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With the data explosion more and more data are collected from multiple sources
represented by multiple views, where each describes a perspective of the data.
To deal with this kind of data in the context of unsupervised learning, one can
rely on factorial approaches and clustering. Depending on the objective, these
two types of methods can be used separately, successively in a two step approach
or simultaneously leading to subspace clustering. In this presentation, we will
review, discuss and illustrate different unsupervised approaches from the most
classical to the most recent.
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Due to the increasing ease with which measurements can be taken and stored, more and
more data are collected. This lead to high-dimensional data in which the numerous vari-
ables can be structured into homogeneous blocks representing multiple views, where each
describes a perspective of the data. Data can be collected according to several criteria
associated with different themes, different devices or measurement protocols defining the
block structure. Examples of such data can be found in genomics, sensory analysis and
chemical or food industry. In all these cases, the data obtained constitute a set of several
homogeneous blocks of variables, referred to as multiple tables, multiblock or multiview
data.
To deal with these multiview data in the context of unsupervised learning, it is usual to
rely on dimension reduction approaches based on the two classical families of factorial
methods and clustering. Depending on the objective, these two type of methods can
be used separately [4], successively in a two step approach known as tandem approach or
simultaneously leading to subspace clustering [6] . Clustering concerns the classic aspect of
grouping individuals described here by several blocks of variables using consensus methods
[4] or subspace clustering approaches [2]. Proposed methods also address the less classical
aspect of variable clustering [5], which has been extended to clustering of blocks of variables
using the RV coefficient. [3].
Methods for analyzing multiple tables are based on relationship measures and on compar-
ison between the different data tables. The general idea is to take into account the natural
or specific correlation that exists between variables in the same block. The approaches
generally proposed can be grouped into two main families. The first one of multiblock
component methods are based on a summary of each block through latent variables, known
as canonical variables or components and are generally linear combinations of the variables
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[1] . In the case of clustering, the summary is obtained as a qualitative variable resulting
from a partitioning of each data table [4]. Methods differ according to the criteria used to
obtain the block summary. We consider this approach to be vector-based, as opposed to
the second family of methods, which we consider to be matrix-based. These later methods
directly study the relationships and similarities between tables (without using components)
through a distance measure or overall linkage between blocks.
In this talk, we will review, discuss and illustrate different unsupervised approaches from
the most classical to the most recent.
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