
HAL Id: hal-04642127
https://cnam.hal.science/hal-04642127v1

Submitted on 9 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Liability and Trust Analysis Framework for Multi-Actor
Dynamic Microservices

Yacine Anser, Chrystel Gaber, Jean-Philippe Wary, Samia Bouzefrane,
Méziane Yacoub, Onur Kalinagac, Gürkan Gür

To cite this version:
Yacine Anser, Chrystel Gaber, Jean-Philippe Wary, Samia Bouzefrane, Méziane Yacoub, et al.. Lia-
bility and Trust Analysis Framework for Multi-Actor Dynamic Microservices. IEEE Transactions on
Network and Service Management, inPress, �10.1109/tnsm.2024.3417934�. �hal-04642127�

https://cnam.hal.science/hal-04642127v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Liability and Trust Analysis Framework for
Multi-Actor Dynamic Microservices

Yacine Anser∗†, Chrystel Gaber∗, Jean-Philippe Wary∗, Samia Bouzefrane†, Méziane Yacoub†, Onur Kalinagac‡,
Gürkan Gür‡

∗Orange, Châtillon, France
†CEDRIC Lab, Cnam, Paris, France

‡Zurich University of Applied Sciences (ZHAW), Switzerland
{name.surname}@orange.com, {name.surname}@cnam.fr, {kalo, gueu}@zhaw.ch

Abstract—Microservices architecture has become an increas-
ingly common approach for building complex software systems.
With the distributed nature of microservices, multiple actors
can contribute to a service, hence affecting the dynamics of the
environment and making the management of liabilities and trust
more challenging. Service-Level Agreements (SLAs) are critical
in that regard and any SLA violation or breach can result in
significant financial damages. One major challenge is the lack of
indicators to handle the liability and trust in such architectures.
To address this issue, in this paper we propose a liability and trust
analysis framework, namely the LASM Analysis Service (LAS),
for multi-actor dynamic microservices that employs Machine
Learning (ML) techniques.

Index Terms—Liability, Trust, Microservices, Machine Learn-
ing (ML), Service Level Agreement (SLA)

I. INTRODUCTION

Microservices architecture is increasingly adopted for de-
veloping complex cloud-native software systems as it al-
lows greater scalability, flexibility, agility, maintainability and
modularity in development and deployment [1]. Combining
networking paradigms such as 5G, 6G or cloud-to-edge con-
tinuum with microservices-based architectures is beneficial
for the resulting applications and networks. This symbiotic
relationship is expected to disrupt future IT and network
infrastructures as investigated in current research.

However, the use of microservices architecture implies
dividing a monolithic functionality into smaller, independent
functions potentially provided by multiple actors and orches-
trated in a dynamic environment. As a result, the management
of liability and trust in microservices architecture is a chal-
lenge that needs to be tackled as highlighted by [2] in the
context of 5G. Existing works concentrate on Service Level
Agreement (SLA) monitoring and Root Cause Analysis (RCA)
but there is little literature defining liability metrics that can
be used for managing such an infrastructure.

This paper presents a novel contribution called Liability-
Aware Security Manager (LASM) Analysis Service denoted
as LAS. This framework enhances the functionality of the

The research leading to these results partly received funding from the
European Union’s Horizon 2020 research and innovation program under grant
agreement no 871808 (5G PPP project INSPIRE-5Gplus). The paper reflects
only the authors’ views. The Commission is not responsible for any use that
may be made of the information it contains.

Liability-Aware Security Manager (LASM) previously pre-
sented in [3]. To this end, LAS computes three categories
of liability metrics. The first one, Commitment Trust Scores,
aims at categorizing the trust that an instance, all instances of
a microservices or all microservices of a provider will behave
as expected by the commitments taken in SLAs. The second
category, Financial Exposure, measures the amount of money
that the overall microservice architecture provider might po-
tentially lose with the current composition of microservices.
Finally, the third category, Commitment Trends, involves mon-
itoring trends of SLA Violation Rates (SVR) and Instance
Commitment Trust in order to predict future violations. After
describing the LAS and the metrics it generates, we illustrate
and evaluate them with two use cases. Finally, we discuss
the results and highlight the strengths of this proposal before
concluding our work.

Contributions. This paper describes LASM Analysis Ser-
vice (LAS) which is a framework designed to compute three
categories of liability-related metrics based on the SLAs com-
mitted by the components and stakeholders of a microservices
architecture as well as their related monitored indicators.
The proposed metrics are illustrated with two use cases and
evaluated.

Outline. This article is structured as follows. Section II
provides an overview of previous work used to build our
proposal. Section III describes the proposed LASM Analysis
Service (LAS). We then evaluate our contributions through two
use cases in Section IV with further discussion in Section V.
Section VI reflects on existing related approaches and Section
VII concludes the paper.

II. PREVIOUS WORK

The proposed module LAS completes the LASM presented
in [2], [3]. The LASM is intended to support an End-to-End
(E2E) service providers using a microservice architecture that
includes a range of subcomponents. These components may be
individual microservices, infrastructure elements, or a mix of
both, and they may be supplied by various service providers.

The architecture of the LASM is presented in Figure 1.
The LASM Referencing Service (LRS) helps the E2E service
provider manage a catalog of microservices and instantiated
microservices described using a metamodel called TRAILS

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

LASM Referencing
Service

<<Django Framework>>

LASM Analysis
Service

<<Django Framework>>

Trust/Liability
metrics

LASM v1 Scope of the paper

GRALAF
<<Python>>

Service
metrics

SLAs

Fig. 1. LASM overall architecture.

for sTakeholder Responsibility, AccountabIity and Liability
deScriptor introduced in [3]. The LAS, which is the framework
presented in this paper, provides liability-related metrics based
on the monitoring of the microservices instances. It receives
service metrics from the GRALAF (Graph-Based Liability
Analysis Framework) described in [4], a tool that performs
near-real time anomaly detection and RCA in a microservice
environment. Our proposition integrates with GRALAF, as
illustrated in Figure 1. GRALAF monitors various perfor-
mance metrics of microservices such as service response time
and CPU levels. These metrics, alongside SLAs, are used to
compute the liability and trust metrics. The SLAs are stored
in the TRAILS archive. The LRS is responsible for cataloging
the TRAILS associated with each service [3]. The metrics
we propose in this article are orthogonal and complementary
to those defined in [5] which are calculated by the LRS.
These metrics describe a service or a component based on
its characteristics while the metrics presented in this paper are
based on the observation of the behaviour of the component
or service once deployed and in operation.

III. LASM ANALYSIS SERVICE (LAS)

This section describes the internal architecture of the pro-
posed LAS as well as the trust and liability metrics it com-
putes. As described in Figure 2, the LAS uses labelled data
sets provided by risk management experts, and the SLAs
committed by service providers to generate three categories of
metrics, namely Commitment Trust Score, Financial Exposure,
and Commitment Trends.

The LAS calculates three types of Commitment Trust
Scores, listed as microservice Instance Trust Score (ITS),
Microservice Trust Score (MTS) and Service Provider Trust
Score (SPTS).

To achieve this, it uses a Multi-Layer Perceptron (MLP)
[6] - a type of fully connected feedforward Artificial Neural
Network (ANN), and a vector quantification method called k-
means. The LAS computes the Financial Exposure to Penalty
Risk (FEPR) inspired from financial exposure metric cal-
culated in the field of investments. Finally, two types of
Commitments Trends are generated. Using a different type of
ANN known as a Self-Organizing Map (SOM) [7], the LAS
tracks the changes of the ITS and the SLA Violation Risk over
time. This generates two other outputs, namely the Instance
Trust Score Trend-Variation (ITS-TV) and the SLA Violation
Risk Trend-Variation (SVR-TV).

Further elaboration on these methodologies are provided in
the rest of this section.

LASM Analysis Service (LAS)

ITSMultilayer Perceptron
(MLP)

Input Output

Self-Organizing Maps
(SOM)

K-means & Multilayer
Perceptron

SLA1
SLA2

.
SLAn

MTS

ITS-TV

SVR-
TV

SPTS

Data
Preparation

d1
d2
.

dn

RPN1
RPN2

.
RPNn

Obs1
Obs2

.
Obsn

Financial Exposure to
Penalty Risk Calculator FEPR

SVR1
SVR2

.
SVRn

ITS : Microservice Instance Trust Score
MTS : Microservice Trust Score
SPTS : Service Provider Trust Score
ITS-TV : Instance Trust Score Trend Variation
SVR-TV : SLA Violation Rate Trend Variation
FEPR: Financial Exposure to Penalty Risk

SLAn : nth Service Level Agreement
Obsn : Observation of SLAn
dn : distance between SLAn and Obsn
RPNn : Risk Priority Number associated to Obsn
SVRn : SLAn Violation Rate

Labelled
datasets for

offline
training

Fig. 2. Overview of LASM Analysis Service (LAS).

A. Data Preparation

The Data Preparation module has two roles. First, it prepares
the labelled dataset to train the MLP and the SOM models.
Second, it generates the input used by the models in the
operational phase based on the SLAs collected from TRAILS
data and the observations which correspond to the values of
the Service Level Indicators (SLI)1 collected by GRALAF.

1) Labelling the datasets for training: Each entry in the
dataset captures the values of all the SLIs either at regular
intervals or upon the occurrence of a SLA violation. These
records are annotated with a risk management expert’s assess-
ment of the observation, categorized as high, medium, or low.

The MLP requires a labeled dataset which contains a
balanced number of normal and abnormal situations. However,
we expect that, in most cases, Service Providers and their
microservices tend to fulfill their commitments which would
result in an imbalanced dataset problem, potentially affecting
learning and predictions. Techniques to address this issue
include under-sampling the majority class(es), over-sampling
the minority class(es), or combining both, with selection
dependent on data characteristics. We adopted the SMOTETomek
algorithm, which is a combination of two algorithms, SMOTE
[8] and Tomek-links [9]. It oversamples the minority class
using SMOTE and then removes Tomek links to improve the
decision boundary between classes.

The training dataset samples are scaled between -1 and 1
using 1 to improve the algorithm’s performance:

Obsscaled = Obstmp ∗ (max−min) +min (1)

where min = −1 and max = 1 and:

Obstmp =
(Obs−min(OV))

(max(OV)−min(OV))
(2)

1A Service Level Indicator (SLI) is a metric that measures the performance
of a service.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

Where Obs is an observation and OV is for Observation Vec-
tor and max and min are functions that return the maximum
value and the minimum value in a vector.

The dataset is split into training and testing sets with a ratio
of 75% and 25%. It underwent numerous random splits, a pro-
cess repeated until the test set reliably reflected behaviors that
had not been observed before. This helps evaluate the model’s
performance more robustly and ensures that it generalizes
well to new data, not just the data it was trained on. Finally,
we use GridSearchCV [10] to set the hyperparameters of the
MLP, including the number of hidden layers, the number of
nodes in each layer, the activation function, the learning rate,
and the solver. This method does an exhaustive search over
specified parameter values for the MLP. As recommended by
the methodology, we first define our GridSearchCV strategy by
specifying the expected scores, then we determine the cross-
validation splitting strategy as Time Series Split.

2) Distance between committed SLA and observation: The
data preparation module produces a vector D, consisting of a
series of distances d, which measures the degree of compliance
with the SLA. The computation of these distances depends
on the specific characteristics of the SLA. For example, the
following distance is suitable for an SLA which penalizes
under-performance:

di =
SLAi −Obsi
max(Obsi)

(3)

i is a unique pairing, with SLAi as the value for the ith SLA
and Obsi as the corresponding ith observation value.

3) Severity of deviation between committed SLA and obser-
vations: Severity is measured on a scale ranging from 0 to
NCat, indicating the severity level of the distance between
the committed SLAi and the related observation Obsi.

si =

0, R0(SLAi, Obsi)
1, R1(SLAi, Obsi)
...

NCat, RNCat(SLAi, Obsi)

(4)

si depends on the relationship between SLAi and Obsi as
determined by various relational conditions R0,R1,. . . ,RNCat.
Each condition R(SLAi, Obsi) involves comparing SLAi and
Obsi using relational operators.

4) SLA Violation Rate: The Data Preparation module com-
putes the SVR for each SLAi as follows:

SV Ri,l =
1

TN

TN∑
t=0

f(si,t, l) (5)

l ranges from severity 0 to NCat. SVR is calculated for
each l value. TN represents an observation time frame, while
the function f quantifies severity occurrences within time
range TN . It is defined as follows:

f(x, l) =

{
1, x = l
0, x ̸= l

(6)

5) Risk Priority Number: The data preparation module
computes a Risk Priority Number (RPN) for each observation
i and for each SLAi based on the severity of deviation si:

RPN i = si ∗ SV Ri,l (7)

B. Instance Trust Score (ITS)

Our objective is to classify each observation acquired by
GRALAF. We explored multiple neural network models to
perform such multi-classification tasks, such as MLP and
Support Vector Machines (SVM), and the results obtained with
the MLP were the most satisfactory.

The input of the MLP is the distance vector D detailed
in Section III-A2. The number of nodes in the input layer
corresponds to n, which is the size of the vector D. The
number of nodes in the output layer corresponds to the number
of class of trusts we define. In our case, there are three
classes of trust, namely High Level of Trust, Medium Level
of Trust and Low Level of Trust. We also use the function
Softmax in the output layer. To adapt to the dynamic and
ever-changing nature of our environment, we train and test
our model offline and deploy it in the production environment.
Periodically, we retrain the model with newly labeled and
validated data, followed by an evaluation of its performance
using metrics including accuracy, precision, recall, F1-score,
and the confusion matrix. Furthermore, we conducted Receiver
Operating Characteristic (ROC) curve analysis using the one-
vs-rest approach, specifically targeting the ”High level of trust”
class. The Area Under Curve (AUC) score was also calculated
as part of this assessment. Furthermore, if issues like drift
are detected during monitoring, we may initiate the model’s
retraining process.

C. Microservice Trust Score (MTS) and Service Provider Trust
Score (SPTS)

The aim is to determine the level of trust in a microservice
and the providers of that service from multiple observations of
the service instance at a specific time point, the level of trust
in the microservice and the providers of the service. (Note
that one provider can offer multiple classes, and one class
may involve several providers). The method for computing
the MTS involves using the k-means algorithm, a Vector
Quantization (VQ) technique. This algorithm is a popular
clustering technique due to its simplicity and ability to scale
large data sets. We have opted to use k-means algorithm
because it is relatively easy to implement and is applicable
to numeric and continuous data.

The k-means algorithm is used to perform VQ on several
observations of a commitment on the same instance of a mi-
croservice. Let n be the number of instances of a microservice
and oi be the observation of SLAi. At an instant T, we
measure the observation o for the n microservice instances.
These measurements form the observation vector O. Then we
represent the observations by a prototype (centroid) using k-
means. The vector O and the number of clusters k are the
algorithm’s parameters. To determine k, we use the Elbow
Method [11], which assists in determining the ideal number of
clusters in datasets. This method plots cluster numbers against
a performance metric, pinpointing the optimal cluster count
where further additions do not notably enhance the model. k-
means gives the codebook as output. Using the codebook, we
map the code to centroid in order to obtain the prototype
observation. The prototype observation and the commitment

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

SLAi are processed to obtain the distance d. This process is
repeated for all commitments made on the microservice, and
the resulting vector D is presented to the MLP model to obtain
the trust class.

For the SPTS, we need to make some modifications to
the existing methodology. Specifically, instead of inputting the
observations into the k-means algorithm, we input the MTS of
the relevant service provider’s microservice. These values are
encoded using one-hot encoding techniques [12]. The resulting
prototype generated by the k-means algorithm represents the
SPTS. The Figure 3 outlines the process of calculating the two
metrics MTS and SPTS.

K-means The prototype
observationCodebook

{Obs1,.,Obsn}

 K
SLAi MLP

model

MTS/
SPTS

Distance
computing

d
value

To be repeated for all SLAi

Vector D

Fig. 3. MTS and SPTS computation process.

D. Temporal Evolution on the Self-Organized Map of the ITS
and the SLA Violation Risk

Our objective is to perform a real-time observation of the
ITS and the SLA Violation Risk to have an efficient tracking
of the metric dynamics. Also, we want to determine when
the metrics are entering a non-desired state represented by a
forbidden area and a warning area on a map. For that purpose,
we use a special class of ANN called Self-Organizing Maps
(SOM). The following gives an overview on how it is applied.

We create two SOMs for each service class, one for the
TSI metric (map1) and another for the SLA Violation Risk
metric (map2), using the same process for both. This involves
a training phase (Steps 1-3) and an operation phase (Step
4), implemented using minisom [13], a Python tool for SOM
training and construction.

Step 1. The data acquired from measurements are trans-
formed into input data for the SOM map. Specifically, we
compute the d vector (the input for the map1) and the RPN
vector (the input for the map2).

Step 2. The SOM is trained with all available data. The
parameters for training, including the map’s dimension, learn-
ing rate, and neighborhood coefficient, are chosen based on
empirical benchmarks. The quality of the resulting mapping
is assessed using metrics including the quantization error, the
topographic error, the silhouette score, the distortion and the
neighborhood preservation [14].

Step 3. After the training phase, a label is assigned to
each neuron in the grid. This label corresponds to a particular
class, determined by analyzing the u-matrix and the component
planes representation. Two types of area are defined: the
”forbidden” area, which corresponds to neurons being labeled
”Low level of trust” and ”High level of risk” for map1 and
map2, respectively and the ”warning” area which corresponds
to the to neurons being labeled ”Medium level of trust” and
”Medium level of risk” for map1 and map2, respectively.

Step 4. During the operational phase, the inputs are pro-
jected onto the map, the sequence of nodes in time that forms
a trajectory on the map depicting the movement of the metrics.
A detailed alert message is triggered if an input is projected
in a restricted area.

E. Financial Exposure to Penalty Risk (FEPR)
Financial Exposure to Penalty Risk (FEPR) is a term that

comes from the financial and risk management world. It is
used to measure the amount of money that an investor might
lose on an investment. In our context, we use it to quantify the
financial risk a microservice architecture provider integrating
multiple microservice components is exposed to when it offers
a service to a customer. It is defined as

FEPRi,j =

3∑
i=0

SV Ri,j,l ∗ (rewl − penl) (8)

where rew corresponds to the reward that the microservice
architecture provider earns if it honours its commitments, and
pen the penalty the microservice architecture provider must
repay if it does not meet its commitments. The SVR is the
SLA Violation Rate explained in the subsection III-A4.

IV. EVALUATION AND RESULT

To evaluate our contribution, we showcase a practical ap-
plication of the LAS through two use cases. For both, we
defined several scenarios to highlight the characteristics of
our contribution. The LAS was deployed on a Kubernetes
container platform with the help of Python libraries such as
Numpy, Pandas, Scikit-Learn and Matplotlib. In the following,
we describe the use cases and present the results obtained.

A. Use case n°1 - PacketFabric SLA
1) Use Case Description: In the first use case, we work

with synthetic data that we generated based on the SLA
of PacketFabric [15]. We assume that PacketFabric provides
a service that consists of deployment and management of
network services. This use case also illustrates that the LAS
is applicable in scenarios beyond microservices.

Service Level Agreement PacketFabric commits to the
following service level metrics which are denoted as SLAi

with its related observation Oi [15]:
• Network availability: Deliver availability of at least

99.988% in the network → SLA: SLA0, related obser-
vation: O0.

• Latency: Deliver a network service with an end-to-end
latency lower than 95ms → SLA: SLA1, related obser-
vation: O1.

• Packet loss: Deliver a network service with a network
packet loss across the network lower than 0.14% → SLA:
SLA2, related observation: O2.

The Core Network Availability, Latency Metric Extended
and Loss Metric Exceeded tables provided in [15] summarize
the levels of SLA penalties and the corresponding penalties
that the service provider is eligible to receive if SLA0, SLA1

and SLA2 are not met, respectively. The SP deploys the LAS
in order to evaluate the network service using the available
metrics presented in Section III.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

2) Dataset for training phase: For this use case, we used
synthetic data to overcome the lack of real-world data.

For dataset creation, we relied on the SLA structure from
PacketFabric as our starting point. Utilizing this informa-
tion, we crafted a distribution function, employing both a
Gaussian Mixture Distribution (GMD) and a uniform dis-
tribution to mimic the SLA attributes. Consequently, our
dataset mirrors the SLA specifications of the packetFabric
service. The methodology used consists of three steps. The
first step involves generating five datasets with five GMDs
with the same mean but different variances. The second step
involves drawing a uniform number of samples from these five
datasets to create the final dataset. Finally, that final dataset is
timestamped.

We illustrate this methodology for the Core Network Avail-
ability service level. The first step will be to generate the five
datasets. The GMD takes the following form:

X ∼ 0.90 ∗ N (µ1, σ) + 0.04 ∗ N (µ2, σ) + 0.03 ∗ N (µ3, σ)

+ 0.01 ∗ N (µ4, σ) + 0.005 ∗ N (µ5, σ) + 0.005 ∗ N (µ6, σ)
(9)

The means µ1 through µ6 from the Core Network Availabil-
ity table are mean values for each interval, calculated as µ1

= 0.9999, µ2 = 0.9995, µ3 = 0.99673, µ4 = 0.991, µ5=0.986,
and µ6 = 0.961, identical across all five GMDs.

The standard deviation σ values differ for each dataset.
Specifically, for dataset n°1, σ[1,2,3,4,5,6] = 0.001, for dataset
n°2, σ[1,2,3,4,5,6] = 0.005, for dataset n°3, σ[1,2,3,4,5,6] = 0.01,
for dataset n°4, σ[1,2,3,4,5,6] = 0.05, and for dataset n°5,
σ[1,2,3,4,5,6] = 0.1.

To create the final dataset, we draw samples from the
five datasets using a uniform distribution and timestamp the
resulting synthetic time-series dataset. This process is repeated
for the other two service levels, resulting in a final synthetic
dataset of 4230 samples.

3) Datasets for operational phase: Six datasets were cre-
ated to evaluate our metrics. The first dataset is used in
our evaluation of ITS, ITS-TV, and SVR-TV. The other five
datasets were created to evaluate MTS and SPTS. They
represent data generated by five instances of two different
microservices provided by a unique Service Provider.

The first dataset is illustrated in first three rows of Table I
for SLA0, SLA1 and SLA2, respectively. The dataset spans
over six Time Windows (TW), each having a different scope.

TABLE I
TIME WINDOWS AND CORRESPONDING ITS (COMPLY: AS EXPECTED, ↓ :

LESS THAN EXPECTED, ↑ : HIGHER THAN EXPECTED)

TW0 TW1 TW2 TW3 TW4 TW5

O0 Comply 0.0048% ↓ 0.0048% ↓ 0.01288% ↓ 4.1% ↓ Comply
O1 Comply Comply 63% ↑ Comply 69% ↑ Comply
O2 Comply Comply Comply Comply 43% ↑ Comply
ITS High Medium Low Low Low High

Nine case studies are included in the last five datasets,
and they are all denoted using the notation Ox,y,z , where x
denotes the observation index, y the instance number and z

the microservice number, respectively. The following presents
these nine case studies:

• CS1 : All the observations behave as expected.
• CS2 : O1,1,1 results in 20% of MRC penalty. The

remaining observations conform to the expected behavior.
• CS3 : O2,1,1 results in 10% of MRC penalty. The

remaining observations conform to the expected behavior.
• CS4 : O2,1,1 results in 10% of MRC penalty and O3,2,1

result in 20% of MRC penalty. The remaining observa-
tions conform to the expected behavior.

• CS5 : O1,1,1 results in 10% of MRC penalty, O2,2,1 result
in 10% of MRC penalty and O3,3,1 result in 20% of
MRC penalty. The remaining observations conform to the
expected behavior.

• CS6 : O1,1,1 results in 20% of MRC penalty and O1,1,2

result in 10% of MRC penalty. The remaining observa-
tions conform to the expected behavior.

• CS7 : O2,2,1 results in 20% of MRC penalty, O2,3,1 result
in 20% of MRC penalty and O2,1,2 result in 30% of
MRC penalty. The remaining observations conform to the
expected behavior.

• CS8 : O3,2,1 results in 20% of MRC penalty, O2,3,1 result
in 30% of MRC penalty and O3,1,2 result in 20% of
MRC penalty. The remaining observations conform to the
expected behavior.

4) Results:
a) Instance Trust Score (ITS):

Offline phase results First, the dataset for the training phase
is labeled, resampled, scaled, and split into training and testing
sets. The hyperparameters determined by the GridSearchCV
algorithm are the learning rate of 0.0001, a single hidden layer
comprising 15 neurons, and the hyperbolic tangent function as
the activation function. We then start the evaluation with the
confusion matrix (Figure 4(a)). As we can observe, all the
samples have been accurately classified. Then, we evaluate
the model using the metrics defined in Section III-B and show
the results in Table II. The classifier performs with very high
precision and recall scores for all three classes, along with high
specificity and F1-scores. Additionally, the geometric means
for all three classes are also high, indicating that the classifier
is unbiased towards any particular class.

TABLE II
CLASSIFICATION RESULTS.

Precision Recall Specificity F1-score Geo.
mean

High
Trust

1.00 1.00 1.00 1.00 1.00

Medium
Trust

0.99 1.00 1.00 1.00 1.00

Low
Trust

1.00 0.99 1.00 1.00 1.00

We then generated the ROC curve (Figure 4(b)) and calcu-
lated the AUC. An AUC of 1 shows that the model accurately
identifies instances of the target class.

Operational phase results. The goal is to assess whether
the ITS progress for each TW aligns with the anticipated trend
of the three observations over time. The results displayed in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

High Trust Medium Trust Low Trust
Predicted label

High Trust

Medium Trust

Low Trust

Tr
ue

 la
be

l

357 0 0

0 366 0

0 0 335

(a) Confusion matrix

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

 High Trust vs the rest (AUC = 1.00)
chance level (AUC = 0.5)

(b) One-vs-Rest ROC curves: High
Trust vs (Medium Trust & Low
Trust)

Fig. 4. Confusion matrix and ROC curve.

the fourth row of Table I show that the LAS correctly evaluates
the ITS over time. Indeed, the ITS is High at TW0 and TW5.
This fits with the observations as the three SLAs are met.
At TW1, the LAS indicates that the ITS is Medium. This is
accurate because it is clear that during this TW the SLA1

and the SLA2 are met but the O0 deviate slightly from the
committed value SLA0 which is enough to bring down the
ITS to Medium as it is built as such. During TW2, TW3 and
TW4, the ITS is Low. This can be explained as at TW2 the O0

deviates slightly and O1 deviates moderately which brings the
ITS down to Low. At TW3 we can observe that O0 deviates
totally and at TW4 the three observations totally deviate.

b) Microservice Trust Score (MTS) and Service Provider
Trust Score (SPTS): Table III summarizes the MTS and SPTS
for this use case in operational phase. In CS1, all observations
behave as expected, resulting in a High rating for CTS 1,
CTS 2, and SPTS. In CS2, CTS 1 is rated Medium due to a
slight deviation in class instance availability which is enough
according to the Core Network Availability table. However,
CTS 2 is High resulting in a High rating for SPTS. In CS3,
all observations in CTS 1, CTS 2, and SPTS are High with
only minor latency deviations in the first class. In CS4, CTS 1
is Medium due to slightly high latency in the first instance and
packet loss in the second instance. However, CTS 2 is High
resulting in a High rating for SPTS. In CS5, CTS 1 is rated
Low due to three deviating observations: availability in the first
instance, latency in the second instance, and packet loss in the
third instance. CTS 2 is High resulting in a Medium rating for
SPTS. In CS6, CTS 1 and 2 are rated Medium due to a slight
deviation in availability for the first instance of each class,
resulting in a Medium rating for SPTS. In CS7, CTS 1 is rated
Low due to deviating latency in the second and third instances.
CTS 2 is rated Medium due to excessively high latency in the
first instance, resulting in a Medium rating for SPTS. In CS8,
CTS 1 is rated Medium due to a slight deviation in error rate
and in the latency for the second and third instance, CST 2
is High because the the deviation in latency is quite minor,
resulting in a High SPTS.

c) Trend Variations of ITS and SVR: For both of our
maps, we set the learning rate to 0.0001 to ensure a stable
SOM map. Neuron weights were randomly initialized, and the
Gaussian function was chosen as the neighborhood function
due to its common usage. We chose to create a rectangular

TABLE III
MTS AND SPTS (L: LOW, M: MEDIUM, H: HIGH).

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8

CTS-1 H M H M L M L M
CTS-2 H H H H H M M H
SPTS H H H H M M M H

map with dimensions of 15 by 15 for the ITS-TV map and 10
by 10 for the SVR-TV map.

TABLE IV
SOM - EVALUATION.

Metrics ITS-TV map SVR-TV map

Quantization error 0.03 0.02
Topographic error 0.08 0.03
Silhouette score 0.65 0.78
Distortion 0.71 0.65
Neighborhood preservation 0.86 0.75

Table IV presents the evaluation results of two SOM maps.
The low quantization and topographic errors (0.03/0.08 for
ITS-TV map, 0.02/0.03 for SVR-TV map) indicate that the
SOM maintained the spatial and topological relationships
of input data points accurately. The high silhouette scores
(0.65 for the ITS-TV map, 0.78 for the SVR-TV map) show
excellent clustering quality, and the low distortion values (0.71
for the ITS-TV map, 0.65 for the SVR-TV map) suggest
tightly packed data points in each cluster. The high neigh-
borhood preservation score (0.86 for ITS-TV map, 0.75 for
SVR-TV map) demonstrates effective preservation of spatial
relationships between neighboring data points.

Interpretation of the ITS-TV Map. After an initial analy-
sis of the u-matrix and the components plane, we have arrived
at a comprehensive interpretation which is presented in detail
in Figure 5. Our analysis has led us to identify a total of six
distinct areas on the map, which can be broadly categorized
into three forbidden areas and three warning areas. Each of
these areas is associated with a specific color code and a
detailed description of the anomaly observed in that area.
The uncolored neurons indicate an area where there are no
observations associated with them. The normal area where no
anomaly is detected is in green. The first forbidden area, in
red, corresponds to cases where the SLA0 is 3% above the
committed value. In the second forbidden area, in blue, the
SLA2 exceeds the commitment by 26%. In the third forbidden
area, in black, the SLA1 is 32% higher than the committed
value. In the first warning area, in orange, the SLA1 is 14%
higher than the committed value. In the second warning area,
in yellow, the SLA0 is 1% higher than the committed value.
Finally, the third warning area, in cyan, the SLA2 is 16%
above the committed value.

Operational Phase for the ITS-TV Map. To illustrate how
the map can be practically employed, we present the following
scenario: the service begins functioning as expected, the input
data is then projected in the green area. However, the latency
rises from 94ms to 95.5ms. The input data is then projected in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

1

2

3

4 5

Fig. 5. ITS-TV Map with data insight.

1

2

3

4

5

Fig. 6. SVR-TV Map with data insight.

the first warning area which raises an alert. Then, the service
returns to its normal state. Next, the packet loss rate increases
to reach 0.2% and the input data is projected into the third
forbidden area. Eventually, the Network Service returns to its
normal behavior which brings the input data into the green
zone. The path created by the various inputs is visualized
Figure 5.

Interpretation of the SVR-TV Map. Figure 6 presents an
overview of the distribution of the training dataset on the SOM
map. Our analysis has led us to identify three forbidden areas
and three warning areas. As before, the uncolored neurons
mean no associated observations in that area. The normal area
is in green. The first forbidden area, in blue, corresponds to
a probability of over 58% that SLA1 will be violated. The
second forbidden area, in purple, corresponds to a probability
of over 55% that SLA2 will be violated. The third forbidden
area, in red, corresponds to a probability of over 60% that
SLA0 will be violated. The first warning area, in orange,
corresponds to a probability of over 27% that SLA0 will be
violated. The second warning area, in cyan, corresponds to a
probability of about 13% that SLA1 will be violated. Finally,
the third warning area, in yellow, corresponds to a probability
of about 18% that SLA2 will be violated.

Operational Phase for the SVR-TV Map. To demonstrate
the practical application of the map, we consider the following
scenario: once the service is up and running as anticipated, the
input data is then mapped onto the green region. However, the
packet loss rate starts to increase slightly; the input data is then

projected into the third warning area, and an alert is raised. The
packet loss rate continues to increase, and in turn the risk that
this SLA will be violated increases, so the data is projected
into the second forbidden area, an alert indicating that the high
probability of this SLA being violated is raised. Finally, the
network service resumes its normal behavior, resulting in the
input data being brought back into the green zone.

d) Financial Exposure to Penalty Risk:
Highlight. In the following, we use the FEPR metric to

analyze the PacketFabric use case and examine the relationship
between the increased risk of SLA failure and the correspond-
ing FEPR. For that purpose, we apply penalties for availability,
latency, and packet loss rate, as defined in [15], using the same
scenario used previously to demonstrate the variation in SLA
Violation Trend.

Result. At the start of the monitoring period, the FEPR met-
ric is at 0$, indicating that the service is operating as expected.
However, as time goes on, there is a gradual degradation in
packet loss rate, which increases the risk of SLA violations
and causes the FEPR to decline to -200$ and eventually to
-1200$. The situation worsens, further raising the risk of SLA
violations and resulting in a sharp increase in the FEPR to
-2200$. The service eventually returns to normal operation,
reducing the risk of SLA violations and causing the FEPR to
go back to 0$.

B. Use case n°2 - EdgeX SLA:

1) Use Case Description: The testbed for the second use
case is illustrated in Figure 7. The EdgeX is used for IoT
device management and is an open source software framework
that offers device and application interoperability at the IoT
edge. Apart from the main microservices from EdgeX, we
also deployed some additional services. MQTT-broker service
serves as an intermediary between the IoT devices supporting
MQTT and the MQTT-device service introduced by us. We
deployed multiple instances of a microservice application that
emulates IoT devices, sends random sensor data periodically
and can be controlled via MQTT. To send the received
sensor data to an external server which hosts Fledge, a data
exporter service called exporter-fledge is also deployed in
the EdgeX environment. Fledge is an open source framework
and community focused on IoT devices for the industrial edge.
Locust is an open source performance testing tool capable
of simulating a large number of concurrent users and it is
used to generate traffic on the Edgex ecosystem. GRALAF
[16] periodically queries Prometheus, a widely-used open-
source system for gathering, storing, and querying metrics.
Prometheus is configured to scrape the metrics every 60
seconds and to store them in a time-series database that is
organized by SLA name.

For the infrastructure setup, we use five virtual machines
running on an OpenStack cloud infrastructure. A MicroK8s
based Kubernetes cluster, which hosts Edgex services, Locust
and all other required system services like Prometheus and
Istio are deployed using three of the VMs. These three virtual
machines have 4 vCPUs, 8 GB of RAM, and 160 GB of SSD
storage. Istio provides traffic related metrics such as response

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Fledge

ui

IoT
data

exporter-fledge

device-MQTT

MQTT-broker

HTTP south service

IoT Devices
Virtual
MQTT

device 25
...ui

Usage load

Virtual
MQTT

device 2

Virtual
MQTT

device 1

Prometheus

VM 5

VM 1-3

VM 4

Locust

Fig. 7. Test environment for Use Case 2 VM indicates in which virtual
machine the services are deployed.

time and error rate while Prometheus scrapes all the metrics
from the available providers like Kubernetes infrastructure
service and Istio. A Fledge server is hosted by one VM, and 25
MQTT-based virtual IoT device applications are deployed in
a MicroK8s environment on the other VM. These two virtual
machines have the following resource assignments: 1 vCPU,
2GB of RAM, and 120GB of SSD storage. The service-VM
mapping for this use case is illustrated in Figure 7.

Target Service. EdgeX service is divided into four ser-
vices, specifically the core, supporting, system management
and devices services. Each service is composed of one or
several microservices. Each service or microservice is pro-
vided by a service/microservice provider. For the evaluation,
we focused on the core service, namely the core-metadata
microservice. It communicates with other microservices such
as core-command, UI and device-mqtt.

Service Level Agreement. An SLA is established between
the parties where the provider of the core-metadata microser-
vice committed to the following service level metrics:

• Service Availability: Deliver availability of at least 99%
for the service → SLA: SLA′

0, related observation: O′
0.

• Service Latency: Deliver a service with a latency lower
than 100ms → SLA: SLA′

1, related observation: O′
1.

• Service Error Rate: Deliver a service with an error rate
lower than 0.5 → SLA: SLA′

2, related observation: O′
2.

Table V lists the penalty charges the consumer of the core
microservice is entitled to receive if the commitment is not
met with a Monthly Recurring Charge (MRC) of 10000$.

2) Dataset for the training phase: For this use case, we
adopted Chaos Mesh to perform realistic perturbations to
create a representative dataset. It is a platform that orchestrates
faults in Kubernetes. The experiment’s workflow involves
multiple steps. Initially, the service’s steady state is estab-
lished, representing its standard operation while fulfilling all
SLAs. Next, real-world events are defined that can disrupt the
service. Chaos Mesh is tightly integrated with Kubernetes and
provides various potential failures in Kubernetes clusters. For
our assessment, we mainly utilized network outages, memory
and CPU stress, latency injection, and pod termination events,
all of which can lead to breached SLAs. We end up with a
dataset of 9718 samples.

TABLE V
SLA PENALTIES FOR EDGEX: AVAILABILITY, LATENCY, AND ERROR

RATE

Availability Penalty Latency Penalty Error
rate

Penalty

>=99.862%
<99.988%

10% of
MRC

10%
above
SLA

10% of
MRC

10%
above
SLA

10% of
MRC

>=99.445%
<99.862%

20% of
MRC

20%
above
SLA

20% of
MRC

25%
above
SLA

25% of
MRC

>=98.889%
<99.445%

30% of
MRC

40%
above
SLA

30% of
MRC

50%
above
SLA

50% of
MRC

>=98.334%
<98.889%

40% of
MRC

60%
above
SLA

40% of
MRC

75%
above
SLA

40% of
MRC

>=96.667%
<98.334%

60% of
MRC

75%
above
SLA

50% of
MRC

100%
above
SLA

60% of
MRC

<96.667% 100% of
MRC

100%
above
SLA

60% of
MRC

3) Datasets for the operation phase: Four datasets were
created to evaluate our metrics. The first dataset is used in our
evaluation of ITS, ITS-TV, SVR-TV. The last three datasets
were created to evaluate MTS and SPTS. They represent data
of three instances of one microservice provided by a unique
service provider. The first dataset is illustrated in the first three
rows of Table VI for SLA′

0, SLA′
1, and SLA′

2, respectively.
It spans over six TW, each having a different scope.

TABLE VI
TIME WINDOWS AND CORRESPONDING ITS (COMPLY : AS EXPECTED, ↓ :

LESS THAN EXPECTED, ↑ : HIGHER THAN EXPECTED)

TW0 TW1 TW2 TW3 TW4 TW5

O0 Comply Comply 0.0053% ↓ Comply 0.0053% ↓ Comply
O1 Comply 13% ↑ Comply 48% ↑ Comply 10% ↑
O2 Comply Comply Comply Comply 13% ↑ 9% ↑
ITS High Medium Low Low Low Low

The last three datasets contain a total of nine case studies,
each designated with the notation Ox,y where x represents the
observation index and y indicates the microservice number.
Below are the details of these nine case studies:

• CS0: All the observations behave as expected.
• CS1: O0,1 result in 10% of MRC penalty. The remaining

observations conform to the expected behavior.
• CS2: O1,1 result in 10% of MRC penalty. The remaining

observations conform to the expected behavior.
• CS3: Each observation O0,1 and O1,1 results in 10% of

MRC penalty. The remaining observations conform to the
expected behavior.

• CS4: Each observation O0,1 and O1,1 results in 10% of
MRC penalty. O2,1 result in 25% of MRC penalty. The
remaining observations conform to the expected behavior.

• CS5: Each observation O0,1 and O0,2 results in 10% of
MRC penalty. The remaining observations conform to the
expected behavior.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

• CS6: Each observation O0,1, O0,2 and O1,1 results in 10
% of MRC penalty. O1,2 results in 25% of MRC penalty.
The remaining observations conform to the expected
behavior.

• CS7: Each observation O0,1, O0,2 and O1,1 results in
10% of MRC penalty. Additionally, O1,2, O2,1 and O2,2

results in 20% of MRC penalty each. The remaining
observations conform to the expected behavior.

• CS8: Each observation O1,1, O1,2 and O1,3 results in
10% of MRC penalty. The remaining observations con-
form to the expected behavior.

C. Results

a) Instance Trust Score:
Offline phase results. Prometheus may produce raw data

that contains missing values. To handle this, we use the
Multivariate Imputer method outlined in [17]. We labeled,
resampled, scaled, and split the training dataset. The Grid-
SearchCV procedure yielded identical values for the learning
rate and activation function. However, some differences were
noted in the values of other parameters such as the number of
hidden layers (two instead of one), and the size of the hidden
layers (30 instead of 15). We evaluate the model on the testing
dataset. The confusion matrix is presented in Figure 8-a. We
can see that only nine samples were misclassified (eight as
medium trust instead of low trust, and one as medium trust
instead of high trust), which is acceptable considering the total
number of samples. From the confusion matrix, we calculate
the evaluation metrics presented in Table VII.

High Trust Medium Trust Low Trust
Predicted label

High Trust

Medium Trust

Low Trust

Tr
ue

 la
be

l

4751 1 0

0 4600 0

0 8 4625

(a) Confusion matrix

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

 High Trust vs the rest (AUC = 1.00)
chance level (AUC = 0.5)

(b) One-vs-Rest ROC curves: Trust
vs (Medium Trust & Low Trust)

Fig. 8. Confusion matrix and the ROC curve.

TABLE VII
CLASSIFICATION RESULTS.

Precision Recall Specificity F1-score Geo.mean

High
Trust

1.00 1.00 1.00 1.00 1.00

Medium
Trust

1.00 0.98 1.00 0.99 0.99

Low
Trust

0.98 1.00 1.00 1.00 1.00

The classifier’s performance exhibits a precision of 1.00
for the first class, 1.00 for the second class, and 0.99 for the
last class, indicating a low false positive rate. Moreover, the
model displays a very high accuracy in identifying positive

cases for all three classes, as evidenced by a recall of 1.00
for the first class, 0.98 for the second class, and 1.00 for
the last class. Additionally, the specificity is high for all
three classes (1.00), signifying that the classifier excels at
identifying negative cases. The F1-scores for all three classes
are high (1.00, 0.99, and 0.99), indicating that the classifier
can accurately identify most positive cases while minimizing
false positives. Furthermore, a high F1-score suggests that
the classifier is effectively balancing the trade-off between
the three classes. Similarly, the geometric means are high
for all three classes (1.00, 0.99, and 1.00), indicating that
the classifier can correctly identify both positive and negative
cases without showing bias towards any particular class.

Finally, we generated ROC curve (Figure 8-b) and calcu-
lated AUC, with a result value of 1, indicating the model’s
precise identification of target class instances.

Operational phase results. To assess the performance of
the offline model for online classification, the results presented
in the last row of Table VI demonstrate that the LAS is
successful in accurately assessing the ITS over time. Indeed, at
TW0, the ITS is classified as High since all three commitments
were met during that period, aligning with our expectations.
However, at TW1, the ITS is deemed Medium due to the
unexpected behavior of O′

1, resulting in a decrease in the
ITS. This deviation is not considered critical, and the Latency
is not significant based on the criteria outlined in Table V.
Following this disruption, the ITS gradually improves as all
three commitments are met. At TW2, the ITS drops to Low
since even a minor variation in the availability of O′

0 is deemed
crucial according to the delimitation provided in Table V.
From that moment, the ITS will remain low; indeed, at TW3,
the ITS is Low since the latency is far too high compared to
the commitment. At TW4, the ITS is Low since both O′

0 and
O′

1 deviate from their expected behavior. At TW5, the ITS
falls to Low as both O′

1 and O′
2 deviate slightly from their

anticipated behavior. Finally, the ITS returns to High as all
three observations behave as expected.

b) Microservice Trust Score (MTS) and Service Provider
Trust Score (SPTS): We report the results in Table VIII. Since
the provider only offers one class in this particular case, the
score of the provider is equivalent to the score of the class,
i.e., CTS. We observed that for CS1, all observations behaved
as expected, leading to a CTS rating of High. However, for
CS2, the availability of the microservice on cluster0 slightly
deviated, resulting in a CTS rating of Medium. Similarly, for
CS3, the availability and latency did not behave as expected
on cluster0, resulting in a CTS rating of Low. For CS4, the
three commitments on cluster0 were not met, leading to a
CTS rating of Low, indicating that the issue was with the
cluster0 and not the microservice. For CS5, the microservice
availability on both cluster0 and cluster1 slightly deviated,
leading to a CTS rating of Low. In CS6, unexpected behavior
was observed in O1 and O2 in two separate clusters, namely
cluster0 and cluster1, resulting in a CTS rating of Low.
Similarly, in CS7, unexpected behavior was observed in O1,
O2, and O3 in two separate clusters, resulting in a CTS rating
of Low. Finally, for CS8, the latency of the service did not
behave as expected in all three clusters, leading to a CTS rating

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

of Medium. Based on these observations, we can conclude that
the microservice has an issue with delivering good latency.

TABLE VIII
MICROSERVICE TRUST SCORE AND SERVICE PROVIDER TRUST SCORE

(L: LOW, M: MEDIUM, H: HIGH)

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9

CTS H M L L L L L M M
SPTS H M L L L L L M M

c) Trend Variations of Instance Trust Score and SLA
Violation Rate: For both maps, the parameters are the same
as for the ITS-TV map of use case n°1. We evaluate the maps
with the same metrics. Table IX summarizes the results for
the two SOM maps.

TABLE IX
SOM: EVALUATION

Metrics ITS-TV map SVR-TV map

Quantization error 0.013 0.23
Topographic error 0.02 0.026
Silhouette score 0.65 0.78
Distortion 0.75 0.65
Neighborhood preservation 0.92 0.75

As shown, the quantization error and topographic error are
both relatively low (0.013 and 0.02 for the first map and
0.23 and 0.026 for the second map), indicating that the SOM
preserves the topological and spatial relationships between the
input data points. The silhouette score is relatively high (0.65
for the first map and 0.78 for the second map), indicating
that the clustering obtained by the SOM is of good quality.
Distortion is 0.75 for the first map and 0.65 for the second
map, which suggests that the data points within each cluster
are tightly packed around their cluster center. Finally, the
neighborhood preservation is 0.92 and 0.75, which indicates a
high level of preservation.

Interpretation of the ITS-TV Map. The ITS-TV map is
presented in Figure 9. We defined five forbidden areas and
four warning areas. Each area is accompanied by a color
code and a description of the anomaly. In the first forbidden
area, in brown, the SLA′

0 exceeds the commitment by 4%. In
the second forbidden area, in purple, the SLA′

2 exceeds the
commitment by 21%. In the third forbidden area, in red, the
SLA′

1 with core-command is 32% higher than the committed
value. In the fourth forbidden area, in pink, the SLA′

1 with UI
is 49% higher than the committed value. In the fifth forbidden
area, in cyan, SLA′

1 with device-mqtt is 52% higher than
the committed value. In the first warning area, in orange,
the SLA′

1 with core-command is about 14% higher than the
committed value. In the second warning area, in yellow, the
SLA′

1 with UI is 15% higher than the committed value. In
the third warning area, in blue, the SLA′

0 is 1% above the
committed value. In the fourth warning area, in gray, the SLA′

2

is 8% higher than the committed value.
Operational Phase for the ITS-TV Map. To show how

the map can be employed in practical situations, we establish
a scenario. Initially, the service is functioning normally as
expected. However, over time, the error rate gradually de-
teriorates from 0 to 0.53 and eventually to 0.75, while the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

8

9

10

Fig. 9. ITS-TV Map with data insight.

latency improves from 98.98 ms to 96.23 ms and then to 95.14
ms. The input data are then directed toward the warning area
n°4, an alert signaling the issue is triggered. Later on, the
service returns to normal but with a slight increase in latency.
However, it is suddenly disrupted due to an increase in latency
with the core-command microservice, the input data enters
the forbidden area n°3, and an alert is triggered. Finally, the
service returns to normal and behaves as expected. The path
created by the various inputs is visualized in Figure 9.

Interpretation of the SVR-TV Map. As illustrated in
Figure 10, we defined five forbidden areas and three warning
areas. This first forbidden area, in blue corresponds to a
probability of over 60% that SLA′

1 with core-command will
be violated. In the second forbidden area, in brown, the
probability that SLA′

0 will be violated is over 55%. In the
third forbidden area, in red, there is a probability of over 60%
that SLA′

2 will be violated. In the fourth forbidden area, in
black, there is a probability of over 62% that SLA′

1 with UI
will be violated. In the fifth forbidden area, in purple, there
is a probability of over 62% that SLA′

1 with device-mqtt
will be violated. In the first warning area, in orange, there is
a probability of about 22% that SLA′

0 will be violated. In the
second warning area, in cyan, there is a probability of about
14% that SLA′

1 will be violated. In the third warning area, in
yellow, the probability of violating SLA′

2 is about 16%.

1
2

3

4

5

Fig. 10. SVR-TV Map with data insight.

Operational Phase for the SVR-TV Map. To demonstrate
how the map can be applied in practical situations, we establish
the following scenario: the service performs according to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

expectations initially. The input data is projected in the green
area. Then, there is a slight deterioration in latency. The
projected data gradually shifts toward the forbidden area n°1.
After the fifth projection, an alert is triggered as the input
data is projected into the forbidden area n°1. At the end, the
neuron is projected to the green area as the service resumes
normal operation. The trajectory created by the input data is
visualized Figure 10.

d) Financial Exposure to Performance Risk:
Highlight. The FEPR makes sense for the composition of

microservices, not for an isolated microservice. For that, we
first perform a SLA composition process with all the microser-
vices using decision rules such as maximum and minimum. We
reused the scenario defined for the operation phase of the SVR-
TV map. The penalties for the availability, the latency and the
error rate are already defined in Table V.

Result. Initially, the FEPR remains at 0$ as the service
operates as expected. However, over time, there is a slight
degradation in latency, which raises the risk of SLA violations
and causes the FEPR to decline to -100$ and eventually
to -1000$. The error rate also starts to deteriorate, further
increasing the risk of SLA violations and resulting in an
elevation of the FEPR to -1100$ and -2000$. Eventually, the
service returns to normal operation, which reduces the risk of
SLA violations and leads to a decrease in the FEPR to -900$
and back to 0$.

V. DISCUSSION

We finalize our assessment by discussing some practical
remarks in this section. Beginning with the ITS metric, the
MLP demonstrated favorable outcomes for both use cases
and accurately identified the trust level in various scenarios.
Nevertheless, a significant drawback of utilizing this method
is the necessity to train a model for each service class.
Furthermore, since we operate in a dynamic environment, it
is crucial to retrain the model to consider variations in the
fundamental data distribution, adapt to novel patterns and
trends, and enhance the model’s overall effectiveness and
precision. These two adverse points can be computationally
expensive and time-consuming.

During the evaluation, both MLP models had a size of
approximately 16MB. Using an Intel® Xeon® W-2133 Pro-
cessor with 32GB RAM, the first use case model required 42
seconds to train, while the second model took slightly longer,
about 55 seconds. This training time is considered reasonable.

For CTS and STS, we tried to use case studies to scan the
most convincing cases. However, we only had three clusters at
our disposal for the Edgex use case, so we did not have enough
data to show the usefulness of k-means algorithm. Also, it
can be interesting to explore alternative clustering algorithms
that are better suited, for example, k-mode [18] or hierarchical
clustering [19]. Additionally, it may be helpful to validate the
clustering results using other metrics and visualizations, such
as silhouette plots, to ensure that the clustering is meaningful
and useful for the specific use case.

One of the main limitations of using SOM in trending the
variation of the ITS and the SLA Violation Risk is their inabil-
ity to adapt to changes in the underlying data distribution over

time. This means that if the input data changes significantly
or new data is introduced, the original SOM may no longer
accurately represent the data and its performance may degrade.
Another limitation of SOM in dynamic environments is their
sensitivity to initial conditions and the specific parameters used
during training. This implies that the resulting SOM may not
always converge to the optimal solution. To overcome these
limitations, researchers have proposed various modifications to
the SOM algorithm, such as incorporating adaptive learning
rates, incorporating online learning techniques, and using
incremental training approaches [20]. These modifications can
be integrated into a new version of the LAS as future work.

For the FEPR, we manage to demonstrate the correlation
between the SLA Violation Risk and the Financial Risk
Exposure with the two use cases. However, it is important
to note that this metric should be presented in a clear and
understandable manner, and any potential biases or limitations
of the metric should be thoroughly addressed and discussed.
Additionally, the metric should be used as a supplement to,
rather than a replacement for, human judgment and expertise
in the legal field.

VI. RELATED WORK

Liability analysis in a multi-actor and dynamic microser-
vices architecture can be challenging due to the system com-
plexity and the involvement of multiple actors. The research
on liability in microservice architecture is still a developing
field, and more studies are needed to fully understand and
address the legal and technical challenges. Similarly, few
papers address the research question of accountability in cloud
computing.

The accountability literature extensively covers the use of
data management tools to ensure data protection, privacy,
security, and regulatory compliance. For example, Thiago
Rodrigues et al [21] proposed the Cloudacc framework to
ensure accountability and trust in federated cloud environ-
ments. It combines cloud and blockchain technologies to create
a distributed and transparent mechanism for cloud providers
to record and share information about their services and
operations. Also, the A4Cloud project [22] proposes tools and
models that provide users with greater control, transparency,
and enforcement capabilities over the use and protection of
their data in the cloud. Moreover, the authors of [23] propose
a data-centric logging approach to improve accountability
and security in cloud computing. Their four-stage framework
includes standardizing data transaction definitions, real-time
analysis for detecting security threats, and generating reports
to help customers understand their data transactions. Finally,
the European Telecommunications Standards Institute (ETSI)
defines in the GS NFV REL 005 document principles for
accountability management and presents a Quality Account-
ability Framework for ensuring the quality of NFV imple-
mentations and establishing accountability mechanisms. To
the best of our knowledge, no previous paper has addressed
the importance of providing indicators to handle liability in
the cloud architecture. In addition, previous papers focus
mainly on the accountability and transparency of cloud service
providers in managing and protecting user data.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

Since our framework proposes indicators based on the SLA
concept, we have also reviewed the scientific literature on this
topic. SLA verification based trust is a widely used method for
building trust in cloud computing environments. It employs
SLAs to establish and measure trust between providers and
consumers. Valero et al. present in [24] a trust framework for
reliable stakeholder selection in a 5G marketplace. It includes
a reputation-based model with four modules: Information
gathering, Trust computation, Trust storage, and Continuous
update. The Continuous update module introduces an SLA-
driven reward and penalty system to adjust trust scores based
on breach predictions, detections, and violations. In [25], the
authors propose a trust model empowering Cloud Service
Providers (CSPs) to assess trust for participation in reliable
Cloud federations. It relies on feedback and CSPs’ SLAs,
extracting Quality of Protection (QoP) attributes from SLA
documents to gauge security and privacy levels. The model
computes an aggregated trust value using this information.
Moreover, Li et al. propose in [26] a Cloud-Trust model
that utilizes trust parameters like security, availability, and
reliability to evaluate cloud services’ adherence to SLAs
objectively. The entire model revolves around the compliance
and monitoring of SLA signed with the end user or with the
customer. Also, Chang et al. [27] propose a multi-dimensional
trust model for fog computing that considers application,
peer, and auditor perspectives. Parameters like availability,
response time, throughput, and security are used to assess Fog
service provider trustworthiness, with adjustable weights for
each perspective based on application requirements. Finally,
J.Bendriss et al. present in [28] a framework for cognitive
SLA enforcement of networking services involving Virtual
Network Functions (VNFs) and using ANN. This framework is
designed to efficiently manage and anticipate SLA breaches.
The framework identifies correlations in historical data and
predicts future resource usage, which helps optimize resource
utilization and reduces the risk of SLA violations. No imple-
mentation or evaluation is provided for the models proposed in
these papers. Moreover, the models primarily serve to compare
cloud providers based on the services provided and the level
of trust they instill. In contrast, the frameworks in question
are more specifically tailored towards cloud computing and
5G and lack the generality present in the framework that we
propose. Our framework provides trends of SLA Violation
Rate to predict SLA violation based on field observation,
which is not provided by other frameworks, in addition to
liability and trust indicators.

VII. CONCLUSION AND FUTURE WORK

With microservices, multiple actors can contribute to a
service, making it challenging to manage the liability and trust
associated with each component. A liability framework can
help in addressing this challenge by providing a comprehen-
sive assessment of the liability and trust of the various actors
involved in the microservices system.

This paper introduces the LASM Analysis Service (LAS),
a framework for analyzing liability and trust in multi-actor
dynamic microservices. Utilizing ML, the LAS framework

calculates three types of liability and trust metrics: Commit-
ment Trust Scores, which assess the trust that an instance, all
instances of a microservice, or all microservices of a provider
will perform as expected based on SLA commitments; Finan-
cial Exposure, which measures the potential monetary loss for
the overall microservice architecture provider with the cur-
rent composition of microservices; and Commitment Trends,
which monitors trends of SLA Violation Rates and Instance
Commitment Trust to predict violations. The framework has
been implemented on a Kubernetes platform. We apply our
framework to evaluate two services in different scenarios and
case studies, namely a network service that simulates the be-
haviour of the PacketFabric service [15] and Edgex service for
IoT edge computing. The results demonstrate the effectiveness
of the LAS in accurately computing the trust and liability
metrics for both use cases. Finally, we discuss our results by
considering its impact on computation time and its limitations,
as well as potential enhancements to the underlying algorithms
so we can better address the effectiveness of the solution.

As part of our future work, one research direction is mi-
croservice dependencies, which could influence responsibility-
related indicators. We plan to investigate this aspect further.
We also aim to explore additional metrics from the SOM map
and test the LAS in various use cases beyond our current ones,
like a 5G service involving IoT and Edge computing services.

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), Nov. 2016,
pp. 44–51.

[2] C. Gaber, J. S. Vilchez, G. Gür, M. Chopin, N. Perrot, J.-L. Grimault,
and J.-P. Wary, “Liability-aware security management for 5G,” in 2020
IEEE 3rd 5G World Forum (5GWF), 2020, pp. 133–138.

[3] Y. Anser, C. Gaber, J.-P. Wary, S. N. M. Garcı́a, and S. Bouzefrane,
“TRAILS: Extending TOSCA NFV profiles for liability management in
the cloud-to-IoT continuum,” in 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft), 2022, pp. 321–329.

[4] O. Kalinagac, W. Soussi, and G. Gür, “Graph based liability analysis for
the microservice architecture,” in 2022 18th International Conference on
Network and Service Management (CNSM), 2022.

[5] E. M. Chrystel Gaber, Vinh Hoa La, “Liability management in a 5G
environment,” in INSPIRE-D4.4, 2022.

[6] M.-C. Popescu, V. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer perceptron and neural networks,” WSEAS Transactions on
Circuits and Systems, vol. 8, Jul. 2009.

[7] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, pp.
1–6, 1990.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16,
no. 1, p. 321–357, jun 2002.

[9] T. Elhassan, A. M, A.-M. F, and M. Shoukri, “Classification of imbal-
ance data using tomek link combined with random under-sampling as a
data reduction method,” Global Journal of Technology and Optimization,
vol. 01, 01 2016.

[10] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search,
Genetic Algorithm: A Big Comparison for NAS,” Dec. 2019.

[11] D. Marutho, S. Hendra Handaka, E. Wijaya, and Muljono, “The
determination of cluster number at k-mean using elbow method and
purity evaluation on headline news,” in 2018 International Seminar on
Application for Technology of Information and Communication, 2018,
pp. 533–538.

[12] K. Potdar, T. Pardawala, and C. Pai, “A Comparative Study of Cate-
gorical Variable Encoding Techniques for Neural Network Classifiers,”
International Journal of Computer Applications, vol. 175, pp. 7–9, Oct.
2017.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[13] G. Vettigli, “Minisom: minimalistic and numpy-based implementation
of the self organizing map,” 2018. [Online]. Available: https:
//github.com/JustGlowing/minisom/

[14] F. Forest, M. Lebbah, H. Azzag, and J. Lacaille, “A Survey and Im-
plementation of Performance Metrics for Self-Organized Maps,” arXiv
e-prints, p. arXiv:2011.05847, Nov. 2020.

[15] (2022) PacketFabric’s terms and conditions. [Online]. Available:
https://packetfabric.com/terms-and-conditions

[16] O. Kalinagac, W. Soussi, Y. Anser, C. Gaber, and G. Gür, “Root cause
and liability analysis in the microservices architecture for edge iot
services,” in ICC 2023 - IEEE International Conference on Commu-
nications, 2023, pp. 3277–3283.

[17] S. v. Buuren and K. Groothuis-Oudshoorn, “Mice: Multivariate Imputa-
tion by Chained Equations in R,” Journal of Statistical Software, vol. 45,
pp. 1–67, Dec. 2011.

[18] M. Á. Carreira-Perpiñán and W. Wang, “The K-modes algorithm for
clustering,” arXiv e-prints, p. arXiv:1304.6478, Apr. 2013.

[19] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu,
“Hierarchical clustering: Objective functions and algorithms,” CoRR,
vol. abs/1704.02147, 2017.

[20] N. Rougier and Y. Boniface, “Dynamic self-organising map,” Neuro-
computing, vol. 74, no. 11, pp. 1840–1847, May 2011.

[21] T. Rodrigues, P. Endo, D. Beserra, D. Sadok, and J. Kelner, Account-
ability for Federated Clouds, 01 2018, pp. 569–583.

[22] C. Fernandez-Gago, V. Tountopoulos, S. Fischer-Hübner, R. Alnemr,
D. Nuñez, J. Angulo, T. Pulls, and T. Koulouris, “Tools for cloud
accountability: A4cloud tutorial,” in Privacy and Identity Management
for the Future Internet in the Age of Globalisation, J. Camenisch,
S. Fischer-Hübner, and M. Hansen, Eds. Cham: Springer International
Publishing, 2015, pp. 219–236.

[23] R. Ko, M. Kirchberg, and B. Lee, “From system-centric to data-
centric logging-accountability, trust & security in cloud computing,”
2011 Defense Science Research Conference and Expo (DSR), 08 2011.

[24] J. M. J. Valero, V. Theodorou, M. G. Pérez, and G. M. Pérez, “Sla-
driven trust and reputation management framework for 5g distributed
service marketplaces,” IEEE Transactions on Dependable and Secure
Computing, pp. 1–13, 2023.

[25] A. Kanwal, R. Masood, and M. A. Shibli, “Evaluation and establishment
of trust in cloud federation,” in Proceedings of the 8th International
Conference on Ubiquitous Information Management and Communica-
tion, ser. ICUIMC ’14. Association for Computing Machinery, 2014.

[26] X. Li and J. Du, “Adaptive and attribute-based trust model for service-
level agreement guarantee in cloud computing,” IET Information Secu-
rity, vol. 7, no. 1, pp. 39–50, 2013.

[27] V. Chang, J. Sidhu, S. Singh, and R. Sandhu, “SLA-based multi-
dimensional trust model for fog computing environments,” Journal of
Grid Computing, vol. 21, no. 1, p. 4, 2022.

[28] J. Bendriss, I. G. Ben Yahia, P. Chemouil, and D. Zeghlache, “Ai for
sla management in programmable networks,” in DRCN 2017 - Design
of Reliable Communication Networks; 13th International Conference,
2017, pp. 1–8.

Yacine Anser received the M.Sc. degree in Com-
puter Engineering in Network and Cybersecurity
from INSA Toulouse (Institut National des Sciences
Appliquées) in 2020. Obtained a Ph.D. from CNAM
(Conservatoire National des Arts et Métiers) Paris,
France, at the CEDRIC laboratory in 2024, in col-
laboration with Orange Lab Caen. Currently engaged
in postdoctoral research at KTH (Kungliga Tekniska
Högskolan) in Stockholm, Sweden. Research inter-
ests lie at the intersection of cybersecurity, machine
learning, and network systems.

Chrystel Gaber received her PhD from University
of Caen in 2013 in Computing Systems. After an
experience as project coordinator and R&D engineer
in Fime, she joined Orange as a researcher & project
coordinator. She contributes to several projects re-
lated to cyber-physical security, IoT device manage-
ment and certification. She participated in the FP7
project MASSIF and ensured the coordination lead
of the CELTIC-PLUS project ODSI. She represented
Orange in GSMA work groups related to the cer-
tification of integrated SIMs and the accreditation

of SIM production sites. Currently, she contributes to the H2020 European
project INSPIRE-5GPlus and leads the franco-german project TinyPART.

Samia Bouzefrane received the Ph.D. degree in
computer science from the University of Poitiers,
France, in 1998. After four years at the University
of Le Havre, France, she joined the CEDRIC Lab of
Conservatoire National des Arts et Métiers (Cnam),
Paris, in 2002. She is currently full professor in
Cnam and the head of CEDRIC Lab. She is the
coauthor of many books (Operating Systems, Smart
Cards, and Identity Management Systems). She has
coauthored more than 120 research articles. Her
current research interests include the Internet of

Things and security using AI techniques.

Jean-Philippe Wary has been a Research Program
Director with Orange Laboratories, since 2011, in
charge of infrastructures security research for 5G and
the IoT topics. He was with SFR (French Mobile
Operator) as a Security Expert, for 15 years and
the Chief Information Security Officer of networks
and services. He was also with Alcatel (real time,
telecom, security, and electronic war), for eight
years.

Méziane Yacoub is an associate professor at the
CNAM in Paris. He received his PhD in com-
puter Science in 1999 from University of Paris 13
(France). His current research interests include self-
organizing maps, graph neural networks, anomaly
detection and explanation.

Onur Kalinagac Onur Kalinagac received his B.S.
degree in Electrical and Electronics Engineering
and his M.S. degree in Computer Engineering from
Bogazici University, Istanbul, Türkiye, in 2015 and
2022, respectively. He served as a research assistant
at the Institute of Computer Science, Zurich Univer-
sity of Applied Sciences, Winterthur, Switzerland,
from March 2022 to January 2023. His research
interests include UAV networks, task offloading, and
root cause analysis in microservices.

Gürkan Gür is a senior lecturer at Zurich University
of Applied Sciences (ZHAW) – Institute of Com-
puter Science (InIT) in Winterthur, Switzerland. He
received his B.S. degree in electrical and electronics
engineering in 2001 and Ph.D. degree in computer
engineering in 2013 from Bogazici University in
Istanbul, Turkey. His research interests include Fu-
ture Internet, information security, 5G and Beyond
networks, and critical infrastructure protection. He is
a senior member of IEEE and a member of ACM.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3417934

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

