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Abstract

The aim of this SHREC 2024 track is to compare different algorithms for retrieving non-rigid complementary shape pairs,
applied in the context of 3D objects being more complex (e.g. with many folds and roughness) such as proteins. The dataset used
for this benchmark is based on 52 selected protein-protein complexes for which an experimental structure is publicly available.
One of the main difficulties of this challenge is the non-inclusion of the shapes derived from the ground truth conformations
in the dataset. Different metrics were used to evaluate the retrieval performance (nearest-neighbor, first-tier, second-tier, and
true positives) and to evaluate the quality of the predicted poses (TM-score, lDDT, ICS, IPS and DockQ — those metrics are
classically used in the Critical Assessment of PRediction of Interactions challenges). Two teams took part in this challenge and
were able to return the expected results. This paper discusses these results and prospects of retrieval methods based only on the
protein shape information in the absence of atomic data, in a large context of protein-protein docking.

CCS Concepts
• Applied computing → Molecular structural biology; Bioinformatics; • Computing methodologies → Shape analysis;

1. Introduction

Proteins interactions play a vital role within cells. Proteins are usu-
ally represented as a graph where each vertex is the center of an
atom and each edge is a chemical bond between two atoms; but they
can also be represented by their molecular surfaces (i.e. by their
shapes). In the past, this representation was used to derive SHREC
tracks focusing on protein classification [RFB*21; LAC*21] or
protein-ligand binding site recognition [GRF*22]. In the present
work, we focus on the protein-protein interactions (PPIs), that usu-
ally involves shape complementarity (Fig. 1, bottom panel). The
characterization of protein interactions can be separated into two
questions: i) the identification of the two interacting partners that
form a complex, and ii) the prediction of the optimal molecular
complex geometry.

While (ii) is a classic molecular docking problem that can be
tackled by shape complementarity methods [ZSO09]; (i) can be

† Corresponding authors: T. Yacoub (taher.yacoub@lecnam.net),
F. Langenfeld (florent.langenfeld@lecnam.net) & M. Montes
(matthieu.montes@cnam.fr).

viewed as a 3D object retrieval challenge that is classically ex-
plored among the SHREC (SHape REtrieval Challenges) commu-
nity benchmarks [DGA*09; PSA*16]. They consist in evaluating
the ability of computer vision methods to identify a list of objects
from partial query information. The difficulty can be worsened by
the intra-class variability, which consists of a class of different de-
formations of the same object due to a non-rigid behavior. Differ-
ent fields of interest are concerned by this issue, like robotics for
instance. In our context, the challenge is to retrieve two proteins
considered as compatible to form a real-life complex, and where
each of them taken separately constitutes partial information. As
for the variability, it corresponds to the flexibility of a chain due to
the internal degree of freedom of rotational bonds.

In this SHRE 2024 track, we address the 3D object retrieval
challenge applied to protein-protein complexes with two assess-
ments: i) the ability to retrieve the two real chains of each of the
52 experimentally-resolved complexes in the benchmark (called
“ground truth”), and ii) the ability to find the real area of interaction
between them. To make this challenge more difficult, the dataset
used to retrieve the complexes includes different conformations as-
sociated with each chain, and excluding the chains from the ground
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truth. Thus, we can evaluate the tolerance of applied algorithms to
the non-rigid deformations.

Due to a constraint of timeline to adapt their algorithm for this
challenge and despite the interest of several groups, only two par-
ticipants were able to return the results in the given timeline. They
downloaded the query and target datasets, and submitted their re-
sults including the prediction of query-target pairs, and their rank-
ing based on a score indicating the quality of the prediction.

The paper is organized as follows: Section 2 describes the dataset
and methods used to evaluate the retrieval performances, Section 3
describes the major obstacles of this challenge and participating
methods, and Sections 4 and 5 provide a discussion and conclusion
respectively.

Figure 1: Top panel: Example of query #1 (chain B of PDB 3n4i
– Beta-lactamase inhibitory protein) represented in spheres (each
sphere represents an atom from the experimentally resolved pro-
tein structure) and its corresponding SES mesh as provided to the
participants. Bottom panel: The shape complementarity of the New
antigen Receptor PBLA8 variable domain SES (blue mesh) and the
lysozyme C SES (orange mesh). This example shows one of the 52
ground truth complexes used to generate the dataset (PDB struc-
ture: 2I25).

2. Benchmark

2.1. Dataset & Ground Truth

All structural data are derived from the Protein Data
Bank [BHN03], the Protein-Protein Docking Benchmark
5.5 [VMV*15; GVZ*21] and the PDBFlex database [ZSG07;
HLS*15; ILJ*20]. The Protein-Protein Docking Benchmark 5.5
lists protein structures describing multi-chain complexes and their
non-bonded counterparts. The PDBFlex database clusters PDB
structures of individual chains from the same protein, highlighting
the structural variations and the intrinsic flexibility of each protein.

Given a complex resolved in a single structure, the Protein-
Protein Docking Benchmark 5.5 lists the non-bonded counterparts
of each individual chain of the complex in a non-bonded state. We
only retained complexes made of 2 protein chains to limit the com-
plexity of the docking problem as the track timeline was limited.
Thus, for each complex, we had a list of 3 PDB structures: one
for a complex made of two chains, and one for each chain in the
unbound state. The PDB structure of the complex was used to de-
rive the ground truth; the two other chains were used to derive the
queries and the targets of our dataset.

For the queries and the targets, we queried the PDBFlex [ZSG07;
HLS*15; ILJ*20] whether the chain was part of a cluster; if so, we
retrieved all the members of this cluster; if not, the complex was re-
moved from the dataset. We also removed complexes for which the
target cluster was smaller than 10 structures, resulting in a dataset
(ground truth) of 52 complexes. For the queries, we randomly se-
lected at most 10 members of the cluster, excluding the chain from
the complex PDB structure. For the targets, we randomly selected
10 members, excluding the chain from the complex PDB structure,
in order to have a balanced dataset with a consistent number of 10
targets for each query.

It is important to note that the queries and targets datasets do
not necessarily contain complementary shapes. We queried the
PDBFlex using the unbound structure of a protein, but the PDBFlex
cluster of a query may contain various conformations of the same
protein chain: unbound, bound to the target, or bound to another
protein. The structure of a protein may undergo small to large struc-
tural rearrangements between each structure, as it is experimen-
tally solved under different conditions (bound/unbound, physico-
chemical conditions of the experiments, etc. ). Therefore, the struc-
tures (and therefore the shapes derived from the structures) of a
given protein may differ, reflecting the intrinsic flexibility of the
protein structure. As an illustrative purpose, two examples of pro-
teins in their bound and unbound states are provided in Fig. 2:
while the Elongation factor 2 undergoes a large conformational re-
arrangement upon binding (Fig. 2A, left), the Complement C3 pro-
tein remains largely identical (Fig. 2B, left).

For the ground truth, each chain of the complexes was retrieved
from the PDBe [ABC*19], individualized and EDTSurf [XZ09;
XLZ13] was used to compute their Solvent-Excluded Surfaces in
the PLY format. All the 387 queries and 520 targets were re-
trieved from the PDBe [ABC*19]. We cleaned these structures
using the pdb_tools toolkit [RTTB18]: we only kept the relevant
chain, removed the hetero-atoms and the hydrogen atoms. Then,
EDTSurf [XZ09; XLZ13] was used to generate the queries and tar-
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Figure 2: A (left): Superposition of the unbound Elongation fac-
tor 2 protein (blue) and of the Elongation factor 2 protein (orange)
bound to the exotoxin A (not shown on the picture, for clarity). B
(right): Superposition of the unbound Complement C3 (light yel-
low) and of the Complement C3 (dark red) bound to the Integrin
alpha-M (not shown on the picture, for clarity).

gets surfaces in the PLY format, using the same parameters as for
the ground truth surfaces. These were the shapes provided to the
participants (Fig. 1). The dataset is freely available on the track
webpage (https://shrec2024.drugdesign.fr/).

2.2. Evaluation

2.2.1. Retrieval performances

The retrieval performances of the participants’ algorithms were
evaluated using the standard nearest-neighbor, first-tier and second-
tier retrieval metrics. These metrics compute the fraction of true
positives, for each query, within the top-1, top-N and top-2N re-
sults, with N being the number of true positives for the query con-
sidered. Finally, the number of true positives among the complexes
returned by the participants was evaluated.

2.2.2. Alignment and generation of complexes

At first for the evaluation of the participants’ results, we selected
only the true positives among each query-target pair predicted by
the participants. Each original query and target (before docking)
in the PLY format have been aligned onto the participants’ query-
target pair using Open3D’s RANSAC algorithm [ZPK18] to get a
transformation matrix. Thus, for each query and each target, we
obtain one transformation matrix respectively. Each matrix is then
applied to the original PDBs (corresponding to a structural repre-
sentation) with the MMTSB perl-based toolset [FKB04], in order
to obtain participants’ predictions from PLY format to PDB format,
being essential for computing scores and evaluating predictions.

2.2.3. Comparison of query-target poses to reference
complexes

To compare the query-target poses submitted by the participants to
the reference complexes, several metrics from the structural bioin-
formatics community are used: TM-score (Template Modeling
score) [ZS04], lDDT (local Distance Difference Test) [MBBS13],
ICS (Interface Contact Similarity) [LBK*18a], IPS (Interface Patch
Similarity) [LBK*18a] and DockQ [BW16]. To calculate ICS, IPS
and DockQ, the distance threshold is set by default according to
CAPRI definition (i.e. 5.0Å) [LBK*18b]. They allow evaluating
the quality of predicted complexes compared to reference complex

structures. These scores all have been computed using the Open-
Structure framework [BSB*13].

In our analysis, we also computed the vectors between the cen-
ters of mass of the query and the target proteins both in the pre-
dicted poses and the reference structures, after applying a query-
based superposition to the predicted poses. By calculating the angle
between these vectors, we gained insights into the degree of align-
ment or divergence in the position of the target relative to the query
in both the predicted poses and the reference structures.

2.2.4. Hex: a Shape-based Protein Docking Method

To highlight the difficulty of the challenge, we have applied Hex, a
protein docking algorithm, based on spherical polar Fourier corre-
lations of protein surface shape representation [RK00]. This algo-
rithm is available for about 20 years, and we used the version 8.1.1
(https://hex.loria.fr/).

To run the docking, the following settings were used: the corre-
lation type was set to "Shape Only", the samping method was set
to "Range Angles" with Euler rotation angles for receptor, ligand
and twist defined respectively to 180◦, 180◦and 360◦with a "Step
Size" equal to 7.5, and using 3D FFT (fast Fourier transform). The
"Steric Scan" and "Final search" were defined at the order N=16
and N=25 respectively, with a "Distance Range" equal to 60. Fi-
nally, the "Grid dimension" and the "Box size" were set to 0.6Å and
10Å respectively.

2.3. Participants

Participants were afforded a span of 7 weeks from the dataset’s
release to submit their results. Multiple teams demonstrated their
interest for the track, among which two were able to return the re-
quired results in the time limit:

1. Kihara et al. use LZerD, a structure-based protein docking ap-
proach, augmented by the 3D Zernike descriptor (3DZD) for
shape representation 3.2. This approach has demonstrated suc-
cess in the CAPRI challenge [CTS*19; LBM*21; LBR*23].

2. Tran et al. reduce the number of vertices and faces by a fac-
tor of 10 while preserving the object details. Each shape is then
described by multiple tables, each one representing a different
view of the shape, using a Fibonacci Sphere (FS) to generate
unit vectors representing different views 3.1. The query and tar-
get tables are finally aligned to find complementary shapes.

3. Methods

In this section, we describe the two methods evaluated within the
track timeline. Several other groups manifested their interest in the
proposed problem, but were not able to produce the results in time.
The major obstacles were 1) the constraints in the timeline, as most
methods from the computer vision field are not directly applica-
ble to protein surface meshes, and as such, need to be partially
modified and tested before use; and 2) the lack of publicly avail-
able reference dataset of protein complexes (in the form of 3D
meshes and / or cloud points) to train machine-learning algorithms
against. Regarding the latest point, this track dataset may be a first
step towards the publication of curated datasets for the training of

© 2024 The Authors.
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new, surface-based methods devoted to the prediction of molecular
complexes. The participants were provided with two sets of pro-
tein shapes (queries and targets), and were asked 1) to evaluate the
likelihood of each query-target complex, 2) to provide the 10 most
probable predicted complexes.

3.1. FS-proj: Fibonacci-Sphere projected onto a plane

By: Y. Kagaya, T. Nakamura and D. Kihara.

3.1.1. Projection with multiple rotations

The 3D objects are simplified by reducing the number of vertices
and faces. This process is done by using the Decimate Modifier of
Blender with a ratio of 0.1. In this way, the number of vertices and
faces is reduced by 10 times but still maintains the detail of the
object. After simplifying, each 3D object is centered and rotated
in different directions and angles. This is done by creating a Fi-
bonacci Sphere, produced points on the sphere can be seen as the
unit vectors representing different views of the object in different
directions. For each unit vector, we create a plane going through the
origin and have that unit vector as a normal vector. All the points
of the object are translated by the direction of the normal vector so
that they all lie within the positive region separated by the plane. All
the points are projected from a three-dimensional space onto a two-
dimensional plane with different rotations about the normal vector
to produce multiple 100× 100 height tables. We want to focus on
the upper surface of the object, so the 2D projected coordinates are
rounded to fit into the table and only the greatest heights in each
position are stored in the table. In this stage, suppose we project
the points with a directions and b rotations, each 3D protein mesh
will produce an a×b×100×100 array.

3.1.2. Evaluating method

For each resulting alignment of the two projection tables of a query
and a target, we calculate the score of the pair by taking the sum of
some desired metrics over the distance between two corresponding
cells.

As the resulting alignment is represented as the intersection of
the target projection table and the query projection table by some
offset, associating with a distance value between the tables, the
distance between two corresponding cells is defined as the differ-
ence between associating distance value and the sum of the heights
of two corresponding cells.

The applied metric should have the domain of the non-negative
real number and should be non-increasing over the domain.

The chosen metric was 1/(1+ x)2 with the motivation of imitat-
ing the gravitational/electric force. We applied the (1+ x) part to
avoid the divided by zero problems.

3.1.3. Results and runtimes

After evaluation, each query has a list of scores and information for
creating the complexes. From the scores, we produce a 387× 520
score matrix reflecting the likelihood of each query-target complex
and get the top 10 highest-score query-target complexes. By using
the information on the direction and angle projection of the query

and target protein, we can restore the state of the two meshes and
merge them into a protein-protein complex.

In the Projection with multiple rotations stage, we project the
object’s points with a = 24 directions and b = 16 rotations, a
24×16×100×100 array is produced in 30 seconds on average for
each 3D mesh after simplification. In the Evaluation stage, because
of the limitation of time, we reduce the number of directions and
rotations to a = 12 directions and b = 8 rotations for each 3D mesh,
each query-target is evaluated in 5 seconds on average. The source
code can be accessed at: https://github.com/nhphucqt/
shrec2024-protein.

3.2. LZerD: Local 3D Zernike descriptor-based Docking

By: H.-P. Nguyen, V.-T. Vong and M.-T. Tran.

3.2.1. Method description

We participated in this challenge using a method based on LZerD
(Local 3D Zernike descriptor-based Docking program) [VYSK09],
a surface-based protein docking method developed by our group
that has been successful in the Critical Assessment of PRedic-
tion of Interactions (CAPRI) challenge for many years [CTS*19;
LBM*21; LBR*23]. LZerD exhaustively samples the possible in-
teraction interface areas and interaction angles of two structures.
If the interfaces collide, are too small, or the shape complementar-
ity of the interfaces is too low, the model is rejected. LZerD treats
protein structures as surface structures, which are first divided into
local surface regions. This local surface area is represented by a
3D Zernike descriptor (3DZD) [KSCE11]. Since 3DZD is rotation-
ally invariant, shape complementarity can be calculated quickly and
alignment-free.

Since the LZerD program was designed to dock proteins, it re-
quired protein atomic information in Protein Data Bank (PDB) file
format as input. LZerD uses the atom information to calculate sur-
faces, the number of clashes of the docked conformation, and the
final scores of docked conformations. For this reason, we needed
to generate a reasonable PDB file and modify LZerD to disable
the components related to atoms. To generate a PDB file, we first
placed assumptive atom spheres in a given triangle mesh under the
condition that the spheres have contact with the mesh from the in-
side. This process was intended to roughly recover surface atoms
from a given mesh by reversely taking into consideration the pro-
cess of calculating solvent-excluded surfaces from surface atoms.
Atom spheres were placed per triangle of the mesh in the direction
of the normal of the triangle with a certain distance from the cen-
ter of the triangle. The distance was randomly chosen from van der
Waals radii of nitrogen, carbon, alpha carbon, and oxygen in a pep-
tide. If an atom sphere attempting to place overlapped with already
placed spheres, placing a sphere for that triangle was skipped. We
used Open3D Library [ZPK18] for calculating normals and check-
ing whether a point is inside the mesh.

The scoring of LZerD first considers the directions of their sur-
face normals and the correlation between their 3DZD at the inter-
face. If the docking conformation had normals opposing each other
and shapes were complementary, the conformation got a higher
score. The final score was calculated by taking the weighted sum of
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this score, the area of interface (larger is better), and crashed vol-
umes (lower is better). This score was used to rank the conforma-
tions inside of one query-target pair as well as rank the targets for
each query to report top 10 query-target pairs. The original LZerD
had a further scoring method to re-rank top conformations using
the ranksum method to combine several scoring functions. How-
ever, this was disabled because those scoring functions relied on
the atomic structure written in the PDB file.

With those modifications, we ran LZerD with the original de-
fault parameters except for the threshold for pre-filtering by 3DZD
correlation. Due to the time constraints of this challenge, we raised
the threshold from the original 0.7 to 0.9. If the surface’s 3DZD
correlation was less than this threshold, subsequent calculations
were skipped and contributed to reduced calculation time. How-
ever, this may lead to a risk of missing correct conformations
which have weak surface shape correlation. The LZerD protein
docking suite is free available at https://kiharalab.org/
proteindocking/lzerd.php.

3.2.2. Results and runtimes

The calculations of LZerD were performed on Negishi and Bell,
Purdue’s community clusters run and maintained by the Rosen
Center for Advanced Computing [HYM14]. The nodes of those
clusters consist of 2-way AMD EPYC 7763 and 2-way AMD
EPYC 7662, respectively, and each of them has 256GB RAM.
Docking calculations for one query-target pair by LZerD took 7.75
CPU hours on average. Thus, for all the 387× 520 pairs of pro-
cesses, it took a total of approximately 1.56 million CPU hours.
The preprocessing of LZerD such as creating a PDB file and the
process of creating PLY files for submission from the rotation ma-
trix obtained were negligible compared to the calculation time of
LZerD itself.

4. Results & Discussion

4.1. Experimental Results

4.1.1. Retrieval performance

Metric FS-proj LZerD

Nearest-Neighbor 0.0 0.0
First-tier 0.014 0.023
Second-tier 0.035 0.046
TP (TP — %) 49 (1.3%) 99 (2.6%)
TPcomplex (TPcomplex — %) 22 (42.3%) 12 (23.1%)

Table 1: Retrieval performances of the evaluated algorithms. TP
stands for the number of true positives returned by the partici-
pants. In parenthesis, this number is expressed as a percentage
(%) compared to the total number of complexes (10×387queries).
TPcomplex is the number of complexes for which at least one query
gave a true positive. In parenthesis, this number is expressed as a
percentage (%) compared to the 52 complexes.

Nearest-Neighbor, First-tier, Second-tier and true positives rates
at the query and protein levels are calculated. True positives rate

at the query level (TP) corresponds to the percentage of true pos-
itives returned by the participants, while true positives at protein
level (TPcomplex) corresponds to the percentage of complexes for
which at least one query gave a true positive. The retrieval results
are shown in Tab 1.

The Nearest-Neighbor, First-tier and Second-tier values tend
toward 0, indicating that the fraction of true positives in the
top-scores is low. Although the percentage of TP is about 1.3%
and 2.6% for FS-proj and LZerD respectively, the percentage of
TPcomplex is about 42.3% and 23.1% respectively.

4.1.2. Comparison of query-target pairs to reference

Figure 3: Left panel: Evaluation of the quality of results in com-
parison with the ground truth. 5 parameters were assessed such as
ICS, IPS DockQ, lDDT and TM-score, for each participant: LZ-
erD (upper) and FS-proj (lower). Scores range between 0 and 1.
Overall, ICS, IPS and DockQ show a low score (between 0 and
0.2) whereas TM-score and lDDT show a high score (between 0.5
and 0.9). Right panel: Proportion of complexes as a function of
the angle between the center-of-mass vectors. The angle is calcu-
lated between two vectors, the reference’s vector and the predicted
model’s vector. These vectors are computed between the center of
mass of the query protein and the center of mass of the target pro-
tein. The values are calculated for each range of 30◦ angle.

In Fig. 3, we present in the left panel the distribution of key scor-
ing metrics including ICS, IPS, DockQ, TM-score and lDDT for
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each true positive identified by participating teams in our study.
Notably, we observed similar trends in the results obtained by
both teams and their respective collaborators. For both methods,
ICS, IPS and DockQ scores are below 0.1, indicating a limited
agreement in the predicted interaction interfaces when compared
to the ground truth. In contrast, lDDT and TM-score exhibit sig-
nificantly higher values, ranging between 0.5 and 0.9, indicating
a closer structural alignment between the predicted and reference
complexes. The divergence in performance between these metrics
can be attributed to their distinct evaluation criteria. ICS, IPS and
DockQ assess the retrieval of the interaction interface between both
partners of the complex, while lDDT and TM-score reflect the over-
all similarity between the ground truth complex and those submit-
ted by the participants. Consequently, instances arise where low
ICS, IPS and DockQ scores coexist with good lDDT and TM-score
values, suggesting partial alignment of certain regions of the com-
plex, typically observed in the query structures, despite incomplete
retrieval of the interaction interface.

Although IPS and ICS are used to compare strictly two inter-
faces, a third vector-based criterion was used to assess whether the
predicted query-target zone of interaction was correct. Unlike ICS
and IPS which are based on a comparison of the contacts at the in-
terface, the center-of-mass vector-based criterion evaluates the po-
sition of the target relative to the query. Thus, the vector between
the query and target centers of mass from each model is compared
to the vector between the query and target centers of mass from its
corresponding reference. The results are shown in Fig. 3.

For both participants, about 20% of predicted complexes locate
the target within the threshold of 60◦ around the position of the ref-
erence target. Thus, even if the participants’ methods were unable
to accurately predict the reference interface, they show an ability to
predict an interaction zone in the vicinity of the actual interface.

4.2. Discussion

As shown in Tab. 1, LZerD method achieves a higher true posi-
tive rate, but FS-proj finds at least one true positive for more com-
plexes. More specifically, LZerD founds an average of 8.25 true
positives (99/12) by TPcomplex (complex for which it found at least
one true positive), ranging from 1 and up to 39 true positives by
TPcomplex, respectively. In contrast, FS-proj founds an average of
2.23 true positives (49/22) by TPcomplex, from 1 to 5 true positives
by TPcomplex. 22 TPcomplex were retrieved by the FS-proj, and 12 by
the LZerD workflow. The FS-proj produced slightly better complex
for the true positives, as evidenced by slightly higher IPS values (cf.
Fig. 3) and more predicted poses with an angle inferior to 30◦ be-
tween the vectors of the center of mass of the query protein to the
center of mass of the target protein extracted from the ground truth
and the predicted poses (cf. Fig. 3, right panel).

LZerD method achieves a higher average recall level, when a
true positive was found for the given complex. However, the ICS,
IPS or DockQ scores remain low (cf. Fig. 3, upper left panel). This
highlights the fact that when the correct query-target pair is found,
the relative position and / or orientation of the target relative to the
query remains perfectible, as evidenced by the distribution of the
angles between the center-of-mass vectors (cf. Fig. 3, upper right
panel).

LZerD method was developed to operate on protein structures,
and proved to be successful [CTS*19; LBM*21; LBR*23] at pre-
dicting correctly protein complexes based on the structures of the
individual partners. To apply this structure-based algorithm to the
shape-based problem proposed in this SHREC 2024 track, the in-
put meshes had to be converted back to synthetic PDB structures as
an initial step, which are subsequently subdivided into local sur-
face areas. It is therefore likely, given the performance gap ob-
served between this track and the CAPRI experiment [CTS*19;
LBM*21; LBR*23], that the mesh-to-structure retro-conversion
did not produce synthetic structures that are accurate enough to pro-
duce synthetic structures from which the LZerD docking algorithm
may produce the expected high-quality results, as observed in pure
structure-based benchmarks [CTS*19; LBM*21; LBR*23].

One key aspect of the LZerD method is the scoring function
used to rank the query-target poses. It is composed of several el-
ements, among which the area of interface (cf. Subsection 3.2): a
larger area results in a greater score. For one specific complex, the
Importin beta-1 subunit / GTP-binding nuclear protein RAN, the
overall shape of the Importin beta-1 subunit is of particular inter-
est. This protein forms an irregular crescent, a concave site that
offers a large surface area (cf. Fig. 4 and Fig. 5, middle panel).

Figure 4: Importin beta-1 subunit structure. The rainbow shows
the different secondary structures formed mainly by around twenty
alpha helices. The SASA (solvent accessible surface) is equal to
22 Å

2
). The average of SASA among all proteins (sub-units) of the

ground truth is about 10 Å
2

(standard deviation: 6 Å
2
).

Despite the limited performance of the mesh-to-structure step
of the LZerD workflow, the overall complementary shapes of the
Importin beta-1 subunit and of the GTP-binding nuclear protein
RAN seem to be retrieved, as 39 true positives were found for this
complex only. This conserved relative shape complementarity com-
bined with a scoring function that favors larger interface area may
explain why we observed such an over-representation of this com-
plex among the true positives retrieved from the dataset.

FS-proj tries to find query-target matches using a muti-view ap-
proach. Each mesh is reduced by 90%, and the resulting 3D shapes
are displaced in multiple directions and rotated in order to produce
multiple views of each object that are projected on a 2D plane en-
coding a 3D information into a 100× 100 table. Then, each table

© 2024 The Authors.
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of the queries and of the targets are aligned, and a distance metric
evaluates how distant those two tables are, i.e. how well the two in-
terfaces (described by the tables) fit to each other. In this workflow,
the interfaces are summarized in a 100×100 table reflecting the 3D
geometry of a surface observed from a given point of view. Such an
approach would depend on the conservation of the critical details
about the surfaces throughout the successive steps of the workflow
(mesh reduction, multi-view choice and 2D projection) to retrieve
the relevant complementary interfaces.

The results presented in Tab. 1 and in Fig. 3 indicate a limited
success, both at retrieving the true positives query-target pairs and
at predicting the right interaction. Unlike the LZerD method, the
ratio true positive / TPcomplex remains low (2.23 as compared to
8.25) with a maximum of 5 for the complexes formed by the NR1-
NR2A subunits of the NMDA receptor and the Complement C3
protein bound to the integrin αM, but in contrast the number of
TPcomplex is high (42.3%). Similarly to LZerD, the interface scores
(ICS, IPS and DockQ) are low while the overall alignment scores
(lDDT and TM-score) are significantly higher (cf. Fig. 3, middle
left panel). Similarly to LZerD, the position and orientation of the
target relative to the query were not necessarily well retrieved (cf.
Fig. 3, middle right panel), indicating that the table alignment dis-
tance metrics is perfectible. Given the constrained timeline of the
track, the main parameters of this method have been selected to be
able to produce the results (cf. Subsection 3.1). Therefore, a better
calibration of the parameters might improve the results.

As a reference point, the results obtained with Hex (cf. sec-
tion 2.2.4) are provided as well (bottom panels of Fig. 3). To be
noted, these results were obtained using the 52 pairs of protein
shapes from the complexes of the ground-truth, and not the queries-
targets shapes from the dataset, resulting in a slightly easier chal-
lenge. Nevertheless, the results obtained from Hex show that Hex
is able to retrieve the native complex for a few examples (as exem-
plified by the maximum ICS, IPS and DockQ scores of nearly 1.0,
Fig. 3, bottom left panel). Overall, the median scores remain low
(< 0.2 for ICS, IPS and DockQ), however. Furthermore, the frac-
tion of complexes for which Hex found a query-to-target center-of-
mass vector within 30◦compared to the ground truth is significantly
higher than the participants’ results (in about 40% compared to less
than 15% for FSProj and less than 5% for LZerD). But in the rest of
the cases (60%), Hex is unable to find the correct positioning of the
query-target chains. Taken together, these results indicate that the
correct positioning of the complexes’ chains remains a challenge,
even in a best case scenario where a method is given the ground
truth shapes.

Finally, the workflow we used to generate the dataset produced a
few difficult, if not intractable, cases where the query or the target
protein conformations from the ground truth and the dataset largely
differ. An illustrative purpose was given in Fig. 2 (left panel). As
the ground truth and dataset structures were experimentally solved
through different experiments and conditions, the accuracy and the
portion of proteins actually solved in the structures may mislead the
docking algorithms as the changes in the structures and the surficial
shapes are substantial. The RAN protein is a good example of how
two protein shapes can radically differ while representing the same
protein. The C-terminal extremity of this protein is so flexible that

it is absent in most PDB structures, as the experimental methods
are not able to solve such dynamic portions of proteins. Due to the
presence of some protein partners, however, this region may fold
into a stable helix, and therefore be solved and appear in the PDB
structure (cf. Fig. 5). The problem difficulty is then considerably
increased, and the methods may not handle such difficult cases,
thus lowering the results.

(a) RAN target align-
ment from ground
truth and dataset.

(b) Ground truth:
query-target complex.

(c) Prediction: query-
target complex.

Figure 5: Impact of the structural difference with the RAN protein
example, mostly formed by alpha helices. In (a), we show the RAN
protein difference between conformations from the ground truth
(sand color) and dataset (lig red color). The dark red show a C-
extremity of about 40 residues, with an alpha helix, present in the
dataset’s structure and absent in the ground truth’s structure. Sub-
figures (b) and in (c) show the complex between RAN (target) and
Importin beta-1 (query) from the ground truth and from a predic-
tion respectively, to highlight the impact of this C-extremity.

5. Conclusion

In this paper, we have proposed a challenge on the non-rigid shape
complementarity retrieval in protein-protein interactions. This is a
particularly difficult challenge for several reasons: i) the restricted
time available for the challenge, ii) the complex and unusual shape
of 3D objects such as proteins, iii) a dataset that does not include
the same protein conformations as the ground truth and, iv) the
presence of several rearrangements, sometimes significant, derived
from the latter. We have described the approaches of two partici-
pants: LZerD by Kihara et al. and FS-proj by Tran et al. , and com-
pared their results to those obtained with Hex. Apart from the diffi-
culties of the challenge, the mixed results (particularly the retrieval)
may be explained by the fact that all parts of the participants’ work-
flows were developed ad hoc, probably with sub-optimal parame-
ters. Hex produced slightly better results, but remain far from the
ideal. Nevertheless, this challenge poses the bases for the develop-
ment of protein shapes docking methods in the future, with a first
curated dataset made publicly available which could be further ex-
panded and prospects for optimizing existing algorithms.
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