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Abstract

This paper establishes a new identity within the framework of probabilistic dis-

crete choice models, linking the ranking probabilities of alternatives in a set to best-

choice probabilities in subsets through an alternating sum weighted by binomial

coefficients. Inspired by results from the order statistics literature, our approach

enriches the analysis of revealed and stated preferences by providing comprehensive

estimates of the choice probabilities at any rank of alternatives. It is particularly

useful for analyzing voting systems, such as the Borda count method, by enabling

the prediction of outcomes under different voting rules.
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1 Introduction

The pioneering work on discrete choice models, particularly that of McFadden (1974,

1981), primarily focused on the probability that an alternative is ranked first in a set of

alternatives. More recently, de Palma et al. (2017) and de Palma and Kilani (2023) have

shown that the probability that an alternative is the worst choice in a set can, through

the principle of inclusion-exclusion, be expressed as an alternating sum of best-choice

probabilities in subsets containing that alternative.

This article establishes a new identity that generalizes this approach to the probability

that an alternative is ranked at any given position. We demonstrate that this probability

can be expressed as an alternating sum of best-choice probabilities in subsets, weighted

by binomial coefficients. Similar types of alternating weighted sums are found in the

literature on order statistics.

Order statistics focus on the distribution of ordered random variables within a sample

(David and Nagaraja, 2004). Our work establishes similar identities for discrete choice

models. To our knowledge, the identities presented in our article are not found in any

existing literature, including that of order statistics. Thus, this work contributes both to

the economic theory of discrete choice and to the statistical theory of order statistics.

In Section 2, we present the notation and review the basic concepts regarding the

best-choice probabilities within subsets. Section 3 will introduce the concept of the rank

of an alternative within a choice set and then provide the distribution of ranks. We will

show that the elements of this distribution can be expressed as a sum of Block-Marschak

polynomials, according to a lemma proven in this paper. The main theorem of this paper

will establish this distribution of ranks. In Section 4, we will propose an application of

these results to voting theory, particularly to the Borda count rule for determining the

winner of an election. Finally, Section 5 will conclude with a summary of the results and

perspectives for future work.

2 Notations

Let C be the total set of alternatives, which can be candidates, projects, goods, or

services, with |C| ≥ 2, where |C| denotes the cardinality of the set C. Let Ω be the

sample space of all possible permutations of the alternatives in C. Each permutation

ω ∈ Ω represents a possible ordering of the alternatives. We assume that there exists a

probability distribution P over this sample space.

For each alternative i in C, we define Ri as the random variable representing the rank

of alternative i within the set C. Thus, Ri takes integer values between 1 and |C|.
Let A and B be two subsets of C. We denote (A,B) as a part of Ω consisting of all

permutations in which the alternatives in A are ranked before those in B. Formally, we
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have:

(A,B) = {ω ∈ Ω | Ri ≤ Rj, ∀i ∈ A and ∀j ∈ B} .

By convention, if one of the subsets is empty, (A,B) is defined as the entire sample space

Ω.

For a singleton {i}, we simply use the label i of the alternative, without the braces.

Thus, (i, B) denotes all permutations ω ∈ Ω where i is ranked before every alternative in

B. We are particularly interested in the probabilities of these events, denoted P (i, B),

which are the best-choice probabilities within subsets and are crucial values in our paper.

A well-known and widely used model in the literature is the logit model. In this

model, the probability that alternative i is ranked the highest in B is given by:

P (i, B) =
evi∑

k∈B evk
, i ∈ B ⊂ C. (1)

When the model is derived as an additive random utility model, vi refers to the determin-

istic component of the utility for each alternative i. The remaining random components

are assumed to be independent and identically distributed according to an Extreme Value

Type I distribution.

We use the logit model as an example, but there are many other interesting and richer

formulations within additive random utility models. For instance, the nested logit model

allows for a hierarchical structure with nests (or groups) of alternatives, which can be

particularly useful in voting contexts where candidates are categorized into groups such

as right-wing, centrist, and left-wing. The Generalized Extreme Value (GEV) model and

the mixed logit model offer further extensions for modeling more complex behaviors. Our

approach encompasses all these models.

One major advantage of discrete choice models, as discussed above, is the extensive

existing literature, particularly on estimation methods. These methods allow us to deter-

mine the best-choice probabilities from sample data on individual preferences. best-choice

probabilities are crucial because they enable extrapolation from sample data to estimate

best-choice frequencies in the population of interest. With the forthcoming identity in

this paper, we will be able to extrapolate the frequencies with which individuals rank an

alternative at any given position, not just the first.

3 The distribution of the rank of an alternative

We study the distribution of the rank of an alternative, i.e., the probabilities P (Ri = r)

for r = 1, · · · , |C|. We do this by partitioning the event (Ri = r) into smaller events,

whose probabilities are key for rationalizing a system of best-choice probabilities. These

smaller events relate to central concepts in the seminal paper by Falmagne (1978), which
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established the necessary and sufficient conditions for a system of best-choice probabilities

to be consistent with a probability distribution P over the sample space Ω, according to

the notations used in this paper.

For Ri = r, i must be ranked highest among all alternatives in any subset A of size

|C| − r + 1, and ranked below all alternatives in the complement C \ A of that subset.

The event that i is ranked at position r is then given by:

(Ri = r) =
⊎

A:{i}⊆A⊆C,
|A|=|C|−r+1

((C \ A, i) ∩ (i, A)),

where
⊎

denotes the disjoint union.

Since this is a disjoint union, the probability of the disjoint union is the sum of the

individual probabilities. Thus, we have:

P (Ri = r) =
∑

A:{i}⊆A⊆C
|A|=|C|−r+1

P ((C \ A, i) ∩ (i, A)), i ∈ C, r = 1, · · · , |C|. (2)

For Ri = 1, i must be ranked before all other alternatives. This corresponds to the

event where i has the highest rank in the total set C, i.e., (Ri = 1) = (i, C). Therefore,

the probability that i is ranked first is given by P (Ri = 1) = P (i, C), which is consistent

with equation (2). This represents the best-choice probability in the total set C. For

lower ranks, we need to further investigate the probabilities P ((C \ A, i) ∩ (i, A)).

The event (C \ A, i) ∩ (i, A) means that the alternatives in C \ A are strictly ranked

before i, which, in turn, is ranked before (or equal to) all alternatives in A. We will

show in the following lemma that the probabilities of these events can be expressed as an

alternating sum of best-choice probabilities of the form P (i, B), where B contains A.

Lemma 1. The probability that alternative i is ranked after the alternatives in C \A and

before those in A can be expressed as an alternating sum of best-choice probabilities:

P ((C \ A, i) ∩ (i, A)) =
∑

B:A⊂B⊂C

(−1)|B|−|A|P (i, B), i ∈ A ⊂ C. (3)

Proof. We use the indicator function 1(·) in our proof. Since the indicator of the

intersection of two events is the product of the indicators of those events, we have:

1((C \ A, i) ∩ (i, A)) = 1(C \ A, i) × 1(i, A). The indicator 1(C \ A, i) can be expressed

as a product of indicators:

1(C \ A, i) =
∏

k∈C\A

1(Ri > Rk) =
∏

k∈C\A

(1− 1(Ri < Rk)) .
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By expanding the rightmost product, we obtain:

1(C \ A, i) = 1 +
∑

∅⊆D⊂C\A

(−1)|D|
∏
k∈D

1(Ri < Rk).

Thus, the indicator of (C \ A, i) ∩ (i, A) becomes:

1((C \ A, i) ∩ (i, A)) =

1 +
∑

∅⊊D⊂C\A

(−1)|D|
∏
k∈D

1(Ri < Rk)

× 1(i, A).

Distributing 1(i, A) in the terms of the sum, we get:

1((C \ A, i) ∩ (i, A)) = 1(i, A) +
∑

∅⊊D⊂C\A

(−1)|D|1(i, A ∪D),

which simplifies to:

1((C \ A, i) ∩ (i, A)) =
∑

D⊂C\A

(−1)|D|1(i, A ∪D).

Applying the expectation operator to both sides of this equation, we obtain:

P ((C \ A, i) ∩ (i, A)) =
∑

D⊂C\A

(−1)|D|P (i, A ∪D).

By setting B = A∪D and noting that |D| = |B|−|A|, we arrive at the desired expression.

Thus, the alternating sums on the right-hand side of equation (3) correspond to the

Block-Marschak polynomials. Their non-negativity has been established by Falmagne

(1978) as both a necessary and sufficient condition for the rationalizability of a system

of best-choice probabilities. This interpretation, provided by our Lemma 1, has also

been recognized by Fiorini (2004), who offers a shorter proof than the pioneering one by

Falmagne.

Using the previous lemma, we are now able to establish the distribution of the rank

Ri for any alternative i ∈ C, thereby constituting the fundamental result of this paper.

Before stating our main theorem, note that we use binomial coefficients
(
n
k

)
, with the con-

vention that
(
n
k

)
= 0 if k > n. This convention simplifies the notation of the alternating

sums that appear in our result.

Theorem 1. The distribution of the rank Ri, which expresses the probabilities that al-

ternative i is at different ranks r, is given by the following identity, which relates these
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probabilities to best-choice probabilities in subsets of C:

P (Ri = r) =
∑

B:{i}⊆B⊆C

(−1)|B|−|C|+r−1

(
|B| − 1

|C| − r

)
P (i, B), i ∈ C, r = 1, · · · , |C|. (4)

Proof. Starting from Equation (2) and applying Lemma 1, we obtain:

P (Ri = r) =
∑

A:{i}⊆A⊆C
|A|=|C|−r+1

∑
B:A⊆B⊆C

(−1)|B|−|A|P (i, B).

We can interchange the two sums to obtain:

P (Ri = r) =
∑

A:{i}⊆A⊆C
|A|=|C|−r+1

( ∑
B:A⊆B⊆C

(−1)|B|−|A|

)
P (i, B).

The number of subsets A of B of size |C| − r + 1 is given by the binomial coefficient(|B|−1
|C|−r

)
, since alternative i is already included in both A and B and should not be taken

into account in the counting. Thus, we obtain:

P (Ri = r) =
∑

B:{i}⊆B⊆C
|B|≥|C|−r+1

(−1)|B|−1−|C|+r

(
|B| − 1

|C| − r

)
P (i, B).

At this point, the convention that a binomial coefficient is zero when the lower index

exceeds the upper index comes into play, eliminating the constraint on the size of the

subsets and resulting in the form given in Equation (4).

For the case r = 2, corresponding to the probability that alternative i is ranked in

the second-best position within the total set C, equation (4) simplifies by considering the

subsets B with a cardinality of (|C| − 1), that is, C minus one alternative j other than

i, as well as the entire set C:

P (Ri = 2) =
∑

j∈C\{i}

P (i, C \ {j})− (|C| − 1)P (i, C), i ∈ C. (5)

For r = |C|, corresponding to the worst-choice probability of i in the total set C,

equation (4) becomes:

P (Ri = |C|) = P (C, i) =
∑

B:{i}⊆B⊆C

(−1)|B|−1P (i, B), i ∈ C. (6)

This is precisely the alternating sum found in de Palma et al. (2017), a special case of

our more general result, which covers all ranks, not just the last one.
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In the case of the logit model, by substituting the logit best-choice probabilities P (i, B)

given by Equation (1) into our identity given by Equation (4), we obtain:

P (Ri = r) =
∑

B:{i}⊆B⊆C

(−1)|B|−1−|C|+r

(
|B| − 1

|C| − r

)
evi∑

k∈B evk
, i ∈ C, r = 1, · · · , |C|. (7)

To our knowledge, this result has not yet been reported in the literature. While it is

possible to obtain full ranking probabilities compatible with logit best-choice probabilities

using the exploded logit, as first demonstrated by Beggs et al. (1981), it is challenging to

recover the specific form given in Equation (7) directly from the exploded logit without

redoing the combinatorial work we have used here. It is worth noting that the exploded

logit was derived within the framework of additive random utility models, while our

identity is valid for any logit model, without requiring such a formulation.

4 Application in Voting Theory

The Borda count is a method for assigning value to alternatives based on their ranking

in a voting context. The higher an alternative is ranked, the more points it receives. For

a detailed description of this rule and other voting methods, we refer the reader to Levin

and Nalebuff (1995).

The Borda rule has several variations. In the version described here, m represents the

number of top-ranked alternatives that will receive points, with 1 ≤ m ≤ |C|, where |C|
is the total number of alternatives. Each individual assigns m points to their top-ranked

choice, m− 1 points to their second-ranked choice, and so on, down to 1 point for their

m-th ranked choice. The remaining |C|−m alternatives receive 0 points. The alternative

with the highest total points wins the vote. If m = 1, this rule reduces to a simple

majority vote.

Mathematically, and within the context of our probabilistic choice framework, the

Borda points assigned to an alternative i, based on the parameter m, are represented by

the random variable S
[m]
i and are related to the rank variable Ri as follows:

S
[m]
i = max(0,m−Ri + 1), i ∈ C, 1 ≤ m ≤ |C|.

Let s be the number of points assigned, with 1 ≤ s ≤ m. We first consider the

case where the alternative i ∈ C has received points. The case s = 0 will be handled

immediately after using the expression above. We have:

P (S
[m]
i = s) = P (m−Ri + 1 = s) = P (Ri = m− s+ 1), i ∈ C, 1 ≤ s ≤ m.
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By applying the rank distribution described in Theorem 1 (cf. Equation 4), we obtain:

P (S
[m]
i = s) =

∑
B:{i}⊆B⊆C

(−1)|B|−|C|+m−s

(
|B| − 1

|C| −m+ s− 1

)
P (i, B), (8)

i ∈ C, 1 ≤ s ≤ m.

For the case s = 0, we can simply use complementarity to obtain:

P (S
[m]
i = 0) = 1−

m∑
s=1

P (S
[m]
i = s), (9)

where the probabilities on the right-hand side should be replaced by the expressions given

above.

5 Conclusion

The main identity presented in this paper, within the framework of probabilistic discrete

choice models, expresses the rank probabilities of alternatives within a given set as alter-

nating sums of products of binomial coefficients and best-choice probabilities in subsets

of alternatives. This identity is inspired by results from identities appearing in the order

statistics literature.

Our identity leverages the well-established properties of best-choice probabilities, com-

monly used in econometrics, to estimate the probabilities of the highest rank as well as

those of lower ranks. By utilizing these properties, it enriches analyses based on revealed

or stated preferences by providing more comprehensive estimates of the various ranks of

alternatives.

This identity is particularly useful for analyzing voting systems, such as the Borda

count method briefly presented in this paper. It allows for predicting the outcomes of dif-

ferent voting systems, providing a valuable tool for testing and evaluating various voting

rules, which is crucial for the effective functioning of democratic processes. Addition-

ally, it is relevant for addressing rationing issues, enabling the examination of impacts

when individuals do not have access to the best alternative. By enriching the analysis of

preferences in discrete choice models, this identity opens new perspectives for evaluating

voting systems and the effects of access limitations on collective choices.
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