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Abstract: Battery technologies have recently undergone significant advancements in design and
manufacturing to meet the performance requirements of a wide range of applications, including
electromobility and stationary domains. For e-mobility, batteries are essential components in various
types of electric vehicles (EVs), including battery electric vehicles (BEVs), plug-in hybrid electric
vehicles (PHEVs), and fuel cell electric vehicles (FCEVs). These EVs rely on diverse charging
systems, including conventional charging, fast-charging, and vehicle-to-everything (V2X) systems. In
stationary applications, batteries are increasingly being employed for the electrical management of
micro/smart grids as transient buffer energy storage. Batteries are commonly used in conjunction with
power electronic interfaces to adapt to the specific requirements of various applications. Furthermore,
power electronic interfaces to batteries themselves have evolved technologically, resulting in more
efficient, thermally efficient, compact, and robust power converter architectures. This article offers a
comprehensive review of new-generation battery technologies. The topic is approached from the
perspective of applications, emerging trends, and future directions. The article explores new battery
technologies utilizing innovative electrode and electrolyte materials, their application domains, and
technological limitations. In conclusion, a discussion and analysis are provided, synthesizing the
technological evolution of batteries while highlighting new trends, directions, and prospects.

Keywords: battery roadmap; e-mobility; energy storage; gigafactories; lithium batteries; new
generation batteries technologies

1. Introduction

There is no doubt that the next ten or twenty years will experience a transformation
concerning energy storage system technology, especially for batteries and power electronics
converters. It concerns not only the manufacturing and commercialization of batteries but
also encompasses a supply chain driven by a strong decision of countries or continents to
be part of this solid transformation. The electrification of transportation is an undeniable
reality. Automotive manufacturers, battery OEMs (Original Equipment Manufacturers),
research laboratories, and governmental institutions must adapt according to the new
obligations powered by a fast-changing climate, energy and raw materials independence
strategies, environmental and health considerations, a substantial presence in the expanding
electromobility market, and applied research.

The Paris Agreement [1] seeks to reduce greenhouse gas emissions by encouraging the
transition of energy systems within the industrial and transportation sectors. Meanwhile,
the European Green Deal [2] is working towards achieving a reduction in net greenhouse
gas emissions by at least 55% by 2030, compared to 1990 levels. In its pursuit of decar-
bonizing the transportation sector, the European Union (EU) has set the ambitious goal
of achieving full decarbonization of its economy and attaining climate neutrality by 2050.
To accelerate progress in the battery sector, the European Commission established the
European Battery Alliance (EBA) in 2017 and adopted the Strategic Action Plan on Batteries
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in 2018 [3]. The EU funding programs Horizon Europe and Important Projects of Common
European Interest (IPCEI) represent key instruments in this regard. Operating under the
umbrella of the European Battery Alliance, their aims are to promote research and innova-
tion, stimulate investment, and foster partnerships among industrial, governmental, and
educational institutions. The ultimate objective is to establish cost-effective and environ-
mentally friendly gigafactories on European soil. Similarly, the United Kingdom plans to
stop the sale of internal combustion engine vehicles by the end of 2030 [4]. The United
States addressed the climate crisis by building a clean and equitable energy economy. Their
strategy aims to achieve carbon-pollution-free electricity by 2035 and to reach net-zero
emissions no later than 2050 [5]. The investments in energy transition spiked to attain
297 billion dollars in China in 2021, compared to 120 billion dollars spent by the United
States [6].

In order to have a share in this important market, stakeholders should secure access to
raw and refined materials, discover alternatives for critical materials, and integrate recycled
material as part of the circular economy [7].

When considering environmental impact, it is crucial to emphasize that it largely
depends on the source of the electricity used to charge the battery. Well-to-wheels (WTW)
analysis indicates that battery electric vehicles (BEVs) exhibit favorable environmental per-
formance when powered by electricity generated from nuclear power plants or renewable
energy resources [8].

The primary obstacles to the widespread adoption of electric vehicles (EVs) include
the high cost of purchase, limited driving range, and a lack of accessible charging stations.
A new energy storage technology naturally undergoes a series of transformations aimed at
enhancing its performance across several key metrics. These include capacity, gravimetric
and volumetric energy (Wh/kg and Wh/L), power (W/kg and W/L), charging time, safety,
cycle and calendar life, environmental impact, and ultimately, cost per unit of energy
content. Notably, specific energy (or energy density) has shown remarkable progress,
increasing from 110 Wh/kg (9 Wh/L) in 2010 to 300 Wh/kg (450 Wh/L) in 2020, with a
projected trajectory towards 550 Wh/kg (1200 Wh/L) by 2030 [9–11]. Furthermore, the cost
of batteries has declined from $102/kWh and is expected to reach $80/kWh by 2030 [12],
indicating a significant cost reduction trend.

Nonetheless, it is imperative that research, design, and manufacturing endeavors
related to new-generation batteries and their associated power interfaces remain integrated
within the framework of a global circular economy. This integration is vital for ensuring
the long-term sustainability of the entire process. As an example, the focus is on giving the
batteries the experience of a second life through the recycling, reusing, refabricating, and
reselling processes.

Within the broader context of the whole system, the role of static power converters,
which are based on power electronics semi-conductors-based switches, is to assure the flow
of energy between the grid, the batteries, and the power loads, primarily the electric motors.
Depending on the battery type, the converters’ structures, components, and control systems
must ensure a safe and efficient charging and discharging process, while optimizing the
efficiency, durability, performance, and cost of the battery and overall system [13].

Another significant hurdle in the widespread adoption of electric vehicles is the time re-
quired for charging. To promote broad acceptance, a high-powered charging infrastructure
should offer the same convenience as traditional gas and fuel stations. Additionally, there
is a need for battery development that allows for rapid energy storage without compro-
mising the battery’s health. Charging methods should aim to extend the battery’s lifecycle,
prevent damage, and reduce charging duration. Authors in [14] proposed a battery charger
with variable charging current and automatic voltage compensation. The objective is to
reduce circuit complexity for parallel charging. A review of EV fast-charging technologies,
their impacts on battery systems, and the associated heat management limitations is pro-
vided in [15]. The review also highlights promising new approaches and opportunities for
advancing fast-charging systems through power electronic converter topologies.
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It is crucial to recognize that new-generation batteries are inherently intertwined
with the overall environment, and notably, with power electronics systems. In [16], the
authors investigated the power electronics technologies utilized in electric vehicles, such
as unidirectional and bidirectional on-board and off-board chargers for the EV battery in
its front-end and back-end power stages, in addition to wired and wireless power transfer
technologies. Furthermore, from the traction side, the authors focused on the inverter
topology according to the type of electric machine and on the unified power converter
topology, which includes the grid, the battery, and the electric machine.

The state of the art of power electronics for electric vehicle (EV) traction drives and
battery-based EV charging systems has been presented in reference [17]. Three types of
charging systems have been discussed: contactless inductive recharging (Wireless Power
Transfer, WPT), conductive charging, and battery swapping. Comparative properties of
various DC/DC converter charging systems along with soft-switching auxiliary circuits
can be found in [18]. Another comparative analysis of resonant converter topologies with a
focus on the LLC resonant topology, a configuration that uses two inductances L and one
capacitor C, is also addressed by the authors.

The current state of the art of extreme fast charging (XFC) infrastructure using solid-
state transformer technology while directly connected to the medium voltage (MV) line
is reviewed in reference [19]. Technical considerations, challenges, and improvements in
wide-bandgap power devices are also discussed. One significant issue with fast charging
of electric vehicles is the decreased performance and lifespan of lithium-ion batteries due
to the high current used during charging. A study in reference [20] examines the impact of
fast charging on the degradation of lithium-ion batteries under operation profiles from real
driving cycles in a Matlab/Simulink©-based platform. The findings showed that Lithium
Titanate Oxide batteries (LTO) had the least degradation among the other batteries tested
(LFP and NMC).

A general classification of DC-AC power converters is presented in reference [21],
starting from a classical topology to a multilevel inverter topology. The issues of power
density, switching losses (hard switching vs. soft switching), stresses on devices, and
control circuit complexity have been addressed.

A review of the available traction motors and drives for light railways is also provided
in reference [22]. Permanent magnet synchronous motors with multiphase windings are
evaluated. Wide bandgap semiconductor devices have been introduced for low- and
medium-voltage multisource power converters.

Typically, batteries are controlled through a battery management system (BMS). Au-
thors in [23] implemented a real-time battery energy management system carried out on
a prototype EV traction system. They proposed two techniques: cascaded fuzzy logic
controller (CSFLC) and fuzzy tuned model predictive controller (FMPC) techniques. The
primary objective of this system was to minimize battery State of Charge (SOC) and State
of Health (SOH) degradation.

Lithium-ion batteries (LIBs) are highly sensitive to operating temperatures. Authors
in [13] make a review of the latest advances in thermal management systems for batteries
propelling electric vehicles. The authors emphasized the usefulness of solid-liquid phase
change material (PCM) for battery thermal management systems (BTMSs). This type
of BTMS has several advantages over the cost-effective air-based and the high transfer
efficiency of the liquid-based BTMS, such as low energy consumption, small volume change,
low noise, and high cooling capacity. Efficient methods of battery thermal management
(BTM) are also reviewed in [24].

The functionalities of intelligent battery systems (IBSs) and prerequisites for their im-
plementation have been discussed in [21]. The objective is to improve the reliability, safety,
and efficiency of BEVs. These systems should give an accurate and robust determination
of cell individual states. The concept of reconfigurable battery systems (RBSs) has also
been spotted.
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The powertrain system of electric vehicles heavily relies on power converters, which
can be split into three categories: AC/DC, DC/DC, and DC/AC (inverters). The perfor-
mance of these converters is largely determined by the power electronics structures and
the semiconductor technology used, with factors such as power density, efficiency, and
controllability playing an important role.

Currently, the switches within power electronic converters utilize silicon (Si) semi-
conductor technology. However, advancements in switching technology have led to the
exploration of using wide bandgap (WBG) semiconductor materials, such as silicon carbide
(SiC) and gallium nitride (GaN), as an alternative. WBG semi-conductors operate at higher
voltages and switching frequencies, enabling high efficiency and power density. For auto-
motive traction applications, Insulated Gate Bipolar Transistors (IGBTs) are commonly used
as semiconductor power switches with an operating switching frequency ranging between
5 and 10 kHz [25]. In 2017, Tesla used SiC MOSFETs power switches from STMicroelectron-
ics and Infineon, [26], for the Tesla Model 3 with a switching frequency of hundreds of kHz,
adding 18% to efficiency at the high-efficiency zone. On the other hand, and for the purpose
of miniaturization, Tesla has recently revealed that its inverters would pass from a 48 SiC
MOSFETs to a 12 SiC MOSFETs structure which represents a substantial 75% reduction in
the overall usage of SiC within Tesla’s inverters [27]. The latest SiC switches offer enhanced
reliability, increased efficiency, higher power density, and improved thermal capabilities.

A state-of-the-art review of the current status and opportunities of power electronic
converters in electric, hybrid, and fuel cell vehicles can be found in [28,29].

The power density of traction inverters has seen a dramatic increase in the past decade,
going from 13.3 kW/L in 2012 [30], to 34 kW/L in 2022 [31]. It is expected to reach as
high as 100 kW/L in 2025 [32]. The introduction of wide bandgap technology could
further boost efficiency up to 99% [33], extending the vehicle’s driving range and enabling
high-performance charging and V2X systems. V2X technology enables improved energy
management, increased reactivity of the EVs with their surroundings, and better integration
of renewable energy into the power grid.

The review paper will take into consideration many influencing external parameters
and variables that define the roadmap of new battery technologies. Hereby, the primary
role is to provide extensive research and in-depth analyses in the battery field. The work
involved a systematic selection of the most critical articles on battery materials and tech-
nologies in order to highlight their trends and future directions.

Nowadays, battery applications could intervene in electromobility, stationary energy
storage for grid usage, smart cities, and portable electronic utilities. Table 1 shows the share
in percentage for each type of application. A great deal of importance should be given to en-
ergy storage applications. The implementation of local and international regulations, rules,
and agreements aimed at reducing greenhouse gas emissions, promoting carbon neutrality,
and ultimately the phasing out of internal combustion engine vehicles in many countries
around the world will unquestionably drive the electromobility sector. Specifically, the
number of electric vehicles will substantially increase, necessitating a heightened produc-
tion of electric batteries. Simultaneously, there will be a parallel emphasis on enhancing
the energy storage capacity of each battery, reflecting the desire to extend the autonomy
of electric vehicles. Consequently, the electromobility sector will indeed become more sig-
nificant in terms of total energy storage capacity than other sectors like stationary storage
systems or portable electronic devices. This does not imply that the energy requirements
of the latter two sectors will decrease over the years—quite the contrary. However, the
electromobility sector will attract a larger share of the overall stored energy in terms of
percentage compared to other sectors. This is what explains the decrease in percentage
from 2025 to 2030 for the energy storage and portable electronics sectors.
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Table 1. Percentage share of batteries usage applications [34].

Year

2020 2025 2030

Electric Mobility 81.21% 83.21% 88.94%
Energy Storage 3.55% 10.81% 8.43%
Portable Electronics 15.25% 5.97% 2.63%

Achieving the energy transition goal would involve substantial increases in minerals
demands. By 2050, the annual base metal production could increase five- to six-fold
(e.g., copper, nickel, aluminum). As for lithium, the demand could reach 100 times its
current level.

As shown in Figure 1, according to [35], in order to respond to the battery market
demand, the annual production should attain 6700 GWh in 2031.
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Figure 1. Global battery manufacturing capacity to 2031 [35].

In 2021, China was responsible for approximately 79% of the world’s lithium-ion
battery manufacturing capacity, while North America and Europe each accounted for about
5% and 7%, respectively.

It is expected that Europe’s market share of the global battery supply market will
reach 11% by 2026 and 15% by 2031 [35]. Figure 2 illustrates the gigafactories that have
been installed and are planned for Europe or a comprehensive overview; a world map
displaying the locations of these gigafactories and related data can be accessed on the CIC
energiGUNE website [36].
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Major car manufacturers have committed to transitioning to electromobility, which is
being driven by policymakers, promising markets, infrastructure development, societal
evolution, and technological innovations [38]. Several considerations lead to original
equipment manufacturers (OEMs) and battery manufacturers being located geographically
close to each other in order to support just-in-time (JIT) production and minimize lithium-
ion batteries transportation, which requires specific safety measures [39].

Lithium-ion batteries (LIBs) have the potential to improve frequency and voltage
regulation in grid applications and provide backup power during outages. LIBs can be
used in renewable energy plants or smart grids to help stabilize the power system and
meet the changing demand for electricity. In addition, batteries can be employed to take
advantage of price differences in the energy market, known as energy arbitrage. Specifically,
energy is stored during periods when the cost is low and then released when the price is
higher, thus providing economic benefits. They can also be used in off-grid settings such as
telecom base stations or for household use.

Research efforts for batteries are focused on the materials for the electrodes and
electrolytes, the configuration and composition of the electrodes, the arrangement of
the cells (in pouch, cylindrical, and prismatic shapes), the material and thickness of the
separator, the design of other components such as the pack cover, electronics boards,
sensors, and relays, and the cooling system. Eco-friendly design and ways to recycle are
also major parts of the research activities.

Nickel manganese cobalt (NMC) batteries are currently the most widely used in electric
vehicles (EVs) and are projected to make up approximately 80% of the global market. The
popularity of NMC batteries is expected to reach approximately 90% by 2030, as the use of
lithium iron phosphate (LFP) and nickel cobalt aluminum (NCA) batteries decreases [40,41].
The cost of silicon based NMC622 batteries is expected to reach a limit of USD 100/kWh,
which will impact the overall price of electric vehicles as the battery is the most expensive
component. However, this development may also contribute to the wider adoption of
electric vehicles due to the reduced cost [42]. High nickel batteries NMC811 and NMC9.5.5
are expected to gain a larger market share due to their increased capacity and reduced
material costs compared to NMC622, as indicated in Figure 3.
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Figure 3. Different cathode types of EV battery chemistries from 2020 to 2050 [41].

Authors in [43] present recent developments in the materials used in the main three
LIB components: anode, cathode, and separator/electrolyte. A comparative review of
lead-acid, lithium-ion, and ultracapacitor technologies and their degradation mechanisms
is well-treated in [44].

For positive electrodes (cathodes) improvement, the goals are to reduce the cobalt
content, enhance safety, and increase energy density. The main focus for improving the
negative electrodes (anodes) is to enable fast charging even at low temperatures while
maintaining safety. It is important for anodes to be able to keep up with the capacity
increase of cathodes, explaining the interest of using silicon.

Figure 4 shows a histogram illustrating the distribution of the number of published
articles per year used in this paper.
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Figure 4. Histogram illustrating the distribution of the number of published articles per year.

The paper is structured as follows: The new generation of batteries is introduced in
Section 2. In this section, the components of lithium batteries are described. This is followed
by battery technology prior to the development of lithium-ion batteries. Current and future
promising battery technologies are then highlighted and detailed. This section also covers
the emerging field of solid-state lithium micro batteries, which are becoming increasingly
significant in today’s technologies, especially in applications such as IoT and wearable
electronics. In Section 3, analyses and discussions of various topics are presented, including
battery modeling, new manufacturing digital tools for batteries, and other innovative
trends such as self-healing, battery passports, and circular economy. The paper concludes
with a summary in the Section 4.
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2. New Generation Batteries
2.1. Components of a Lithium Battery
2.1.1. Positive Electrode (Cathode)

The ionic conductivity of cathode material is determined by the mobility of the lithium
ions, which is in turn defined by the material’s structure. Cobalt enhances the chemical
and thermal stability of lithium-ion batteries (LIBs). Nickel improves the energy density
of the battery and has the advantages of low cost and good conductivity. Manganese is a
more affordable alternative to cobalt and nickel for use in LIBs.

The first commercially available electrodes were LiMn2O4 (LMO) and LiCoO2 (LCO).
The LiMn2O4 material, which has a lattice structure known as a spinel, allows for three-
dimensional conductivity for lithium cations. While it offers a good capacity and an
affordable cost, it still needs improvement in terms of stability in common electrolyte
solutions. LiCoO2 is a layered trigonal crystalline oxide offering two-dimensional mobility.
It is known for its high specific capacity, thermal instability, and cost.

A cathode made from a combination of nickel, LMO, and LCO, called LiNiMnCoO2
(NMC), has a longer lifespan and higher energy density. The specific ratio of Ni, Mn, and
Co in the mixture determines the properties of the cathode.

There are two main categories of LIBs based on the type of cathode used. The first cat-
egory includes Lithium-Nickel-Cobalt-Aluminum oxide (LiNiCoAlO2—NCA) and Nickel-
Manganese-Cobalt (NMC) batteries, which are widely used in the electric vehicle (EV)
industry due to their high voltage and high specific energy. Nickel offers high energy
density, but it lowers battery stability. Additionally, while manganese can lower inter-
nal resistance and improve specific power, it has lower specific energy. Cobalt is a toxic
material that is relatively expensive, and its supply chains pose a significant risk due to
the political instability in the major region where it is sourced [41]. Researchers [45] are
working towards developing a cobalt-free battery. Increasing the amount of nickel in the
battery could be a solution. This leads to higher energy densities, but stability must also be
ensured [46].

Three types of battery are commercially available in the NMC-class battery composi-
tions: NMC111, NMC622, and NMC811. These designations are indicative of the proportion
of Ni, Co, and Mn on a mole fraction basis. The NMC622 batteries, which are high in
nickel content, are gradually replacing NMC111 batteries in EV applications. NMC811
batteries have already been produced and safety concerns are on the rise [47,48]. This
does not prevent that LiNi0.9Mn0.05Co0.05O2 (NMC955 or NMC9 1

2
1
2 ) batteries, containing

less cobalt, are currently in research process [49]. NMC9 1
2

1
2 is a Ni-rich cathode material

having a higher energy density and a limiting cobalt content. However, Ni-rich metal
oxides suffer from electrochemical cycling challenging, including substantial capacity fade,
severe voltage decay, and higher safety concerns.

The second category is Lithium-Iron-Phosphate (LFP—LiFePO4) batteries, which are
popular in the Chinese market and are known for their cobalt-free composition, high cycle
life, and low fire risk [50]. The olivine lattice structure of LFP permits linear ion movement
in one dimension. However, they offer lower voltage and capacity compared to NCA and
NMC batteries. In recent years, NMC batteries have gained more market share and research
attention compared to LFP batteries. The prices of raw materials and the availability of
mined reserves could also impact the choice of the next generation of battery chemistry.

The NMC (Nickel Manganese Cobalt) layered/spinel technology will be the most
widely used for BEV applications ensuring high specific energy and good performances
in terms of specific power, lifetime, and safety. The recently introduced NMC811 tech-
nology, characterized by 80% nickel, 10% manganese, and only 10% cobalt content, is
anticipated to compete with other Ni-rich NMC designs for upcoming EV batteries in 2025
and 2030 [51,52].
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2.1.2. Negative Electrode (Anode)

Graphite, having a capacity of 372 mAh/g, is a popular choice for anodes due to
its abundance, good electrochemical stability, safety, and low expansion volume during
charge and discharge. One way to increase the overall energy density is to include small
amounts of metals with high theoretical energy densities, such as silicon (4200 mAh/g).
Carbon-coated graphite and graphite-silicon anodes are often considered to be better
alternatives because they experience less degradation and can hold more lithium ions.
Silicon is considered a potential alternative to graphite as an anode material in lithium-ion
batteries. It is considered a safe and reliable option with a sufficient energy density for use
in electric vehicles. Despite this, silicon anodes have some downsides, including a volume
expansion of up to 300 percent during charge and discharge, which can cause unstable solid
electrolyte interphase (SEI) formation, low electrical conductivity, and mechanical grinding
of graphite caused by the Si expansion/contraction. To address these issues, researchers
are exploring the use of nano-silicon in a composite structure with graphite [53].

Lithium-Titanium oxide anodes (Li4Ti5O12—175 mAh/g) have the longest cycle life
and are used with lithium iron phosphate (LFP) cells [54] and NMC cells [55]. The anode
material has an operating voltage of 1.55 V relative to lithium. The formation of lithium
plating and a conventional solid electrolyte interphase are not considered problematic.
Researchers are exploring alternatives to lithium titanate oxide (LTO), such as niobium
titanium oxide (NTO) [56], as potential anode materials. It is expected that replacing anodes
with thin lithium metal foils will significantly increase energy density, as long as they can
be safely incorporated and stabilized in the system.

2.1.3. Electrolytes

The dissolution of a lithium salt, like lithium hexaflurophosphate (LiPF6) in an organic
carbonate, such as ethylene carbonate (EC), dimethyl carbonate (DMC), or diethyl carbonate
(DEC), constitutes the electrolyte liquid solution [57]. Fluororalkylphosphates promise
advantages for 5 V batteries [58].

Additives could be used for liquid electrolytes to enhance safety, minimize the loss
of capacity at the first charge-discharge, avoid oxidation, and prevent gases evolution by
electrolysis. To achieve higher voltage cathodes, electrolyte additives will also play the role
of stabilizing agents, retarding the thermal decomposition of LiPF6 salt.

In order to decrease the amount of liquid electrolyte, gel/polymer electrolytes (such
as LiN(CF3SO2)2/LiTFSI) may be potential solutions while focusing on increasing ionic
conductivity. In the long term, the goal is to use solid-state electrolytes once they have
demonstrated sufficient ionic conductivity and a high level of manufacturability expertise.

There are two main types of solid electrolytes. Inorganic electrolytes are composed
of ceramic crystalline materials such as LISICON, NASICON, perovskites, and polymer
organic electrolytes [59]. Inorganic electrolytes have high ionic conductivity but present
interfacial compatibility limitations. On the other hand, polymer electrolytes have good
mechanical and thermal stability, but have lower ionic conductivity.

In terms of safety improvement, enhancing performance and thermal and electrochem-
ical stability even for conventional organic solvent electrolytes is essential.

2.1.4. Separator

The separator, about 25 mm in thickness, consists of a porous membrane wetted
with an organic electrolyte solution. Polymers such as polyethylene, polypropylene, or
polyvinylidene fluoride (PVDF) are employed [60]. The properties include good permeabil-
ity, high mechanical resistance, suitable porosity, electrolyte wettability, and good thermal
and electrochemical stability. Ceramic coatings [61] are being used more frequently to pro-
vide robustness and mechanical strength, preventing short-circuits caused by mechanical
damage or dendrite formation.



Energies 2023, 16, 7530 10 of 29

2.1.5. Current Collectors

Researchers are continuing to work on improving the thickness, hardness, and compo-
sition of current collectors to increase their mechanical strength, electrochemical stability,
and adhesion with the electrode coating [62].

2.1.6. Anode and Cathode Coatings

In addition to the significant volume expansion during cycling, the observation of low
electrical conductivity and the formation of a highly resistive solid electrolyte interphase
(SEI) layer are common. In [63], the authors introduce silicon material design approaches
and innovative synthesis methods aimed at enhancing the Si anodes properties through
improved structural designs.

These volume changes lead to permanent cracking and the separation of the active
material from the current collector. In [64], the authors focus on silicon anodes development,
emphasizing surface chemistry and the structural integrity of the electrode. They have
reported effective strategies for optimizing these anodes.

Combining silicon and silicon oxides offers a solution to tackle these challenges. Silicon
monoxides (SiO) and silicon dioxides (SiO2) can be used as coating material on the silicon-
based anode electrodes. This helps stabilize the anode by reducing volume expansion
during lithiation, and minimizing contraction that occurs during charge and discharge
cycles, thus preventing structural degradation. This, in turn, can improve the overall
performance, capacity, and cycle life of lithium-ion batteries [65]. Coating the anode with
these materials helps also to prevent direct contact between the electrolyte and the silicon
in the anode. Furthermore, nanostructured SiOx, like silicon oxide nanowires or nanotubes,
can be utilized to enhance both the mechanical stability and conductivity of the anode [66].
In addition to presenting progress on SiO- and SiO2-based anode materials, authors in [67]
explore as well non-stoichiometric SiOx, and Si–O–C-based anode materials.

Chemical and physical characteristics of the cathode influence the performance of
the battery. Interactions between cathodes and the electrolyte lead to surface modifica-
tions, resulting in degradation. These side-reactions contribute to a decline in battery
performance, ultimately diminishing both battery lifespan and power capacity. In [68], the
authors conduct an extensive review of advancements in the coating of NMC batteries,
exploring multi-functionalities and mechanisms aimed at enhancing their electrochemi-
cal properties and overall performance. In [69], the authors discuss the potential of the
argyrodite solid electrolyte (ASE) for use in all-solid-state lithium batteries. They propose
lithium niobate (LiNbO3, LNO) as a coating material that is compatible with both ASE and
cathode active materials (CAM). The study investigates the impact of LNO coating on the
electrochemical performance of CAM, specifically assessing capacity, cycling behavior, and
rate performance in the context of a nickel-rich cathode (NMC622).

Surface coating of the cathode active material with a thin layer of a protective material
enhances the thermal and chemical stability of the cathode, reducing the risk of thermal
runaway or detrimental surface reactions with the electrolyte. In [70], an extensive ex-
amination of various surface-coating types has been conducted. The study establishes a
comparison of electrochemical performance changes between materials with applied coat-
ings and those without. The coating materials assessed include amphoteric oxides (such as
ZnO, Al2O3, SnO2, SiO2, or ZrO2), rare earth oxides (like cerium oxide, ruthenium oxide),
custom preparation of films from a mixture of materials, phosphate-based compounds,
glasses, and reduced-carbon materials, as well as other types of preparation methods.

On the other hand, boron nitride (BN) can be applied as a coating for both anode and
cathode electrodes. This application enhances electrical conductivity and prevents side
reactions with the electrolyte. Authors in [71] conducted investigation on α-Li3BN2 as a
transition-metal-free cathode material for Li-ion batteries. They demonstrated a specific
capacity of 890 mAh/g. In [72], a composite involving a balanced mixture of hexagonal
boron nitride, a piperidinium-based ionic liquid, and a lithium salt is proposed. When used
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in conjunction with conventional electrodes, this composite exhibits stability, enduring over
600 cycles at 120 ◦C with a total capacity degradation of less than 3%.

2.2. Before the Lithium

Different classifications could exist for battery technologies such as the following:

• lead-acid based: affordable, safe, and sustainable;
• lithium-based: high energy density, low weight;
• nickel-based: long life, reliable (NiMH, NiCd);
• sodium-based: relative low cost; and
• flow batteries [73].

Before lithium batteries, lead–acid batteries were the first to be invented in 1859.
Lead-acid batteries still have their place in the starting, lighting, and ignition of vehicles.
Gravimetric and volumetric energy are both relatively low and could attain 40 Wh/kg and
90 Wh/L.

The nickel–zinc battery (Ni-Zn) was the second invented, introduced in 1901. However,
its relatively short cycle life paved the way for the nickel-metal hydride battery (Ni-MH)
to emerge as a dominant choice, becoming the first battery to provide Battery Electric
Vehicles (BEVs) and Hybrid Electric Vehicles (HEVs) with gravimetric and volumetric
energy densities ranging from 80 to 120 Wh/kg and 140 to 200 Wh/L, respectively.

The lithium battery was discovered in 1912 by Gilbert N. Lewis [74]. Lithium is the
lightest metal [75], with a high electrochemical potential and an interesting specific energy
per weight [76,77]. In the early 1970s, the first non-rechargeable lithium-metal batteries
(LMB) became commercially available. Moli Energy Ltd. marketed the first rechargeable
lithium batteries in the 1980s. The batteries failed due to a serious safety risk as the
growth of lithium dendrites caused electric shorts, leading to thermal runaway conditions.
The results showed the inherent instability of lithium metal, used as anode material,
and its incompatibility with the slow discharge and high recharge cycles of portable
electronics [78]. The LMB was subsequently replaced by a non-metallic solution utilizing
lithium ions, despite having a lower specific energy, due to its significantly enhanced safety
characteristics. Figure 5 provides a simplified schematic of an LIB, illustrating the transfer
of ions and the direction of current during the charge and discharge processes.
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2.3. The Lithium-Ion Battery

Furthermore, the low maintenance, the lack of memory effect, the relatively long
cycle life, and the low self-discharge paved the way for Li-ion to be used in electric
powertrains [38]. On the other hand, the LIB suffers from cyclic and calendar aging, SEI
layer formation, lithium plating, electrolyte degradation, side reaction products, and current
collector corrosion. This is the main reason that Li-Ion batteries are always incorporated
with a battery management system, ensuring a high degree of protection.

Current trends in battery technology involve the utilization of electrodes with higher
capacities, such as sulfur (1675 mAh/g [79]), silicon (4200 mAh/g [80]), and lithium metal



Energies 2023, 16, 7530 12 of 29

(3863 mA/g [81]), as well as the increase in single-cell voltage. These developments
collectively enhance the overall energy density of the battery, consequently extending
the vehicle’s range. Another significant trend is the adoption of solid-state electrolytes to
enhance both safety and energy density within the cell.

Li-ion battery manufacturing will, by far, dominate the market through 2030 and
could potentially achieve a production capacity of 6 500 GWh [82]. For an LIB, the work
on positive electrodes (NMC, NCA, LFP) is focused on increasing energy density and the
batteries’ safety while reducing the cobalt content. Higher-capacity cathodes lead to higher-
capacity anode utilization (graphite/silicon). From the negative electrodes’ point of view,
work is much related to safety (fast charging at lower temperature preventing dendrites
formation). In order to increase the performance and safety of the battery, flammable
electrolytes are replaced by gel/polymer, or solid-state electrolytes.

As mentioned, the LIB has an average density of 300 Wh·kg−1 [83]; a fully operational
500 Wh·kg−1 battery should be ready by 2025 [84]. Thus, it will have major consequences
for reducing the car weight, the raw materials quantities during manufacturing, and
expanding drive range. A recent issue has emerged in the UK, as highlighted by the British
Parking Association, regarding the weight of electric vehicles parked in multi-story and
underground car parks. Many of these facilities were originally designed and constructed
with the weight specifications of popular 1976 cars in mind, such as the Ford Cortina,
which weighed approximately 960 kg. However, the advent of electric vehicles, particularly
best-selling models like the Tesla Model 3, which can weigh up to 2.2 tons due to the
substantial battery component, has placed significant stress on the structural integrity of
these buildings [85].

A return to lithium metal battery (LMB) technology is a compulsory passage. Var-
ious types of LMBs exist, such as lithium-sulfur batteries (LSBs) [86], lithium-air bat-
teries (LiO2) [87], and solid-state batteries (SSBs) [88]. The latter is based on a lithium
metal anode, a layered oxide cathode, and a solid electrolyte (solid polymers or inorganic
solids). Research focuses on the safety, life cycle, fast charging, and cost requirements of
these batteries.

2.4. Current and Future Promising Technologies
2.4.1. Generation 3

Battery generations are classified according to the cathode material, anode mate-
rial, type of electrolyte, and cell chemistry. The forecast market deployment of new
battery generations is shown in Table 2. For the next decade, the LIB will still be the
most commercialized.

A roadmap for 2030 primarily focuses on lithium-based technologies that use modified
nickel cobalt manganese oxide (NMC) materials. The optimized NMC811 has a higher
nickel content and a lower cobalt content, in combination with carbon/silicon composite
materials that have a high capacitive anode.

To enhance energy density, the primary approach is to elevate the cell’s voltage to
5 V by incorporating high-voltage electrode materials (as current materials typically reach
4.2 V), such as the 3D oxide-structured 5 V spinel. However, achieving a stable electrolyte
for sustained cycling poses a significant challenge. An alternative is to increase the storage
capacity of the battery in terms of weight or volume, which can be achieved by increasing
the faradic capacity of the electrodes (mAh/g).

Despite ongoing research into lithium-metal batteries (particularly solid-state batteries)
and post-lithium technologies, it is evident that lithium-metal batteries (LMBs), particularly
solid-state batteries (SSBs), represent a highly promising technology capable of significantly
enhancing energy density.

Lithium-sulfur batteries (lower environmental impact, better depth of discharge) and
sodium-ion batteries are serious alternatives to lithium-ion batteries. Metal-air batteries
(such as lithium-air batteries) promise theoretically specific energy comparable to gasoline.



Energies 2023, 16, 7530 13 of 29

Thus, some technological challenges are yet to be overcome, such as insufficient cycle life.
Figure 6 shows the specific energy/energy density of the mentioned battery technologies:

Table 2. Prediction of the evolution of battery technology [89]—adapted.

Battery Generation Technology/Electrode Active
Materials Cell Chemistry/Type

Implementation
Date/Forecast Market

Deployment

Gen 1
Cathode: NFP, NCA, LCO

Lithium-Ion

1991
Anode: Carbone/Graphite

Gen 2a
Cathode: NMC111, LMO

1994
Anode: Carbone/Graphite

Gen 2b
Cathode: NMC532, NMC622

2005
Anode: Carbone/Graphite

Gen 3a
Cathode: NMC622, NMC 811

2020
Anode: Graphite + 5/10% Si

Gen 3b

Cathode: High Energy NMC, High
Voltage Spinel—5 V Optimized Lithium-Ion 2025

Anode: Silicon/Carbon

Gen 4a

Cathode: NMC

Solid State Lithium-Ion 2025Anode: Silicon/Carbon

Solid Electrolyte

Gen 4b

Cathode: NMC

Solid State Lithium-Metal >2025Anode: Lithium metal

Solid Electrolyte

Gen 4c

Cathode: High Energy NMC, High
Voltage Spinel

Advanced Solid State 2030Anode: Lithium metal

Solid Electrolyte

Gen 5

LiO2 Li-Air/Metal-Air Metal-Air

>2030Li-Sulphur LiS

New ion-based systems (Na, Mg, Zn
or Al) New ion-based insertion chemistriesEnergies 2023, 16, x FOR PEER REVIEW 14 of 30 
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2.4.2. Generation 4

Liquid electrolytes of LIBs consist of a lithium salt dissolved in a combination of
several organic solvents. This configuration may induce serious safety hazards due to the
electrolyte’s toxicity, leakage, and flammability [90]. The advantages of solid-state batteries
in comparison to liquid electrolyte cells are quite numerous. We could enumerate higher
energy density, enhanced safety, absence of liquid electrolyte, lower manufacturing cost,
and excellent shelf life. The passage from a Si/C anode (Gen. 4a) to a lithium metal anode
(Gen. 4b and 4c) could improve the specific energy from 400+ Wh/kg, 800+ Wh/L to
500+ Wh/kg, 1000+ Wh/L [91]. Perpetual efforts to replace these types of electrolytes
with solid-state batteries are facing challenges such as power limitation due to poor ionic
conductivity, high interfacial resistance, poor interface contacts, chemical instabilities at
interfaces, and surely the need to update manufacturing processes.

Li-metal technology combines lithium metal with the negative electrode, insertion
materials with the positive electrode, and a solid electrolyte (such as extruded polyethylene
oxide, PEO, [92]). The primary advantage of lithium metal lies in its higher energy density
compared to the graphite used in lithium-ion batteries, with 3860 mAh/g vs. 372 mAh/g,
respectively.

However, these batteries have a limited operating temperature in order to assure
sufficient ionic conductivity. The PEO electrolyte may be unstable at voltages higher than
4 V, which restricts its use to lithium iron phosphate (LFP) cathodes. When combined
with a graphite anode, the LFMP (lithium-iron-manganese-phosphate) battery cell can be
charged up to 4.25 V. This allows for high power capability while also enhancing thermal
stability and safety. Additionally, the LFMP battery exhibits excellent cyclability and storage
performance [93,94].

The French manufacturer Blue Solutions, a subsidiary of the Bolloré Group, utilizes
lithium-metal-polymer (LMP) technology, which employs a dry polymer electrolyte and a
negative lithium electrode. This battery functions effectively at temperatures exceeding
60 ◦C, requiring battery heating during extended stops. Due to these characteristics, Blue
Solutions promotes this technology for buses and stationary storage applications, which
are better suited to managing thermal considerations (Figure 7).
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Several solutions were proposed by using additives to improve the solid electrolyte
interphase (e.g., vinylene carbonate, and methyl cinnamate) [96], or some flame-retardant
additives (e.g., trifluoropropylene carbonate, hexamethoxycyclotriphosphazene, trimethyl
phosphate, triethyl phosphate) [97].

Researchers are developing new solid-state electrolytes with high ionic conductiv-
ity, good electrochemical performances, and high thermal stability. The low resistance
electrolyte/electrode interface is a critical issue for the next generation of SSBs.

As noted, solid-state electrolytes could be made from the following:

• inorganic materials such as the sulfide-based inorganic electrolytes, β-Alumina elec-
trolytes, and NASICON electrolytes [97,98],

• organic polymer electrolytes, gel polymer electrolytes, and plastic crystal electrolytes [99],
or

• a combination of both inorganic and organic (hybrid) solid-state electrolytes [100].
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Research is being conducted on all these electrolytes. Performance issues, interfacial
stability, and mechanical constraints are the main challenges.

2.4.3. Generation 5

a. Metal-Air Battery

The metal-air battery utilizes the electrochemical principle that involves a metal
negative electrode (Zn, Al, Li, Mg, Ca, etc.) and an oxygen-reducing cathode made of
mesoporous carbon. Metal-air batteries have a high amount of energy stored in relation to
their weight. Besides the lithium-air type, with a nominal voltage of 2.91 V, the metal-air
batteries could include zinc-air, aluminum-air, magnesium-air, and calcium-air. While
lithium-air batteries have a specific energy of 13.2 kW/kg (similar to gasoline), aluminum-
air batteries tend to have a more stable performance. Figure 8 shows the theoretical specific
energy of metal-air batteries. Researchers are trying to improve the short lifespan and high
internal resistance within the battery, which are major drawbacks due to the low specific
power and carbonation of alkaline electrolytes.
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Figure 8. Theoretical specific energy of metal-air batteries [101].

Several disadvantages are identified, such as the dendrite formation and corrosion
of the negative electrode, the operation of the positive electrode ideally in an aqueous
environment, and the precipitation of the oxidized products in the positive electrode, which
alters the reversibility of the system.

b. Lithium Sulfur Battery

Lithium-sulfur batteries (LiSBs) use lithium metal as an anode, sulfur composite as
a cathode, and organic liquid as an electrolyte. They exhibit high theoretical gravimetric
capacity (1675 mAh·g−1) and high theoretical specific energy (2600 Wh·kg−1) [102,103].
Furthermore, the low cost, high abundance of sulfur, and absence of critical materials make
LiS batteries a promising option for future energy storage applications. This type of battery
has less environmental impact, as well as sulfur may be sourced from recycled materials.
The nominal voltage of an LiSB cell is 2.1 V. The battery has the potential to have a deeper
depth of discharge than the LIB, with the LiSB reaching 100% compared to LIB’s 80%.
Another advantage of the LiSB is its long lifespan estimated at 10 years [104]. It is estimated
that LiSBs could be ready to enter the market with a density energy of 500 Wh/kg [105].
By then, solutions should have been found for the problems of limited cycle life, poor
electrode conductivity, high volumetric expansion during charging and discharging cycles,
corrosion of the negative electrode, lithium dendrites formation, and poor stability at higher
temperatures [106]. The use of a sulfur-based electrode could lead to the emission of specific
toxic gases (e.g., H2S, SO2, COS, CS2) in the event of thermal runaway [107]. A reliable
battery management system is highly advised in order to optimize the battery’s operation.
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In addition to sulfur’s low conductivity and volume changes during cycling, the
LiS suffers from the shuttle effect, which involves the undesired migration of lithium
polysulfides between the cathode and anode. This phenomenon reduces the capacity,
energy efficiency, and shortens the cycle life of the battery. To address these challenges, the
authors in [86] propose four strategies: the design of carbon/sulfur composite cathodes
for the next-generation sulfur cathode, the introduction of kinetic promoters, the design of
specific ion-solvent complexes in the electrolyte, and the protection of the lithium metal
anode through electrolyte regulation, artificial coatings, and pretreatment methods. The
encapsulation of sulfur cathodes in carbon host materials is also discussed in [108]. The LiS
is considered by [106] among the most commercially mature next generation batteries. The
authors have developed an extensive research roadmap that analyzes primary challenges
for these types of batteries and proposed strategic solutions aimed at their mitigation. A set
of the near-future research directions for both the liquid and solid-state LSBs are proposed
in [109]. Authors highlighted that solid LSBs are expected to replace the liquid current
LSBs in the coming decade.

c. Batteries beyond Lithium

The goal is to eventually replace lithium battery technologies with more affordable and
sustainable light metals such as sodium. However, the significant challenge is developing
durable and stable electrodes with high energy density and fast charge/discharge rates.

Among various chemistries (sodium, magnesium, zinc based), the sodium-ion battery
(SIB) [110] has gained attention due to its low cost, the abundance of sodium on earth, and
its similar chemistry to LIBs. However, it has a lower energy density of 90 Wh·kg−1 [111].
The Chinese manufacturer CATL aims to reach 200 Wh·kg−1 [112].

The operating principle of sodium-ion batteries (NIBs) is similar to that of Li-ion
batteries. Sodium resources are inexpensive and widespread; it is considered the 4th most
prevalent element on the planet. NIBs suffer from a fast decrease in capacity and a lower
cycle life (relatively to LiBs) due to the difficult insertion of sodium ions into the anode and
cathode [113].

The state of the art of sodium-based batteries consists of high temperature operating
batteries, commercialized since 2022. It consists of a liquid and an ion-conducting ceramic
solid electrolyte. The aim of raising the temperature is to keep the sodium-based electrode in
a liquid state and enhance the conductivity of the solid electrolyte. Sodium-Nickel-Chloride
NaCl (resp. Sodium-Sulfur NaS) operates between 270 ◦C and 350 ◦C (resp. 300 ◦C and
340 ◦C) and has an energy density of 120 Wh/kg (resp. 220 Wh/kg) with a nominal
voltage of 2.58 V (resp. 2 V). Even with the high lifecycle (4500 cycles) and long calendar
life (over 15 years), these batteries still have some drawbacks, such as the need for high
temperatures, thermal losses, and low efficiency. A new technology for room temperature
sodium-ion batteries is under development, with expectations for commercialization of
high-density sodium-ion batteries at room temperature after 2025. The commercialization
of all solid-state sodium-ion room temperature batteries is projected to occur after 2030.
The anticipated energy density of this technology is expected to range from 380 Wh/kg to
700 Wh/kg, with an estimated calendar life exceeding 30 years. Additionally, it is expected
to achieve a full cycle efficiency ranging between 6000 and 12,000 cycles.

The magnesium-ion battery (MIB) presents high specific energy and specific power [114],
low cost, superior safety, and environmental friendliness. However, the technology is yet
to be approved.

d. Solid-State Li-Ion Micro-Batteries

While the market for micro-batteries [115] may be comparatively smaller than that
dedicated to electromobility and stationary power-grid applications, the importance of
lithium-ion micro-battery technology span a vast array of applications. Anticipated growth
forecasts indicate an ascent from a 2023 valuation of 0.5 billion USD to reach 1.3 billion
USD by the year 2028 [116].
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Multiple sectors are engaged, encompassing healthcare devices, environmental moni-
toring, wearable personal electronics, IoT (Internet of Things) with smart and connected
miniaturized sensors [117], as well as microelectronics (in smart packaging, smart cards,
etc.), and radiofrequency identification systems, thus requiring high flexibility and ultra-
thin design. Another sector also emerges, which falls within the domain of micro-drones
and/or micro-robots known as insectoids [118], Figure 9. Nonetheless, the challenge of de-
signing and manufacturing efficient micro-storage devices to ensure the energy autonomy
of these systems persists. In facts, micro-batteries continue to face challenges related to
their relatively sizable physical dimensions and suboptimal electrochemical performance
per unit area due to the loose electrode structure.
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Three-dimensional (3D) rechargeable microbatteries, with partially lithiated silicon at
the anode, were developed in [120], having a 3 mm × 3 mm footprint, an areal capacity of
1.8 mAh/cm2 (5.2 mWh/cm2)), a current density of 0.66 mA/cm2, and a potential lifespan
of 200 cycles at 0.5 mAh/cm2 (1.6 mWh/cm2).

Authors in [121] developed a compact aqueous K-ion micro-battery in order to realize
a small footprint and high areal capacity, ensuring an areal capacity of 5.1 mAh/cm2 and
an energy density of 4.78 mWh/cm2.

Table 3 shows examples of solid-state Li-ion micro-batteries. The EFL700A39, for
instance, is a rechargeable lithium battery with a thin film design. It incorporates a LiCoO2
cathode, a LiPON ceramic electrolyte, and a lithium anode. In contrast, the CR1216 is a
non-rechargeable coin cell battery using manganese dioxide as its cathode material.

Table 3. Examples of solid-state Li-ion micro-batteries.

Manufacturer ITEN ST Micro MURATA

Product number ITX121005B EFL700A39 CR1216

Type thin-film
solid-state

thin-film
solid-state coin cell

Footprint 3.2 mm × 2.5 mm 25.7 × 25.7 mm 12.5 mm ∅

Thickness (µm) 600 mm 220 mm 1600 mm

Capacity (µAh) 50 µAh 700 µAh 30,000 µAh

Voltage (V) 2.5 V 3.9 V 3.0V

Operating temperature range −40 ◦C/+85 ◦C −20 ◦C to 60 ◦C −30 ◦C to 70 ◦C

Reference [122] [123] [124]

3. Analyses and Discussions on Future Batteries Challenges
3.1. Modeling and Components

By gaining a deeper understanding of the intricate and varied internal physical and
chemical reactions that occur within a battery, manufacturers can make targeted improve-
ments to materials and manufacturing processes. This will allow them to increase the
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capacity retention of the battery over its lifetime and reduce the rate of aging and degrada-
tion. To accurately model the interfacial structures between the electrolyte and the electrode
active particles and metastable material states in a battery, it is necessary to use realistic com-
putational resources that can model the battery at different levels of granularity (stochastic,
mechanistic, or machine learning). Figure 10 illustrates various modeling methods for
generating electrode mesostructures. The stochastic approach utilizes experimental particle
size distributions, formulation, and porosity as inputs. The mechanistic model predicts
electrode mesostructures based on manufacturing process parameters. In addition, the ma-
chine learning approach is employed to forecast the impact of manufacturing parameters
on both electrode mesostructure and performance properties.
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Figure 10. Various modeling methods of the battery [125].

3.2. Battery Degradation

Over time and with use, lithium-ion batteries experience aging, which manifests
as capacity fade, or a loss of lithium inventory and active materials and degradation of
the electrolyte.

The main factors contributing to the aging of lithium-ion batteries can be summarized
as follows: the development of a solid electrolyte interphase (SEI) layer on the anode,
leading to a depletion of the lithium content; the infiltration of solvent molecules into
the electrode material, resulting in structural damage and obstructing further lithium
intercalation; electrolyte decomposition; alterations in the electrode material’s structure
during charge and discharge cycles; and lithium plating due to elevated temperatures,
overcharging, or high current during charging or discharging (see Figure 11).
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This aging is caused by the internal degradation of electrochemical processes due to
reactions at the interfaces. The loss of lithium is caused by the continuous growth of a solid
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electrolyte interphase (SEI) layer or dendrites (fractal-like structures of metallic lithium) on
the anode surface. These factors are influenced by temperature, usage patterns, and the
construction of the battery pack.

3.3. Lithium-Ion Battery Manufacturing

The LIB production process involves the preparation of electrodes, the assembling
of cells, and the activation of battery electrochemistry. Electrodes preparation involves
the preparation of a slurry mixture to be coated on a current collector (aluminum for
cathode and copper for the anode). The slurry is composed of active materials, solvent,
conductive additive, and binder. A first drying process is then activated in order to
evaporate and recover the solvent, considered as toxic for the cathode part. A calendaring
process allows the physical properties adjustment of the electrodes (bonding, conductivity,
density, porosity, etc.). After slitting, the electrodes are taken to a vacuum oven to dry out,
and then transferred to a dry room for cell production. Once the enclosure is filled with
electrolytes and sealed, the electrochemistry activation of the battery (formation and aging)
can begin, a long energy-consuming process. Manufacturing contributes about 20% of the
cost of LIBs [127].

The different steps’ impact on the manufacturing process of LIBs, such as cost, energy
consumption, and throughput, are explained in [128]. The model was based on a 67-Ah
LiNi0.6Mn0.2-Co0.2O2 (NMC622)/graphite cell. The authors concluded that the formation
and aging process is the costliest, followed by the coating and drying process. In addition,
formation and aging contribute the most to the production time followed by the vacuum
drying process. In terms of energy consumption, electrode drying/solvent recovery and
dry room processes are the most energy consuming. The same conclusions, concerning
the energy consumption parts, are highlighted in reference [129,130]. In [129], the case
study was taken for a 2 GWh producing prismatic NMC333 cells. A manufacturing energy
analysis of a 24-kWh battery pack with 192 prismatic LMO-graphite LIB packs was reported
in [130]. Data collection and modeling were performed at each manufacturing process from
real industrial processes.

The near future for battery production will be dominated by optimized LIBs and surely
solid-state battery manufacturing. Prospects on giga-scale manufacturing of solid-state
batteries are treated in [131]. The authors highlighted the state-of-the-art solid-state battery
manufacturing approaches and the importance of utilizing conventional battery manufac-
turing approaches for achieving price parity in the near term. Controlled microstructure, in-
terfaces, and thickness are essential prerequisites for achieving extended lifetimes, efficient
processing, the integration of high-energy-dense anodes, cost-effectiveness, and scalability.

The authors in [132] presented the process parameters and requirements, quality
features, challenges, and technology alternatives for each manufacturing steps for an all-
solid-state battery. Two alternatives of electrode and electrolyte production were taken
into consideration. The first was presented as a continuous extrusion process (suitable for
sulfide-based all-solid-state batteries); the second presented a physical vapor deposition
(PVD) process. In each step, the rate transferability of lithium-ion battery cell manufacturing
expertise is noted.

Battery cell manufacturing should focus on reducing energy, costs, and scrap output
production. In order to minimize environmental impact, it should also comply with legal
frameworks and regulations in terms of air and water quality, CO2 emissions, chemical
substance, and waste management [133].

Implementing intelligent control processes could improve the efficiency of plants.
Sustainability, customization, high quality product, short design and delivery time, and
smart manufacturing lead to adapting the Industry 4.0 approach [125,134]. Throughout
the different manufacturing processes, this approach allows a real-time WIP (Work In
Progress) control, simulation, and optimization, production traceability (RFID embedded,
field communication, QR code laser printing), and inter-machines communication. It
includes several digital technologies such as the Internet of Things (IoT), cloud computing
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and analytics, artificial intelligence, and the deployment of Automatic Guided Vehicles
(AGVs) and Digital Twins (DTs) as a part of the Industry 4.0 concept. Figure 12 shows the
different stages of manufacturing a cylindrical lithium-ion cell illustrated on the website of
the French battery manufacturer, VERKOR.

The concept of Industry 4.0 consists of a digital representation of the manufacturing
processes facilitating the digital transformation of the battery manufacturing plants, with
the aim to achieve the required targets in reducing costs and promoting sustainability. DT
would help the future transfer of LIBs to solid-state battery manufacturing requiring flexible
adaptation of the production lines. Scrap material from production can be a significant
source for recycling as 5% to 10% of the production capacity ends up as production scrap.
Production scrap will be the main feed for LIB recycling plants [135].
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3.4. Self-Healing

Self-healing is a new area of research in which the goal is to restore batteries to their
original condition and functionality by reversing unwanted chemical changes that occur
within the cell during use. The focus of self-healing is to restore the conductivity of
the damaged electrodes, regulate the transport of ions, and minimize the effects of side
reactions [137,138].

3.5. Battery Passport

The Global Battery Alliance of the European Commission has decided to implement
a Battery Identity Global Passport (BIGP) by 1 January 2026, with the aim of establishing
traceability throughout the entire lifecycle of batteries, from production to recycling or
subsequent treatment within a circular economic model [139]. It will also ensure the compli-
ance of the battery with the approved regulations. The Battery Passport is a sort of a digital
asset accompanying the battery throughout its life in order to improve interoperability
and allow the sharing and logging of the battery specific information (chemistry, capacity,
origin, etc.), and history and current states key technical indicators. This will be helpful to
reuse or repurpose batteries, or to direct the battery to the appropriate recycling process,
all as part of the circular economy process [140].
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3.6. Mining of Critical Materials for Battery Applications

The primary active materials used in LiBs are lithium, cobalt, nickel, and manganese.
However, it is worth noting that the extraction methods for lithium and cobalt demand
significant energy and water inputs, resulting in air and water pollution, land degradation,
and the potential for groundwater contamination [141]. Responsible and sustainable
sourcing of battery raw materials is assessed in the technical report in [142]. In fact, in
order to extract one metric ton of lithium, a staggering 2.2 million liters of water are
required [143]. Argentina, Bolivia, and Chile, collectively known as the ‘Lithium Triangle’,
as well as Australia, possess extensive lithium reserves. In contrast, cobalt reserves are
primarily concentrated in the Democratic Republic of Congo. The cost of cobalt, along with
the harsh and hazardous conditions associated with its mining, has prompted a growing
interest in cobalt-free battery technologies. The principal nickel reserves can be found
in Indonesia, Australia, Brazil, Russia, and Philippines, while the primary manganese
reserves are located in South Africa, Ukraine, Brazil, and Australia [144]. Although lithium,
nickel, and manganese are relatively abundant in nature, their availability is constrained,
their access is limited, and geopolitical factors also exert significant influence over the
supply chain. From the anode side, graphite is considered a critical element for LiBs, with
most flake graphite ores being primarily extracted from mines in China [145]. In the study
referenced in [146], a classification of 17 minerals critical for the green energy transition was
conducted. Notably, cobalt, graphite, and lithium, crucial minerals for batteries, exhibited
the lowest availability index values. Nickel also registered low indices. The study foresaw
demand and supply scenarios for these minerals in accordance with a 2050 projection,
highlighting a significant degree of uncertainty. Integration of circular economy is a most
for attaining sustainability sourcing as discussed in the next section.

Raw materials, in Figure 13, should meet the expectations of the market and its needs
by developing new technological routes to optimize and foster the circularity of the sector.
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3.7. Second Life—Remaining Useful Life—Recycling

According to a recent study conducted by IDTechEx, it is estimated that over 6 million
battery packs will reach the end of their useful life (EUL) by 2030 [148]. By 2030, the
supply of second-life batteries for stationary applications has the potential to surpass
200 GWh [149].

The concept of giving batteries a second life, or repurposing them for additional use,
is a relatively new area of research. Once the state of health (SoH) of a battery attains 80%,
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it might integrate the 4R process (Reuse, Repair, Remanufacture, and Recycle). This raises
the needs to develop accurate SoH estimation and life prediction techniques [150,151].

These “second-life” batteries can be utilized in a variety of applications, including
renewable energy and smart grid systems, charging infrastructure, and low power e-
mobility system [152,153].

A regulatory structure, appropriate standards, industry investments, and a support-
ive legal environment are necessary for creating a circular economy that is sustainable
and efficient.

The knowledge of the battery state according to several measurements applied to
battery cells is quite important. Smart-sensing technology, [154,155], will help users predict
the performance of the battery and prevent any unwanted behavior or, at least, be prepared
for this type of situation.

Consequently, battery state estimation, management system, and estimation of the
remaining useful life (RUL) have become a topic of interest for researchers. Considering
this, appropriate battery data acquisition and proper information on available battery data
sets may be required. This review paper is mainly focused on three parts. The first one
is battery data acquisitions with commercially and freely available Li-ion battery data
set information. The second is the estimation of the states of battery with the battery
management system. And the third is the battery remaining useful life (RUL) estimation.

Regarding recycling, there are set targets for material recovery of lithium. By the
year 2027, the goal is to achieve a 50% recovery rate, which is expected to further increase
to 80% by 2031 [156,157]. The recovery of nickel, cobalt, and lithium will also be fully
commercially viable in future [158,159]. Nickel-based batteries have a long life and are very
reliable. Recycling efficiency should increase from the current 79% (active materials at 50%)
to 80–85% (active materials at 55–60%) by 2030 to reach a break-even business model [160].

4. Conclusions

This paper has concerned a review on new-generation batteries technologies with the
scope of trends and future directions. A review on new-generation batteries dealt with
an exhaustive and graduated approach. Beginning with an exploration of batteries before
lithium, the review then extensively covers contemporary lithium-ion battery technologies,
followed by an in-depth examination of both existing and promising future battery tech-
nologies. In particular, there is a focus on Generations 3, 4, and 5. The next part ends with a
section on analyses and discussions on future batteries challenges, covering in particular
modeling and battery degradation issues, manufacturing challenges, and the problematics
of second life, remaining useful life, and recycling.

The primary objective and contribution of the review paper lie in the widespread
and exhaustive research carried on, involving extensive bibliographical in-depth analyses.
The paper synthesizes the major trends and future directions in battery materials and
technology, ensuring a comprehensive understanding of the current state of the field and
its implications.

In summary, the paper provided an overview of the evolving landscape of new-
generation battery technologies, with a particular focus on advancements in material
research. The adopted analysis emphasizes the increasing significance of material innova-
tion as a key factor influencing the development of next-generation batteries. As the field
of battery technology continues to progress, it is evident that future research directions
should emphasize and explore novel materials, their synthesis methods, and their impact
on enhancing battery performance and sustainability. In fact, cathodes have a lower storage
capacity for lithium than anodes, and to address this limitation, researchers are exploring
new materials. The original LIB cathodes were based on cobalt, and whilst it is still used,
there are notable industry efforts to lower the amount of cobalt in cathode materials. This is
driven by its toxicity, but also due to the risky supply chains of cobalt, associated with the
geo-political instability of its provenance. As researchers continue to develop cobalt-free
materials, there will be a range of new higher voltage chemistries in this domain. These are
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mainly based on higher-nickel-content materials and related chemistries termed “lithium
excess”. These cathodes will have an inherent higher voltage and capacities but will require
stabilization, as they are sensitive to moisture and prone to degradation.

Electrolytes improvements to the thermal and electrochemical stability of conventional
organic solvent electrolytes are still required if safety is to be maximized. Electrolyte
additives with higher voltage stability will enable the uptake of higher voltage cathodes
for use with organic electrolytes.

Moving forward, solid-state systems are the Holy Grail, and will continue to be
researched intensively to achieve the required ionic conductivity. Research on solid-state
batteries is hindered by high interfacial resistance caused by poor wetting between the
lithium and solid electrolyte. As discussed, one potential solution is the use of polymer-
based solid electrolytes, which have been shown to have better lithium wetting than
ceramic-based electrolytes, which are typically preferred for their higher ionic conductivity.
Hybrid polymer/ceramic composites, which are adaptable to large-scale manufacturing,
may also be a viable option. Another challenge in the development of solid-state batteries
is the formation of dendrites, which can inhibit the growth and propagation of dense
microstructures in high-power applications.

For separators, protective ceramic coatings are increasingly being used to add robust-
ness and mechanical integrity. This increases the safety of the batteries by mitigating short
circuits through mechanical damage.

To advance and improve current collectors, scientists continue to research properties
such as their thickness, hardness, composition, surface coating layers, and their basic
structure. Improvements are desired through increasing their mechanical strength, chemical
and electrochemical stability, and adhesion quality with the electrode coating.

Several key limitations to this study should be noted:

- Technological limitations: The review is influenced by the current technological land-
scape in battery materials, including constraints related to the reliability, efficiency,
and autonomy of battery systems.

- Societal and policy limitations: Societal acceptability, economic factors, and political
decisions, such as the governmental decisions to implement gigafactories, play a
significant role in shaping the future of batteries and their adoption.

- Cost, material, and environmental limitations: The study is also bounded by the
limitations associated with the cost of materials, considerations related to the circular
economy, and the environmental footprint of battery technologies.

On the other hand, the integration of the Internet of Things (IoT), cloud computing,
Application Programming Interfaces (APIs), open standards, artificial intelligence (AI),
and digital reality technologies are rapidly transitioning from abstract concepts to tangi-
ble realities that cannot be overlooked in electromobility and smart-grid domains. The
intertwining relationship between energy and data is becoming increasingly inseparable,
with energy and data acting as mutualistic twins, inherently interconnected. Batteries must
efficiently store energy, while power electronics assume a vital role in ensuring the efficient
conversion of energy. Embracing transformative technologies has the power to unlock the
full potential of energy as a shared resource, shaping a future where energy is accessible,
adaptable, and consistently integrated into the overall ecosystem.
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