of the code suffer from the more expensive
data transfers, with the old code efficiency dropping to between 58%
(low resolution) and 65% (high resolution), and the new code only
managing 44% efficiency at high resolution, with the low resolution
dropping to 20%.

Due to the insufficient computational load in the lower resolution
cases, we only test the configuration with up to 9 devices (3 nodes with
3 devices each) in the high resolution case. The results are shown in
Fig. 17. Increasing the number of devices in this case always results
in higher performance (and thus faster simulations), but there are
diminishing returns as the number of particles assigned to each device
decreases.

Once again the effect is more evident with the new, faster code, that
needs a larger number of particles for the forces kernel computation to
take enough time to cover the data transfers, especially in the multi-
node, 3 GPUs per node configurations. Given the scaling of the forces
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kernel, we would expect no less than 6x the number of inner particles
per GPU to be needed to achieve scaling efficiency comparable to that
of the old code.

8. Discussion and conclusions

Neighbor list construction and traversal are critical paths in SPH
code and essential for optimal performance. This issue is compounded
in software that defines multiple particle types, where a high-level
interface is necessary to help developers, and the data structures must
still be optimized for every use-case.

On GPUs, where some programming patterns may result in excessive
use of the main memory rather than hardware registers to hold tem-
porary data, catching or missing implementation-specific optimization
opportunities can change the performance of individual kernels by
nearly an order of magnitude. As a result, compiler choice can be
at least as important as the coding strategies in delivering the best
performance on any given hardware, although significant differences
between compilers are a likely indication of “code smells”, i.e. sections
of the code that are still using sub-optimal, and thus harder to optimize,
patterns.

We have observed this when introducing support for different
toolchains in GPUSPH, which has highlighted a previously unknown
nvcc-related bottleneck in the neighbors traversal code. This has led
us to rethink the types used to represent the neighbors list iterators,
resulting in performance gains measurable in a factor of 3 + 1 on GPU,
depending on problem size, with higher speed-ups achieved in test
cases with more particles.

A paradox with increasing performance is a potential drop in the
strong scaling efficiency in multi-GPU (especially multi-node) simula-
tions, as the shorter execution time for forces computation can fail to
fully cover the time needed to transfer data between devices. This is
more than compensated by the shorter computational times in general,
and may imply that a much higher per-device load is needed to achieve
comparable efficiency. Hardware setups with faster connection speeds
and lower latency can also help improve scaling.

The reduced strong scaling efficiency we observed can also be
viewed from a different perspective, as it is the byproduct of better
hardware utilization in the single-GPU case: what could saturate the
compute units with the old code is not sufficient anymore. Beyond the
apparently negative surface, we still see how beneficial this is with
an example. Consider the case of a simulation that scales with 75%
efficiency on 4 GPUs with the old code, and with only 50% efficiency
with the new code, but with a 4x overall speedup. If the simulation
takes 24 h on a single GPU with the old code, distributing across the
4 GPUs would reduce the runtime to 24/4/0.75 = 8 h, whereas running
it on a single GPU with the new code would reduce the runtime to 6
h. A single-GPU run with the new code is already faster than a 4 GPUs
run with the old code. Thanks to the much lower baseline, even with
50% scaling on 4 GPUs, this could still be lowered to 3 h. And that is
without considering that scaling improves for larger simulations.

The improvements to the neighbors traversal have also highlighted
that, as the forces kernel computation efficiency improves, the cost of
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the neighbors list construction itself (or in its absence the neighbors
search implementation) increases, even if weighted by the reduced fre-
quency at which it is run. We have shown here that, as an intrinsically
memory-bound procedure, neighbors search and list construction can
benefit from a change in perspective that leads to improved coalescence
of memory transactions and better caching on GPU. In our experience,
switching from the naive per-particle vision to an aggregate per-cell
approach can lead to performance gains of as much as 50% in the
neighbors search despite a lower hardware occupancy.

Similar optimizations, which we will explore in the future, could
also be possible for the main computational kernels implementing the
actual numerical method, indicating that despite the appeal of SPH as
an embarrassingly parallel method, optimal performance lies behind
non-trivial implementation strategies.

The programming strategies we have presented are specific to the
implementation details of GPUSPH. but we believe that our experience
is indicative of a more general existence of untapped potential to
improve scientific codes that goes beyond just hardware acceleration
and novel algorithms. The fast evolution of GPU architectures is often
a drive to revisit implementations for further optimizations, but such
opportunities may be available on CPU as well, especially considering
the ongoing progress in compiler technology and programming lan-
guages, and opportunities such as the ones illustrated in this paper may
be worth exploring, both in research and for engineering applications,
given the potential for significant speed-ups.
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