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Abstract

We reexamine a family of distributions introduced within the framework of

random utility models by David Strauss. This family generates ranking prob-

abilities of the exploded logit model and, de facto, the choice probabilities

of the multinomial logit model. We explore the necessary and sufficient con-

ditions for its validity within the copula theory. By specifying the minimal

assumptions required for the support of the marginal utility distributions, we

clarify and reinforce the fundamental structure of the model, proving that it

relies on strict archimedean copulas. Additionally, we provide a new math-

ematical proof by induction on the number of alternatives confirming that

these utility distributions indeed generate the exploded logit model.

Keywords: Archimedean copulas, Choice probabilities, Copula theory,

Exploded logit model, Multinomial logit model, Ranking probabilities,

Random utility models

1. Introduction

In a seminal publication more than four decades ago, Strauss (1979)

presented groundbreaking findings. One of his key contributions was the

expansion of the multivariate distribution of utilities, moving beyond inde-
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pendent double-exponentials (or Gumbels) to generate choice probabilities

that are consistent with the multinomial logit model. He introduced a sig-

nificant generalization, referred to in this paper as the Strauss model, which

incorporates correlated double-exponentials and extends to a broader class

of distributions. This paper will examine and define this generalization in

detail.

Although the Strauss model introduces a specific type of correlation

among the alternatives and perturbs the original double-exponential margi-

nals, the choice probabilities remain invariant and align with the logit for-

mula, which Strauss refers to as the “choice axiom”, remaining faithful to

the terminology of the foundational work by Luce (1959).

At a more detailed level of choice, the ranking probabilities—i.e., the

probabilities associated with all possible rankings or permutations of the

available alternatives—follow the exploded logit model, which Strauss desig-

nates as “complete decomposition”. It is crucial to note that if the ranking

probabilities are consistent with the exploded logit model, then the choice

probabilities must necessarily follow the multinomial logit model. However,

whether the converse is true—are there random utility models for which

choice probabilities are consistent with the multinomial logit model, but

ranking probabilities do not follow the exploded logit model?—remains an

unresolved question.1

In this paper, we revisit the Strauss model by presenting minimal as-

sumptions regarding the support of the marginal distributions, followed by a

discussion of the necessary and sufficient conditions for the model’s validity,

drawing upon contemporary copula theory (for an authoritative reference,

see Nelsen, 2006). Although Strauss did not employ copulas in his work,

we prove that his model aligns with archimedean copulas that are applied

1Initially, we became interested in the Strauss model while seeking an answer to this
question. In examining this model closely, we decided to write this paper to detail it
further and hope to address this open question in the future.
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to specific marginals. We draw upon the existing literature on archimedean

copulas to establish the conditions for the model’s validity. This methodol-

ogy capitalizes on the advanced theoretical constructs offered by archimedean

copulas, thus providing rigor and precision to our findings by relying on well-

established results. Consequently, we circumvent the redundancy of complex

proofs, focusing on elucidating the essential conditions while ensuring a ro-

bust and precise understanding of the model.

It is noteworthy that copulas, particularly archimedean copulas, have

been studied within the discrete choice models framework. Schwiebert (2016)

proves that modeling the multivariate distribution of utilities with archime-

dean copulas aids the computation of integrals necessary for determining

choice probabilities. This approach yields closed-form expressions for the

partial derivatives of the cumulative distribution functions, which act as in-

tegrands within these computations. Consequently, the integration of prob-

abilities is simplified through the use of techniques including Gauss-Hermite

quadrature or Monte Carlo methods. It is not our objective to furnish an

exhaustive survey of the literature on the application of copulas to random

utility models; rather, our emphasis lies exclusively on utilizing copulas to de-

fine the boundaries of the family of distributions encompassed by the Strauss

model.

It should be noted that Beggs et al. (1981) provided an elegant proof,

although two years after Strauss (1979), establishing that the multinomial

logit model, derived from a random utility model with independent double-

exponentials, results in the exploded logit model. However, Strauss showed

that the exploded logit model can be achieved within a much broader frame-

work that includes a larger family of distributions. By revisiting the Strauss

model, we highlight the broader scope of his results, which include many

models that conform to the exploded logit model beyond the specific case of

independent double-exponentials.

The subsequent sections of this paper are structured as follows. Section 2
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elaborates on the formulation of the Strauss model alongside the underlying

assumptions. Section 3 provides a representation of the Strauss model via

copulas, elucidating that this representation utilizes archimedean copulas.

Section 4 details examples of distributions that conform to the framework of

the Strauss model. In Section 5, we explicate the conformity of the ranking

probabilities within the Strauss model to the exploded logit model, providing

a new proof of this claim. Lastly, Section 6 summarizes the findings of the

paper and suggests avenues for future research.

2. Strauss model: formulation and assumptions

Consider a random utility model where an individual’s choices are prob-

abilistically described by a vector of random utilities U = (U1, . . . , Un), with

each Ui representing the utility of alternative i among n possible alternatives

(i ranging from 1 to n and n ≥ 2). Our analysis focuses on the scenario where

this vector follows a distribution introduced by Strauss (1979), which char-

acterizes the Strauss model. The cumulative distribution function (CDF) of

the utility vector U is given by:

FU (x1, . . . , xn) = ψ

(
n∑

i=1

e
vi−xi

σ

)
, (1)

where xi is a realization of Ui, belonging to (−∞,+∞), and ψ is a function

whose properties will be discussed in detail later.

We chose to present the arguments in the form (vi − xi)/σ because this

convention is widely used in the representation of families of probability dis-

tributions relative to a standardized reference distribution. Here, vi denotes

the deterministic component of the utility of alternative i, which serves as

a location parameter, while σ is a strictly positive scale parameter.2 This

2Although it is possible to generalize the model by introducing distinct scale parameters
for each alternative, such a generalization would compromise the exploded logit model.
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formulation clarifies how the utilities depend on these parameters. Despite a

slight modification from the original formulation, this representation remains

consistent with the Strauss model and preserves its foundational structure.

In order to streamline our notation and facilitate subsequent computa-

tions, we reformulate the utility vector U into an alternative vector T =

(T1, . . . , Tn), which is conceptualized as a vector of disutilities, via the trans-

formation:

T = exp

(
−U

σ

)
.

Conversely, the original utilities can be restored using the relationship:

U = −σ lnT.

Therefore, the survival function (SF) corresponding to the transformed

vector T can be written in a slightly more compact form than the CDF of

U as:

F̄T(t1, · · · , tn) = ψ

(
n∑

i=1

ωiti

)
, (2)

where ti ∈ [0,+∞). Here, ωi ≡ evi/σ denotes a transformed location param-

eter for each alternative i. The vector T is parameterized by ω1, . . . , ωn, and

the scale parameter σ. Thus, SF is expressed in terms of ω and σ. This

formulation will be referred to as the transformed Strauss model, and Eq. (2)

will be used to define the SF of T.

Strauss (1979) outlined certain necessary conditions to establish the va-

lidity of the CDF defined by Eq. (1). However, these conditions are not

exhaustive. Although additional conditions were introduced incrementally

throughout his derivations, they were not explicitly stated at the outset of

his paper. In this analysis, we will present the necessary and sufficient con-

ditions to validate the survival function (SF) T, as defined by Eq. (2), and,

consequently, to validate the utility distribution function U, as defined by

Eq. (1).
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Validating a multivariate CDF or SF is a complex task. It requires satisfy-

ing rectangle inequalities, which involve intricate alternating sums to ensure

that the probabilities computed for hyperrectangles are well-defined and non-

negative (for a detailed discussion of these conditions, the reader is referred

to Joe, 1997, pp. 11-12).

The distribution of the utility vector within the Strauss model U, or

conversely, the transformed Strauss model via the disutility vector T, neces-

sitates the fulfilment of specific conditions to guarantee the validity of the as-

sociated multivariate CDF or SF. To guarantee this, it is imperative that the

function ψ satisfies the specified conditions, enabling the multivariate func-

tions defined through ψ to meet the requisite properties in hyperrectangles.

These properties, which encompass monotonicity, continuity, boundedness,

and non-negativity in hyperrectangles, are essential to affirm the validity of

a multivariate CDF or SF.

As an initial phase in the examination of these models, it is imperative

to determine the marginal distributions of the variables Ui and Ti. The

derivation of these distributions is achievable by examining the asymptotic

behavior of the multivariate distributions as the realizations of the other

variables approach infinity.

The marginal CDF of Ui is derived considering the asymptotic limit of the

multivariate CDF FU, as given in Eq. (1), when the realizations of variables

other than xi approach infinity. Consequently, the marginal CDF for Ui is:

FUi
(xi) = ψ

(
e

vi−xi
σ

)
, i = 1, . . . , n. (3)

In parallel, the marginal SF for Ti, which is the transform of Ui with

CDF given in Eq. (3), is obtained by taking the asymptotic limit of the

multivariate SF F̄T, as indicated in Eq. (2), when the realizations other

than ti tend to infinity. The marginal SF for Ti, which is the counterpart of
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the CDF given in Eq. (3), is then:

F̄Ti
(ti) = ψ (ωiti) , i = 1, . . . , n. (4)

The aforementioned equation proves that ψ acts as a univariate SF within

the interval [0,∞). To facilitate a more straightforward specification of

marginal distributions, ψ is selected with an unbounded support that en-

compasses zero, which extends throughout the positive half-line. This choice

mitigates the analytical complications associated with more constrained sup-

ports. Consequently, by opting for this support, all Ti share the same sup-

port, [0,∞), regardless of their location parameters. This simplifies the anal-

ysis and precludes potential complications that may arise from alternative

support types, such as corner difficulties. Moreover, this assumption implies

that, should we revert to the original utility Ui, its support would extend

across the entire real line.3 These initial observations culminate in the ensu-

ing assumption.

Assumption 1. The function ψ satisfies the following conditions:

• It is strictly decreasing and continuous over [0,∞).

• ψ(0) = 1 and ψ(+∞) ≡ limx→+∞ ψ(x) = 0.

In calculating the densities of the utility subvectors (or disutilities), the

successive derivatives of the function ψ are crucial. For example, to derive

the marginal density of the variable U1, the first derivative of ψ is needed.

3If ψ had a bounded support [a, b] with 0 < a < b <∞, the support of Ti would become
[a/ωi, b/ωi]. As ωi becomes small, the support of Ti extends to the right, which decreases
the probability that Ti will achieve the minimum and may even result in the complete
elimination of that alternative from consideration. To avoid this problem and ensure that
all alternatives have a non-zero probability of being selected, we chose an unbounded
support that includes zero, [0,∞). Although we could have chosen a support of the type
[0, b) with b finite, this choice would have introduced unnecessary complications, such as
corner difficulties, without adding a significant benefit to the analysis.
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This derivative must be strictly negative, as the support of ψ is chosen over

the interval [0,∞) to ensure that the probability density is strictly positive,

in accordance with Assumption 1.

To obtain the joint density of the pair (U1, U2), the second derivative

of ψ is used, and this pattern continues for higher-dimensional subvectors.

As more components are added to a subvector, the required order of the

derivative of ψ increases. Consequently, each subvector density corresponds

to a specific order of derivative of ψ. The signs of these successive derivatives

are essential to ensure that the marginal densities and subvector densities are

correctly defined and meet the necessary sign requirements.

Therefore, an additional assumption is needed to guarantee the model’s

validity. Specifically, the following assumption is made to ensure that the

marginal probability densities meet the required sign conditions.

Assumption 2. The function ψ is completely monotonic on the interval

[0,∞). In other terms, ψ is infinitely differentiable on [0,∞), and for every

integer k ≥ 0, its successive derivatives satisfy:

(−1)kψ(k)(y) ≥ 0, ∀y ∈ [0,∞). (5)

The complete monotonicity of ψ necessitates infinite differentiability. The

specified signs guarantee that the marginal probability densities observed

when selecting a particular number of utilities or disutilities fulfill the req-

uisite conditions, thus enabling the model to support an arbitrary number

of alternatives. In the subsequent section, we will employ copula theory to

illustrate that Assumptions 1 and 2 are both necessary and sufficient to es-

tablish the model’s validity, particularly in the context of complete supports

and accommodating an arbitrary number of alternatives. Although these

assumptions could be moderated for constrained numbers of alternatives, we

elect to retain these general conditions to preserve the model’s flexibility.

These assumptions are essential for ensuring the validity of the Strauss
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model and its transformed counterpart, and their sufficiency will be proved

through the application of copula theory, a rigorous and well-established

framework. Rather than redeveloping existing mathematical derivations, we

will utilize established results from copula theory to substantiate the suffi-

ciency of the proposed assumptions. The subsequent section will elucidate

the role of copula theory in confirming the sufficiency of our assumptions,

drawing upon the robust findings within this domain.

3. Representation by archimedean copulas

For the subsequent analysis, we choose to analyze the distribution of the

disutility vector T instead of the utility vector U, as it is more advantageous.

This preference enables a more rigorous and simplified representation of the

Strauss model via the employment of a copula-based methodology.

A pivotal theorem within the domain of copula theory, known as Sklar’s

theorem, asserts that any multivariate CDF can be formulated as a combi-

nation of its univariate marginal distributions and a copula. Conversely, a

copula when applied to univariate margins yields a multivariate CDF. By

employing a variant of this theorem adapted for SFs, as introduced by Mc-

Neil and Nešlehová (2009), the multivariate SF of T can be expressed as

follows:

F̄T(t1, . . . , tn) = C(F̄T1(t1), . . . , F̄Tn(tn)), (6)

where C is a copula, i.e., a multivariate CDF defined on [0, 1]n. This rep-

resentation is crucial for our analysis because it directly uses SFs, aligning

with the transformed Strauss model.

Lemma 1. The transformed Strauss model, whose survival function is given

by Eq. (2), in which the function ψ is involved, admits a Sklar representation

(see Eq. 6) through an archimedean copula, expressed as follows:

C(φ1, . . . , φn) = ψ

(
n∑

i=1

ψ−1(φi)

)
, (7)
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where ψ is the generator of the copula and ψ−1 is its inverse.

Proof. Let φi = F̄Ti
(ti) for i = 1, . . . , n, where F̄Ti

is the marginal survival

function of Ti, given by Eq. (4). We thus have:

φi = ψ(ωiti).

Applying the inverse function ψ−1 to both sides of this equation gives us:

ωiti = ψ−1(φi).

The multivariate survival function of the transformed Strauss model is given

by Eq. (2):

F̄T (t1, . . . , tn) = ψ

(
n∑

i=1

ωiti

)
.

Substituting ωiti with ψ
−1(φi), we obtain:

F̄T (t1, . . . , tn) = ψ

(
n∑

i=1

ψ−1(φi)

)
.

Thus, using the Sklar representation provided by Eq. (6), the associated

copula can be expressed as:

C(φ1, . . . , φn) = ψ

(
n∑

i=1

ψ−1(φi)

)
.

This proves that the model admits a representation through an archimedean

copula whose generator is ψ, thus concluding the proof.

The expression given by Eq. (7) corresponds to a strict multivariate

archimedean copula, as defined in the copula literature (see, e.g., Nelsen,
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2006), with ψ as the generator.4 By returning to the utility vector U of the

original Strauss model, the relationship between the survival function F̄T and

the CDF FU is given by:

FU(x1, . . . , xn) = F̄T(e
−x1/σ, · · · , e−xn/σ).

Similarly, the marginals of U are related to those of T by:

FUi
(xi) = F̄Ti

(e−xi/σ), i = 1, . . . , n.

Using the representation provided by Eq. (6), we can express FU(x1, . . . , xn)

in terms of the archimedean copula applied to the marginals. This yields the

Sklar representation for the CDF of U, according to the following formula:

FU(x1, . . . , xn) = C(FU1(x1), . . . , FUn(xn)), (8)

where C is exactly the same archimedean copula as identified in Eq. (7).5

We will now use this representation of the Strauss model from the copula

literature to establish the following result:

Theorem 1. Consider a model that satisfies the base assumption (Assump-

tion 1). The model is valid if and only if Assumption 2 is also satisfied.

Proof. We rely on Sklar’s representation of the CDF of U, given by Eq. (8).

As discussed earlier in this section, the marginals FUi
are valid under as-

sumption 1. However, for the archimedean copula C linking these marginals

4In general, as in Nelsen (2006), ψ−1 is often referred to as the generator and ψ its
inverse. We adopt the same definition as McNeil and Neslehova McNeil and Nešlehová
(2009), using ψ as the generator because it slightly simplifies the expressions in our context.

5The copula C remaining invariant after a monotone transformation is not specific to
this model. In Nelsen (2006), it is shown that when monotone transformations—though
not all identical—are applied to the marginals, the copula remains invariant, particularly
for the representation of multivariate CDFs with strictly increasing transformations. How-
ever, we have not identified a directly applicable result that would allow us to omit these
straightforward lines of proof in our specific context.
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to be valid as well, it is both necessary and sufficient for the generator func-

tion ψ to be completely monotone, according to Assumption 2 along with

its corresponding equation, Eq. (5). This result is stated in Nelsen (2006,

Theorem 4.6.2, p. 152). For a complete and rigorous proof, the reader is

referred to Kimberling (1974), which is referenced in Nelsen’s book for a

detailed probabilistic interpretation of complete monotonicity.

In the following section, we will use existing generators from the literature

to develop specific models that conform to the Strauss model framework,

while ensuring they meet the established assumptions.

4. Examples of Distributions

In this section, we present several examples that illustrate the use of var-

ious valid generators ψ within the Strauss model framework. Although our

focus is on these specific cases, there is a wide range of other valid genera-

tors ψ to construct sarchimedean copulas. For a comprehensive overview of

archimedean copulas with a single parameter, readers are referred to (Nelsen,

2006, Table 4.1, pp. 116-118), which lists a broad selection of valid gener-

ators. This table serves as a valuable resource for identifying and applying

different copula families in various contexts.

A suitable function for ψ within this model is ψ(y) = exp(−y), which
leads to independent double-exponential (Gumbel) distributions. This yields

the following multivariate CDF for utilities:

FU (x1, . . . , xn) = exp

(
−

n∑
i=1

e
vi−xi

σ

)
.

This formulation of the CDF is consistent with the traditional approach for

deriving logit-type choice probabilities.

The marginal distributions of the utilities within this model follow a

double-exponential form, each characterized by a common scale parameter.
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Using the generator ψ(y) = exp(−y), whose inverse is ψ−1(φ) = − lnφ, the

resulting copula, derived from substitution in Eq. (7), is:

C(φ1, . . . , φn) =
n∏

i=1

φi,

which corresponds to the independent copula. This shows that, in the Strauss

model, using ψ(y) = exp(−y) results in an independent copula where the

utilities of different alternatives are independent, each with the same scale

parameter.6

It is noteworthy to observe, and to draw a conclusion regarding this spe-

cific case, that the transformed Strauss model associated with the indepen-

dent copula possesses the SF:

F̄T (t1, . . . , tn) =
n∏

i=1

e−ωiti .

The model indicates that the resultant distributions are independent expo-

nential distributions, where ωi serves as the inverse of a scale parameter.

An alternative functional form for ψ that extends the prior independent

copula generator is ψ(y) = exp(−yβ), given that β ∈ (0, 1]. Consequently,

the CDF is expressed as:

FU (x1, . . . , xn) = exp

−( n∑
i=1

e
vi−xi

σ

)β
 .

The standard model, assuming independence is recovered when β = 1.

For β < 1, the parameter β induces correlations among the alternatives while

6It is expected that with independent utilities, the marginal distributions must be
double-exponential. Yellott (1977) proved that the multinomial logit model, in the case of
independent utilities with at least three alternatives, arises exclusively when the marginal
distributions are double-exponential.
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maintaining the multinomial logit model of the choice probabilities, as will

be elucidated in the subsequent section. Furthermore, it is important to note

that this distribution is referenced in (Balakrishnan, 1992, p. 244), where it

is used to formulate multivariate logistic distributions.

An additional valid generator ψ within this context is ψ(y) = (1 + y)−1,

which results in a multivariate logistic distribution. Employing this function,

the CDF of the utility vector U is expressed as:

FU (x1, . . . , xn) =
1

1 +
∑n

i=1 e
vi−xi

σ

.

The selection of that ψ induces dependence among the alternatives, in

contrast to the independent double-exponential distributions observed with

ψ(y) = exp(−y). In this instance, the utilities cease to be independent,

thereby introducing correlations among the alternatives, all while maintain-

ing the multinomial logit model of the choice probabilities.

It should be noted that in the well-known handbook on the logistic dis-

tribution, namely Balakrishnan (1992), a generalization is provided with dis-

tinct scale parameters σi the last equation displayed above regarding the

multivariate logistic distribution. Nonetheless, as previously noted, this gen-

eralization would undermine the logit and exploded logit forms of the choice

and ranking probabilities, respectively. Specifically, the integrands within

the integrals lack explicit primitives unless the scale parameters are uniform

across all alternatives. Consequently, it is imperative to retain a singular σ

to uphold these two fundamental properties.

5. Exploded Logit

In this section, we examine the probability of the event in which the

alternatives are ordered in strictly decreasing utility, denoted as (U1 > U2 >

· · · > Un), within the context of the Strauss model. We wish to calculate the

14
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probability of this event for our purpose, namely:

r(ω1, · · · , ωn) ≡ P (U1 > U2 > . . . > Un) = P (T1 < . . . < Tn).

It is crucial to emphasize that this specific ordering does not compromise

the generality of our analysis. Despite the existence of n! potential ranking

probabilities, we focus exclusively on a single order to examine its analytical

form. The indexing of alternatives is, in fact, arbitrary and the derived results

are applicable to any permutation of indices. This formulation enables us

to determine all other ranking probabilities by permuting the indices. In

doing so, we simplify our notation and facilitate a clearer and more concise

presentation of the results.

The calculation of ranking probabilities is more demanding than that

of best-choice probabilities, which we will briefly revisit here by illustrating

how to determine, without loss of generality, the probability that the labeled

alternative 1 has a utility greater than those of the other alternatives. To

achieve this, our objective is to calculate the best-choice probabilities defined

as follows:

b(ω1, · · · , ωn) ≡ P (U1 > Ui, i = 2, . . . , n) = P (T1 < Ti, i = 2, . . . , n).

This notation indicates the probability that the alternative represented by

the first argument in the vector is preferred over the other alternatives labeled

in the vector. We use the same precaution as before regarding the notation

r(ω1, . . . , ωn) and the fact that the number of arguments indicates the number

of alternatives in consideration.

The calculation of ranking probabilities is more demanding than that of

best-choice probabilities, which we will briefly revisit here by illustrating how

to determine, without loss of generality, the probability that the labeled 1

has a utility greater than those of the other alternatives.
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We thus need to calculate the following integral:

b(ω1, · · · , ωn) =

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

t1

fT (t1, . . . , tn) dtn . . . dt1, (9)

where fT is the joint density of the utility vector T , given by:

fT (t1, . . . , tn) ≡ (−1)n
∂nF̄T (t1, . . . , tn)

∂t1 . . . ∂tn

= (−1)n

(
n∏

i=1

ωi

)
ψ(n)

(
n∑

i=1

ωiti

)
. (10)

Using the fact that the density function fT , as shown in Eq. (10), is ob-

tained through successive derivatives of the survival function, and applying

the fundamental theorem of calculus n−1 times, we can simplify the expres-

sion given by Eq. (9) to obtain a simpler integral that depends only on t1.

This approach is valid because all integral bounds are fixed at t1, which does

not depend on t2, . . . , tn. We then need to calculate:

b(ω1, · · · , ωn) = −
∫ ∞

0

∂F̄T (t1, . . . , t1)

∂t1
dt1,

which yields:

b(ω1, · · · , ωn) = −ω1

∫ ∞

0

ψ′

(
n∑

k=1

ωkt1

)
dt1 =

ω1[ψ(0)− ψ(∞)]∑n
k=1 ωk

.

Using Assumption 1, we obtain:

b(ω1, · · · , ωn) =
ω1∑n
i=1 ωi

=
ev1/σ∑n
i=1 e

vi/σ
. (11)

This proves that the Strauss model is compatible with the multinomial logit

model for best-choice probabilities. This relationship expands the possibili-

ties regarding distributions, beyond those of utilities limited to independent
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double-exponential distributions, thus leading to these forms of best-choice

probabilities.

Ranking probabilities are more complex and can be computed using the

following multiple integrals:

r(ω1, . . . , ωn) =

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

fT (t1, . . . , tn) dtn . . . dt1. (12)

Unlike the integrals that arise in the calculation of best-choice probabili-

ties, here the bounds of the n − 1 inner integrals involve all the arguments

t1, . . . , tn−1 rather than just t1. This makes it impossible to use the funda-

mental theorem of calculus recursively to reduce the calculation to a simple

integral after n−1 applications of the theorem. However, as we will see later,

in the case of the Strauss model, the calculation will not be so insurmountable

and will lead to an explicit form.

By inserting the expression for the density given in Eq. (10) into the

multiple integral that appears in Eq. (12), we obtain the following form:

r(ω1, . . . , ωn) =
n∏

i=1

ωi

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

(−1)nψ(n)

(
n∑

i=1

ωiti

)
dtn . . . dt1.

(13)

Strauss (1979) proved that the distribution of utilities he proposed, which

we have termed the Strauss model, conforms to the exploded logit framework,

offering a more general proof compared to that of Beggs et al. (1981), which is

constrained to independent double-exponentials. These two papers utilized

backward integration in their respective proofs; in contrast, our approach

introduces an alternative proof method.

Instead of performing backward integration for an alternative ranked be-

fore the others, starting from the last-ranked alternative and working back-

ward, we use an inductive approach based on the number of alternatives.

This methodology facilitates a direct transition from a set comprising n al-

ternatives to a set that includes n + 1 alternatives, eliminating the need
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to handle integrals sequentially. Additionally, we have established robust

conditions for the Strauss model using strict archimedean copulas, thereby

strengthening our contribution with solid conditions for the Strauss model

and an alternative proof.

Theorem 2 (Strauss, 1979). Assume that the utility vector U follows the

CDF of the Strauss model as specified in Eq. (1), and that the function

ψ in this CDF satisfies Assumptions 1 and 2. Under these conditions, the

ranking probability r is given by the exploded logit model and is described by

the following formula:

r(ω1, . . . , ωn) =
n−1∏
i=1

ωi∑n
j=i ωj

=
n−1∏
i=1

evi/σ∑n
j=n e

vj/σ
. (14)

Proof. The case n = 2 corresponds to the calculation of the probability

P (T1 < T2) and is aligned with a binary choice probability. We can then

apply Eq. (11) in this particular case to obtain:

r(ω1, ω2) = b(ω1, ω2) =
ω1

ω1 + ω2

.

By induction hypothesis, suppose the equality holds for all integers up to

some n ≥ 2. We need to show that this remains true for n + 1. Using Eq.

(13), we need to compute:

r(ω1, . . . , ωn+1) =
n+1∏
i=1

ωi

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn

(−1)n+1ψ(n+1)

(
n+1∑
i=1

ωiti

)
dtn+1 . . . dt1.
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We start by integrating with respect to tn+1, which gives:

r(ω1, . . . , ωn+1) =
n∏

i=1

ωi

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

(−1)nψ(n)

(
n−1∑
i=1

ωiti + (ωn + ωn+1)tn

)
dtn . . . dt1.

It is useful to express this last equation in the following form:

r(ω1, . . . , ωn+1) =
ωn

ωn + ωn+1

(ωn + ωn+1)
n−1∏
i=1

ωi

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

(−1)nψ(n)

(
n∑

i=1

ωiti + (ωn + ωn+1)tn

)
dtn . . . dt1.

Using Eq. (13), this expression can be simplified to:

r(ω1, . . . , ωn+1) =
ωn

ωn + ωn+1

r(ω1, · · · , ωn−1, ωn + ωn+1).

We then apply the induction hypothesis to obtain, after simplification:

r(ω1, . . . , ωn+1) =
n∏

i=1

ωi∑n+1
j=i ωj

,

which completes the proof.

To make a final remark before moving to the conclusion of our article,

we would like to highlight the term “exploded,” which illustrates how the

probabilistic ranking model obtained from the Strauss model arises from the

decomposition of ranking probabilities into a product of best-choice proba-

bilities. At each step, we evaluate the probability that the alternative in the

first position is the best among all n alternatives. We then eliminate this
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alternative and assess the probability that the next alternative, in the sec-

ond position, is the best among the remaining alternatives labeled 2, . . . , n.

This process continues until only one alternative remains, numbered n, while

maintaining the order from 1 to n.

Using our notations, we can express Eq. (14) from Theorem 2 as follows:

r(ω1, · · · , ωn) =
n−1∏
i=1

b(ωi, · · · , ωn).

This relationship is obtained through the equations of the multinomial logit

model, which the Strauss model adheres to, as presented in Eq. (11), defining

the best-choice probabilities.

6. Conclusions and research perspectives

In this paper, we revisit the Strauss model by delving into the necessary

and sufficient conditions for its validity using modern copula theory. By

specifying the minimal assumptions on the support of marginal distributions

and proving that the Strauss model can be represented by strict archimedean

copulas, we have clarified and strengthened the underlying structure of this

random utility model.

A major contribution of our work is the rigorous formulation of Assump-

tions 1 and 2, which ensure the validity of the multivariate CDF used in the

Strauss model. Assumption 2 requires that the generator function ψ of the

archimedean copula be completely monotone, which means that its succes-

sive derivatives strictly alternate in sign. This property, known as complete

monotonicity, is essential to ensure that all marginal and joint densities de-

rived from ψ meet the positivity conditions necessary for the validity of the

model. By incorporating the theory of strict archimedean copulas, we have

shown that the Strauss model naturally fits within this specific class of cop-

ulas, thereby facilitating the analysis of dependencies between the utilities of

different alternatives.
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A particularly interesting aspect of our analysis is the clarification that

the Strauss model generates the exploded logit model commonly used in

econometric applications. Strauss proved that his model, more generally

than that often subsequently attributed to Beggs et al. (1981), leads to the

exploded logit model. Contrary to what is frequently found in the literature,

where this model is associated with independent utilities, our study high-

lights that the utilities in the Strauss model can be dependent and cannot

be considered independent without altering the model’s fundamental proper-

ties. In reality, the independent case of the Strauss model corresponds only

to double-exponentials, which represents a small part of the broader class of

distributions considered. As soon as a different copula is used, generating

a copula generator other than the independent one, other specifications of

dependence emerge. This distinction reaffirms Strauss’s pioneering contri-

bution and cautions against the systematic association of the exploded logit

model with independent utilities.

Furthermore, by examining different copula specifications, we proved that

only independent double-exponentials lead to the exploded logit model. The

use of different copulas generates other dependence specifications, limiting

the ability to generalize the exploded logit model while maintaining explicit

analytical properties. It is crucial to understand these dependence structures

between the utilities of alternatives, as they directly influence the ability to

propose models alternative to the exploded logit. If the goal is to construct

models that are not exploded logit and offer only advantages, it is necessary to

avoid dependence structures and marginal types characteristic of the Strauss

model. An additional contribution of our work is the proposal of a new

proof of the exploded logit model by induction, thus reinforcing the results

established by Strauss.

For future research, it would be relevant to explore generalizations that

allow for distinct scale parameters, which would extend the Strauss model.

Although maintaining a single scale parameter σ is essential to preserve the
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exploded logit form, introducing different scale parameters eliminates the

possibility of explicit analytical forms. However, this extension remains in-

teresting for numerical methods, though it goes beyond the scope of this

paper. Additionally, incorporating strict archimedean copulas with multiple

parameters or other copula families could allow for modeling more nuanced

dependencies between the utilities of alternatives, thus offering greater flexi-

bility to adapt to various empirical contexts. This extension could enhance

the model’s ability to capture complex relationships observed in real data.

In conclusion, our study provides a theoretical clarification of the Strauss

model and proves its potential for extension through the integration of strict

archimedean copulas. It also underscores the importance of recognizing

Strauss’s pioneering contributions to the development of random utility mod-

els. These advances offer new opportunities to improve discrete choice mod-

eling and better capture dependencies between the utilities of alternatives.

Ultimately, we hope this research will assist in addressing the open ques-

tion discussed in this article, namely: Are there random utility models for

which the best choice probabilities satisfy the multinomial logit model, but

the ranking probabilities do not follow the exploded logit model?”
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