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Abstract

We reexamine a family of distributions in random utility models introduced

by David Strauss, which generates ranking probabilities consistent with the

exploded logit model, thus implying the multinomial logit model for the

choice probabilities. We explore the necessary and sufficient conditions

for its validity within copula theory, a robust analytical framework. By

specifying minimal assumptions required for the support of the marginal

utility distributions, we clarify and reinforce the fundamental structure of

the model, demonstrating that it is based on strict archimedean copulas.

Additionally, we provide a new mathematical proof by induction confirming

that these utility distributions indeed generate the exploded logit model.
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1 Introduction

In a seminal publication more than four decades ago, Strauss (1979) introduced

groundbreaking findings regarding the multinomial logit model. Among his key

contributions, Strauss expanded the multivariate distribution of utilities within

the standard multinomial logit model, originally based on independent double-

exponentials (or Gumbels). He proposed a significant generalization, referred to in

this paper as the Strauss model, which incorporates correlated double-exponentials

and extends to a broader class of distributions. This paper will examine and define

this generalization in detail.

Although the Strauss model introduces a specific type of correlation among

the alternatives and perturbs the original double-exponential marginals, the choice

probabilities remain invariant and align with the logit formula, which Strauss

refers to as the Choice Axiom, remaining faithful to the terminology of the

foundational work by Luce (1959). At a more detailed level of choice, the

ranking probabilities follow the exploded logit model, which Strauss designates

as Complete Decomposition. It is crucial to note that if the ranking probabilities

are consistent with the exploded logit model, then the choice probabilities must

necessarily follow the logit-type. However, whether the converse is true—are there

random utility models for which choice probabilities are logit-type, but ranking
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probabilities do not follow the exploded logit model?—remains an unresolved

question.1

In this paper, we undertake a reexamination of the Strauss model by outlining

the minimal necessary assumptions regarding the support of the marginal distributions,

followed by an exposition of the necessary and sufficient conditions for the model’s

validity, drawing upon contemporary copula theory (for an authoritative reference,

see Nelsen, 2006). Although Strauss did not employ copulas in his work, we

demonstrate that his model aligns with archimedean copulas when applied to

specific marginals. Rather than reiterating all the proofs, we utilize the existing

literature on archimedean copulas to substantiate the conditions requisite for

the model’s validity. This methodology capitalizes on the advanced theoretical

constructs offered by archimedean copulas, thus enhancing the precision and

rigor of our discourse by leveraging well-established results. Consequently, we

circumvent the redundancy of complex proofs, focusing on elucidating the essential

conditions while ensuring a robust and precise understanding of the model.

It is noteworthy that copulas, particularly archimedean copulas, have been

studied within the framework of discrete choice models. Schwiebert (2016)

demonstrates that modelling the multivariate distribution of utilities with archimedean

copulas facilitates the computation of integrals necessary for determining choice

probabilities. This approach yields closed-form expressions for the partial derivatives

of cumulative distribution functions, which act as integrands within these computations.

Consequently, the integration of probabilities is simplified through the use of

techniques including Gauss-Hermite quadrature or Monte Carlo methods. It is not

1Initially, we became interested in the Strauss model while seeking an answer to this question.
In examining this model closely, we decided to write this paper to detail it further and hope to
address this open question in the future.
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our objective to furnish an exhaustive survey of the literature on the application of

copulas to random utility models; rather, our emphasis lies exclusively on utilizing

copulas to substantiate the Strauss model.

It should be noted that Beggs et al. (1981) provided an elegant proof, although

two years after Strauss’s article, establishing that the standard multinomial logit

model, derived from a random utility model with independent double-exponentials,

results in the exploded logit model. However, Strauss showed that this exploded

logit model can be achieved within a much broader framework that includes a larger

family of distributions. By revisiting the Strauss model, we highlight the broader

scope of his results, which include many models that conform to the exploded logit

model beyond the specific case of independent double-exponentials.

The subsequent sections of this paper are structured as follows. Section 2

elaborates on the formulation of the Strauss model alongside the underlying

assumptions. Section 3 provides a representation of the Strauss model via copulas,

elucidating that this representation utilizes archimedean copulas. Section 4 details

examples of distributions that conform to the framework of the Strauss model. In

Section 5, we explicate the conformity of ranking probabilities within the Strauss

model to the exploded logit model, providing a new proof of this claim. Lastly,

Section 6 summarizes the conclusions and suggests avenues for future research.

2 Strauss model: formulation and assumptions

Consider a random utility model where an individual’s choices are probabilistically

described by a vector of random utilities U=(U1, . . . ,Un), with each Ui representing

the utility of alternative i among n possible alternatives (i ranging from 1 to n
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and n ≥ 2). Our analysis focuses on the scenario where this vector follows a

distribution introduced by Strauss (1979), which characterizes the Strauss model.

The cumulative distribution function (CDF) of the utility vector U is given by:

FU (x1, . . . ,xn) = ψ

(
n

∑
i=1

e
vi−xi

σ

)
, (1)

where (x1, . . . ,xn) represents a vector of realizations in Rn, and ψ is a function

whose properties will be discussed in detail later.

We chose to present the arguments in the form (vi−xi)/σ because this convention

is widely used in the representation of families of probability distributions relative

to a standardized reference distribution. Here, vi denotes the deterministic component

of the utility of alternative i, which serves as a location parameter, while σ is a

strictly positive scale parameter. 2 This formulation clarifies how the utilities

depend on these parameters. Despite a slight modification from the original

formulation, this representation remains consistent with the Strauss model and

preserves its foundational structure.

In order to streamline our notation and facilitate subsequent computations, we

reformulate the utility vector U into an alternative vector T = (T1, . . . ,Tn), which

is conceptualized as a vector of disutilities, via the transformation:

T = exp
(
−U

σ

)
. (2)

2Although it is possible to generalize the model by introducing distinct scale parameters for
each alternative, accommodating heteroscedasticity, such a generalization would compromise the
exploded logit model. This justifies the use of a single σ .
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Conversely, the original utilities can be restored using the relationship:

U =−σ lnT. (3)

Therefore, the survival function (SF) corresponding to the transformed vector

T can be written in a slightly more compact form than the CDF of U as:

F̄T(t1, · · · , tn) = ψ

(
n

∑
i=1

λiti

)
, (4)

where ti ∈ (0,∞). Here, λi ≡ evi/σ denotes a transformed location parameter for

each alternative i. The vector T is parameterized by λ1, . . . ,λn, and the scale

parameter σ . Thus, SF is expressed in terms of λ and σ . This formulation will be

referred to as the transformed Strauss model, and Eq. (4) will be used to define the

SF of T.

Strauss (1979) outlined certain necessary conditions to establish the validity

of the CDF defined by Eq. (1). However, these conditions are not exhaustive.

Although additional conditions were introduced incrementally throughout his

derivations, they were not explicitly stated at the outset of his paper. In this

analysis, we will present the necessary and sufficient conditions to validate the

survival function (SF) T, as defined by Eq. (4), and, consequently, to validate the

utility distribution function U, as defined by Eq. (1).

Validating a multivariate CDF or SF is a complex task. It requires satisfying

rectangle inequalities, which involve intricate alternating sums to ensure that the

probabilities computed for hyperrectangles are well-defined and nonnegative. For
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a detailed discussion of these conditions, the reader is referred to (Joe, 1997, pp.

11-12).

The distribution of the utility vector within the Strauss model U, or conversely,

the transformed Strauss model via the disutility vector T, necessitates the fulfilment

of specific conditions to guarantee the validity of the associated multivariate

CDF or SF. To guarantee this, it is imperative that the function ψ satisfies the

specified conditions, enabling the multivariate functions defined through ψ to meet

the requisite properties in hyperrectangles. These properties, which encompass

monotonicity, continuity, boundedness, and non-negativity in hyperrectangles, are

essential to affirm the validity of a multivariate CDF or SF.

As an initial phase in the examination of these models, it is imperative to

determine the marginal distributions of the variables Ui and Ti. The derivation

of these distributions is achievable by examining the asymptotic behavior of the

multivariate distributions as the realizations of the other variables approach infinity.

The marginal CDF of Ui is derived by considering the asymptotic limit of the

multivariate CDF FU (refer to Eq. 1), as the realizations of variables other than xi

approach infinity. Consequently, the marginal CDF for Ui is:

FUi(xi) = ψ

(
e

vi−xi
σ

)
, i = 1, . . . ,n. (5)

Similarly, the marginal SF of Ti is obtained by taking the asymptotic limit of

the multivariate SF F̄T (see Eq. 4) as the realizations other than ti tend to infinity.

The marginal SF for Ti is then:

F̄Ti(ti) = ψ (λiti) , i = 1, . . . ,n. (6)
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The aforementioned equation demonstrates that ψ serves as a univariate SF

within the interval [0,∞). To facilitate a more straightforward specification of the

marginal distributions, ψ is selected with an unbounded support that encompasses

zero, which extends throughout the positive half-line. This choice mitigates the

analytical complications associated with more constrained supports. Consequently,

by opting for this support, all Ti share the same support, [0,∞), regardless of

their location parameters. This simplifies the analysis and precludes potential

complications that may arise from alternative support types, such as corner difficulties.

Moreover, this assumption implies that, should we revert to the original utility Ui,

its support would extend across the entire real line.3 These initial observations

culminate in the ensuing assumption.

Assumption 1. The function ψ satisfies the following conditions:

• It is strictly decreasing and continuous over [0,∞).

• ψ(0) = 1 and limx→∞ ψ(x) = 0.

In calculating the densities of utility (or disutility) subvectors, the successive

derivatives of the function ψ are crucial. For example, to derive the marginal

density of the variable U1, the first derivative of ψ is needed. This derivative must

be strictly negative, as the support of ψ is chosen over the interval [0,∞) to ensure

that the probability density is strictly positive, in accordance with Assumption 1.
3If ψ had a bounded support [a,b] with 0 < a < b < ∞, the support of Ti would become

[a/λi,b/λi]. As λi becomes small, the support of Ti extends to the right, which decreases the
probability that Ti will achieve the minimum and may even result in the complete elimination of
that alternative from consideration. To avoid this problem and ensure that all alternatives have a
non-zero probability of being selected, we chose an unbounded support that includes zero, [0,∞).
Although we could have chosen a support of the type [0,b) with b finite, this choice would have
introduced unnecessary complications, such as corner difficulties, without adding a significant
benefit to the analysis.
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To obtain the joint density of the pair (U1,U2), the second derivative of ψ

is used, and this pattern continues for higher-dimensional subvectors. As more

components are added to a subvector, the required order of the derivative of ψ

increases. Consequently, each subvector density corresponds to a specific order of

derivative of ψ . The signs of these successive derivatives are essential to ensure

that the marginal densities and subvector densities are correctly defined and meet

the necessary sign requirements.

Therefore, an additional assumption is needed to guarantee the model’s validity.

Specifically, the following assumption is made to ensure that the marginal probability

densities meet the required sign conditions:

Assumption 2. The function ψ is completely monotonic on the interval [0,∞). In

other terms, ψ is infinitely differentiable on [0,∞), and for every integer k ≥ 0, its

successive derivatives satisfy:

(−1)k
ψ

(k)(y)≥ 0, ∀y ∈ [0,∞). (7)

The complete monotonicity of ψ necessitates infinite differentiability. The

specified signs guarantee that the marginal probability densities observed when

selecting a particular number of utilities or disutilities fulfill the requisite conditions,

thus enabling the model to support an arbitrary number of alternatives. In the

subsequent section, we will employ copula theory to illustrate that Assumptions 1

and 2 are both necessary and sufficient to establish the model’s validity, particularly

in the context of complete supports and accommodating an arbitrary number of

alternatives. Although these assumptions could be moderated for constrained
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numbers of alternatives, we elect to retain these general conditions to preserve the

model’s flexibility.

These assumptions are essential for ensuring the validity of the Strauss model

and its transformed counterpart, and their sufficiency will be demonstrated through

the application of copula theory, a rigorous and well-established framework. Rather

than redeveloping existing mathematical derivations, we will utilize established

results from copula theory to substantiate the sufficiency of the proposed assumptions.

The subsequent section will elucidate the role of copula theory in confirming

the sufficiency of our assumptions, drawing upon the robust findings within this

domain.

3 Representation by archimedean copulas

For the subsequent analysis, we choose to analyze the distribution of the disutility

vector T instead of the utility vector U, as it is more advantageous. This preference

enables a more rigorous and simplified representation of the Strauss model via the

employment of a copula-based methodology.

A pivotal theorem within the domain of copula theory, known as Sklar’s

theorem, asserts that any multivariate CDF can be formulated as a combination

of its univariate marginal distributions and a copula. Conversely, a copula when

applied to univariate margins yields a multivariate CDF. By employing a variant of

this theorem adapted for SFs, as introduced by McNeil and Nešlehová (2009), the

multivariate SF of T can be expressed as follows:

F̄T(t1, . . . , tn) =C(F̄T1(t1), . . . , F̄Tn(tn)), (8)
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where C is a copula, i.e., a multivariate CDF defined on [0,1]n. This representation

is crucial for our analysis because it directly uses SFs, aligning with the transformed

Strauss model.

Setting ϕi = F̄Ti(ti) in combination with Eq. (6), which states ϕi = ψ(λiti),

allows us to derive λiti = ψ−1(ϕi) by inversion, where ψ−1 denotes the inverse of

ψ . Then, using the representation provided by Eq. (8) alongside the multivariate

SF of the transformed Strauss model (refer to Eq. 4), we can express the form of

the associated copula:

C(ϕ1, . . . ,ϕn) = ψ

(
n

∑
i=1

ψ
−1(ϕi)

)
(9)

This expression corresponds to a strict multivariate archimedean copula, as defined

in the copula literature (See, e.g., Nelsen, 2006), with ψ as generator.

By returning to the utility vector U of the original Strauss model, the relationship

between the survival function F̄T and the CDF FU is given by

FU(x1, . . . ,xn) = F̄T(e−x1/σ , · · · ,e−xn/σ ).

Similarly, the marginals of U are related to those of T by

FUi(xi) = F̄Ti(e
−xi/σ ), i = 1, . . . ,n.

Using the representation provided by Eq. (8), we can express FU(x1, . . . ,xn) in

terms of the archimedean copula applied to the marginals. This yields the Sklar

11



representation for the CDF of U, according to the following formula:

FU(x1, . . . ,xn) =C(FU1(x1), . . . ,FUn(xn)), (10)

where C is exactly the same archimedean copula as identified in Eq. (9).4

We will now use this representation of the Strauss model from the copula

literature to establish the following result:

Proposition 1. The Strauss model, defined by the multivariate CDF in Eq. (1), is

valid if and only if ψ satisfies Assumptions 1 and 2.

Proof. We rely on Sklar’s representation of the CDF of U, given by Eq. (10).

As discussed earlier in this section, the marginals FUi are valid under assumption

1. However, for the archimedean copula C linking these marginals to be valid

as well, it is both necessary and sufficient for the generator function ψ to be

completely monotone, according to Assumption 2. This result is stated in Nelsen

(2006, Theorem 4.6.2, p. 152). For a complete and rigorous proof, the reader is

referred to Kimberling (1974), which is referenced in Nelsen’s book for a detailed

probabilistic interpretation of complete monotonicity.

In the following section, we will use existing generators from the literature

to develop specific models that conform to the Strauss model framework, while

ensuring they meet the established assumptions.

4The copula C remaining invariant after a monotone transformation is not specific to this model.
In Nelsen (2006), it is shown that when monotone transformations—though not all identical—are
applied to the marginals, the copula remains invariant, particularly for the representation of
multivariate CDFs with strictly increasing transformations. However, we have not identified
a directly applicable result that would allow us to omit these straightforward lines of proof in our
specific context.
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4 Examples of Distributions

In this section, we present several examples illustrating the use of various valid

generators ψ within the Strauss model framework. While our focus is on these

specific cases, a wide range of other valid generators ψ exists for constructing strict

Archimedean copulas. For a comprehensive overview of Archimedean copulas with

a single parameter, readers are referred to (Nelsen, 2006, Table 4.1, pp. 116-118),

which lists a broad selection of valid generators. This table serves as a valuable

resource for identifying and applying different copula families in various contexts.

A suitable function for ψ within this model is ψ(y) = exp(−y), which leads to

independent double-exponential (Gumbel) distributions. This yields the following

multivariate CDF for utilities:

FU (x1, . . . ,xn) = exp

(
−

n

∑
i=1

e
vi−xi

σ

)
. (11)

This formulation of the CDF is consistent with the traditional approach for deriving

logit-type choice probabilities.

The marginal distributions of the utilities within this model follow a double-

exponential form, each characterized by a common scale parameter. Using the

generator ψ(y) = exp(−y), whose inverse is ψ−1(ϕ) =− lnϕ , the resulting copula,

derived from substitution into equation (9), is:

C(ϕ1, . . . ,ϕn) =
n

∏
i=1

ϕi, (12)
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which corresponds to the independent copula. This shows that, in the Strauss

model, using ψ(y) = exp(−y) results in an independent copula where the utilities

of different alternatives are independent, each with the same scale parameter.5

It is noteworthy to observe, and to draw a conclusion regarding this specific

case, that the transformed Strauss model associated with the independent copula

possesses the SF:

F̄T (t1, . . . , tn) =
n

∏
i=1

e−λiti. (13)

The model indicates that the resultant distributions are independent exponential

distributions, where λi serves as the inverse of a scale parameter.

An alternative functional form for ψ that extends the prior independent copula

generator is ψ(y) = exp(−yβ ), given that β ∈ (0,1]. Consequently, the CDF is

expressed as:

FU (x1, . . . ,xn) = exp

−( n

∑
i=1

e
vi−xi

σ

)β
 . (14)

The standard model, assuming independence is recovered when β = 1. For β <

1, the parameter β induces correlations among the alternatives while maintaining

the multinomial logit model of the choice probabilities, as will be elucidated in

the subsequent section. Furthermore, it is important to note that this distribution

is referenced in (Balakrishnan, 1992, p. 244), where it is used to formulate

multivariate logistic distributions.

An additional valid generator ψ within this context is ψ(y) = (1+ y)−1, which

results in a multivariate logistic distribution. Employing this function, the CDF of

5It is expected that with independent utilities, the marginal distributions must be double-
exponential. Yellott (1977) demonstrated that the multinomial logit model, in the case of
independent utilities with at least three alternatives, arises exclusively when the marginal
distributions are double-exponential.
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the utility vector U is expressed as:

FU (x1, . . . ,xn) =
1

1+∑
n
i=1 e

vi−xi
σ

. (15)

The selection of that ψ induces dependence among the alternatives, in contrast

to the independent double-exponential distributions observed with ψ(y) = exp(−y).

In this instance, the utilities cease to be independent, thereby introducing correlations

among the alternatives, all while maintaining the multinomial logit model of the

choice probabilities.

It should be noted that in the well-known handbook on the logistic distribution,

namely Balakrishnan (1992), a generalization is provided with distinct scale

parameters σi in the multivariate logistic distribution presented in Eq. (15).

Nonetheless, as previously noted, this generalization would undermine the logit

and exploded logit forms of the choice and ranking probabilities, respectively.

Specifically, the integrands within the integrals lack explicit primitives unless the

scale parameters are uniform across all alternatives. Consequently, it is imperative

to retain a singular σ to uphold these two fundamental properties.

5 Exploded Logit

In this section, we examine the probability of the event in which the alternatives are

ordered in strictly decreasing utility, denoted as (U1 >U2 > · · ·>Un), within the

context of the Strauss model. It is crucial to emphasize that this specific ordering

does not compromise the generality of our analysis. Despite the existence of n!

potential ranking probabilities, we focus exclusively on a single order to examine
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its analytical form. The indexing of alternatives is, in fact, arbitrary and the derived

results are applicable to any permutation of indices. This formulation enables us to

determine all other ranking probabilities by permuting the indices. In doing so, we

simplify our notation and facilitate a clearer and more concise presentation of the

results.

It is essential to note that this event corresponds to the ranking of the elements

of the vector T in ascending order, specifically T1 < · · ·< Tn. These probabilities

depend solely on the scale values (λ1, . . . ,λn), which justifies their notation as

Π(λ1, . . . ,λn).6 Our objective is to determine:

Π(λ1, . . . ,λn)≡ P(U1 > · · ·>Un) = P(T1 < · · ·< Tn), (16)

within the specific context of the Strauss model. These probabilities can be

computed using the following multiple integrals.

Π(λ1, . . . ,λn) =
∫

∞

0

∫
∞

t1
· · ·
∫

∞

tn−1

fT (t1, . . . , tn)dtn . . .dt1, (17)

where fT is the joint density of the utility vector T , given by:

fT (t1, . . . , tn) =
∂ nF̄T (t1, . . . , tn)

∂ t1 . . .∂ tn
= (−1)n

(
n

∏
i=1

λi

)
ψ

(n)

(
n

∑
i=1

λiti

)
. (18)

6While we should formally include the index n for Π since different lengths of the argument
vector correspond to different functions, we omit it here because the length of the argument vector
(λ1, . . . ,λn) serves as an indicator of which function is being used, and this makes our notation more
compact. This slight reduction in notation facilitates clearer presentation of subsequent formulas
that involve multiple integrals.
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It is important to observe, for the subsequent proof, that this expression can be

extended to any subvector (T1, . . . ,Tk) with 1 ≤ k ≤ n. The corresponding density

function can be expressed as follows:

f(T1,...,Tk)(t1, · · · , tk) = (−1)k

(
k

∏
i=1

λi

)
ψ

(k)

(
n

∑
i=1

λiti

)
, k = 1, . . . ,n. (19)

By combining Eqs. (17) and (18), we ultimately obtain the following form:

Π(λ1, . . . ,λn) =

(
k

∏
i=1

λi

)∫
∞

0

∫
∞

t1
· · ·
∫

∞

tn−1

(−1)k
ψ

(k)

(
n

∑
i=1

λiti

)
dtn . . .dt1. (20)

In the binary case, the ranking probability (16) to be computed represents the

probability that alternative 1 is preferred over alternative 2, which is equivalent to

a choice probability. Subsequently, it becomes necessary to compute the following

double integral:

Π2(λ1,λ2) = λ1λ2

∫
∞

0

∫
∞

t1
ψ

′′ (λ1t1 +λ2t2) dt2 dt1.

Initially, the expression is integrated with respect to t2, followed by a subsequent

integration with respect to t1. The execution of these two successive integrations

results in:

Π2(λ1,λ2) =
λ1

λ1 +λ2
=

ev1/σ

ev1/σ + ev2/σ
, (21)

thereby yielding the binary logit formula.

In the case of a binary decision model, the initial step involves integration over

the second argument, which corresponds to the disutility parameter of the second

alternative. Subsequently, this integration yields a straightforward integral over
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the first argument. This integral, once solved, allowed us to derive the binary logit

formula. This methodology entails a retrogressive integration procedure, beginning

with the disutility argument associated with the second option and subsequently

returning to the first.This methodology aligns with the approach utilized by Strauss

in his demonstration applicable to an arbitrary number of alternatives n.

Strauss (1979) proved that the distribution of utilities he proposed, which

we have termed the Strauss model, conforms to the exploded logit framework,

offering a more general proof compared to that of Beggs et al. (1981), which

is constrained to independent double-exponentials. These two papers utilized

backward integration in their respective proofs; in contrast, our approach introduces

an alternative proof method.

Instead of performing backward integration for an alternative ranked before

the others, starting from the last-ranked alternative and working backward, we

use an inductive approach based on the number of alternatives. This methodology

facilitates a direct transition from a set comprising n alternatives to a set that

includes n+1 alternatives, eliminating the need to handle integrals sequentially.

Additionally, we have established robust conditions for the Strauss model using

strict archimedean copulas, thereby strengthening our contribution with solid

conditions for the Strauss model and an alternative proof.

Theorem 1 (Strauss, 1979). Assume that the utility vector U follows the CDF of

the Strauss model as specified in Eq. (1), and that the function ψ in this CDF

satisfies Assumptions 1 and 2. Under these conditions, the ranking probability Π is

given by the exploded logit model and is described by the following formula:

Π(λ1, . . . ,λn) =
n−1

∏
j=1

(
λ j

∑
n
k= j λk

)
=

n−1

∏
j=1

(
ev j/σ

∑
n
k= j evk/σ

)
. (22)
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Proof. The case n = 2 has already been addressed in the text with Eq. (21).

Suppose then, by the induction hypothesis, that the equality holds for all integers

up to some n ≥ 2. We need to show that this remains true for n+1. Using Eq. (20),

we need to compute:

Π(λ1, . . . ,λn+1) =

(
n+1

∏
i=1

λi

)∫
∞

0

∫
∞

t1
· · ·
∫

∞

tn

(−1)n+1
ψ

(n+1)

(
n+1

∑
i=1

λiti

)
dtn+1 . . .dt1.

We start by integrating with respect to tn+1, which gives:

Π(λ1, . . . ,λn+1) =

(
n

∏
i=1

λi

)∫
∞

0

∫
∞

t1
· · ·
∫

∞

tn−1

(−1)n
ψ

(n)

(
n−1

∑
i=1

λiti +(λn +λn+1)tn

)
dtn . . .dt1.

It is useful to express this last equation in the following form:

Π(λ1, . . . ,λn+1) =
λn

λn +λn+1(
n−1

∏
i=1

λi

)
(λn +λn+1)

∫
∞

0

∫
∞

t1
· · ·
∫

∞

tn−1

(−1)n
ψ

(n)

(
n

∑
i=1

λiti +(λn +λn+1)tn

)
dtn . . .dt1.

Using Eq. (20), this expression can be simplified to:

Π(λ1, . . . ,λn+1) =
λn

λn +λn+1
Π(λ1, · · · ,λn−1,λn +λn+1).
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We then apply the induction hypothesis to obtain, after simplification:

Π(λ1, . . . ,λn+1) =
n

∏
j=1

 λ j

∑
n+1
k= j λk

 ,

which completes the proof.

6 Conclusions and research perspectives

In this paper, we revisit the Strauss model by delving into the necessary and

sufficient conditions for its validity using modern copula theory. By specifying the

minimal assumptions on the support of marginal distributions and demonstrating

that the Strauss model can be represented by strict archimedean copulas, we have

clarified and strengthened the underlying structure of this random utility model.

A major contribution of our work is the rigorous formulation of Assumptions 1

and 2, which ensure the validity of the multivariate CDF used in the Strauss model.

Assumption 2 requires that the generator function ψ of the archimedean copula be

completely monotone, which means that its successive derivatives strictly alternate

in sign. This property, known as complete monotonicity, is essential to ensure

that all marginal and joint densities derived from ψ meet the positivity conditions

necessary for the validity of the model. By incorporating the theory of strict

archimedean copulas, we have shown that the Strauss model naturally fits within

this specific class of copulas, thereby facilitating the analysis of dependencies

between the utilities of different alternatives.

A particularly interesting aspect of our analysis is the clarification that the

Strauss model generates the exploded logit model commonly used in econometric

20



applications. Strauss demonstrated that his model, more generally than that often

subsequently attributed to Beggs et al. (1981), leads to the exploded logit model.

Contrary to what is frequently found in the literature, where this model is associated

with independent utilities, our study highlights that the utilities in the Strauss

model can be dependent and cannot be considered independent without altering

the model’s fundamental properties. In reality, the independent case of the Strauss

model corresponds only to double-exponentials, which represents a small part of

the broader class of distributions considered. As soon as a different copula is used,

generating a copula generator other than the independent one, other specifications

of dependence emerge. This distinction reaffirms Strauss’s pioneering contribution

and cautions against the systematic association of the exploded logit model with

independent utilities.

Furthermore, by examining different copula specifications, we demonstrated

that only independent double-exponentials lead to the exploded logit model. The

use of different copulas generates other dependence specifications, limiting the

ability to generalize the exploded logit model while maintaining explicit analytical

properties. It is crucial to understand these dependence structures between the

utilities of alternatives, as they directly influence the ability to propose models

alternative to the exploded logit. If the goal is to construct models that are not

exploded logit and offer only advantages, it is necessary to avoid dependence

structures and marginal types characteristic of the Strauss model. An additional

contribution of our work is the proposal of a new proof of the exploded logit model

by induction, thus reinforcing the results established by Strauss.

For future research, it would be relevant to explore generalizations that allow

for distinct scale parameters, which would extend the Strauss model. Although
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maintaining a single scale parameter σ is essential to preserve the exploded

logit form, introducing different scale parameters eliminates the possibility of

explicit analytical forms. However, this extension remains interesting for numerical

methods, though it goes beyond the scope of this paper. Additionally, incorporating

strict archimedean copulas with multiple parameters or other copula families

could allow for modeling more nuanced dependencies between the utilities of

alternatives, thus offering greater flexibility to adapt to various empirical contexts.

This extension could enhance the model’s ability to capture complex relationships

observed in real data.

In conclusion, our study provides an essential theoretical clarification of the

Strauss model and demonstrates its potential for extension through the integration

of strict archimedean copulas. It also underscores the importance of recognizing

Strauss’s pioneering contributions to the development of random utility models and

warns against using his dependence structure when additional flexibility is desired.

These advances offer new opportunities to improve discrete choice modeling and

better capture dependencies between the utilities of alternatives. Ultimately, we

hope this research will assist in addressing the open question discussed in this

article, namely: are there random utility models for which choice probabilities are

of logit type, but ranking probabilities do not follow the exploded logit model?
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