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Abstract

This paper presents a novel framework for enhancing privacy in Vehicular Ad Hoc Networks (VANETS) by integrating homomor-
phic encryption with machine learning applications. VANETS, essential for Intelligent Transport Systems (ITS), face significant
challenges in privacy and security due to their highly dynamic and heterogeneous nature. Our framework addresses these chal-
lenges by employing a simplified but effective machine learning algorithm, the K-nearest neighbors (KNN), to ensure the security
and privacy of the network. The flexibility of the framework allows for the incorporation of other machine learning algorithms,
enhancing its adaptability and efficiency in various VANET scenarios.

Key to this framework is the use of homomorphic encryption (HE), a cryptographic technique that enables computations on en-
crypted data without the need for decryption. This feature preserves data confidentiality and allows for secure third-party computa-
tions. Our paper discusses the evolution and types of homomorphic encryption, emphasizing the importance of Fully Homomorphic
Encryption (FHE) for its ability to evaluate complex polynomial functions.

The paper also highlights the different domains of cybersecurity concerns in VANETS, including in-vehicle systems, ad-hoc and
infrastructure networks, and data analysis. The proposed framework aims to mitigate these vulnerabilities, particularly focusing on
preventing common attacks like DoS and location tracking.

A significant advantage of our approach is its general nature, making it applicable to various privacy issues in VANETSs. We
propose the potential integration of homomorphic encryption with other privacy-preserving techniques, such as differential privacy
or secure multi-party computation, to enhance computation times while ensuring robust privacy protection.
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1. Introduction

Vehicular Ad Hoc Networks (VANETS) are pivotal for the advancement of Intelligent Transport Systems (ITS),
facilitating not only vehicle-to-vehicle (V2V) communication but also extending to vehicle-to-infrastructure (V2I),
vehicle-to-cloud (V2C), and vehicle-to-pedestrian (V2P) interactions. These communications are essential for enhanc-
ing road safety, traffic efficiency, and the overall driving experience. However, the expansion of VANETS introduces
significant privacy and security challenges, primarily due to their highly dynamic and heterogeneous nature. The
dense urban settings and high mobility of vehicles, combined with the inherent openness of wireless communication,
create a complex network environment where scalability issues and privacy concerns become increasingly difficult to
manage[6].

Amidst these challenges, the privacy of communication and data within VANETSs emerges as a critical issue. En-
suring the confidentiality and integrity of data is paramount for the trustworthiness and reliability of ITS applications.
Traditional security measures often fall short in addressing the unique challenges posed by VANETS, necessitating
innovative approaches that can adapt to their dynamic environment.

This paper introduces a novel framework aimed at enhancing the privacy and security of VANETSs by leveraging
the synergy between homomorphic encryption (HE) and machine learning (ML) algorithms as in [5]. Homomorphic
encryption offers a groundbreaking approach to secure data processing, allowing for computations on encrypted data
without the need for decryption. This capability not only preserves data confidentiality but also facilitates secure
third-party computations, a crucial feature for the decentralized nature of VANETS.

Our proposed framework utilizes the K-nearest neighbors (KNN) algorithm as a foundational ML technique for
identifying and mitigating security threats within VANETSs. While KNN is highlighted for its simplicity and effective-
ness, our framework’s design is inherently flexible, allowing for the integration of more sophisticated ML algorithms,
such as decision trees, random forests, and neural networks. This adaptability enhances the framework’s capacity to
address a wide range of security and privacy challenges in VANETS.

Furthermore, we delve into the evolution and types of homomorphic encryption, with a particular focus on Fully
Homomorphic Encryption (FHE). FHE’s ability to evaluate complex polynomial functions on encrypted data makes
it an invaluable tool for preserving privacy in VANETs. By combining FHE with ML, our framework addresses
key cybersecurity concerns, including the protection against common attacks like Denial of Service (DoS)[1] and
unauthorized location tracking|[8].

In summary, our paper presents a comprehensive framework that not only addresses the immediate privacy and
security challenges in VANETS but also lays the groundwork for future research in integrating advanced cryptographic
techniques with machine learning for enhanced ITS applications.

2. Background and overview
2.1. VANET

Vehicular Ad Hoc Networks (VANETS) are a specialized subset of Mobile Ad Hoc Networks (MANETS) tailored
to enable communication among moving vehicles and between vehicles and roadside units (RSUs). Their primary
aim is to enhance road safety and optimize traffic management by facilitating the exchange of vital information such
as traffic conditions, safety alerts, and accident notifications in real-time. Unlike traditional MANETs, VANETS fea-
ture high mobility dynamics with rapidly changing network topologies, requiring robust and efficient communication
protocols to ensure reliable connectivity. The unique characteristics of VANETS, such as high mobility, dynamic net-
work topology, and real-time constraints, pose distinct challenges in terms of security, privacy, and communication
efficiency. To address these challenges, VANETS leverage advanced cryptography and network security technologies,
as well as sophisticated communication architectures that incorporate vehicles as mobile nodes and RSUs to provide
extensive and reliable network coverage. In summary, VANETS play a crucial role in the development of Intelligent
Transportation Systems (ITS) by improving traffic efficiency and enhancing road safety for all users.
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Fig. 1: Vehicular Ad Hoc Networks (VANETS): Simplified Communication Diagram

2.2. Homomorphic Encryption

Homomorphic encryption [4] is an encryption technique that supports a particular time-consuming evaluation
algorithm. This algorithm allows certain types of operations to be carried out on the ciphertext without requiring
access to a secret key. Moreover, this algorithm generates an encrypted result in which the decryption matches the
result of the computation on the plaintext. For instance, consider two plaintexts x and y; we want to compute 3xy + x
without leaking x and y. Thus, we first use the homomorphic encryption algorithm Enc to encrypt x and y. Enc(x) and
Enc(y) are ciphertexts of x and y, respectively. Then, we compute Enc(3xy + x) = 3 X Enc(x) X Enc(y) + Enc(x), where
3 x Enc(x) X Enc(y) + Enc(x) denotes homomorphic operations. The final ciphertext is Enc(3xy + x), and the plaintext
is 3xy + x. To gain a better understanding of homomorphic encryption, we present related definitions and the current
state of homomorphic encryption in this section.

Definition 1 (Homomorphic Encryption. A homomorphic encryption scheme HE = (KeyGen, Enc, Dec, Eval)
consists of four probabilistic polynomial algorithms. The detailed definition of homomorphic encryption is described
as follows:

e HE KeyGen(14): The security parameter A is taken as input. Output parameters include a public key pk, a secret
key sk and an evaluation key evk, namely (pk, sk, evk) «— HE KeyGen(1%).

o HE .Enc(pk,m): The public key pk and a plaintext m are taken as inputs. Then, the ciphertext c is output, namely
¢ « HE Enc(pk, m).

e HE.Dec(sk,c): The secret key sk and the ciphertext ¢ are taken as inputs. The decryption result m* is output,
namely m* « HE .Dec(sk, c).

e HE.Eval(evk, f,co,...,c-1): Input parameters include the evaluation key evk, a function f and ciphertexts
o, - - -»Ci—1, Where the plaintext of ¢; is m;, i = 0,...,I — 1, [ is the number of ciphertexts. Then, the final
ciphertext ¢ is output, namely ¢y « HE.Eval(evk, f, co, ..., c;1), where HE.Dec(sk, cy) = f(mo,...,mp_1),
is an operational circuit over the plaintext space.

3. Framework for Enhancing Privacy in VANETSs through Homomorphic Encryption in Machine Learning
Applications

Vehicular Ad Hoc Networks (VANETS), crucial for advancing Intelligent Transport Systems (ITS), face signifi-
cant security and privacy challenges. These networks’ dynamic and heterogeneous nature makes them susceptible to
various cyber threats[9], from Denial of Service (DoS) and Jamming [10] to more sophisticated Eavesdropping and
Traffic Analysis attacks[7], each posing risks to the network’s availability, confidentiality, and data integrity. Over-
coming these challenges is essential for ensuring the seamless operation and reliability of VANETS in promoting road
safety and efficiency.
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Our proposed framework introduces a comprehensive security strategy that leverages the strengths of homomor-
phic encryption and the K-nearest neighbors (KNN) algorithm [3] within machine learning applications to safeguard
VANET communications. Homomorphic encryption is particularly noteworthy for its ability to perform calculations
on encrypted data, thus maintaining data privacy while enabling valuable data analytics. This capability is comple-
mented by the KNN algorithm’s efficiency and low computational overhead, making it well-suited for the real-time
processing needs of VANETS, where swift data analysis can facilitate immediate and potentially life-saving decisions.

By integrating these technologies, our framework not only addresses the immediate threats to privacy and security
in VANETS but also sets a foundation for robust, adaptive security mechanisms. These mechanisms can efficiently
handle the complex security demands of VANETS, ensuring the integrity and confidentiality of data transmissions and
significantly enhancing the overall resilience of Intelligent Transport Systems.

HE parameters

HE-ready
prediction Encrypted
prediction
HE-ready
decryption [| ciphertext training Encrypted
/ model

|Trained'model " Prediction |

Fig. 2: Framework for Enhancing Privacy in VANETS through Homomorphic Encryption in Machine Learning Applications [2]

While the current implementation focuses on KNN, our framework is designed with adaptability in mind. It can in-
corporate other machine learning algorithms such as decision trees, random forests, or neural networks, depending on
the specific requirements and challenges of the VANET environment. This adaptability not only enhances the frame-
work’s robustness against various security threats but also ensures scalability and flexibility in response to evolving
technological landscapes.

Furthermore, considering the computational intensity of homomorphic encryption, a hybrid approach that com-
bines it with other privacy-preserving techniques could be explored. Such a hybrid solution aims to optimize compu-
tation times while maintaining the highest standards of privacy. The integration of these technologies in our framework
represents a significant step forward in addressing the complex privacy and security challenges inherent in VANETS.

In summary, our framework for enhancing privacy in VANETSs through homomorphic encryption and machine
learning applications stands as a testament to the innovative integration of cryptographic and computational tech-
niques. It offers a scalable, adaptable, and efficient solution to the pressing privacy and security challenges in the
dynamic environment of vehicular networks.

4. PERFORMANCE EVALUATION

In this section, we discuss the experiments of our solution. First, we describe the technical and the setup of the
environment. Then, we will evaluate the performances of our solution according to different criteria: execution time,
accuracy, bandwidth consumption.

4.1. Test Environment

4.1.1. Setup

Our solution is implemented using the TFHE scheme in C/C++ and Python for training k-NN in clear text and for
tests. To test the effect of parallelism, we used OpenMP to do some parallelization. The source code is available in the
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Table 1: TFHE Parameters: Table 2: HE-kNN Parameters:
A for the overall security, N for the size of the polynomials, the number of operations m without needing a bootstrapping,
o for the Gaussian noise parameter. the bootstrapping base b, and the rescaling factors v and p.
A N o m | v p b
110 | 1024 | 107° 64 | 4 | 1000 | 4*m-4

following github https://github.com/Yulliwas/HE-kKNN-V”. Our solution is tested on Linux Ubuntu 64-bit machine
with 17-8700 CPU 3.20GHz.
Table 1 shows the parameters used to setup TFHE scheme.

4.1.2. Datasets

To test our solution, we choose to use 6 datasets: Iris, Breast Cancer, Wine, Heart, Glass and MNIST as in Table
3. The goal is to test the performances of our algorithm in different distributions of data, so that to confirm that our
solution works with any dataset and that has performances that are equivalent to those of clear-text domains.

Table 3: Datasets:
number of individuals(n), the size of the model (d), and number of classes

Dataset n d | classes
Iris 150 4 3
Wine 178 | 13 3
Heart 303 | 75 5
Breast Cancer | 699 | 10 2
Glass 214 | 10 6
MNIST 1797 | 10 10

4.1.3. Simulation procedure

First, we preprocess the data by rescaling each attributes to a value between 0 and 1. Our dataset and the query
should be rescaled by a factor of v as seen above. We must also multiply the dataset vectors by the precision factor 7
and then rounded. In the other hand, the query vector is divided by this same factor.

4.2. Performance results

To position our approach according to existing works, and especially regarding the voting step that is performed
without information leakage, we compare in Table 4 our solution with Zuber’s solution[11] and with a clear-text
version based on the Iris dataset and a fixed k=3. The comparison is done in terms of complexity (C), Information
Leakage (L), accuracy (A), interactivity (I) and execution time (T). The accuracy and the prediction time are indicated
only when it is possible.

Table 4: Comparison between solutions for Iris Dataset:
complexity (C), Information Leakage (L), accuracy (A), interactivity (I) and execution time (T).

Work C L | I A T
HE-ANN-V | 0n®) | N [ N [ 097 | 1.72s
HE-KNN-VP | O(n?) | N | N | 0.97 | 0.46s
Zuber[11] | O | Y | Y | 098 | 1.74s
Cleark-NN | O(n) | Y | N | 0.95 | 1.8ms
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4.2.1. Empirical study

Classification rate. To evaluate the classification rate, we have chosen the accuracy instead of other metrics like: recall
or Fl-score. We studied the accuracy according to two parameters: the number of data sampled from the dataset and
the number k of neighbors. The goal is to choose the best points that represent the datasets and the best k parameters
for each dataset.

We chose real-world datasets in order to see the evolution of the accuracy and compared it to clear-text accuracy.

In one hand, we know that the accuracy depends on the k parameter and we can confirm it easily in the graphs. On
the other hand, the assumption that the accuracy depends on the number of data used is not complete. For the dataset
where the data is well separated (like Iris), having a lot of data is not necessary, the best accuracy can be achieved
using only few data. But, in the case where data is not well separated (like in Heart dataset), the accuracy seems to
depend on the number of data.

According to our different simulations illustrated in Figure 3 and Figure 4, we do not lose accuracy when we
apply our HE-kKNN-V method on the encrypted data compared to the application of the kNN on the plain data. This is
possible by varying the number of individuals and by fixing & to 3.

We also notice that by setting the number of individuals to 40 and varying k, (see Figure 5 and Figure 6) the
accuracy behaves in the same way between the application of the kNN on the plain data and the application of our
method HE-kKNN-V on the encrypted data.

Execution time. In our solution, the execution time is independent of the content of the dataset, it does not depend
on the values, but does depend on the content, since it depends on the number of tuples . We can use either simulated
dataset or real world dataset. To visualize the evolution of the execution time according to k, n and d, we choose to
use the Breast Cancer dataset instead of simulating a new dataset. We change n, k, d and we see the evolution of the
execution time.

Our simulations, as depicted in Figure 7, illustrate that HE-kNN-V is parallelizable, and also that the number of
individuals strongly impacts the execution time unlike the two simulations of Figure 8 and Figure 9 where the variation
of respectively d the number of attributes and k does not impact the execution time.

Bandwidth. In our solution, the only thing that is communicated is the query in the ciphertext and the response in the
ciphertext. The size of the query is proportional to the number of attributes d. Each attribute is a TLWE Sample with
the size of 4 KB and the size of the response (number of classes)*4 KB. The bandwidth according to each dataset is
illustrated in Table 5.
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Table 5: Bandwidth

Dataset Bandwidth (KB)
Iris 28
Wine 64
Heart 64
Breast Cancer 128
Glass 60
MNIST 296

Discussion. According to our experiments, we can say that the accuracy in our case depends on three factors: the
number of individuals, the representativity of these individuals and the k parameter. To have a better model that fits
our dataset, we must select the individuals that are more representative of our dataset and the best k parameter. We
also should take care of the number of individuals because most of the execution time depends on that number.

5. Conclusions and Perspective

This paper has introduced a comprehensive framework for enhancing privacy in Vehicular Ad Hoc Networks
(VANETs) by leveraging the synergy between homomorphic encryption and machine learning algorithms. Our ap-
proach addresses the crucial need for robust privacy and security measures in VANETS, which are integral to the
evolution of Intelligent Transport Systems (ITS).

The integration of homomorphic encryption (HE), a cryptographic technique that enables direct computations on
encrypted data, is a cornerstone of our framework. This maintains data confidentiality and security while using the
K-nearest neighbors (KNN) algorithm for its simplicity and effectiveness. The framework’s flexibility allows for the
incorporation of more complex machine learning algorithms, suitable for specific ITS applications.
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One of the key advantages of this framework is its adaptability and general applicability in the dynamic and varied
field of VANETS, where privacy concerns can rapidly evolve. Our framework is designed as a robust and adaptable
solution, capable of addressing a wide array of privacy issues in VANETS.

Looking to the future, several exciting directions for research and development present themselves. Exploring
the integration of advanced machine learning models, such as deep learning and ensemble methods, could enhance
the accuracy and efficiency of privacy preservation. The potential of combining homomorphic encryption with other
privacy-preserving techniques leads to the possibility of hybrid models that integrate HE with differential privacy or
secure multi-party computation. These models could potentially improve performance and provide stronger privacy
guarantees.

Real-world implementation and testing of our framework in VANET environments are crucial. This will validate
the framework’s effectiveness and help identify and address unforeseen challenges. Collaboration with industry and
regulatory bodies is also essential to develop standards and policies for implementing privacy-preserving technologies
in VANETS, ensuring technical, legal, and ethical compliance.

Interdisciplinary research at the intersection of cryptography, machine learning, and vehicular networks offers a
fertile ground for innovation. Future studies could explore novel cryptographic techniques, advanced computational
models, and innovative approaches to data security and privacy in ITS.

As VANETS continue to grow, the sustainability and scalability of privacy-preserving solutions become paramount.
Research into efficient, low-power, and scalable cryptographic solutions will be critical in ensuring the long-term
viability of privacy-preserving techniques in VANETS.

In conclusion, this work marks a significant step towards realizing the full potential of VANETS in enhancing road
safety and efficiency while rigorously protecting user privacy. We are optimistic that this framework will serve as a
foundation for future innovations in the field, driving the development of secure, efficient, and privacy-preserving ITS
applications.
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