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Chapter 1

Introduction

1.1 Context and Related Opportunities

The Internet of Things (IoT) has emerged as a distributed, self-healing and large-scale ar-
chitecture composed of a variety of objects that monitor and affect their environment.This
combination of sensing and actuation capabilities holds great promise as the enabler of a wide
spectrum of applications, e.g., smart space (e.g., building surveillance and ecology-friendly con-
trol), emergency response and environmental monitoring. Instrumented with sensors, RFIDs
and actuators, smart spaces (including the residents, employees) provide valuable informa-
tion that serve supporting e.g., access control [66, 26], inform rescuers in case of emergency
[137, 12, 56], provide assisted/enhanced living [179], ect.. In the area of environmental monitor-
ing for example, large cities have made progress, in recent years, in monitoring and assessing
the biological and ecological impacts of pollution to respond appropriately, from the political
to the individual level. Cities have traditionally relied on sensing stations that gather observa-
tions (e.g., atmospheric conditions, noise levels, temperatures). Recently cities have also begun
taking advantage of crowdsensing movement, wherein users (citizens, groups, communities) rely
on the small and low-cost sensors embedded in –or connected to– their smartphones so as to
help identify environmental problems. IoT-based applications build on a communication and
computing infrastructure spanning different scales, from smartphones embedding or connecting
to sensors (a.k.a. detectors) and actuators (e.g., electromechanical and/or software-based de-
vices), enabling them to capture, measure, react and communicate with their environment, all
the way to large-scale networks, capable of disseminating critical information from event sources
to multiple recipients. At the network edge, some wireless networks (e.g., Device-to-Device and
wireless sensor networks ) with no specific underlying infrastructure in place, connect diverse
Things hosting sensors and actuators (e.g., mobile phones, vehicles, smart clothing, motes).
Interestingly, these networks mirror ad hoc networks — some of the nodes are battery powered
and communicate via wireless connections, possibly involving intermediate/proxy-nodes and
using multi-hop routing.

So far many specific, distributed, energy-/memory-/computationally-aware protocols, sys-
tems and applications have been proposed to enhance the collection and processing of the
increasingly massive amount of available information in the IoT. However as the range of ap-
plications extends to the fields of industrial and mission-critical systems, additional assurance
requirements related to accuracy, reliability and security must be considered. Accomplishing
the challenging task of Developing Robust IoT therefore necessitates: (i) supporting accurate
and resource-efficient sensing and actuation capabilities and (ii) providing efficient and reliable
communication among Things/users across heterogeneous and volatile networks from the edge
up to the cloud.
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Chapter 1 – Introduction

1.2 Challenges of designing and deploying an IoT system
While expectations are high for the wide applicability of IoT systems, the need to monitor
phenomena at unprecedented scale is far from being a trivial concern especially considering
that IoT applications must remain dependable under any circumstance (e.g., despite disrup-
tions, harsh conditions or even attacks). IoT system applications are subject to a variety of
faults/threats, spanning hardware, software and networking layers. Given that the IoT ecosys-
tem is information-centric (i.e., Things generate a torrent of information delivered to many
recipients that in turn must filter, customise, and process it on the fly), we are mostly con-
cerned with the two following classes of impairments:

• Communication faults - Any intentional or accidental attempt to disrupt the flow of in-
formation seriously jeopardises IoT systems. IoT systems are actually very difficult to
insulate against communication faults due to the openness of the wireless communication
medium, coupled with the cooperative nature of the network, which render protocols and
related applications easy to compromise. In this regards, detecting any misuse or anomaly
(i.e., deviations from the normal behaviour) that threatens the networking structure –
from edge to core networks – is of critical importance. In this regard we began (i) inves-
tigating the detection of misuses and anomalies. Our attention was specifically directed
at detecting attempts to disorganise the routing or disturb the data flow relaying. In
addition we aimed at detecting anomalies corresponding to certain types of misbehaviour
(e.g., unusual and potentially unauthorised access to some data, unexpected presence in
a smart building).

• Information-related faults - The collection of data of sufficient quality is a major chal-
lenge facing the IoT. Many sensors in use are low cost, mass produced and are made of
off-the-shelf components and their relatively low accuracy challenges the relevance and
accuracy of the collected sensory data. In addition, the exposure of the sensors to natural
perturbations leads to questioning the accuracy of the observations. Correcting inade-
quate observations in order to derive proper conclusions is therefore of prime importance.
Meanwhile, knowledge of the sensors’ context is vitally important in order to discover
whether the sensing devices are in a position that enables sensing, instead of interfering
with it. In response to this challenge we propose to: (i) calibrate the inexpensive (and
often inaccurate) sensors and (ii) fuse the information provided by multiple sensors so
as to supply more accurate/reliable observations (as opposed to trying to improve the
reliability of the individual devices involved).

While IoT enables environmental monitoring at an unprecedented scale ( leveraging cali-
brated sensors and information fusion), it also involves significant communication, computation,
and, therefore, financial costs due to the reliance on cloud infrastructures for processing the
spatio-temporal data. The situation is actually worsen due to the fact that IoT systems require
(i) a low-level control loop to support timely and situational-aware sensing and actuation and
(ii) a higher-level control loop to infer a physical phenomenon as a whole, i.e., at macro scale
and across time. As an illustration, knowledge of the level of ambient pollution (e.g., noise
level, air quality) within a particular area helps citizens measure their own exposure to pollu-
tion. An extended control loop is also needed so that citizens, authorities and decision-makers
can design adequate policies. As an alternative to the centralised gathering and analysis of
crowdsensing observations through such a high-level control loop, we introduce a crowdsensing
system that functions on a collaborative model, operating primarily at the very edge, i.e., em-
powering smartphones so as to enhance the quality of the data transferred to the cloud while

2



1.3. Outline

reducing the related communication cost and resource consumption. We adopt an information-
centric paradigm in which the information drives decision-making. To achieve this we build
upon a publish/subscribe system that supports a loosely-coupled communication towards/from
Things/users across heterogeneous and volatile networks in which data flows are governed by
both user interests and data content.

1.3 Outline
This document brings together a large portion of the research I have been conducting over a
period that spans 2005-2020. After completing my PhD in July 2005 at Inria on the subject of
service discovery in mobile ad hoc networks, my work has covered several topics at the heart
of what is today the (mobile) IoT, with an emphasis on the effective gathering of accurate
sensor data. However, I do not detail all of my work thus far; in particular, my industrial
research on network management [145, 15, 14, 48, 139, 142, 59, 80] and my work on sentiment
analysis [104, 103, 89] are deliberately omitted. This manuscript is instead specifically focused
on my research contributions to the design of robust distributed IoT systems supporting the
accurate monitoring of urban-scale phenomena, leveraging sensors and actuators embedded
in or connected to devices (e.g., smartphones or motes). The focus of this research is the
support of robust routing, observation gathering and processing and overcoming misbehaviour
or anomalies, while involving end-users as little as possible.

The core of the manuscript is structured around the following chapters, each covering a
specific theme of the aforementioned research.

Chapter 2 – Into the Wild: Resource-Efficient Intrusion Detection for Secure IoT

• Publications: [99, 6, 8, 7, 141, 146, 66, 22, 138, 126].

• Supervision: Mouhannad Alattar (PhD), Khaled Gari (Master student), Christophe
Pitrey (Master student).

• Project on the topic: FP7 Securinet.

The starting point of my research concerns the detection of intrusions that threaten an
IoT system. This usually consists of diverse networks, ranging from ad hoc networks dealing
with mobile devices, highly constrained RFID (Radio Frequency Identification) systems and
also the core networks. In order to protect the networks against malicious activities, we ex-
plore two complementary approaches that relate to the detection of misuses and anomalies.
We introduce a misuse detection system [7, 146, 127], which is intended to detect an attack
based on a predefined attack signature (i.e., a series of operations threatening security). Our
anomaly-based detection [66, 22] consists in establishing the “normal”1 behaviour of the system
to be protected and identifies an anomaly as a deviation between a given observation(s) and the
pre-established normal behaviour. With our misuse detector, our primary objective is to model
the general form of attacks and identify the related attack signatures. Our signature-based in-
trusion detector distinguishes itself with respect to the state of the art because it uses logs and
does not inspect the network traffic. Relevant logs are categorised and exchanged according to
their degree of importance. An additional issue is the cost associated with the acquisition and
processing of the logs. Our approach [99] to reducing related resource consumption is based on
probabilistically questioning neighbours and controlling the flow of logs gathered through the

1. Alternatively, the “abnormal” behaviour of the system can be expressed.
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Chapter 1 – Introduction

use of statistical parameters. We further establish the trustworthiness [6] of the interrogated
node(s) and filter incorrect logs supplied by misbehaving ones. We then design an anomaly
detection system [66] that provides early warnings about anything out of the ordinary (e.g.,
zero-day attacks). Leveraging advanced machine learning techniques, our detector automati-
cally categorises (normal) activities without supervision.

Chapter 3 – Enhancing the Observation Quality through Calibration

• Publications: [148, 179].

• Supervision on the topic: O. Tavares-Nascimento (Master student).

• Project: MINES project in collaboration with UC Irvine.

Environmental monitoring represents a class of applications with an unprecedented benefit
for the scientific community and society as well. Outfitting our physical space and people with
low cost sensors can enable long-term data collection at scale, but poses the fundamental chal-
lenge of gathering high quality data from low-cost sensing devices. It is well-known that sensors
are prone to faults, bias and sometimes drifts, which is unfortunate, given that the ability to
report accurate and reliable data motivates the use of sensors. A typical approach to enhance
the quality of the data and hence fully exploit the potential of sensors, is to calibrate sensors.
Traditional calibration processes are carried in an environmentally controlled environment, i.e.,
typically using a stimuli and in a control chamber. But, calibration in the field is essential to
ensure a proper operation of the sensing device, as aging, external conditions (such as solar
radiation) and other factors (e.g., activity of the end user) affect sensor’s measurements over
time. To this end, we propose to carefully plan the sensors calibration and to send mobile units
(e.g., trained personnel) equipped with high-quality (more expensive) and freshly-calibrated
reference sensors to carry out calibration in the field. The proposed calibration solution is par-
ticularly well suited for the calibration of IoT infrastructures as it significantly reduces the
cost associated to the upkeep of the sensors in place. Going one step further, we introduce an
approach supporting the calibration of mobile crowdsensors without requiring the user involve-
ment because they unlikely have the necessary expertise to do so in an accurate way. We thus
introduce a collaborative and automatic calibration among nearby sensing smartphones while
capitalising on the calibrated IoT infrastructure, whose sensors provide a bootstrapping cali-
bration to the mobile crowdsensors that are passing by. This leads to the introduction of a novel
macro-calibration problem where numerous devices calibrate without involving the end-users.

Chapter 4 – On the Move Again: Leveraging Crowdsensors to Support Robust and
Context-Aware Sensing

• Publications: [52, 53, 51, 54].

• Supervision on the topic: Yifan Du (PhD).

The recent proliferation of human-carried mobile devices has given rise to a new class of IoT
applications, called mobile crowdsensing, which aims at outsourcing the collection of sensory
data to participating users. However the accuracy of the sensory data depends highly on the
expertise of the participants and their behaviour, which should not interfere with the sensing
of physical phenomena. At the same time, the involvement of many (possibly incentivised)
participants is financially challenging and demanding from the cloud perspective, while it does
not necessarily lead to a proportional increase of accuracy and spatio-temporal coverage. A
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1.3. Outline

crowdsensing platform has to therefore correct, properly filter, and interpolate the contributed
information as much as possible, so as to deal with missing values and cancel out any possible
errors and omissions arising from faulty devices or inexperienced participants. In order to
address these issues, we introduce a context-aware [52, 53] and collaborative crowdsensing
approach that operates at the edge, where co-located crowd-sensors, operating in the same
context, group together [53] to share the workload in a cost- and quality-effective manner. In
particular, the most adequate crowdsensors are assigned the crowdsensing tasks, according to
the nodes’ abilities (for instance a smartphone located in a pocket cannot adequately sense the
surrounding sound level). We then jointly distribute the processing of contributed data over the
crowdsensors: the collected data is aggregated and the partially observed physical phenomenon
is interpolated collaboratively, so as to offload the cloud and overcome any spatio-temporal
sparsity.

Chapter 5 – Information-Centric Networking within the IoT

• Publications: [82, 140, 147, 82]

• Supervision on the topic: Zaid Anwer, Donnacha Nylan (Master students).

• Project: European Madeira project, Ericsson Omega project.

Current IoT applications typically sense physical phenomena locally, and usually outsource
their authority over information to the cloud. The cloud infrastructure further distributes sen-
sory and control data to end-users and external services. Nonetheless, highly-constrained IoT
devices usually work more efficiently in a loosely-coupled environment without maintaining
end-to-end connectivity. We therefore adopt an information-centric networking approach [82]
and introduce a purposely-built content-based publish-subscribe system. This supports a high
demand by decoupling (in time and space) content consumers from data producers. As a result,
data producers, e.g., (crowd)sensors, may leverage this loose coupling to reduce their duty-cycle
and increase their battery life. Subscribers identify interesting content topics by stipulating the
attribute(s) of the content relevant to them. Such a content-based publish/subscribe system
improves the expressiveness of subscriptions, hence reducing the dissemination of irrelevant
notifications.On the downside, the subscription process comes with a sophisticated and hence
resource-consuming filtering and hop-wise forwarding. We improve scalability and expressive-
ness, although they are two conflicting goals, by supporting a lightweight filtering [147] and
distributed notification [143]. In particular, we propose a compact approximation of the sub-
scriptions [140] that speeds up the subscription lookup. We then introduce a self-organising,
cluster-based hierarchical structure, which ensures a strict control on the underlying structure
and enables the aggregation and correlation of notifications.
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Chapter 2

Into the Wild - Intrusion Detection

2.1 Introduction

The practical realisation of IoT involves the design and development of various subsystems
(e.g., platforms, protocols and technologies) that identify, sense, actuate, communicate and
process at different levels of sophistication. That said, IoT subsystems development is mainly
profit-driven and constrained by a short time-to-market, which has historically led – and still
leads – manufacturers to overlook security considerations. As a matter of fact, poorly designed
IoT devices open the door to adversaries, who often exploit Things with little or no effort.
Moreover, Things are easily accessible as they usually remain outside of properly protected
and compartmentalised networks. The seriousness of the situation is well illustrated by an
attack launched by IoT-specific malware called Mirai [2]. Dyn, a leading DNS provider in
the United States, has been the target of one of the largest Denial of Service attacks ever
launched on a myriad of vulnerable Things. The attack hampered name resolution and caused
considerable collateral damage as users were unable to access websites. Given the Internet-wide
deployment of IoT, any malicious manipulation may have a profound effect on the resilience of
the entire Internet. It therefore becomes vitally important to track events occurring in today’s
IoT networks and to analyse them for potential signs of security breaches. Once an attack is
detected, proper counter-measure mechanisms must be considered to prevent the attacker from
causing widespread damage. One straightforward approach to securing the myriad Things is to
redesign them, incorporating security agents within their structure. Such an approach would
be neither affordable nor would it scale up to the massive amount of Things. This brings us
to introduce an Intrusion Detection System (IDS) capable of detecting security threats within
IoT environments without any design alterations.

In the course of this chapter we focus on Intrusion Detection, with the aim of discovering
whether or not the IoT ecosystem is functioning normally. Our scope covers the search for: (i)
misuses, which correspond to some specific attacks that are already known and (ii) anomalies,
which occur when an intruder’s behaviour does not conform to the expected or legitimate
behaviour. We introduce a misuse detector that exploits current knowledge about existing
attacks in order to look for evidence/symptoms that signal an attack development. An anomaly
detector further builds a reference model describing the usual behaviour of a given system and
subsequently searches for any noticeable deviation from this model. Whilst essential to avert
and control the risks associated with attacks, the general detection of misuses and anomalies
that threaten the IoT at large is undeniably an ambitious project. Indeed, the wide range of
attacks [163, 38] target different levels, covering hardware, networks, systems, and applications.
It is moreover necessary to consider and handle: (i) The heterogeneity of Things, from highly
resource-constrained Things (e.g., RFID tags and readers) to personal laptops and (ii) the
various underlying organisations, from fully cooperative systems to individual Things.

To this end we cover two case studies, ranging from intrusion detection in Mobile Ad hoc
NETwork (MANET) to anomaly detection in RFID-based access control systems. In both
cases we consider the nature of the monitored system (network/computer/object and supplied
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Chapter 2 – Into the Wild - Intrusion Detection

service) to determine intrinsic vulnerabilities and their corresponding attacks.
We begin with the problem of intrusion detection for the routing protocol in MANETs

(§2.2). Our choice is motivated by the fact that a routing protocol supplies a critical network
service and is therefore a prime target. Unlike existing systems that monitor packets passing
through host [5, 168], our signature-based intrusion detector analyses logs to identify patterns
of misuse. Thus, this approach does not necessitate modifying the implementation of the rout-
ing protocol, nor does it require inspection of the traffic. Our detector relies on the attack
signatures that we pre-established. To this end, we have surveyed and modeled the attacks in
a way that reflects the dependencies between their constituting tasks. In particular, we focused
our attention on the intrusions threatening the Olsr routing protocol [39]. Based on the attack
signatures, our detector discovers the attacks threatening the Olsr protocol. Whilst essential,
intrusion detection faces two problems. First is the minimisation of computation overload and
bandwidth usage associated with the investigation and intrusion detection processes. Second,
the intrusion detection process involves open and spontaneous cooperation with other devices,
which are generally unknown or barely known. It is very likely that malicious nodes intend to
take advantage of this lack of mutual knowledge in order to disrupt the detection process. It is
therefore indispensable to develop a cooperative intrusion detection system that: (i) regulates
the amount of remote logs/evidences that are collected and (ii) assesses the trustworthiness of
the devices involved in intrusion detection and weighs the contributed logs/evidences accord-
ingly. Our strategy to reduce resource consumption Things on the development of a lightweight
and distributed intrusion detection system that analyses logs as close as possible to the device
that generated them. The intrusion detection system selects a subset of nearby nodes that are
randomly and uniformly questioned. By leveraging the statistical approach (and in particular
the confidence interval and confidence level), we reduce the resource consumption and regulate
the gathering of evidence without compromising detection reliability. We then incorporate a
mechanism for assessing trust and supporting informed decision making. Before considering
evidences from another device, a node assesses the device’s trustworthiness, which reflects the
node’s evaluation of its past activities and future intentions. Establishing a relationship of trust
is a challenge, not only because it must be insusceptible to deception, but it must also be able
to bypass attackers who adapt their behaviour, i.e., behave well and then misbehave in order
to abuse the system. To this end we introduce an entropy-based trust system, which aims to
objectively express an opinion on a device based on its actions and its recommendations from
other nodes. This system capitalises on the notion of entropy, which allows it to establish the
similarity between a personal opinion and the received recommendations while determining the
extent to which a node’s behaviour is legitimate.

Next, we explore a complementary approach that detects anomalies (§ 2.3), considering a
case study in which individuals are monitored using RFID tags. Our objective is to depict the
normal behaviour of the system and classify any deviation as an attack. We address the problem
of detecting anomalies in an RFID system, using unsupervised algorithm. Rather than relying
on a simple statistical method to detect any deviation from the normal activity, we select the
Kohonen’s self-organising maps [92] as an advanced neural network architecture that permits
the user’s profile to be built as an ordered representation of spatial proximity among vectors
of an unlabelled data set. The data provided by the RFID system is used to train a Kohonen
map which allows the definition of a region representing the normal behaviour of the observed
subjects. Based on the trained Kohonen map, any activity that does not match the defined
normal behaviour is identified as an anomaly; the main advantage is that there is no need
to pre-define the pattern of an intrusion. Kohonen’s maps are also recognised for their ability
to automatically classify activities without supervision. Thus, our anomaly detection system
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detects any spoofing attack wherein an adversary mimics an authentic tag or uses a robed tag
since such an intrusion will presumably deviate from normal usage.

2.2 Signature-based Intrusion Detection in MANETs
Securing ad hoc networks presents a challenge since these networks rely on an open medium
of communication, are cooperative by nature and hence lack centralised security enforcement
points (e.g., routers) from which preventive strategies are launched. While a wide variety of
attacks [118] are aimed at disrupting ad hoc networks, routing protocols constitute a key
target because: (i) devices operate as routers, which facilitates the manipulation of messages
and more generally the compromising of the routing, and (ii) no security countermeasure is
specified as a part of the published RFCs. In the following, we introduce an Intrusion Detection
System (IDS) that monitors the attacks against routing protocols. We exemplify our IDS,
focusing our attention on the attacks that threaten the Optimized Link State Routing protocol
[39] (abbreviated as Olsr). We begin by detailing each attack (§ 2.2.1), relying on a model
that captures the complexity and temporal dependencies between each of the constituting
sub-tasks. We attempt to describe the general form of this attack so as to deal with slightly
varying attacks. Based on these modelled attacks, we can further define the corresponding
attack signatures (2.2.2).

2.2.1 Attacks Threatening the OLSR Protocol
We start with a brief introduction to the Olsr protocol.

Olsr is proactive routing protocol designed to ensure that each terminal maintains an up-
to-date picture of the network topology. A fundamental aspect is the Multipoint Relay
(Mpr): each terminal selects a subset of 1-hop neighbours whose task it is to forward
control traffic to the whole network. OLSR attempts to select the minimum numbera of
Mprs that cover all the two-hop neighbours, so as to reduce the number of nodes re-
transmitting control messages and thereby the resulting bandwidth usage. In practice, a
node establishes the set of 1-hop neighbours that are further advertisedb in a so-called hello
message, which is sent periodically. A Topology Control message (Tc) is then broadcast.
Within the Tc message, the Mpr announces the set of neighbours that selected it as
Mpr. Thanks to these Tc messages, any device can calculate the shortest path, in terms
of number of hops, to any destination. This path is materialised by a sequence of Mprs.
In addition, later versions of Olsr support the presence of nodes with multiple network
interfaces that are declared in a message called a Multiple Interface Declaration (MID)
message that is regularly broadcast by Mpr. The functions we have laid out here form
the core of Olsr though other extensions have been introduced (e.g., the interconnection
to other routing domain thanks to Ospf protocol).

a. Redundant Mpr(s) can be selected to increase accessibility.
b. Instead, information coming from the link layer and typically provided by the IEEE 802.11 protocol,

can be used to update the list of 1-hop neighbours.

OLSR in a nutshell

In the following we detail the attacks to the Olsr protocol, leveraging a model [4] that provides
the level of expressiveness needed to depict the actions constituting the attacks along with the
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related consequences. We further enrich the model with temporal annotations (as visible in
Table 2.1). Then we categorise attacks threatening the OLSR protocol according to actions
undertaken against the following routing messages [121]:

• Drop attack: consists in dropping routing message(s).

• Active forge attack: proactively generates deceptive routing message(s).

• Modify and forward attack: modifies received routing message(s) before forwarding it.

Communication
X

Mt←− Y At time t, Y sends a Mt←− Y At time t, Y send a message M
message M received by X

X 6 Mt←− X does not receive a message
M at time t

Parameters
4t Time period NSX 1-hop neighbour of X
sq Sequence number hc Hop number
MPRX MPRs of X SelMPRX MPR selector for X

Messages
Hello Hello message TC TC message
FM Forwarded message CM Control message

Table 2.1 – Notations

Drop attack

A Drop attack consists in suppressing a control message that should be normally1 relayed. A
Drop attack is carried out by the MPRs, which forward control messages (i.e.,Tc, Mid or Hna
messages). Let us exemplify a drop attack: at time t, host H sends a control message, which
is intended to be forwarded. The message is received by an Mpr I that does not forward it
during a time period that is greater than the maximum allowed period: 4t:

I
FMt←−− H, 6 FMt′←−−− I, |t′ − t| > 4t

⇓
I ∈ I

(2.1)

There are few variants of drop attacks: a malicious Mpr may either delete all the incoming
control messages (black hole) or a portion of them (grey hole) depending on e.g., the source,
the destination or the message type. Attack is detectable by comparing the rate of packets
received with that re-transmitted, considering each message type individually. Rather than
deleting messages, an alternative behaviour consists in modifying the routing messages prior to
forwarding it.

1. Deletion shall exclude the withdraw of some packets, which are empty, expired, duplicated or badly
formatted.
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Active forge attack

An active forge attack proactively generates misleading routing messages. The best-known
example of this kind of attack is probably the Denial Of Service attack (DOS), where a massive
amount of control messages are forged to saturate the communication medium (see Expression
(2.2)). The attack is usually conducted in a distributed manner with the participation of several
devices. The scope of a DOS is either local (i.e., targeting 1-hop neighbours) or global in which
case messages are broadcast over multiple hops. While a local attack cannot be prevented, it is
recommended to delay and limit the forward of control messages to circumvent a global attack.

CMt←−− I,
CM ′t←−− I, |t′ − t| < 5t

⇓
I ∈ I

(2.2)

A DOS attack is highly visible and is hence typically conducted along with a masquerade in
which the attacks switch their identity. The insertion of falsified messages also falls under the
category of active forge attacks. Typically the falsification concerns the list of adjacent links
that are advertised in hello messages. Similarly, the information about network interfaces in
the Mid and Hna messages may be modified. In the first case (Expression (2.3)), I forges a
hello message, which declares a list of 1-hop and symmetric2 neighbors NS ′I that differs from
the real set NSI .

S
hello(NS′I)t←−−−−−− I,NS ′I 6= NSI

⇓
I ∈ I

(2.3)

In particular, the basis of an attack aiming at falsifying the state of the links lies in:
• Publishing the presence of a symmetric 1-hop node that does not actually exist (Ex-

pression (2.4)). This allows the intruder to be selected as Mpr. Indeed, if I advertises
a non-existing node N (N /∈ N , with N defining the set of nodes composing the Olsr
network3), I ensures that no other (well-behaving) Mpr claims being a 1-hop symmetric
neighbour of N . I is hence selected as an Mpr. In addition, the connectivity of I is also
artificially increased (Card(NS ′I\(NS ′I ∩N )) > 0).

hello(NSS)t←−−−−−−− S, S
hello(NS′I)t′←−−−−−−− I, |t′ − t| < 4t,

∃N ∈ NS ′I 3: N /∈ N ∩NSI
⇓

I ∈ I,
∃I ′ ∈ I ∩NSS 3: I ′ ∈MPRS,

Card(NS ′I\(NS ′I ∩N )) > 0.

(2.4)

• Publishing an existing node s is a 1-hop neighbour, when it is not the case. This claim
disrupts the routing and artificially increases the connectivity of I i.e., Card((NS ′I\NSI)∩

2. A symmetric 1-hop neighbor, hereafter simply referenced as neighbor, corresponds to an adjacent node
with which communication is bidirectional.

3. According to the Olsr RFC [39], messages can be flooded into the entire network (with a maximum
network diameter defined by the message Time To Live field, or flooding can be limited to nodes within a
diameter (defined in terms of number of hops) from the originator of the message. For the sake of clarity, let be
N represent the network in both case.
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N ) > 0.
hello(NSS)t←−−−−−−− S, S

hello(NS′I)t′←−−−−−−− I, |t′ − t| < 4t,
∃X ∈ NS ′I ∩N 3: X /∈ NSI

⇓
I ∈ I,

Card((NS ′I\NSI) ∩N ) > 0,
@A ∈ N\I 3: A ∈ NSS ∧X ∈ NSA

⇓
∃I ′ ∈ I 3: I ′ ∈MPRS.

(2.5)

If no other (well-behaving) Mpr covers S (@A ∈ N\I 3: A ∈ NSS ∧ X ∈ NSA), then
at least one misbehaving node is selected as a Mpr of S (∃I ′ ∈ I 3: I ′ ∈ MPRS). Such
insertion typically characterises an attempt to create a blackhole: I introduces a novel
path toward M that whenever selected provisions the blackhole.

• omitting a symmetric 1-hop neighbour P as a means of isolating the latter. As a matter
of fact, omitting to advertise the presence of P (∃P ∈ NSI 3: P /∈ NS ′I) artificially
decreases the connectivity of both P and I (NSI * NS ′I).

hello(NSS)t←−−−−−−− S, S
hello(NS′I)t′←−−−−−−− I, |t′ − t| < 4t,

∃P ∈ NSI 3: P /∈ NS ′I
⇓

I ∈ I,
∃I ′ ∈ I ∩NSS, NSI * NS ′I .

(2.6)

The falsification of the adjacency links may pervert the overall local topology, which is per-
ceived by a node and may influence Mpr selection. The attack is potentially coupled with
a modification of the willingness field [3]. I may prevent (resp. ensure) its selection as Mpr
by setting willingness field to the value will_never (resp. will_always). The Mpr selection
is altered either by falsifying the topological information or the willingness attribute. Overall,
the aforementioned forge attack may contaminate the Olsr network ; interconnected routing
domains are impacted4 if a compromised gateway forge falsified routing messages. In such a
case the gateway publishes some nodes or some networks that do not exist or exist but are un-
reachable. In addition, the gateway may also omit to advertise some existing nodes or networks.
This attack is quite similar to a link spoofing attack, which is why we will not detail it here.
Another way of carrying an attack lies in altering the control messages that are disseminated.

Modify and forward attack

This attack consists in capturing a victim’s control message, modifying and then relaying it.
Any packet field may be modified, including e.g., the Mpr set in TC message, the interface
configuration in MID message and routing information injected in HNA message. The attack
also involves replaying the packet several times or forwarding it later (possibly to a different
location) so that routing tables are updated based on outdated information. Interestingly,

4. Symmetrically, false routes can be imported into the OLSR domain.
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attacks may be carried out by multiple nodes. Let us illustrate this case by considering a
pair of intruders (Expression 2.7).

I1
CM(S)t←−−−− S, I2

CM(S)←−−−−
enc

I1,
CM(S)t′←−−−−− I2,

5t ≤ |t′ − t| < 4t
⇓

X ∈ NSY

(2.7)

One intruder, I1, records control message from one region while another intruder, I2, modifies
and forwards the message to another region. To do this, I1 may transmit the message to I2 using
a different interface than that of the ad hoc network. Alternatively, I1 may create an encrypted
tunnel through which encrypted control messages pass. At the other end of the tunnel, I2 replays
incoming messages. The attack creates a wormhole whose length corresponds to the distance
separating the two intruders. In order to remain invisible, I2 may masquerade; the source of
the relayed control message can be either I1 – thus I2 remains invisible – or another node, say
S – thus both I1 and I2 remain invisible. In order to circumvent the attack, nodes should check
if the data transfer is done in time.

Another possible attack is to hijack sequence numbers so that the destination deletes the
message that would otherwise have been used. In practice, an intruder I increases5 (resp.
decreases) the value taken by the sequence number so that the destination assumes that I ad-
vertises most recent (resp. obsolete) routes and ignores the next (resp. current) control message.
Note that if the packet conveying the sequence number is forged then we are dealing with an
active forge.

The attacks we have just mentioned can be composed and conducted independently or
cooperatively, possibly coupled with a masquerade. Thus devising an intrusion detection system
capable of tracking these attacks along with their perpetrators is not a trivial task because the
slightest deviation from one attack may make it undetectable.

2.2.2 Attack Detection
The attacks targeting the OLSR protocol follow some well-defined patterns that can be modelled
with attack signatures. In the following, we propose an intrusion detection system that aims
at monitoring the operation of the OLSR protocol, looking for series of events that match
the codified signatures so as to counter security threat. Our IDS is non-invasive: it collects
audit data (i.e., logs) generated by the Olsr protocol. Traces correspond to a sequence of
chronological events that characterise the evolution of all the internal activities of the protocol
(e.g., packet reception or Mpr selection). Additional security reports and logs on the system
state are easily integrated and correlated. In addition, our IDS does not require any amendment
to the OLSR protocol, which generates separate individual log files. The first step of the online
intrusion detection process lies in collecting and pre-processing logs to extract relevant events
and avoid matching a attack signature against a large dataset. Events are then classified into
the following four categories that reflect the degree of evolution – and hence the seriousness –
of the attack:

• Initial event group: contains the events that lead to the initiation of an extensive investi-
gation.

5. A sequence number reaching its maximum is reset.
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• Suspicious-evidence-group: encompasses the events leading to the qualification of a node
as possibly malicious.

• Confirmed-evidence-group: comprises the event confirming the attack occurrence.

• Cancel-evidence-group: includes events that eliminate all suspicion.

Based on a compact set of categorised events, our signature-based IDS supports a fast pattern
matching that ensures that incidents are promptly addressed. Additionally, the evolution of a
long term attack can be easily tracked. Once filtered and analysed, logs are matched against
predefined intrusion signatures. A signature can be viewed as an ordered sequence of events
that characterises a suspicious activity. The procedure can be expensive in terms of memory
and bandwidth usage as it may require the collection of evidence from other nodes in order to
correlate them. Thus, an investigation needs to be initiated if a sufficient degree of suspicion
exists. Before delving into the operation of the above evidence groups, let us first exemplify the
proposed intrusion detection system with the link spoofing attack we purposely developed.

Signature of a Link Spoofing Attack

Central to the notion of misuse detection is the definition of the attack signature. We are inter-
ested in establishing the signature of an attack that tampers adjacent links. A first step towards
that goal lies in describing the specific6 attack relying on the model introduced in [4], which we
enrich with temporal annotations so as to support the expressiveness necessary to establish the
relationship between actions constituting the attack and the resulting consequences. In order
to perform a link spoofing attack, an intruder, denoted I, forges a hello message, which declares
the list of 1-hop neighbours whose link is bidirectional, denoted NS ′I and which differs from
the correct one, denoted NSI .

S
hello(NS′I)t←−−−−−− I,NS ′I 6= NSI

⇓
I ∈ I

(2.8)

In order to ascertain the occurrence of such an attack, one should determine whether NS ′I
differs from NSI . There are three variants of falsification (see §2.2.1):

1. Declaring a non-existent node as a symmetric 1-hop neighbour of I (or of another node)
so that I (or another node) is selected as Mpr.

2. Claiming that an existing node as a 1-hop symmetric neighbour even though the node is
distant or is an asymmetric 1-hop neighbour.

3. Omitting a 1-hop symmetric neighbour artificially decreases the connectivity of the omit-
ted node.

The detection of the link spoofing attack described above necessarily requires a continuous
investigation that aims at confronting each node’s vision (which includes the set of 1-hop and
2-hops neighbours). Unfortunately this involves a continuous confrontation and hence is not
viable. We therefore take a different approach, noting that inflecting the Mpr selection is one

6. Interested reader may refer to [8] for a detailed modelling of all the attacks threatening Olsr and a
description of the related signatures.
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attack goal and thereby an attack indicator. Our approach thus consists of looking for changes
(or an absence of changes) in the Mpr selection and in the Mpr coverage. As a complement, a
Mpr behaving inappropriately (e.g., suppressing, falsifying, failing to adequately relay control
messages or defining itself as a Mpr without having been selected as such) is also an interesting
aspect. Events (extracted from the logs) that reveal such (possibly inappropriate) behaviour
are tagged as evidence announcing an attack occurrence and are categorised as an "initial event
group" (as defined in §2.2.2). In such a case, an in-depth investigation is triggered to collect
information concerning the 1-hop and 2-hops neighbourhood.

Collaborative Investigation An in depth investigation consists in verifying that the Mpr
coverage is adequately advertised. For this purpose, 2-hops neighbours are questioned with
the aim of determining if the suspicious Mpr is indeed a symmetric 1-hop neighbour and is
susceptible of being a Mpr. The corresponding request is sent out, avoiding the suspect as
much as possible. Based on the returned answers, the attack diagnosis takes place using the
signature described above. If all the interrogated nodes provide information that conforms to
that of the suspected Mpr, the behaviour of the Mpr is defined as appropriate. If instead one
or more nodes provide information that differs from the Mpr information, this may indicate
that an attack is taking place. Two special cases in particular may pose problems:

• Some or all of the responses are missing due to e.g., some packet collisions or some
disconnections of the queried nodes. In such a situation, the diagnosis is biased as it is
only based on a portion of the evidence.

• Answers are contradictory. For instance, a malicious node may non-legibly accuse a well-
behaving Mpr or may certify the good behaviour of a malicious Mpr. A legitimate node
may also have a different vision due to e.g., the node mobility or to slightly inconsistent
routing table.

In order to prevent misbehaving nodes from foiling the intrusion detection, we propose to evalu-
ate the trustworthiness of the node(s) that provide second-hand observations (see § 2.2.3). The
objective is to favour the observations provided by trustworthy nodes while being detrimental
to misbehaving nodes. In addition we leverage a statistical parameter, namely the confidence
interval, to control the evidence-gathering and determine to what extent additional evidence is
needed to make an informed judgement (§ 2.2.4).

2.2.3 Trustworthiness Evaluation
In the presence of malicious nodes, supporting a reliable intrusion detection strategy is chal-
lenging because attackers will try to conceal the attack by providing false observations. While
essential, trust establishment in a distributed and resource-constraint MANET is much more
difficult than in traditional wired networks as there is no certification authorities nor trusted
third parties; as opposed to traditional centralised approaches, trust management in MANETs
should handle uncertainty and incompleteness of trust evidences.

In the years 2010, a great majority of existing work on distributed intrusion detection as-
sumes that any participating node is trustworthy and faithfully reports intrusion attempts [63].
Alternatively, Duma et al. [55] introduce a trust-aware engine that correlates intrusion alerts.
Nonetheless, the proposed trust model does address highly distributed intrusion detection.
Meanwhile, much research has been conducted on modelling and quantifying trust [87]. Trust
and reputation are usually utilised to prevent packets from being routed through misbehaving
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nodes [151, 175]. In this work, we develop a robust trust management model that specifically
copes with distributed intrusion detection. Our trust system evaluates node trustworthiness
based on personal experience and on the recommendations formulated by others. We propose a
distributed and entropy-based trust system in which trust relationships are primarily built with
neighbours, based on local observations and on mutually exchanged evidence. Trust is evaluated
depending on the similarities between received evidence and local evidence. Each time a node
provides a similar (resp. dissimilar) evidence of intrusion, its trustworthiness increases (resp.
decreases). Recommendations from neighbours are also necessary to derive indirect trust values.
A fundamental challenge is then to define a suitable means by which to represent trust and
synthesise the set of opinions that are provided by others into a unique aggregated value. To
this end, we first define the notion of trust and introduce some axioms that describe the basic
rules for establishing trust. Then, based on these axioms, we develop techniques to calculate
trust values.

Trust Definition

A trust relationship established between node A concerning node I, represents the extent to
which A thinks that I behaves adequately. Trust is established before a misbehaving action
takes place and as such can be viewed as a belief, i.e., level of likelihood with which a node is
expected to perform a particular action. Trust is characterised by the following properties:

• Trust is subjective. For instance, the trust that two nodes grant to a third node may
differ.

• Trust has a dynamic nature and usually varies over time. The trust value is a discrete
real number.

• Trust is an action – and context– dependent function: an entity may be trustworthy for
performing one task (e.g., forwarding packets) but not for another one (e.g., detecting
attacks).

• Trust is asymmetric and not transitive. Trust is not necessarily mutual and the fact that
A trusts B and B trusts C does not imply that A trusts C,

Building trust requires a quantitative analysis of the nodes behaviours based on the history of
their previous activities and interactions. Thus, trust can be assessed by a measure of uncer-
tainty, and as such trust values can be estimated based on entropy. In the following we introduce
the rules (axioms) to follow for calculating trust values based on observations and also through
a third party (concatenation propagation) and through recommendations from multiple nodes
(multipath propagation).

Trust Establishment

The following five axioms are used to establish trust relationships accordingly, leverage previous
interactions and consider recommendations:

• Axiom 1 - Measuring trust based on entropy: An activity that is beneficial to others
(e.g., packet relaying) increases the confidence in the node that performs it. Conversely,
a malicious activity decreases this confidence. A piece of evidence that concerns a node I
and is established by a node A, is denoted eA,Ij . Such evidence contains all the observations
necessary to evaluate the trust and calculate a value that reflects the confidence associated
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with the evidence. The confidence associated with the evidence is not absolute but the
opinion of the specific node instead. In order to increase the readability of the manuscript,
the trust value is referred as an evidence value. The evidence (a.k.a confidence value)
takes a positive value (resp. a negative value) if the related behaviour is beneficial (resp.
malicious). The trust is a real number in [-1,1]. When the trust value is -1 the node is not
trusted and if trust value is +1 the node is trusted. We define the entropy-based trust
value as follows:

TA,I(eA,Ij ) = −eA,Ij log2(eA,Ij )− (1− eA,Ij ) log2(1− eA,Ij ) (2.9)

• Axiom 2 - Danger: the degree of danger should be taken into account when assigning
a trust value. To do so, a factor αj weights the evidence eA,Ij .

• Axiom 3 - Freshness: Newer activities should be prioritised over older ones. In practice,
an omission factor β privileges fresh evidences rather than older ones. A node A calculates
the trust of a node I based on n evidence denoted eA,I1 , · · · , eA,Ii , · · · , eA,In , which concerns
I and that have been collected during ∆t:

TA,I∆t =
n∑
j=0

αj e
A,I
j + β TA,I∆t−1 (2.10)

Note that in absence of evidence, the trust value is periodically updated as follows to
ensure node redemption: TA,I∆t = β TA,I∆t−1

• Axiom 4: Recommendation of a third party: First-hand evidence that is obtained
by the node itself is preferred to second-hand evidences, which are comparatively more
controversial. Nonetheless, when the observations obtained by A are not sufficient, addi-
tional (less reliable) evidence provided by other nodes is gleaned (see § 2.2.4). In this case
A considers the recommendations of the third parties but the uncertainty increases. Node
A establishes the trust value associated with a node I based on the recommendation of a
third party S as follows:

TsA,I∆t = RA,S
∆t T

S,I
∆t (2.11)

Thus node A relies on the evidence T S,I∆t provided by S. Given that node S may lie, A
lowers the resulting trust value using RA,S

∆t .
Note that the computation of the trust value (Eq. 2.11) reflects the probability that I will
perform an attack. Let pS denote the probability that S makes a correct recommendation
and pI/B=0 the probability that I will perform an attack if B lies. This probability can
be expressed as :

pASI = pS pI/S=1 + (1− pS) pI/S=1 (2.12)

Unfortunately A ignores the value of pS and pI/S=1. Leveraging our distributed trust
model, A evaluates the probability p(AS) that A observes the behaviour of S and A
makes a recommendation on S. In addition, A estimates p(SI) the probability that S
observes the behaviour of I and that S makes a correct recommendation on S. Finally,
A computes the value of pASI :

pASI = p(AS) p(SI) + (1− p(AS)) (1− p(SI)) (2.13)

• Axiom 5- Concatenating multiple recommendations: The recommendations of
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several nodes may be considered together in order to establish a trust value. Recommen-
dations are concatenated into a trust value that should not be artificially amplified. Thus,
when several nodes, denoted S1, S2, · · · , Sm, generate recommendations, A computes an
aggregated trustworthiness about I as follows:

TmA,I
∆t =

m∑
i=1

wiR
A,Si
∆t T

Si,I
∆t (2.14)

with wi = 1∑m

j=0 R
∆t
A,Sj

serving as an averaging factor. Once established, trust is then used
to prevent malicious nodes from interfering with intrusion detection.

Trust Establishment in the presence of a link spoofing attack

In the following, we detail the computation of the trust value considering a link spoofing attack:
In order for Node A to establish whether I is carrying a link spoofing attack A interrogates the
neighbours of the suspected node I. The interrogated neighbours either do or do not corroborate
the information provided by the suspect, in which case the answer includes the fields rSi,I that
either takes the value 1, if the link established by I is correct, or the value −1 otherwise. The
answers from each interrogated neighbour Si (with i ∈ [1,m]) are weighted with the trust
level TA,Si that the investigator A places in the neighbour Si as well as taking into account a
weighting factor wi:

DetectA,I∆t =
m∑
i=1

wiTA,SiR
Si,I
i (2.15)

with wi = 1∑m

j=0 TA,Sj
. Ultimately, a fake link attack is detected if DetectA,I∆t is close to 1.

2.2.4 Reducing the Cost of Investigations
Intrusion detection is a resource-consuming process that needs to last because an attack against
a routing protocol is typically persistent and continuous (i.e., attack repeats itself over time).
Thus intrusion detection leads to the collection of a massive amount of logs and evidence.
In a dense network, the number of collected evidence becomes colossal. In order to reduce
the corresponding bandwidth usage and thereby lighten the intrusion detection process, we
propose to randomly and uniformly request the nearby nodes into collaborative investigation
(i.e., the 2 hop neighbours of the Mpr). As a result, fewer nodes are less frequently contacted
compared to the deterministic approach introduced above. We employ confidence interval and
confidence level as means for regulating (either reducing or increasing) the evidence-gathering
while ensuring a satisfactory level of detection reliability.

Confidence interval and confidence level

The confidence interval represents a statistical uncertainty associated with the estimation of a
population parameter (e.g., proportion, mean, median) [156]. The confidence interval is associ-
ated with confidence level, which corresponds to the likelihood that the true parameter belongs
to the interval.

In our case, based on a partial set of evidence, denoted e1, · · · , en, we establish an interval in
which the mean, computed using the entire set of evidence, has a high probability of belonging
to. In practice, based on a confidence level fixed by the investigator, the true mean m̄ has
a certain probability of being contained in the confidence interval [m̄e − ε, m̄e + ε] with ε
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reflecting the allowed margin of error that is defined by the end user. The sampling error ε
decreases as the sample size increases. According to the central limit theorem introduced by
Pierre Simon Laplace [135], the sampling distribution of the mean follows a t-distribution [157]
when the sample size is small and a normal distribution when the sample size becomes large
[11], regardless of the population form. With a normal distribution, the margin of error ε is
expressed as a function of the standard deviation σ and the standard density z:

ε = z
σ√
n

(2.16)

With a t-distribution, the margin of error ε is expressed as a function of the standard deviation
σ and the standard density z:

ε = z
σ√
df

(2.17)

with df corresponding to the degree of freedom. Note that there are many potential t distribu-
tions, whose forms are determined by their degrees of freedom. Nonetheless, when estimating
the mean, df = n− 1. The standard deviation is then calculated as follows:

σ =

√√√√∑n
i=0(m̄− eA,Sii )2

n− 1 (2.18)

The overall estimation of the confidence interval of a population mean proceeds as follows:

• Gather a few pieces evidence (a.k.a samples).

• Compute the sample mean and standard deviations.

• If the sample size is large (resp. small), select the zα/2 (resp. tα/2) from the normal
distribution (resp. the t-distribution),

• Compute the sampling error ε and the confidence interval as [m̄e − ε, m̄e + ε].

The computation of the confidence level and interval during the diagnostic permits our Ids to:
(i) regulate the number of gathered and processed evidences while maintaining the required
detection accuracy and (ii) measure to what extent the diagnosis is reliable, especially in the
presence of inconsistent evidences.

At best, the confidence level is high and the confidence interval is narrow. If an attack7

is taking place, evidence will be collected with less but sufficient regularity. In practice, the
IDS follows a stepwise process that reduces the volume of evidences to collect. Instead, if the
confidence level is low and the confidence interval is wide, additional evidence should be col-
lected to establish a representative diagnostic. Note that collecting more evidences conveniently
increases the confidence level but not necessarily narrow the confidence interval: a controversy
is established but cannot be prevented.

2.3 Anomaly Detection
We propose an anomaly detection, whose aim is to find any behaviour that does not conform to
the expected behaviour. We begin by modelling the normal behaviour of the target and define
an anomaly as any observed behaviour that does not conform the the normal/baseline model. A

7. In absence of detected attack, investigation ends.
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key challenge to searching for an anomaly lies in identifying which data are dissimilar to the rest
of the data set, since an individual piece of data can be considered as anomalous with respect
to the the larger whole. As an illustration, an anomaly may refer to credit card transaction
characterised by a very high amount of expense compared to the usual range of expenditure. A
contextual anomaly corresponds to a data instance that is anomalous only in a specific context.
A collective anomaly comprises a collection of instances; the individual instances are not by
themselves defined as anomalies but their concomitant occurrences, as a collection, is abnormal.
A Denial Of Service illustrates such an anomaly: individual events are not anomalies when they
occur sporadically over a large time frame.

In order to detect individual, context-dependant and collective anomalies, we investigate
the feasibility of applying machine learning techniques and in particular unsupervised learning,
considering an application that controls the access of users [138, 126]. To this ends, users are
provided active RFID tags which are used to monitor the user’s location. Given this specific
use case, anomalies are primarily detected based on spatial-temporal features rather than oper-
ational ones. Rather than relying on a simple statistical method, we select an advanced neural
network architecture permitting the construction of the user’s profile automatically i.e., with-
out involving users or experts. Note that such automatic training permits the easy addition
of (operational) features without modifying the core implementation. Based on an advanced
Kohonen’s map, our detection system detects any spoofing/cloning attack wherein an adversary
mimics an authentic tag and any usage of a robed tag since these intrusions, by assumption,
will deviate from normal user’s normal activity.

2.3.1 RFID System supporting access control
We propose an anomaly detection model that deals with an access control application in which
users working within a building are equipped with RFID tags which are used to monitor the
user’s location. The application records the user’s profile including the series of Cartesian co-
ordinates of that user so as to detect any intruder in the building.

(a) RFID tag. (b) RFID reader.

Our access control application [138, 126] consists of three main components:
• An RFID tag (Figure 2.1a)– a silicon microchip attached to an antennae and possibly

enriched with additional functionalities, e.g., sensing, storage, encryption – that outfits
the users.

• An RFID reader (Figure 2.1b) –a transceiver communicating with tags via radio frequency
and typically containing internal storage and processing capabilities (so as to perform
tasks on behalf of the tag), which is deployed within the building,

• A back-end database connected to the reader, which collects the information related to
the physically tagged persons.
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The above components are naturally subject to a broad range of threats [123], due to the
networked nature of RFID, their poor physical security as well as their insufficient resilience
against physical manipulation.

Security Flaws

A particularly common issue is related to the fact that RFID tags may be permanently or
temporally disabled. Possible ways of rendering a tag inoperable involve: (i) destroying the tag,
(ii) disabling the tag using the so-called kill command, (iii) covering the tag with an aluminium
shield that serves as a Faraday Cage, and (iv) preventing tags from communicating with readers
by generating an electromagnetic signal in the same range as the reader so as to cause jamming.
In order to safeguard RFID systems against low-tech attacks that (permanently or temporarily)
disable tags, additional countermeasures can be used such as increased physical security through
guards and cameras.

Another type of attack lies in cloning and spoofing an RFID tag. Cloning consists in repli-
cating the legitimate tag, which is reasonably easy given the wide availability of writable and
re-programmable tags. With a spoofing attack an adversary impersonates a valid RFID tag
to gain privileges. Spoofing requires a certain expertise; the attacker must (i) understand the
involved protocols, and (ii) gain access to the secrets (e.g., keys) used during the authentication.
Nonetheless if the RFID communication is unauthenticated, attackers may easily counterfeit
the identity of a legitimate reader so as to elicit sensitive information or modify data on RFID
tags.

The wireless nature of RFID makes eavesdropping one of the most serious threats. By
eavesdropping an attacker records communications (tag-to-reader and reader-to-tag) between
legitimate RFID tags and readers. The feasibility of this attack depends in particular on the
distance of the attacker from the legitimate RFID devices. For instance, the clandestine scanning
of the tag may take place wherever the read range permits it to do so. Such scanning remains
undetected (recall that a tag responds to the reader interrogation without alerting its owner).
In addition, once a reader powers a tag another reader may monitor the resulting tag emission
without putting a signal out itself, i.e., it eavesdrops within the detection range. A misbehaving
reader that harvests information from a well-behaving tag is the starting point of privacy
concerns, especially when the tag’s serial numbers are combined with personal data. Considering
the fact that a significant portion of RFID tags employ user-writeable memory, an adversary
can exploit this to modify or delete valuable information.

Generally speaking, the level of sophistication of RFID tags and readers depends of their
relative financial cost, which may impair their ability to provide advanced encryption and
authentication functions. This requires providing intrusion detection. In order to meet this
requirement we propose an anomaly detection system that identifies three types of attacks:
stolen, cloned and spoofed tags.

2.3.2 Anomaly Detector
Rather than simply relying on the simple statistical method, we select the Kohonen’s self-
organising maps [92] as an advanced neural network architecture that can build the users’
profiles as an ordered representation of spatial proximity among vectors of an unlabelled data
set. The justification for this choice is twofold: (i) Kohonen’s maps automatically categorise
the inputs provided during the training phase without supervision, and (ii) they allow easy
enrichment of the user profile, i.e., without necessitating substantial implementation changes.
Consequently, based on an advanced Kohonen’s map, our detection system identifies a spoofing
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attack wherein an adversary mimics an authentic tag and any usage of a robed tag because
these intrusions, by assumption, deviate from the normal usage of the users.

The primary challenge in anomaly detection lies in defining normal versus abnormal be-
haviour. An advantage of self-organising maps is that they can learn to discriminate between
normal and abnormal based on examples (i.e., training samples) and therefore requiring no ex-
plicit definition of these behaviours by the user. Our anomaly detection system is based on the
Kohonen map [92], a neural network that distinguishes itself by its unsupervised learning. An-
other convenient aspect is related to the fact that this map reduces the dimensions of the input
data from a (potentially) high dimension into 2- or 3-dimensional space (here 2-dimensional)
therefore allowing an easy visualisation and instinctive interpretation of the results.

The visible part of a Kohonen’s map consists of neurons initially arranged in a grid. Each
neuron is associated with a weight vector that visually corresponds to the neuron position in
the grid. The training consists in moving the neurons; this movement is based on attraction
strength determined by neighbourhood function. This neighbourhood function conveniently
preserves the topological properties of the input space and serves as a regularisation factor that
smooths the functional mapping. The low dimensionality of Kohonen Maps renders them useful
for visualisation. The neighbourhood function serves ordering the map by pulling units close
together in the map space toward each other. The resulting trained map reflects a mapping
from a higher-dimensional input space to a lower-dimensional map space. The self-organised
map serves partitioning the input space into convex regions of activity that are characterised
with the following property. Every point in the space is closer to the centroid of its region than
to the centroid of any other region. In the map, the centroids of the regions are defined by the
weight vectors.

As detailed in the following, anomaly detection identifies activities that vary from an es-
tablished pattern, following three main steps: (i) pre-processing the gathered data, (ii) creating
a knowledge model made up of the (previously) monitored activities, and (iii) subsequently
categorising the various activities relying on Kohonen maps.

Raw Data Pre-processing

The output of the RFID system corresponds to the trajectory of any subject sampled at dis-
crete time intervals t1, · · · , tk, · · · , tm with m defining the trajectory length. Any observation
is expressed as a set of m n-dimensional real vectors x = (x(t1), · · · , x(tk), · · · , x(tm)). A
trajectory is hence composed of spatial-temporal records, each record being primarily com-
posed of a geographical location in a 3D plan and a temporal attribute, i.e., a timestamp.
In addition to the above, extra pieces of information may be added or inferred from the
spatio-temporal records. For instance, they relate to the maximum speed, (estimated) at-
traction point, direction, movement pattern (e.g., loop, u-turn) and the average or standard
deviation of the aforementioned parameters. Data provided by the RFID system are further
filtered and normalised so as to fall in a specific [0, 1] range. In practice, filtered samples
are expressed as a vectors set in which each vector x = (x(t1), · · · , x(tk), · · · , x(tm)) ∈ Rm

are collected at t1, · · · , tk, · · · , · · · , tm. Each activity x(tk), is defined as an n-dimensional
vector xT (tk) = (x1(tk), · · · , xi(tk), · · · , xn(tk)), which once normalised is denoted x′T (tk) =
(x′1(tk), · · · , x′i(tk), · · · , x′n(tk)) with x′i = xi(tk

arg maxj∈[1,n](xij(tk)) . Relying on these filtering and nor-
malisation processes, work-less samples are removed and each filtered sample is of equal footing
and can hence be exploited during the training phase in order to create a Kohonen map.
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Training phase

A training phase is needed in order to generate a map. The resulting Kohonen map w1, · · · , ws
of size s corresponds to a topological 2-dimensional array of neurons originally initialised with
random values. This map is intended to categorise the normalised samples x′(tk) (with 1 ≤ k ≤
m) provided as input. Each input vector x′(tk) is therefore compared with each neuron forming
the Kohonen map and the distance between the input vector and neuron is computed and the
closest neuron is selected as the winner. The topological structure of the Kohonen map is then
updated: neurons that are topologically close to the winner move towards it. Consequently the
resulting Kohonen map reflects a categorisation (clustering) of the samples. More specifically,
considering a measure whose norm is noted ||, the distance between an input vector x′(tk) and
the synaptic vector of each neuron wi(tk) of the map is computed and the winner g(x′(tk))
selected according to the following law:

g(x′(tk)) = argmini∈[1,s]||x′(tk), wi(tk)||. (2.19)

Afterwards the neurons that are topologically close to the identified neuron move in the direction
of the winner. To achieve this the neuron wi is updated as follows:

wi(tk+1 = wi(tk) + πi,g(x′(tk)(tk)η(tk)x′(tk)− wi(tk) (2.20)

with (i, j, k) ∈ [1, s]2 × [1,m], η(tk) defining an adaptation factor that controls the degree of
change imposed to the neuron’s vector, and πi,g(x′(tk)(tk) a neighbouring function centred around
the winner g(x′(tk).

The basic idea is that the adaptation factor η(tk) decreases monotonically as the learning
phase progresses so as to guarantee a convergence of the weighted neuron’s vector towards
a stable state [98]. To this end η(tk) = η0 exp(tk/tm). Similarly, the neighbouring function
πi,g(x′(t) decreases as t evolves until the winning neuron is the only neuron that has its weight
significantly updated. For this purpose πi,g(x′(t) is defined as a symmetric function following a
Gaussian form with a standard deviation σ decaying exponentially with time:

πi,g(x′(tk)(tk) = exp

(
||(x′(tk), wi)||

2σ2(tk)

)
(2.21)

and,

σ(tk) = σ0 exp

(
−tk log(σ0)

tm

)
(2.22)

Kohonen algorithm is applicable to large data set given that: (i) the computational complex-
ity scales linearly with the number of samples m, and (ii) limited memory is necessary to record
the set of training vectors x′(t1), · · · , x′(tk), · · · , x′(tm) and the Kohonen map w1, · · · , ws). As a
2D-grid a Kohonen map is of great help in visualising and inspecting the user behaviour recall-
ing that the structure of Kohonen map reflects the structure of the original training samples.
By employing the trained Kohonen map, which reflects the normal activity of a subject, any
deviation from that normal activity can be easily detected and identified as an anomaly.

Decision Making

If the distance between the observed and normal behaviour is greater than a given threshold,
then the observed behaviour is intuitively defined as anomalous. Given our use case - RFID-
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enabled control access system attempting to analyse the user location - we distinguish two
sources of potential anomalies: the user’s position and its trajectory. A position is said to be
anomalous if it does not belong to any of the classification defined during the training, i.e., if
it does not pertain to any of the clusters centred on the wining neurons defined as part of the
training phase. By extension we define a trajectory as anomalous if a large percentage of the
user’s positions are anomalous, i.e., if the pre-processed observations do not pertain to any of
the clusters centred around the winning neurons g(x′(tk)) and delimited by the radius defined
as the maximum distance separating the winning node g(x′(tk)) from its neighbouring neurons
(i.e., the neurons that belong to Dg(x′(tk))). By extension, a trajectory o′(t), · · · , o′(t + p) is
anomalous if the ratio of anomalous positions exceeds a given threshold defined by β(r).

The computational complexity related to detecting a position and then its trajectory scales
linearly to the number of winning vectors g(x′(tk)) (bounded by m). In addition to the memory
allocated to the training phase, little additional memory (essentially just the index i of the
winning neurons and their established radii) is used during the anomaly detection.

Identifying trajectories that exhibit irregular or even suspicious traits is crucial in many
applications including access control and intrusion detection. In such scenarios, unsupervised
learning is the most advantageous model when learning from many regular data instances,
as the algorithm thoroughly approximates the underlying distribution and produces a concise
model of normality. As a consequence, unsupervised learning method are often used to detect
anomalies.

2.4 Performance Evaluation
In the following section we evaluate performances associated with the intrusion detection system
(§ 2.4.1) and the trust system (§ 2.4.2).

2.4.1 Signature-based Intrusion Detection
In order to evaluate the performance of our intrusion detection system (§2.2) we simulate a
mobile ad hoc network using the Ns3 network simulator8 [133] and we virtualise each device
using Lxc9 [23]. The MANET area is defined by a squared area of S = 310 × 310 m2 and
is comprised of N = 30 devices split into 25 well-behaving devices and 5 intruders, the latter
of whom repeatedly launch the implemented link spoofing attack10. Devices move randomly,
following a randomly chosen direction, at a given speed that is the same for all the devices.
When a device hits the network boundaries it rebounds following a reflexive angle. Nodes use
the Olsr protocol, communicating via Ieee 802.11a with transmissions that have a range of
90m. Data traffic is further simulated using the V4PingHelper application of NS3; the nodes
exchanges 56 bytes Icmp echo requests to one another and wait for 1s before sending it again.

During our experiments we evaluate the performance of our IDS in terms of:

• The number of intrusions that are successfully detected.

• The number of false positives that occur when a legitimate node is wrongly designated
as an intruder.

8. http://www.nsnam.org
9. http://lxc.sourceforge.net

10. In our experiments, the number of successful intrusions varies between 15 and 33, according the specificity
of the simulated network.

24



2.4. Performance Evaluation

 0

 20

 40

 60

 80

 100

 6  8  10  12  14  16

P
e

rc
e

n
ta

g
e

 o
f 

D
e

te
c
te

d
 I

n
tr

u
s
io

n
s
 (

%
)

Density (average number of neighbors)

Percentage of Detection
Average of Detection

(a) Detection accuracy.
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(b) False positive rate.

 0

 10

 20

 30

 40

 50

 6  8  10  12  14  16

A
v
e

ra
g

e
 i
n

c
re

m
e

n
t 

in
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

Density (average number of neighbors)

(c) Memory usage.

 0.25

 0.5

 1

 5

 20

 50

 100

 6  8  10  12  14  16

P
e

rc
e

n
ta

g
e

 o
f 

ID
A

R
 T

ra
ff

ic
 t

o
 O

L
S

R
 T

ra
ff

ic
(%

)

Density (average number of neighbors)

(d) Bandwidth usage.

Figure 2.2 – Performances of our intrusion detection system depending on the Network Density.

• Detection overhead, referring to the memory usage and network traffic that are generated
by our IDS.

Using these performance criteria, we consider the impacts of the network density (Figure 2.2)
and the device mobility (Figure 2.3). The network density corresponds to the average number
of neighbours, which is defined in [75] as N×π×T 2

x

S
.

Impact of the density

At first glance, the rate of intrusions that are detected is conveniently high (Figure 2.2-a)
and the false positive rate remains low (Figure 2.2-b). Specifically, the detection rate increases
slightly from 93.5% to a maximum of 96.3% when the density varies from 6 to 8 neighbours
because the attack is seen by a larger number of neighbours. Then a slow decrease is observed
when density is above 8. The decline is caused by a higher number of collisions that partially
prevent the collection of evidence and slows down intrusion detection. Still the detection rate
always remains greater than 80%. As visible in Figure 2.2-b, the percentage of false positives
is on average always under 5.9%. Further analysis reveal that many false positives occur due
to the lack of synchronisation among nodes: some links are valid (i.e., existing) for some nodes
and expired (i.e., absent) for others. To address this problem, the period during which links
are considered valid should be slightly lengthened, as in [164]. While memory usage (Figure
2.2-c) gently fluctuates between 17.6MB and 22.2MB, the traffic generated by our intrusion
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detection system (Figure 2.2-d) is almost negligible. Overall, there is clearly a good trade-off
between detection accuracy and resource consumption (i.e., computing and bandwidth usage)
associated with the distributed detection. When the density is high, our intrusion detection
system is confronted with a typical limitation of a constrained network: the traffic volume –
most of which stems from the routing protocol and the application – is too high and cannot
be supported by the network. In this situation, MANET can no longer fulfil its mission and
intrusions are hardly discerned.
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(b) False positive rate.
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Figure 2.3 – Performance associated with our intrusion detection System, considering a varying
Mobility given a network density of 8 neighbours.

Impact of mobility

From the standpoint of intrusion detection, mobility is the biggest challenge. When node mo-
bility increases, the intrusion detection rate decreases (Figure 2.3-a) and false positive rate
(Figure (2.3-b) falls due to the constantly changing topology. However a high detection rate
remains (e.g., about 70.7% with a moving speed of 8m/s, i.e., around 28.7 kilometers/hour
equivalent to 17.89 miles/hour). The memory usage (Figure 2.3-c) rises steadily from 17.6MB
to 26.5MB, which is a reasonable figure even for resource-limited devices. Traffic remains very
low compared to the Olsr. Overall, our evaluation shows that the intrusion detection system
is characterised by a high detection rate and a low false positive rate even under harsh con-
ditions. While the traffic overhead is negligible compared to OLSR, the fairly small memory
usage means that the intrusion detection can be undertaken by resource-limited devices.
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(a) Trustworthiness. (b) Impact of the forgetting factor on trust-
worthiness.

Figure 2.4 – Trust values computed by the attacked node.

(a) Sampling Error. (b) Intrusion Assessment.

Figure 2.5 – Confidence associated with attack assesment.

2.4.2 Trustworthiness and Confidence

In the following, we consider a network of 15 nodes, including 10 well-behaving nodes, 4 collud-
ing nodes providing incorrect observations, and one attacker performing a link spoofing attack
against a well-behaving node. The link spoofing attack engages (Figure 2.4a) and then ceases
(Figure 2.4b). During the attack (Figure 2.4a), trust values of misbehaving nodes rapidly de-
crease regardless of their initial values and once the attack stops (Figure 2.4b), their trust values
increase very slowly. This reflects the defensive nature of our trust system: it takes a lot of time
to regain lost confidence while it is very easy to lose. During the attack and after, the increase
of the trust associated with well-behaving is slow, especially for the well-behaved nodes that
nonetheless had a small original trust value.

Rather than questioning all the neighbours, the IDS randomly selects some of the neighbours
that are interogated. The diagnostic result (Figure 2.5-b) is quickly established. As expected, the
confidence interval gets narrower (Figure 2.5-a) over time because more evidence are collected
and the sampling error (Figure 2.6-b) drastically decreases. When the sampling error and
the confidence interval are both bellow a certain threshold, it is recommended to reduce the
collection of evidence, to avoid unnecessarily overloading the network (Figure 2.6).

As long as liars constitute a minority (i.e., less that 50% of the nodes), trust is correctly
assessed (Figure 2.6): as an illustration, attack is detected while 43.2% of the devices are lying.
Attack assessment takes longer when the amount of liars increases because the trust values of
the liars diminish dramatically in the last rounds. Regardless of the percentage of liars, the
diagnostic result converges to -0.8.
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(a) Bandwidth Usage. (b) Impact of liars on detection.

Figure 2.6 – Bandwith usage and impact of liars.

2.5 Conclusion
In an increasingly interconnected world, an attack can be launched and massively spread from
any device. Intrusion Detection Systems (IDS) hence play a crucial role on account of their abil-
ity to protect every device in a networked system including equipment, hardware and software,
by forming a digital perimeter that partially or fully guards a network. We have approached
the problem of intrusion detection in several contexts, spanning the routing in an ad hoc net-
work to an RFID-based application controlling access. We adapted the IDS organisation to
the contexts, leveraging an extremely distributed structure to deal with an infrastructure-less
ad hoc network, and relying on a remote and centralised IDS with highly-contained RFIDs
and an infrastructure-based IT network. We first introduced a misuse intrusion detection in
which attack signatures were manually crafted in advance. We proposed an unusual approach
to detect intrusions in a network, which consists in relying on the logs generated by the OLSR
protocol. Logs give insight into the protocol’s state and on the device view concerning the
network topology, without requiring a change in implementation. After modeling the attacks
and designing the corresponding attack signatures we turned our attention to network mon-
itoring, as intrusion detection comes with awareness and continuous vigilance requirements.
While monitoring is necessary, the constant surveillance of a network implies a prohibitive
bandwidth consumption whereas the continuous flow of information should be regulated. To
this end, we have proposed a statistical approach by leveraging the confidence level and confi-
dence interval in order to fine-tune the evidence gathering process without sacrificing detection
accuracy. In open and infrastructure-less MANETs we must also deal with the lack of faith-
fulness and non-corruptibility of information provided by other peers. Thus we introduced an
information-theoretic trust system that evaluates trust based on previous interactions and con-
siders recommendations given by others in order to increase the robustness of the IDS. Overall,
our experiments highlighted that a signature-based intrusion detection system is suitable for
tracking attacks, and in particular those targeting routing protocols in MANETs; a high de-
tection rate and a low false positives rate are imperative. Nonetheless, anticipating the attacks
and envisioning any possible inappropriate behaviours is not always practicable. In such a case,
anomaly detection systems adequately complement signature-based IDS. Following, we intro-
duced an anomaly detection system that identifies deviations from normal behaviour. First,
subjects are equipped with RFID tags in order to be constantly located and monitored then, a
user’s profile is built, relying on Kohonen maps, which constitute an efficient method for auto-
matically categorising and further comparing the tagged behaviour against the normal user’s
behaviour (as expressed in the user’s profile). Our experiments [66] showed that unsupervised
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machine learning used in combination with the functionality of an IDS forms a robust defence
against possible attacks by predicting them based on past events. Even a simple Kohonen map,
trained based on normal data, detects anomalous features that the system is exposed to. In
the course of our research we observed that Kohonen maps may deal with multiple users. More
features could easily be integrated leveraging vectorisation techniques. As long as the intrusion
contaminates only a fraction of the training set and generates sufficiently distinct vectors, a
map remains dominated by normal activity.
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Chapter 3

Enhancing the Observation Quality
through Calibration

3.1 Introduction

In the light of the ever expanding importance of IoT, a noticeable trend is to promote the
adoption of IoT technologies, to support the sustainable development of urban spaces, thus
realising the so-called vision of smart spaces and smart cities. In particular, IoT technologies
contribute to the improvement of the services the city delivers and thereby respond to a number
of environmental challenges generated by the city itself (e.g., pollution) or caused by natural
phenomena (e.g., global warming). With this in prospect, various research projects, including
those in which I was involved in [1, 64, 144], primarily rely on IoT infrastructures to manage
and optimise some services, the oversight of public spaces (e.g., campus, building, parking),
environmental and pollution monitoring, surveillance for disaster preparedness and efficient
first responses,as well as the preservation of cultural heritage. The delivering of problem-solving
services requires the joint effort and engagement of a wide range of persons, communities,
organisations and stakeholders. This also demands a(n) (r)evolution of the relationship between
the participants. These needs led to the development of the crowdsensing movement wherein
users (citizens, groups, communities) engage in some collaborative data collection, analysis and
decision making. In practice, citizens rely on the small and low-cost sensors embedded in –or
connected to– their smartphones so as to e.g., help identifying environmental problems, alert
about an imminent danger, collaboratively monitor road traffic, or trace the evolution of an
epidemic.

Together, IoT-based sensing and mobile crowdsensing gather some observations at a fine
grain, based on the fixed things of the urban infrastructure and on the mobile devices that
people carry. On the one hand, stationary sensors (e.g., weather stations, cameras) relay their
(a priori) high-quality measurements to data sinks that redirect the resulting traffic towards the
cloud (e.g., a back-end server typically owned by some public organisations) – this is the typical
setting involving a secured wireless sensor network connected to a wired infrastructure. On the
other hand, mobile smartphones opportunistically publish their data to a (crowdsensing) server
according to the connectivity allowed by their data plan. Leveraging both (mobile) individually-
owned and (primarily fixed) organisation-owned sensors, smart cities may henceforth oversee
a physical phenomenon at a large-scale. The resulting breed of multi-purpose applications
(w.r.t apps), has shifted and keeps shifting the urban areas towards environmental, social and
sustainable paths.

Nonetheless, such a vision comes with a fair share of challenges. The financial cost associated
to the maintenance of the IoT infrastructure is high; limited budgets lead to a partial instru-
mentation of the public space. The spatio-temporal coverage problem is typically addressed by
leveraging mobile crowdsensors that conveniently fill the gap thanks to the mobility of the par-
ticipants. Morever, leveraging crowdsensing is a double-edged sword as crowdsensing is highly
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constrained by the choice of the sensing hardware: off-the-shelf sensors/actuators outfit or are
connected to the smartphones. In respect to this, the prevalence of low-cost and multi-purpose
crowdsensing platforms conducts to discrepancy in the quality of observations.

To overcome this issue, a classical approach consists in calibrating sensors. Yet, we shall
not solely count on the manufacturers to do so for several reasons: (i) manufacturers calibrate
sensors within laboratories, under a specific range of conditions, using a controlled stimuli
serving as ground-truth data; (ii) in many cases, sensors are delivered uncalibrated and are
shipped along with a data-sheet that briefly sketches some generic calibration values; (iii)
multi-purpose sensing devices (e.g., smartphones) are not accompanied with a data-sheet nor
even a mention to the manufacturer, version or brand of the sensors/actuators.

Obviously, any non calibrated sensors, whether mobile or static, need to be calibrated. In
addition, calibration in the field is essential to ensure a proper operation of the sensing device,
as aging, external conditions (such as solar radiation) and other factors (e.g., activity of the
end user) affect sensoring the measurements over time.

In situ calibration is essential to preserve data quality, yet challenging, for several reasons.
Firstly, sensors are usually scattered over large areas and operate across long periods of time.
Thus, they shall be checked and calibrated on a regular basis to preserve the measurements’
quality. Secondly, massive amounts of sensors need to calibrate. The required calibration entails
a significant upkeep of the sensors. A team of dedicated technicians needs to conduct the
necessary parameterisations and the related manipulations in the field. This modus operandi
is particularly well suited for the calibration of the IoT infrastructure. The situation is more
problematic with mobile crowdsensing because participants do not hold the required expertise.

While essential, yet challenging, the calibration of (crow)sensors in the field has received lit-
tle attention. All the proposed solutions [173, 171, 160, 114, 76, 31, 152, 107] perform a pairwise
calibration: the measurements of the calibrated device then serve calibrating the non-calibrated
device. This calibration applies with static and mobile sensors. Within a dense but very small-
scale Wireless Sensor Network (WSN), the inaccurate readings of an uncalibrated sensor can be
compensated using the measurements provided by a nearby (calibrated) sensor [173, 171, 160].
Such calibration eliminates the need for calibrating each sensor individually through the iter-
ative and automatic calibration of sensor pairs. However, the calibration approach requires a
dense deployment and is unpractical with large-scale deployments. With mobile sensing, a cali-
bration process happens when a mobile sensing device meets another sensing device, either in a
planned manner [114] or opportunistically [76, 31, 152, 107], depending on whether the mobile
user is intentionally guided. In [114], a single mobile user, which is guided, is featured with
a high-fidelity sensor, so that user calibrates static sensors. The problem then lies in finding
the shortest path that the mobile user follows. With mobile calibration, it is assumed that two
sensors that move freely, may opportunistically meet. In such an occurrence, the two devices
sense the same phenomenon if their relative distance is inferior to a given threshold [76, 31, 152]
or if they belong to the same spatial area [107], which is defined by, e.g., a cell. The sequence
of meetings/calibrations constitutes a so-called calibration path. The best calibration path is
further assessed using the model of pairwise rendezvous introduced in [31], which represents
the meetings as a matrix where a non-zero edge represents a pairwise calibration. Based on this
matrix, the shortest calibration path starting at a high fidelity sensor, is selected.

In contrast to the above efforts, we take a more holistic approach to cost-effective calibration
in smart spaces at scale. Our objective is to enable the effective calibration of the connected
nodes, from the fixed Things that make up the IoT infrastructure to the mobile Things that
people carry. To overcome such an issue, our approach is two-fold:

• We propose (§3.2) to send mobile units (e.g., trained personnel) equipped with high-
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quality (more expensive) and freshly-calibrated reference sensors so as to carry out cal-
ibration in the field. One can thus generate “sufficiently accurate” knowledge over time
through the frequent calibration of the sensors in the field; however, this might result
in increased maintenance costs! Careful planning of the calibration process is therefore
essential for the cost-effective monitoring of the smart spaces – this is increasingly im-
portant as the number and size of smart spaces grow. We address cost-accuracy issues
that arise in the deployment of affordable IoT systems, with the aim of developing a plan
for the calibration of a large number of often inaccurate sensors in a smart space using
high-integrity reference sensors that are mobile, such that (a) the deployment and oper-
ational costs for calibration are minimised, while (b) maintaining a sufficient observation
accuracy from the sensor measurements. We take into consideration the presence of het-
erogeneous sensor types with varying calibration characteristics. We then program the
calibration with respect to an observed phenomenon so as to maintain an adequate sens-
ing accuracy while minimising the required effort from the mobile calibrators. We exploit
the locality of IoT infrastructure in place – we leverage the fact that a static sensor may
calibrate another nearby static sensor and thereby foster the automatic calibration of a
small-scale wireless sensor network. Our proposed approach is application-aware and is
able to take into account diverse sensing needs (sensor type, sensing accuracy) presented
by the context at hand.
Going one step further, we capitalise on the IoT-based infrastructure whose sensors may
opportunistically serve as reference to provide a bootstrapping calibration to the mobile
crowdsensors that are passing by.

• Afterwards, we propose a distributed opportunistic calibration system (§3.3) that com-
pensates the crowdsensor errors while alleviating the need for visiting each crowsensor
to manually (re-)calibrate. Precisely, the distributed calibration system opportunistically
leverages the presence of the nearby crowdsensors that monitor the same phenomenon. All
the (macro-)calibration approaches introduced so far, operate either in an opportunistic
or planned manner, and perform a pairwise calibration when two sensors are closeby, or
meet. Instead, our solution leverages all the calibrated crowdsensors in the relevant sens-
ing range in order to implement a multi-party calibration, which –we show– improves the
performance of the calibration in terms of the resulting sensing accuracy. Our calibration
system hence generalises the automated calibration to the multi-party case. Following the
opportunistic calibration of crowdsensors as they meet, we introduce a multi-hop, multi-
party calibration algorithm that is such that the history of the calibrated crowdsensors is
used to assess the best calibration hyperpath, which is the one that minimises the accu-
mulated calibration error. Such an opportunist calibration approach is particularly well
suited to mobile crowdsensing scenarios wherein the crowd senses and meets in public
place. Last but not the least,

Once calibrated, the sensors, - static and mobile – are operational and the collection of the
observations accross time and space can begin.

3.2 Planned Calibration of an IoT Infrastructure
Note: This work results from a collaboration with the Distributed Systems Middleware (DSM)
Group, under Professor Nalini Venkatasubramanian of the Department of Information & Com-
puter Science at the University of California Irvine.
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Figure 3.1 – Calibration planning over a long maintenance period.

Cost-effectively planning the on-site calibration of IoT devices helps in the sustainable long
term operation of deployments. Our aim is to develop a plan (Figure 3.1) for the calibration
of a large number of inexpensive sensors in a smart space using high-integrity reference sensors
that are mobile, such that (a) the deployment and operational costs for calibration are min-
imised while (b) maintaining a sufficient observation accuracy from the sensor measurements
over a given – possibly long – maintenance period T . More realistically, given the knowledge of
a sensor’s degradation characteristics, we program its calibration with respect to an observed
phenomenon so as to maintain an adequate sensing accuracy while minimising the required
effort from the mobile calibrators.

With that goal in mind, (i) we firstly partition the space to form calibration spots by
exploiting the locality of in-situ sensors; a sensor can calibrate other sensors of the same type
at the same spot. (ii) Subsequently, we carry out multiple iterations of calibration during the
given maintenance period T . Our challenge lies in determining the number of iterations and the
time at which each iteration should be executed. Furthermore, at each iteration we determine:
the sensors to be calibrated, the number of mobile calibrators needed, and the paths taken by
each mobile calibrator. The sensor calibration is then carried out accordingly over the least
number of Ω iterations so that the overall cost over T is kept to a minimum and ensures that
all the sensors always comply with the data accuracy requirements.

We formalise the above (Section 3.2.1) as a long-term multi-sensor calibration planning
problem, which we solve using a two-phase iterative solution (Section 3.2.2) and a family of
heuristic methods to enable the cost-effective planning of multi-sensor calibration in large smart
spaces and over longer time periods (Section 3.2.3).

3.2.1 Multi-Sensor Calibration Planning
A mobile calibrator (or simply a calibrator) mi is a person who carries some sensors and
visits the field to calibrate the deployed low-cost sensors. Sensor calibration takes place when
a calibrator mi visits a node nj and stays at the spot for long enough to calibrate a sensor nj,k.

A node nj, j=1, 2, . . . , N , corresponds to a IoT device that embeds one or several types
of low-cost sensors. A sensor type sk, k=1, 2, . . . , K, refers to the capability of detecting a
certain type of phenomenon (e.g., temperature, gas concentration), which usually requires a
specific kind (or combination) of low-cost sensor(s). Afterwards, we denote an individual sensor
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by nj,k, and we introduce the binary sensor presence matrix QN×K to characterise the set of
available sensors so that Qj,k=1 (resp. 0) if sensor type sk is present (resp. absent) on node nj.

Calibration-Related Terms

Each sensor type sk is associated with a calibration time τk that ranges from a few seconds
to several minutes, depending on the phenomenon detected by the type of sensor and the cal-
ibration complexity. We associate each sensor type sk with a calibration period Tk, which
characterises the maximum duration, during which the sensors remain valid (i.e., the measure-
ments have sufficient accuracy) once calibrated. The period depends on the usage scenario and
may be learned from empirical studies.

During the operation, each individual sensor nj,k is associated with a time to next calibra-
tion (TTNC) Fj,k, which indicates how soon the sensor needs to be (re-)calibrated. The TTNC
matrix FN×K then represents the TTNCs of all the sensors. F is a function of time, where each
Fj,k decreases between iterations and is reset to Tk when nj,k is calibrated. We further denote
F[ω−] (resp. F[ω+]), the matrix TTNC immediately before (resp. after) the iteration ω. Note
that F is non-negative, i.e., Fj,k[ω±]>0, ∀(j, k), ω∈N+. If node nj does not hold a sensor of
type sk, the corresponding TTNC is infinite.

A sensor selection is a collection of sensors (selected for calibration) represented by a
binary matrix ΓN×K [ω], where Γj,k6Qj,k. If sensor nj,k is selected for calibration at iteration ω
(i.e., Γj,k[ω]=1), then, at the end of this iteration, its TTNC is reset to its calibration period
Tk, i.e., Fj,k[ω+]=Tk; otherwise, its TTNC stays unchanged (during iteration ω):

F[ω+] = Γ[ω] ◦TN + (1− Γ[ω]) ◦ F[ω−] (3.1)

Where TN is the nodal calibration period matrix that consists ofN identical rows of [T1, T2, · · · , TK ];
“◦” is the element-wise multiplication of matrices. Also, special needs and unexpected changes
could be easily addressed by altering the TTNC matrix. Hence, the time to next iteration
(TTNI) after ω is the minimum TTNC of all the sensors, i.e., tω+1−tω= min F[ω+]; thus, the
TTNC matrix immediately before the next iteration is F[(ω+1)−]=F[ω+]−min F[ω+].

Smart-Space-Related Terms

Given the node locations D, we can derive the spot selection vector hL from the sensor
selection Γ. A spot is selected for iteration ω if any sensor on any node deployed at that spot
is selected in Γ[ω] i.e.,

hl[ω] =
N∨
j=1

K∨
k=1

Γj,k[ω]·Dj,l (3.2)

In each iteration, the path of a calibrator is an ordered sequence that starts from the depot
and visits a set of non-repeating selected spots. It can be represented as a binary matrix WL×L,
where Wl1,l2=1 if the calibrator visits spot νl2 immediately after visiting νl1 ; or 0 otherwise.
The path of calibrator mi in iteration ω is denoted Wi[ω]. Each selected spot is visited exactly
once by one calibrator:

M∑
i=1

L∑
l=1

Wl,l0,i[ω] = hl0 , l0 = 2, 3, . . . , L (3.3)
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3.2.2 Multi-Sensor Calibration Optimisation Problem

We now introduce the multi-sensor calibration planning problem to minimise the average
cost of operation over the maintenance period T . The operation cost of any iteration ω, denoted
C[ω] incurs three following types of costs:

• The iteration overhead Cit is the cost related to the preparation, equipment, and the
transport to the deployment.

• The calibration cost Cc reflects the time and effort required to conduct sensor calibration
while staying at the spots. Cc[ω]=∑

iCc,i[ω].

• The movement cost Cw is associated with the travel time of the calibrators while moving
between spots. Cw[ω]=∑

iCw,i[ω].

The total operation cost is the weighted sum of:

C[ω] = µ0·Cit + µc·Cc[ω] + µw·Cw[ω] (3.4)

The calibration cost Cc reflects the time and effort it takes to conduct sensor calibration while
staying at the spots. The cost Cc,i[ω] of a specific calibrator mi in iteration ω is computed based
on a given selection of sensors Γ[ω]. We further assume that the calibration that happens at the
same spot is done in parallel. Thus, the calibration time that mi spends at spot νl equals the
maximum τk of all selected sensors at that spot (i.e., Γj,k=1 and Dj,l=1). Then Cc,i[ω] equals
the sum of the calibration times at all the spots assigned to mi:

Cc,i[ω] =
L∑
l=1

(
max
j,k

(
Dj,l·Γj,k[ω]·τk

)
·
L∑
l′=1

Wl,l′,i[ω]
)

(3.5)

The movement time Cw,i[ω] of a single calibrator mi in iteration ω can be computed from the
map G and the calibrator’s path Wi[ω]. It equals the sum of the weights on the edges between
all the consecutive pairs of spots visited by the calibrator:

Cw,i[ω] =
L∑

l1=1

L∑
l2=1

(
Wl1,l2,i[ω]·Gl1,l2

)
(3.6)

Problem formulation of the multi-sensor calibration planning

Our multi-sensor calibration planning problem, which aims at minimising the average
cost of operation over the maintenance period, is formulated as follows: Given the time span
T , the map G, the location matrix D and the sensor presence matrix Q of all the nodes, the
calibration time τk and the calibration period Tk of all the sensor types, and the initial TTNC
matrix F[1−]; find the total number of iterations Ω, and for each iteration ω=1, 2, ...,Ω, find the
time tω it takes place, the sensor selection Γ[ω], and the number and the paths of calibrations
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{W[ω]}; such that the average cost of all iterations over the time span T is minimised:

min 1
T
·

Ω∑
ω=1

C(Γ[ω], {W[ω]}) (3.7)

s.t. t1 = 0
Γj,k[ω] ∈ {0, 1}, ∀ω,∀j,∀k
Wl1,l2,i[ω] ∈ {0, 1}, ∀ω,∀i,∀(l1, l2)
Fj,k[ω−] > 0, ∀ω,∀j,∀k
Fj,k[ω+] > 0, ∀ω,∀j,∀k
Γj,k[ω] 6 Qj,k, ∀ω,∀j,∀k
F[ω+] = Γ[ω] ◦TN + (1− Γ[ω]) ◦ F[ω−], ∀ω
F[(ω+1)−] = F[ω+]−min F[ω+], ∀ω
tω+1 = tω + min F[ω+], ∀ω
tΩ + min F[Ω+] > T (3.8)

hl[ω] =
N∨
j=1

K∨
k=1

Γj,k[ω] ·Dj,l, ∀ω,∀l (3.9)

M∑
i=1

L∑
l=1

Wl,l0,i[ω] = hl0 , l0=2, 3, . . . , L, ∀ω (3.10)

Ci(Γ[ω],Wi[ω]) 6 ĉ, ∀ω,∀i (3.11)
{W[ω]} are valid path(s): constraints in 3.2.3 apply.

where C[ω] is representative of the total cost of iteration ω given by Equation (3.4), which de-
pends on the sensor selection Γ and the calibrators’ paths {W[ω]}, i.e., C[ω]= C(Γ[ω], {W[ω]});
obviously, it also depends on problem inputs (i.e., G, D, Q, etc.) which are hidden for cleaner
expressions. The unnumbered constraints relate to the definition of sensor selection and TTNC.
Constraint (3.8) says the iterations need to cover the entire time span of T ; (3.9) and (3.10)
make sure all the spots with selected sensors in Γ are visited in {W}; (3.11) says no calibrator
should work for longer than ĉ in any iteration. Additional constraints ensure that {W} are
valid path(s).

The sensor calibration planning problem is NP-hard. It tries to minimise the total cost of
all iterations while the choices of early iterations can affect and limit the choices of latter ones.
Moreover, the cost of each iteration C[ω] involves a movement time Cw[ω], which also needs
to be minimised, and thus requires an optimisation on the paths of the calibrators, which is a
variant of the Multiple Travelling Salesman Problem (mTSP) that is known to be NP-hard.

3.2.3 Solutions and Derived Algorithms
Our formulation suggests we find Γ[ω] (sensor selection) and a path plan {W[ω]} (path plan)
simultaneously for all iterations. However, if we know which spots the calibrators need to visit,
we can optimise the paths to visit them accordingly. Hence, we attempt a two-phase local
optimisation on the single-iteration average cost, C[ω]/(tω+1−tω), where we decouple the
optimisation of Γ[ω] and {W[ω]}. Accordingly, for each iteration we have a sensor selection
planning phase and a multi-path planning phase. In the selection planning phase, given
the initial TTNC matrix F[ω−], we optimise the sensor selection Γ, from which we derive the
set of selected spots H, which is then used in the path planning phase to decide the number of
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calibrators and the optimal path(s) to visit the selected spots.

Sensor Selection Planning Algorithms

Leveraging the discrete nature of TTNC and the definition of TTNI (time to next iteration), we
propose the TTNI-driven local optimisation algorithm. The intuition behind this algorithm is
to exhaust the possible values of TTNI (i.e., tω+1−tω) and find the “cheapest” one to fulfil. The
procedure of the TTNI-driven local optimisation involves the following steps: (1) Determine
all the possible values of TTNI that could result from any possible sensor selection in this
iteration. The minimum TTNI candidate is min{Fj,k[ω−] | Qj,k=1∧Fj,k[ω−]>0}, selecting only
the sensors that need immediate calibration. The maximum TTNI candidate is minTk, selecting
all sensors. All values in F[ω−] between them become TTNI candidates. In the worst case, the
number of TTNI candidates is O(N ·K) (2) For each TTNI candidate Tcand, tentatively assume
it to be the desired TTNI and create the minimum selection of sensors to meet the TTNI, i.e.,
let Γj,k=1 if Qj,k=1 and Fj,k[ω−]<Tcand; then add all the sensors that are co-located with the
selected sensors and that do not induce extra time for calibration, because their calibration
is done in parallel, if it takes a shorter time). Generating Γ from Tcand takes O(N ·K+N ·L)
time. Compute the single-iteration average cost from Γ. (3) Select the TTNI candidate that
gives the minimum average cost, and its corresponding Γ is the output of the algorithm. The
worst-case running time excluding the time used to compute or estimate the movement time,
is O(N2·K2+N2·K·L).
If during step (2) we are able to compute the optimal paths of calibrators, we will compute the
best cost evaluation for each selection and find the local optima.

Multiple-Path Planning Algorithms

The objective of the multi-path planning problem is to generate a set of paths {W[ω]} of
minimum cost (i.e., movement time Cw[ω]) for the selected spots yielded by the sensor selection
Γ[ω]. It is a variant of the classic mTSP or VRP: we determine the number of calibrators based
on the demand instead of having the numberm of travellers given, as in mTSP. Also, evaluating
the calibrator workload constraint involves the movement time of individual calibrators, which
adds to the complexity of solutions. Hence, we derive the following mixed-integer-programming
(MIP) formulation of the multi-path planning problem based on a flow-based three-index MIP
formulation of mTSP [19], adding appropriate modifications to match our assumptions and
constraints: Given a map G, the location of the nodes D, the sensor selection Γ, and the
calibration time τk, ∀k; find WL×L×M and helper variables UL×M to

min
L∑

l1=1

L∑
l2=1

(
Gl1,l2 ·

M∑
i=1

Wl1,l2,i

)
(3.12)

s.t. Wl1,l2,i ∈ {0, 1}, ∀i, ∀(l1, l2)
Wl,l,i = 0, ∀l=2, 3, . . . , L, ∀i∑L

l2=1W1,l2,i = 1, ∀i∑L
l1=1Wl1,l,i −

∑L
l2=1Wl,l2,i = 0, ∀i, ∀l∑L

l1=1
∑L
i=1Wl1,l2,i = hl, ∀l2 (3.13)

ul,i > 2, ∀i, ∀l
(3.14)

38



3.2. Planned Calibration of an IoT Infrastructure

ul1,i − ul1,i + 1− (L− 1)·(1−Wl1,l2,i) 6 0,∀i,∀(l1, l2)∑L
l1=1

∑L
l2=1Wl1,l2,i·

(
Gl1,l2 + Υl2

)
6 ĉ, ∀i (3.15)

Where Wl1,l2,i=1 if calibrator mi visits spot νl2 immediately after spot νl1 ; or 0 otherwise. M is
the maximum number of calibrators; assuming we always have enough calibrators, L would be
an effective upper bound of M to be used in solvers. The unnumbered constraints are related
to the construction of multiple paths. Constraint (3.13) makes sure all selected spots are visited
by exactly one calibrator; (3.15) enforces the maximum workload of calibrators, where Υl is the
total calibration time spent at spot νl, i.e., Υl[ω] = maxj,k(Dj,l·Γj,k[ω]·τk).

However, the problem is NP-hard; the number of independent variables and the number of
constraints in this MIP formulation are both in the order of O(L3), resulting in a huge solution
space. It is hard for any MIP solver to optimally solve the problem in a reasonable amount
of time [19]. In practice, we tried two widely used solvers: GLPK (GNU Linear Programming
Kit, open-source – https://www.gnu.org/software/glpk/) and Gurobi (commercial software –
http://www.gurobi.com/). None of the two solved the problem in less than 48 hours for L>15.
To solve the problem at a larger scale, we propose two heuristics: a greedy algorithm derived
from the nearest neighbour heuristic of traditional TSP, and an improved genetic algorithm
(GA) based on the one proposed by Sedighpour, et al. [154] for mTSP. For a clean design
of the algorithms, after the completion of the sensor selection planning phase, the planning
framework computes the set of selected spots H and the calibration time β at these spots
from the sensor selection matrix Γ.

Nearest-Neighbor-Based Greedy Heuristic

The nearest neighbor algorithm for TSP starts with a tour containing only one spot. At each
step, it determines the next spot to visit as the one that is closest to the last visited spot, and
loops until all the spots are visited. Inspired by this straightforward TSP algorithm, we derive
that our greedy algorithm (see Algorithm 1) for the multi-path planning problem, works as
follows: (1) Start with a set of empty paths (i.e., all the calibrators stay at the depot) and the
set of all selected spots H. (2) At each step, for each unvisited spot, pick the spot-calibrator
pair that induces the least additional movement time. (3) Loop until all the spots are visited.
Note: Our actual implementation of this algorithm caches the movement and calibration time
associated with each calibrator to reduce redundant computation, so the worst-case running
time of this algorithm is O(L3).

Improved Genetic Algorithm (GA)

We design our genetic algorithm (GA) based on the mTSP GA solution of [154]. Features
are added to address the peculiarities of our MPP formulation, i.e., the variable number of
calibrators, the workload constraint, and the map (i.e., a directed-graph).

A chromosome is an integer vector that is made of two parts: a permutation of all the
selected spots (1st half) and an assignment mapping the spots to mobile calibrators (2nd half).
If the number of selected spots is |H|=L′, a chromosome’s length will be of 2L′. The assignment
(2nd half) is represented by the number of spots visited by each calibrator, so these integers
should all be in range [0, L′] and sum up to L′. For example, chromosome [2, 4, 5, 6, 3, 2, 3, 0, 0, 0]
means L′=5 and that m1 will visit spots ν2, ν4, and m2 will visit ν5, ν6, ν3. The fitness is the
negative of the total movement time of all the mobile calibrators, and the selection is done by
a standard scaled-fitness proportional selection.
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The initial population is composed of randomly generated individuals. The permutation
is performed by a uniformly random permutation generator, and the assignment is done by
uniformly and randomly picking an integer and subtracting it from the total number of selected
spots until none is left. The crossover is done by applying a standard “order crossover” on the
first half of the chromosome.

Because of the variable number of mobile calibrators, we design three helper functions
that apply to chromosomes: (a) compress: shift all zeros in the assignment section to the
end and non-zeros values to the beginning; (b) split: check if any assignment (>2 spots)
leads to an overloaded calibrator, randomly split it into two calibrators, and loop until none
is found; (c) merge: check if there exists a pair of assignments that can be merged into one
without overloading the calibrator; then merge the first pair found. Among the three, compress
and split are applied to every newly-generated chromosome during population initialisation,
mutation, and crossover, while merge is applied as one type of mutation.

Apart from “merge”, there are three other types of mutation: (a) two-point swap, (b)
segment reversal, and (c) 3-opt local optimisation. Every time a mutation is triggered, we
randomly pick one of the four types of mutation functions. (a) and (b) are straightforward. 2-
opt is a commonly used local optimisation for TSP on undirected graphs, but an odd numbered
opt is required for digraphs to avoid reversing any segment, which makes it faster to compute
the new movement time.

Finally, the tunable parameters such as the population size, elite-keeping size, and the
termination conditions are assigned by the framework according to the problem size (i.e., L′).

Overall, we have presented a collaborative and distributed calibration solution that en-
hances the quality of the gathered observations. We frame multi-sensor calibration planning as
an optimisation problem where we propose a two-phase iterative local optimisation approach
to determine (a) how many calibration iterations are necessary, (b) which sensors should be
calibrated at each of these iterations, and (c) the number of mobile calibrators that are required
(as well as their respective calibration paths). Such an effective deployment and maintenance of
the IoT infrastructure within a metropolitan area fosters the long term gathering of meaningful
observations. In addition, calibrated IoT infrastructure can in turn serve as a high-quality ref-
erence to opportunistically calibrate some mobile sensors that monitor the same phenomenon
and that are engaged to sense at a larger scale.

3.3 Robust Multi-Party calibration
The distributed collaborative calibration requires rendezvous, although infrequent, with refer-
ence sensor(s) belonging to the IoT infrastructure, for the calibration of the mobile crowdsen-
sors. An overriding requirement is to minimise the involvement of end-users, who usually do
not hold the required expertise. The calibration system shall require no specific knowledge or
manual configuration – end-users do not need to place themselves under ideal conditions. End-
users engaged in the crowdsensing, are simply required to install a mobile app – implementing
the calibration and the crowdsensing together– on the smartphones at their disposal.

Our solution leverages robust regression so as to discard the measurements that are of too
low quality for being meaningful. We further introduce a multi-party calibration system, which
exploits the spatial dimension of the problem which –we show– improves the performance of
the calibration in terms of the resulting sensing accuracy. Several sensors that are separated
in space, may track better the physical phenomenon and should therefore be involved into
a multi-party calibration of higher-quality. In particular, we say that there is a multi-party
calibration rendezvous between a non-calibrated smartphone i and m calibrated smartphones
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(1 ≤ m ≤ n− 1) in the case of both spatial and temporal proximity over a time period. That
is, if the following conditions are met:

• The m reference – or previously calibrated– sensors are in communication range with i
during the overall calibration period {t1, ..., tp}.

• The m reference sensors are in a shared sensing range with i, i.e.,, the distance between
i and any reference sensor j ∈ {1, · · · ,m} is less than the maximum calibration distance
dmax, which is defined based on the measured physical phenomenon and environment
being considered.

During the multi-party rendezvous, the uncalibrated sensor i attempts to calibrate using the
calibrated measurements provided by the m nearby sensors. The objective lies in determining a
calibration function, which describes the relationship between the non-calibrated measurements
and the calibrated one(s) and thereby enables correcting the measurements of the non-calibrated
sensor(s). As presented in literature, for many sensors, there is close to linear dependence
between the measurements produced by the sensor and the sensed phenomenon (e.g., see [105,
30]). Accordingly, it is assumed that a sensor i can be provided with the relevant calibration
coefficients/parameters for the linear function, which returns the calibrated measurements ŷi
given the sensor measurements ŷi at time t. In the same way, the measurements of a non-
calibrated sensor have a linear dependence with those of some calibrated sensors, as illustrated
in Figure 3.3 with the specific example of noise sensing using the smartphones’ microphones.
In this case, any reading yi(t) of the uncalibrated sensors (at time t) can be expressed as the
following function: yi(t) = β0 + β1x1(t) + β2x2(t) with x1(t) and x2(t) corresponding to the
reading of two calibrated sensors. Once calibrated, the sensor i can in turn, be used to calibrate
others. Such a dynamic calibration, which is also known as blind calibration, allows calibrating
sensors under their deployment conditions and without involving the end-user.

To the best of our knowledge, this is the first calibration system that generalises the au-
tomated calibration to the multi-party case. Following the opportunistic calibration of sensors
as they meet, we introduce a multi-hop, multi-party calibration algorithm that is such that
the history of the calibrated sensors is used to assess the best calibration hyperpath, which is
the one that minimises the accumulated calibration error. Figure 3.2a depicts the pairwise and
multi-hop case supported in literature [76, 31, 152], which is based on a sequence of pairwise cal-
ibration rendezvous with the initial calibration starting with the Reference sensor. Figure 3.2b
then introduces the general case of multi-hop, multiparty calibration, in which a succession of
pairwise or multi-party calibrations may take place. In practice, our sensor calibration aims at
assessing the sensor’s bias compared to the measurements of reference (or previously calibrated)
sensor(s) that happen to be in the relevant communication and sensing range. Overall, the cal-
ibration system is unobtrusive in that it requires no configuration or handling once started.
Furthermore, the system does not require a parsimonious and dense deployment, making it
practically relevant to various urban scenarios.

3.3.1 Multivariate Linear Regression
Given the multi-party calibration rendezvous of the sensor i with m smartphones, the multi-
variate linear regression computes the calibration coefficients/parameters for i based on the
calibrated measurements provided by the m mobile sensors. In particular, the uncalibrated
(raw) measurement of the sensor i is defined as the following linear function:

Yi = XB + Ei (3.16)
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bration: Sensors 2 and 6 apply pairwise calibration.
Then, multiparty calibration occurs for sensor 5.

Figure 3.2 – Pairwise versus multi-party calibration.

Yi is a p-dimensional vector (i.e.,, Yi = (yi(t1), · · · , yi(tp))T ) with T denoting the transpose of
the vector; X is a p × (m + 1) that includes the calibrated measurements of the m sensors
(j ∈ {1, · · · ,m}); B is a (m+ 1)-dimensional vector (i.e.,, B = (β0, · · · , βm)T ) that represents
the unknown (and fixed) regression coefficients; and and Ei is a p-dimensional vector (i.e.,,
Ei = (εi(t1), · · · , εi(tp))T ), which refers to the residual noise. The model assumes that Ei is a
normally distributed random variable with 0 mean and a constant standard deviation σ that
is unknown [49]. Given the above, we want to find the regression coefficients B of Ŷi:

Ŷi = XB (3.17)

We apply the method of the least square, which minimises the sum of the squared differences
between the actual values yi (resp. Yi) and the regression values ŷi (resp. Ŷi), using the linear
regression of Equation 3.16. Formally, the estimate of the regression coefficient denoted B =
(β0, · · · , βm)T is computed such that ∑tp

t=t1(yi(t)− ŷi(t))2 is minimised. This sum of the squared
differences is minimised analytically by setting: B = (XTX)−1XTYi. It follows that the fitted
value Ŷ verifies:

Ŷi = XB = X(XTX)−1XTYi (3.18)

Thus, the minimised residual error is given by:

Ei = Yi − Ŷi = (I −H)Yi = (I −X(XTX)−1XT )Yi (3.19)

where I is a m×m identity matrix.
The above simple multivariate regression is particularly well suited to establish a relationship

between the measurements of sensor i and those of provided by the smartphones that are
encountered during a multi-party calibration rendezvous. Nonetheless, the validity of the simple
multivariate regression is compromised if some measurements contain outlier(s). With sensors,
outliers are commonly observed.

Removing Outliers using Robust Regression

Rather than minimising the sum of the squared residuals∑tp
t=t1 εi(t)2 as it is the case with simple

regressions, the robust regression minimises the median of squared residuals computed for the
entire data set [136]. This median-based estimator resists the effect of nearly 50% of the data
contaminated by outliers. Afterwards, we remove outliers using the robust regression algorithm
presented in [136], which iterates on the following steps: Randomly select few samples; Fit the
model to these few samples using multivariate regression; Evaluate the quality of the fit on the
remaining points using the median, which is a well known robust estimator. Ultimately, the
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Figure 3.3 – Simple versus robust linear regression: Sound Level (dB(A)) of an uncalibrated
Crosscall Trekker-X3 expressed as a function of the sound level sensed with two calibrated Asus
Nexus 7.

subset that is characterised by the best fit is kept. Ideally, the above procedure should repeat
for all possible sub samples of size q, for which there are Cq

p possible combinations. In practice,
one should select a certain number of random subsamples, such that the probability that at
least one of the q subsamples is good, is almost 1. A subsample is said to be "good" if it contains
up to a fraction f of bad observations. The probability that at least one of the q subsamples
is good, assuming that p/q is large, is 1− (1− (1− f)q)p By setting a probability of almost 1,
the value of q can be determined based on the given values of p and f . Finally, the model is
re-fitted to all the data that are sufficiently close to the model and the data that are not close
enough (i.e.,, the outliers) are removed.

Using such a robust regression, the calibration coefficients of an uncalibrated smartphone
i are estimated based on the possibly faulty readings X1, · · · , Xm provided by m sensors that
are met during the multi-party rendezvous.

Assessing the Relevance of a Calibration Rendezvous

Given a set M of m devices meeting with i, the multi-party calibration requires determining
the best subset K of k (k ≤ m) devices to calibrate with, i.e., the subset of devices with which
to exchange measurements so as to enhance the accuracy of i’s measurements while minimising
the resulting resource consumption. Figure 3.4 illustrates the representative cases that arise
where Y (resp. X1, X2) depicts the variance of the samples from device i (resp. 1, 2):

• If two nearby devices, 1 and 2, supply almost the same samples (Fig. 3.4a), the calibration
of the device i does not require the readings of 1 and 2; using the samples of one of the
two is sufficient.

• Contrariwise, when two devices provide uncorrelated samples (Fig. 3.4b), each separate
device makes a unique contribution to the calibration of i and should be considered during
the calibration.

Overall, the best subset K should include the nearby devices that: (i) are both calibrated and
(ii) both contribute sufficiently to the calibration of i by supplying some samples that are mostly
non-redundant. We rely on (semi-)partial correlation [49] to estimate the unique contribution
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Figure 3.4 – Device i meets two calibrated devices 1 and 2. Device i collects samples locally,
whose variance is Y and determines if it can calibrate using the samples of 1 and 2 (with
variance denoted X1 and X2). The figure depicts the relationship between the 3 variables Y ,
X1 and X2. In 3.4c: a is the variance specific to the samples of i; b (resp. d) is the part of Y
variance uniquely influenced by X1 (resp. X2); e is the part of X1 variance uniquely influenced
by X2; c is the part of Y variance influenced by both X1 and X2.

of each device to the calibration of i. Consider the case depicted in Figure 3.4c, the area a
represents the variance specific to Y , while the area b + c + d (i.e., the area of Y intersecting
with X1 and X2) represents the overlap of Y with X1 and X2. We may further decompose
the variance Y with respect to X1 and X2. The area b (resp. d) is the part of the Y variance
uniquely influenced by X1 (resp. X2); it is represented by the squared semi-partial correlation
coefficient, denoted rX1 (resp. rX2), which reflects the correlation between Y and X1 while X2
has been partialed out (i.e., the effect of X2 has been removed from X1 but not from Y ). The
semi-partial correlation of X1 with Y , which can be simply denoted srX1 , corresponds to the
correlation rX1\X2Y between X1 and Y , removing the effect of X2 from X1, but not from Y :

srX1 = rX1\X2Y = rX1 Y − rX1 X2rX2 Y√
1− r2

X1 X2

(3.20)

Following, we use the semi-partial correlation to characterise the specific effect that each
calibrated device of M may have on the calibration of i so as to exclude any device j that
contributes measurements that are not sufficient/unique (i.e., with srXj ≤ ε). We apply a
stepwise process, wherein the devices having the lowest semi-partial regression are removed
first. Semi-partial correlations are further used in a stepwise regression procedure, where the
device (rather than the end-user) determines which variables (i.e., device) should be considered
in the final regression. We note that, in a forward stepwise regression, the calibrated device
that would add the largest semi-partial correlation is added next (provided it is statistically
significant).

3.3.2 Multi-hop, Multi-party Calibration
We now consider the history of the sensors’ calibrations to assess the relevance of a given multi-
party rendezvous. Indeed, we must compare the quality of the calibration parameters computed
in the current rendezvous to the quality of the previous calibrations, if any.

Formalising the History of Multi-party Calibrations using Hypergraphs

Formally, we represent the history of multi-party calibrations using a weighted, directed hy-
pergraph (Figure 3.5a). A directed hypergraph is a pair H = (V,E), where V denotes the finite
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Figure 3.5 – Hypergraph encoding the multi-party calibration history.

set of nodes (i.e.,, sensors/smartphones) and E the finite set of directed hyperedges. A directed
hyperedge Ej ∈ E is an ordered pair Ej = (T,D) of two (possibly empty) disjoint subsets
T,D ⊂ V , where T is the tail –noted tail(Ej)– and D is the head –noted head(Ej)– of the
hyperedge. As an illustration, the hyperedge Ej = ({i}, {1, · · · ,m}) represents in Figure 3.5b
the multi-party rendezvous between node i and m nodes; the cardinality of the tail is 1 (i.e.,,
|tail(Ej)| = 1) while the cardinality of the head is m (|head(Ej)| = m, with m ≥ 1). The
directed hyperedge is further weighted such that each of the inner-edges between i and one of
the m nodes provides the properties of the calibration (including regression) established by i
using the readings provided by the calibrated node(s). Thus, V 2 7→ Rq denotes the set of all
the inner-edges such that the weight of any i, j ∈ V 2 is defined as a q-dimensional vector that
specifies:

• The characteristics of the meeting, which includes, e.g., the time period during which the
calibration is taking place;

• The properties of the calibration for sensor i, which is established based on the readings
provided by sensor j. This includes ŷi as well as the parameters that determine the quality
of the regression, including the variance-covariance matrix (as previously defined) and the
regression error.

Consider the hypergraph that is locally maintained by a participant node i involved in some
rendezvous, i.e., the hypergraph at i represents the history of past rendezvous together with
the rendezvous that are currently eligible for the calibration of i. The m nodes in the sensing
range of i similarly maintain their hypergraph of calibration rendezvous. The various nodes
may then exchange their respective hypergraphs, which allows each one of them to compute
the shortest hyperpath that minimises their own calibration error (i.e., as estimated by the
regression qualities that weight the inner edges). Consider the example of Figure 3.5a, in which
there are two hyperedges from node 8 to reference nodes 3 and 7: (i) From 8 to 3 through E1, E2,
and E3, and (ii) From 8 to 7 through E1, E2, and E4. We simplify the problem of establishing
the hyperpath of minimum weight from i to a set of reference nodes (i.e., highly accurate,
high-quality sensors), denoted R, by transforming it into the problem of finding a hyperpath
of minimal weight from i to a single node r. This is done by adding a new consolidated node
r to the hypergraph and connecting each end reference node to node r with a < 0 >-weighted
hyperedge.

Following, given a directed and weighted hypergraph H = (V,E) and the nodes i and r of
V , we say that there is an hyperpath from i to r shall one of the following conditions be met:

1. i = r, in which case, the hyperpath is empty.
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2. There is a hyperedge ({i}, K) ∈ E such that ∀k ∈ K ⊂ V , there is a hyperpath from k
to r.

Condition 2 signifies that a node i can calibrate using the surrounding sensors inK if and only if
the sensors in K are also calibrated (i.e., there is a hyperpath from each of them to r). Overall,
considering the set of eligible hyperpaths, Hi,r = (Vi,r,Ei,r), from i, according to the set of nodes
in the sensing and communication ranges of i, the goal of node i, which attempts to calibrate,
is to find the calibration hyperpath (from i to r) –and thus the associated hypergraph– that
minimises the accumulated weight, which is:

PPP : min
Ei,r⊆E

∑
Ej∈Ei,r

w(Ej)h(Ej) (3.21)

where w(Ej) specifies the sum of the weights of the inner edges of an hyperedge Ej, and
h(Ej) = 1 if the hyperpath goes through the edge Ej and h(Ej) = 0 otherwise.

Finding the Shortest Hyperpath

Using the local hypergraph, any sensor i may independently compute the shortest hyperpath
(in terms of the edge weights) towards the "consolidated end reference" sensor r, for which we
introduce Algorithm 2:

1. The initialisation (lines 2-4) is as follows: the hyperpath from i to any node is set to
empty; the distance to the source is set to 0 and to all the other nodes to infinite; and
the set of nodes that need to be visited, denoted Q, is set to V .

2. Then, all the nodes are visited (line 5), starting with i as the current node (i.e., u = i). In
the consecutive rounds, the current node refers to the closest node, i.e., the closest node
that is reachable by an outgoing hyperedge (line 6).

3. The set of nodes that can be reached from the current node through any outgoing hyper-
edge Ej is determined (line 7):

• First, we treat the pairwise rendezvous (lines 8-14), which is characterised by a
hyperedge Ej having a head of cardinality 1. If a shorter path passing through Ej
is found, the distance from i to the newly connected node v is updated considering
the minimal distance, and the hyperpath to v is updated accordingly.

• Then, we treat the multi-party rendezvous (lines 15-25) with a hyperedge Ej with
|head(Ej)| > 1, which has not been visited so far (i.e., Ej /∈ E). We establish
the shortest hyperpath from each node v participating to the rendezvous (for each
v ∈ head(Ej). We check if each node v is already calibrated, i.e., if there exists a
hyperpath for each node v to r (i.e., Hv,r 6= ∅) or if node r is reached. In such a case,
if the hyperpath going through each v is the shortest one (so far), this hyperpath is
established as the shortest one.

4. After having visited any node of the hypergraph, the shortest hyperpath established so
far (if any) is returned.

The algorithm runs in O(log V Eu+V

(V−Ep)(V−Ep) ) time, assuming that there are V nodes in the
hypergraph (including the consolidated node r that has been added) and that there are E
hyperedges with: Eu hyperedges reflecting each a single party meeting, and Ep hyperedges
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designating multi-party meetings (i.e., E = Eu + Ep). More precisely, the main loop of the
algorithm extracts one node that has not been visited. All these –unvisited yet– nodes are
stored in a min heap of size V which contains the node identification along with the distance
to i. So, the extraction of the closest node v not yet visited (as performed in line 6) takes
O(log V ). The next step consists in checking all the outgoing (single-party and then multi-
party) hyperedges of v. First, we consider any single-party hyperedge and we store the shortest
distance to the node v accessible through this hyperedge. If that node is not yet visited, we add
it to the list of unvisited node Q; given that at most V nodes are not yet visited, we have a total
cost of at most O(V logV ). On the other hand, if the node v is already in Q, its priority may
be increased considering the shortest distance to i, leading to a cost of O(Eulog V ). Therefore,
so far, the total run time is O(V log V + Eulog V ), which is O(EulogV ) because V is O(Eu)
assuming a connected hypergraph. In addition, we consider the analyses of Ep multi-party
rendezvous. For each of them, there are at most V hyperpaths established using a hypergraph
containing at most V − 1 nodes and Ep − 1 + Eu, leading to the overall time complexity:

Eulog V +
Ep∑
i=1

V ilog(V − i) ∼ Eulog V + log
Ep∏
i=1

(V − i)V i = Eulog V + V
V−Ep∑
i=V

log i! =

Eulog V + V
V−Ep∑
i=1

log i!− V
V−1∑
i=1

log i! < Eulog V + V log V − (V − Ep)log(V − Ep) =

log V Eu+V

(V−Ep)(V−Ep)

The multi-hop, multi-party calibration in practice

Summarising the multi-hop, multi-party calibration, any mobile i participating in the collabo-
rative calibration periodically runs the following process:

1. Sensor i detects the presence of the nearby sensing device(s), i.e., the devices in the shared
sensing range.

2. Sensor i and the surrounding devices exchange their respective hypergraphs and any node
updates its hypergraph (see Algorithm 2).

3. In the presence of any eligible rendezvous, i exchanges its sensing measurements (i.e.,
time series) in a synchronised manner so as to establish the linear relationship between
the measurements of the nearby sensors and the raw measurements obtained locally.

4. The best calibration path is determined, the calibration function is set and the hypergraph
is updated accordingly.

The calibration function is a linear function from the actually measured values to the calibrated
values. Let the expected calibrated measurements of sensor i be Ỹi. In order to calibrate the
actual measurements Yi = (yi(t1), · · · , yi(tp))T , it is required to apply the reversion of the
linear relationship for: Yi 7→ Ỹi simply by replacing the reference values with Ỹi and replacing
the regressed values Ŷi with Yi, in Equation (3.17), where Ŷi eliminates the residual noise error
while maintaining the linear relationship from reference to actual measurements. Thus, the
calibration function is:

ỹi(t) = yi(t)− β0∑k
j=1 βj

(3.22)

where the index j indicates a vertex from the k reference vertices. The multi-hop allows a
recursive loop for the calibration process from the reference vertices to all uncalibrated vertices.
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(a) Mapping of a
space: Spots (green
markers) are placed;
nodes (red markers)
compose a spot and
communicate via
wireless links (blue
lines).

(b) Visualising a pairwise calibration: On the top, the noise level
collected by the two sensors. Bellow, sound level of the uncalibrated
device is expressed as a function of the calibrated device; simple
regression line (pink line) and robust regression line (blue line) are
traced.

Figure 3.6 – Prototype GUI.

3.4 Evaluation
In order to assess our calibration solutions, we prototyped a calibration planner as well as
the multi-party and the multi-hop calibrator. The calibration planer implements the planing
algorithms (§ 3.2.3) and is accompanied with a service (Figure 3.6a) that serves to visualise
3-dimensional maps, place on the maps, the spots that should be visited along with the nodes
and the related sensors, and besides provide navigation guidance to the mobile calibrators. In
addition, we have implemented an opportunistic calibration system as an Android Application
Package (APK). Figure 3.6b illustrates the GUI of the application, which plots the measure-
ments and the regression line. The system is intended to enable pervasive calibration in a fully
decentralised way, and thus does not require any central authority. While our approach sup-
ports the automated calibration of diverse sensor types, we have focused on noise sensing for
our prototype and experiment.

Hereinafter, we evaluate the performance of our proposed multi-sensor calibration planner
(§ 3.4.1) and of our mobile calibration system (§3.4.2).

3.4.1 Planning the Calibration
We evaluate the performance of our proposed multi-sensor calibration planner, considering the
IoT structure, which is deployed at UC Irvine [21, 101] within a smart instrumented building for
everyday monitoring and for emergency responses. In particular, we consider the multi-sensor
platforms (called SCALE boxes) consisting of a Raspberry-Pi-based multi-sensor box interfaced
with a wide range of sensor types (gas, light, air quality, temperature, seismic, camera, etc.).
We conduct a series of evaluations using three sets of input data. The first two ones involve
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Figure 3.7 – Impact of the number of nodes on the sensor selection algorithms in an indoor
setup, with sensor presence rate ∑Q/(N ·K)=0.5.
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Figure 3.8 – Evaluation of the sensor selection algorithms; outdoor scenario.

0

2500

5000

7500

0 250 500 750 1000
Number of sensors

A
ve

ra
ge

 c
os

t

Selectors
All TTNI-driven

Local Local bnd.

Minimal

(a) Average cost vs. number of
sensors; normal scenario.

0

5

10

0 250 500 750 1000
Number of sensors

M
ea

n 
ga

p 
be

tw
ee

n 
ite

r. 
(d

ay
)

Selectors
All TTNI-driven

Local Local bnd.

Minimal

(b) Mean interval (day) between
iterations vs. number of sensors;
normal condition.

0

5000

10000

15000

20000

0 250 500 750 1000
Number of sensors

A
ve

ra
ge

 c
os

t

Selectors
All TTNI-driven

Local Local bnd.

Minimal

(c) Average cost vs. number of
sensors; emergency condition.

Figure 3.9 – Impact of the number of sensors on the sensor selection in an indoor environment
containing 100 nodes.

the instrumented building at UC Irvine: we consider the actual deployment and we generate
additional spots (with sensors and nodes) using a similar pattern. We also synthesised the third
data set that relates to an outdoor urban environment in which sensors are placed to monitor
noise and air quality. The parameters are summarised in Table 3.1.

In the following, we compare our sensor selection with two naïve sensor selection strate-
gies that aim at “always selecting all sensors” (regardless of their TTNC) and “only selecting
the minimal set of sensors” (i.e., those we must calibrate because their TTNC reaches 0). In
addition, we also investigate two simple selection strategies. The former consists in selecting
all sensors that are co-located with the sensors that form the minimal set (“local”). The latter
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Figure 3.10 – Scalability of the multi-path planning solvers and proposed heuristic algorithms.

consists in only selecting the sensors that can automatically calibrate with each other with-
out human intervention and that henceforth do not induce additional calibration time (“local
bounded"). For multi-path planning, we evaluate the performance of two MIP solvers (GLPK
and Gurobi), our two path planning heuristics (NN-based greedy and GA), and a naïve strategy
that sends one calibrator to each spot and that should give the highest cost. The algorithm
running time is evaluated on the OpenLab cluster of Dept. Computer Science at UCI, where
each computing node has 2x Quad-core Intel Xeon 3.0GHz CPU E5450 CPUs.

Indoor vs. Outdoor Results:

In an indoor environment (Figure 3.7), our algorithm (TTNI-driven sensor selection and GA-
based multi-path planning) always results in a lower average cost for N ranging from 5 to 200.
Compared to the naïve sensor selection strategies, such as “selecting all sensors” and “selecting
the minimal set of sensors” (still considering GA-based multi-path planning), our algorithm
combination provides up-to 30% improvement in the long-term average cost. Note that even
though our algorithm does not always end up with the lowest cost per iteration (Figure 3.7b),
it makes a fair trade-off between the cost and the time (between iterations). Figure 3.7c shows
that the time spent to select sensors is short – less than 1 sec for a reasonably complex building
incorporating 200 nodes and 60 spots. The same trend also applies in the outdoor environment
(Figure 3.8), where the distances between spots are significantly longer (Table 3.1). As the
spatial span of the setup grows, the difference among the algorithms becomes more dramatic
(note the different y-scale in Figures 3.7a,3.7b and 3.9a,3.9b). Certain naïve approaches are
very sensitive to this change (Figure 3.9b, “minimal” and “local bounded”), while our algorithm
shows stable performance in both settings.

Normal vs. Emergency Condition Results:

Having demonstrated the effectiveness of our algorithm in indoor and outdoor settings, we
further study the performance of our approach in an emergency scenario where the calibration
requirements of certain sensor types are increased (Figures 3.10a and 3.10c, note the difference
in y-scale). When calibration is required more frequently for some sensors, the naïve/simple
approaches suffer from a big increase in average cost, especially when the sensors are deployed
densely (∑Q/(N ·K)>0.5), while the performance of our algorithm and “local bounded” are less
affected. We also notice that unlike the simpler approaches (“local bounded” or “minimal”), our
TTNI-driven sensor selection algorithm avoids the desynchronisation of the periodical calibra-
tions, while the “local bounded” strategy does so with a small number of sensors (Figure 3.10b).
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Scalability Results for the Multi-Path Planning

Figure 3.10 compares the performance of multi-path planning algorithms for the number of
spots L612: GA provides close-to-optimal solutions but takes 8–10 sec for L=12 (20–60 sec for
L=60); the greedy heuristic is much faster (approx. 0.5 sec for L=60), which makes it suitable
as an estimator during the sensor selection planning. GLPK and Gurobi (i.e., the MIP solvers)
could not terminate within 48 hours for L>15 so we aborted.

3.4.2 Multi-Hop Multi-Party calibration
We evaluate the performance of the proposed multi-hop, multi-party calibration using the
Android app implementation. We specifically run the application on the following Android
devices: 1 Samsung Galaxy S5, 2 Asus Google Nexus 7, 1 Crosscall Trekker-X3, and 1 Huawei
P9 Lite. So as to assess, the performance/quality of the multi-party calibration, we compare
the noise measurements using the mobile phones, with the ones of a professional SLM -Sound
Level Meter (SVAN 971 from SVANTEK) that meets the IEC61672 international standard.
This SLM takes 10 samples per second; each sample corresponds to an average of the sound
level power that is sensed during 100ms, on which an A-weighting is applied. Although our
calibration app enables adapting the duration of the calibration and the sampling rate, we use
the setting of the SLM in the following evaluation: 10 samples are registered per second and
the calibration is performed simultaneously with the sound level meter. Figure 3.11 illustrates
some of the undertaken evaluation experiments that we detail hereinafter.

(a) Indoor calibration: Three
phones perform a multi-party
calibration, while another one
plays music.

(b) Underground calibration:
Three persons speak in a quiet
parking. All are holding their
devices next to a wall, while the
person in the middle addition-
ally holds a SLM that serves as
ground truth.

(c) Outdoor calibration: Three
people meet at a bus station, in
a bi-directional street that is rel-
atively noisy.

Figure 3.11 – Experiments.

Our evaluation assesses the quality of the regression, and hence of the calibration, accord-
ingly to the following parameters:

• The variance of the regressand, V ar(Y ) – Measures the dispersion of the regression.

• The coefficient of determination [42], R2 – Quantifies the goodness of fit of the regression
plane, i.e., the amount of variability in the data set that is explained by the regression.
The closer R2 is to 1 (resp. 0), the greater (resp. lower) the degree of association between
Y and the X.
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• The adjusted R2 – Evaluates the goodness of fit and penalises the use of additional
variables. The adjusted R2 increases only if new variables improve the regression more
than it would be expected by chance. It remains less or equal to R2 but it can also be
negative.

• The standard deviation of the residual noise, εi.

• The difference/bias between the measurements provided by a calibrated device and the
ones of the SLM.

We use box plots to depict the above parameters when reporting the evaluation results (e.g.,
see Figure 3.12): the triangle denotes the mean, the line inside the box indicates the median,
the lines on edge reflect the range of values, and the rectangle corresponds to the Interquartile
Range (IQR).

In order to evaluate the multi-hop, multi-party calibration, we consider the following sce-
narios:

1. Comparison between the simple and robust regression (§ 3.4.2).

2. Comparison between univariate (pairwise) and multivariate (multi-party) regression (§ 3.4.2).

3. Comparison of multi-hop, pairwise with multi-hop, multi-party calibration (§ 3.4.2).

4. Evaluating the impact of the environment (in-door vs out-door) on multi-party calibration
(§ 3.4.2).

The first three scenarios involve in-door calibration within a room (see Figure 3.11a), while the
fourth also considers the underground and out-door cases (see Figures 3.11b and 3.11c). In most
of the experiments, the devices were less than 1 meter away from each other, except when we
consider the impact of the following sensing conditions: distance, obstacle and in-/out-pocket.

Simple versus Robust Regression

We compare the simple vs robust regression using an uncalibrated device (the Crosscall Trekker-
X3) and two devices (the 2 Asus Google Nexus 7) that were previously calibrated with the SLM,
and that exchange the noise level they collected during 10s. The experiments were run in-door,
100 times.

Figure 3.12a (resp. 3.12b) compares the robust regression with the simple regression consid-
ering the variance of the regressand (resp. the standard deviation of the regression residuals). As
shown, the robust regression provides a lower regressand variance in terms of mean and median.
In particular, the average value of the variance corresponds to 11.984 with the simple regression
and 5.529 with the robust regression. In fact, the robust regression reduces the influence of out-
liers, which leads to a lower regressand variance and thereby to a more accurate regression. Also,
the regression residuals (Figure 3.12b) produced by a robust regression is characterised by a
weaker standard deviation: the average value of this standard deviation is equal to 1.531 dB(A)
for the simple regression and 0.915 dB(A) for the robust regression. Meanwhile, the IQR of the
standard deviation exhibited by the robust regression, i.e., [0.402dB(A), 1.336dB(A)], is much
lower, compared to the one provided by the simple regression, i.e., [1.019dB(A), 2.017dB(A)].

In order to evaluate the computational overhead and accuracy of the robust regression, we
use the same three devices and we run series of calibrations characterised by various sampling
durations; we execute 20 times each of these series.
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Var (regressand) of Multivariate Regression
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(a) The regressand variance for simple vs ro-
bust multivariate regressions.
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(b) Standard deviation of the residual for sim-
ple vs robust multivariate regressions.

Figure 3.12 – Simple versus robust multivariate regression
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Figure 3.13 – Impact of the sampling duration on the performance of multivariate regression.

The robust regression induces a significant computational overhead (see Figure 3.13a) be-
cause many regressions are established and further compared so as to ultimately select the
regression that best fits. As an illustration, the simple (resp. robust) regression takes around
7.159 ms (resp. 969.561 ms) when taking 100 sound samples; with 600 samples, the robust
regression lasts for around 2035.791 milliseconds. However, this is to be balanced with the
resulting adjusted R2 of the robust regression (Figure 3.13b), which increases and reaches a
maximum for a recording duration of 40s and then decreases. This shows that there is no need
for unnecessarily increasing unnecessarily the calibration duration.

In what follows, we consider only the robust regression.

Univariate versus Multivariate Regression

We used the same three devices as above to conduct one-to-one and one-to-two regressions,
100 times each. Figure 3.14a (resp. 3.14b) evaluates and compares the accuracy of the (ro-
bust) univariate vs multivariate regression in terms of R2 (resp. adjusted R2). The multivariate
regression always has higher R2 and adjusted R2 compared to the univariate case. As an illus-
tration, an univariate regression (resp. bivariate regression) generates an average and adjusted
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Figure 3.14 – Univariate versus robust multivariate regression.

R2 of 0.335 –0.343 as raw– (resp. 0.504 –0.516 as raw). We observe the same trend with the
interquartile range. When the number of calibrated devices increases, both the R2 and adjusted
R2 also increase. This suggests that the multivariate regression provides a better fitting than
the –state of the art– univariate approach.
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Figure 3.15 – Pairwise vs multi-party calibration.

We now compare the pairwise (univariate regression) with the multi-party calibration (mul-
tivariate regression), using 40s, instead of 10s, measurements. We further confronted the noise
measurements provided by the newly calibrated smartphone with the ones provided by the SLM
over a duration of 100 seconds. Figure 3.15a shows that after a multi-party calibration, the bias
between the measurements provided by the device that gets calibrated and the two calibrated
devices is drastically reduced. And, quite noteworthy, Figure 3.15b shows that the difference
between the measurements provided by the newly calibrated device and the SLM decreases as
the number of calibrated devices participating to a calibration rendezvous increases. Overall,
the multi-party calibration is more accurate.
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Figure 3.16 – Multi-hop, multi-party calibration scenarios.
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Figure 3.17 – Indoor multi-hop multi-party calibration.

Multi-hop, Multi-Party Calibration

We now investigate a multi-hop, multi-party calibration that takes place during 30s in an
indoor environment (see Figure 3.16). In the scenario, Device 4 is the only device that has been
calibrated with an end reference node (i.e., the SLM). Device 1 has three options to calibrate:
(1) with Device 2 (top Figure 3.16a), (2) with Device 3 (bottom Figure 3.16a), (3) with both
Devices 2 and 3 (Figure 3.16b). That is, there are three potential hyperpaths (§ 3.3.2): two
correspond to some consecutive pairwise calibrations (i.e., 1 → 2 → 4 → reference, and
1 → 3 → 4 → reference) and one refers to the sequence of both multi-party and pairwise
calibrations (i.e., 1 → {2, 3} → 4 → reference). Figure 3.17a depicts the measurements of
Device 1 before calibration and after calibration for each of the 3 cases; the figure also provides
the measurements of the SLM. Each of these hyperpaths (calibrations) is characterised by a
specific accuracy, which can be assessed by comparing the measurements provided by the SLM
with the ones from Device 1. Figure 3.17b shows that the bias between the measurements
provided by Device 1 and the SLM decreases from 1→ 2→ 4→ reference and 1→ 3→ 4→
reference to 1→ {2, 3} → 4→ reference. The difference between the two former hyperpaths
is not significant while the third hyperpath is characterised by a lower bias to the SLM. Table 3.2
considers additional metrics for weighting the hyperedges (i.e., the mean residual R2 and the
residuals σ). In such a case, the shortest hyperpath is the one having either the highest R2, or
the lowest mean residual and the lowest σ (residuals).
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In order to evaluate the execution time of the multi-hop, multi-party calibration, we generate
a large-scale and random hypergraph. In this hypergraph, each hyperedge is characterised by
a head whose cardinality is chosen randomly. In addition, the hypergraph is created so that
there exists an hyperpath between the source of the hypergraph and the consolidated node.
Figures 3.18a and 3.18b analyse the time needed to compute the shortest hyperpath from
the source to the consolidated node. In particular, the time taken to compute the shortest
hyperpath (Figure 3.18b) increases linearly with the number of hyperpaths because the length
of the hyperpath increases proportionally. Meanwhile, the time taken to compute the shortest
path is proportional to the size of the multi-party calibration group.
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Figure 3.18 – Scalability analysis.
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Figure 3.19 – Controlled calibration using pink noise vs blind calibration using ambient noise.

We conclude the evaluation with the study of the impact of the sensing environment on the
multi-party calibration. We first compare the calibration that is performed in a laboratory using
pink noise with the one performed in an indoor/outdoor environment using ambient noise. We
consider the calibration accuracy defined by the bias observed between the sound levels provided
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by a SLM and the one given by a newly calibrated device. Figure 3.19a (resp. 3.19b) provides
the accuracy in the indoor (resp. outdoor) case. We note that when the calibration is performed
in the same environment, the blind and lab calibrations have almost the same accuracy. When
the calibrations are performed in different environments, the difference between a blind and a
lab calibration remains under acceptable limits (i.e., ≤ 1dB(A)).
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Figure 3.20 – Impact of the calibration conditions.

Finally, we investigate the impact that different operational conditions may have on the
calibration, while performing the study in a quiet indoor environment. We specifically consider
the impact of: the distance between the devices involved in the calibration rendezvous, the
presence of an obstacle, and the presence of a device in a pocket. As expected, the calibration
is more accurate (Figure 3.20a) when the devices are very close to each other because they are
exposed to the same sound. For instance, the mean residuals after calibration are 1.973, 2.460
and 3.546 dBA for 0, 5 and 10-meter distances, respectively. In general, such a trend is not
always observed given that the audio signal can reverberate on obstacles or can be obstructed
by obstacles (Figure 3.20b). Even though, the multi-party calibration plays an essential role to
mitigate the impact of the obstacle, the residual noise can be used to determine whether the
calibration should be effective or abandoned. We end this evaluation by looking at the impact
that a smartphone located in a pocket may have (Figure 3.20c). The uncalibrated device favors
the smartphone outside the pocket by giving it a high β value compared to the one given to
the device in the pocket, therefore showing the robustness of the multi-party calibration. This
is thanks to the fact that measurements in different context have low correlation.

3.5 Conclusion
We are witnessing the emergence of some infrastructure-based and crowd-driven applications
opening up previously unprecedented ways of linking the human with the physical world. Our
increased interconnection with the physical world also holds the promise of an enhanced envi-
ronmental and social sustainability built upon a better understanding about, and act upon, the
physical environment. While expectations are high, monitoring a phenomena at an unprece-
dented scale is challenging, especially considering that applications must provide the expected
meaningful data in any circumstances, regardless of e.g., disturbances, harsh conditions. We are
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addressing this challenge through the calibration of the IoT nodes, from the fixed Things that
make up the IoT infrastructure to the mobile Things that people carry. Cost-effectively plan-
ning the on-site calibration of IoT infrastructure helps in the sustainable long term operation
of deployment and in the enhancement of the quality for the gathered observations. We frame
multi-sensor calibration planning as an optimisation problem where we propose a two-phase
iterative local optimization approach to determine (a) how many calibration iterations are nec-
essary, (b) which sensors should be calibrated at each of these iterations, and (c) the number of
mobile calibrators that are required (as well as their respective calibration paths), such that the
average cost of all iterations is minimised and under the constraint that the calibrators should
not be overloaded. The proposed two-phase iterative local optimisation approach first creates a
selection of sensors for each iteration, and introduces new methods (mTSP variants, heuristics)
to compute a set of paths for the calibrators based on the selection. Our evaluation shows
that the proposed algorithms solve the calibration planning problem effectively compared to
naïve/simple solutions. Such calibration solution constitutes a pragmatic approach to support
the full-fledged deployment and flexible maintenance of an IoT network infrastructure that is
not always uniformly and continuously available. In order to accommodate budget constraints
without sacrificing the coverage of the phenomenon of interest, we aim at exploiting all available
sensing modalities –fixed as much as mobile– for increased sensing coverage.

Mobile crowdsensing is becoming one of the most promising paradigm supporting social
sensing, as it allows to significantly decrease the infrastructure costs and to supply fine-grained
information about the phenomenon of interest. In counterpart, the prevalence of low-cost sensors
and the presence of human in the sensing loop brings into the picture new research challenges,
most of which are yet to be understood and addressed. smartphone sensors are not typically
of the same fidelity as task-specific sensors (e.g., a noise pollution monitor vs. smartphone
microphone). As a matter of fact, the control of the sensing process is delegated to people that
lack of expertise and experience. Inadvertent or erroneous handling of the phone (e.g., phone
acting as a noise sensor located in the pocket) may adversely influence the quality of the data,
irrespective of the willingness of the participants.

This leads us to introduce a novel macro-calibration problem where numerous devices need
to calibrate without involving the end-users. To tackle this new problem, we introduce an oppor-
tunistic macro calibration system that leverages the high density of smartphones in the urban
environment to support a seamless and multi-party calibration. Our multi-party calibration
system coordinates multiple surrounding smartphones and leverages multivariate and robust
linear regression to handle outliers. We have implemented and experimented our solution. Our
prototyped system contributes to enhancing the accuracy of mobile phone sensing. In particu-
lar, our evaluation shows that a multi-party regression is characterised by an accuracy that is
always higher, and, in the worst case, equal to the accuracy of a pairwise regression. During our
experiments, we investigated the actual impact of faulty measurements that potentially lead
to incorrect calibration, i.e., outliers and non relevant measurements obtained by some phone
operating within another sensing context (such as those provided by a calibrated phone in a
pocket). As presented, our approach leverages robust regression, which systematically discards
outliers. In addition, our evaluation shows that our approach allows distinguishing the actual
sensing contexts (e.g., measurements taken with the phone(s) in the pocket), which explains
by the lack of correlation between the related measurements. Consequently, the phone in the
pocket is assigned a negligible weight or is even ignored. Even though the impact of these
recognisable faulty measurements remains insignificant, the fact remains that some incorrect
calibration parameters or measurements that have been (intentionally or unintentionally) al-
tered may impair a multi-hop calibration. In practice, the regression minimises the squared

58



3.5. Conclusion

distance between the measurements of the uncalibrated and calibrated nodes, which compen-
sates for small discrepancies among the (miscalibrated and well-calibrated) measurements. In
general, we argue that the multi-party calibration allows for a more precise characterization of
the relationship between crowdsensors than would a pairwise calibration.

Once calibrated – static as much as mobile – sensors provide some observations that are
expressed with regards to a common reference system. Their interpretation of the observation
depends on the conditions under which they are made. For example, if we are interested in
a temperature sensor, knowing whether the sun is hitting is crucial. Same applies with noise
observation, previous analysis [83, 165] of the noise observations collected from the opportunis-
tic crowdsensing application Ambiciti (formerly SoundCity) showed that less than 5% of the
collected data were of sufficient quality to be considered for use in the mapping of urban noise
pollution.
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function solveMPPGreedy (G, ĉ, H, β) ;
Input : G – Map; ĉ – Maximum workload;

H – Set of selected spots;
β – Vector of calibration time at selected spots.

Output: {W} – Set of paths.
Initialise pathSet ← [ ] ;
while H is not empty do

minInc ← +∞ ; minSp ← minPath ← null ;
for each path in pathSet ; last ← path[−1] do

oldTime ← getMoveTime (path) + ∑
l∈path βl ;

for each sp in H do
dCw ← G[last, sp] +G[sp, 1]−G[last, 1] ;
if oldTime + dCw +βsp 6 ĉ then

if dCw < minInc then
minInc ← dCw ;
minSp ← sp ; minPath ← path ;

end
end

end
end
if minInc is finite then minPath.append (minSp) ;
else

for each sp in H do
if (dCw ← G[1, sp] +G[sp, 1]) < minInc then

minInc ← dCw ; minSp ← sp ;
end

end
newPath ← [minSp] ; pathSet.add (newPath) ;

end
H.del (minSp) ;

end
return {W} ← convertPathVecToMatrix (pathSet) ;

Algorithm 1: Nearest-neighbor-based greedy algorithm for the multi-path planning prob-
lem.



Input: i: source node
r: consolidated reference node
Hi: hyperpath from i

Output: SHi,r: shortest hyperpath from i to r
begin

Hi,v ← ∅ for all v ∈ V
|Hi,i| ← 0, |Hi,v| ← ∞ for all v ∈ V \i
Q← V
while Q 6= ∅ do

u← u′ subject to min
u′∈Q
|Hi,u′ |

forall Ej ∈ E so that u = tail(Ej) do
if |head(Ej)| = 1 then

v ← head(Ej)
if |Hi,u|+ w(Ej) < |Hi,v| then
|Hi,v| ← |Hi,u|+ w(Ej)
Hi,v ← Hi,u ∪ ({v}, Ej)

end
end
if |head(Ej)| > 1 then

forall v ∈ head(Ej) do
Hv,r ← SHPath(v,E\Ej\Hi,u, r)

end
if (Hv,r 6= ∅ || v = r) for all v ∈ head(Ej) then

if |Hi,u|+ w(Ej) + ∑
v∈head(Ej)

|Hv,r| < |Hi,r| then

|Hi,r| ← |Hi,u|+ w(Ej) + ∑
v∈head(Ej)

|Hv,r|

SHi,r ← Hi,u
⋃
Ej

⋃
v∈head(Ej)

Hv,r

end
end

end
end

end
if |Hi,r| < |SHi,r| then

SHi,r ← Hi,r

end
return SHi,r

end
Algorithm 2: SHPath(i,H, r) - Shortest Hyperpath from i to r in hypergraph H



Input Data Indoor OutdoorNormal Emergency

Map L Num. of Spots 60 63
G Pairwise Dist.a 653 sec 673 min

Sensor K Num. of Types 10 8
τ Calib. Time 1–30 min 0.25–1 min
T Calib. Period 14–91 d 7–91 d 28–123 d

Nodes N Num. of Nodes 100 (varies if independent variable)
Sensor Presence 100 (varies if independent variable)

User
Req.

ĉ Max. Workload 2 hours 4 hours
µ Coefficients Cit=10000, µ0=1 µw=5, µc=1

T Maintenance P. 360 days

Table 3.1 – Experimental setup for the performance evaluation.

Weight/Edges (1, 2) (1, 3) (1, {2,3}) (2, 4) (3, 4)
Adjusted R2 0.564 0.529 0.570 0.511 0.444
Mean of the residuals 2.504 2.515 2.478 3.5e-14 1.9e-14
σ(residuals) 1.079 1.073 0.786 2.515 2.645

Table 3.2 – Hyperpath weighting



Chapter 4

Leveraging Crowdensors to support
Context-aware and cost-effective

Crowdsensing

4.1 Introduction

Crowdsensing is becoming one of the most promising paradigms supporting the vision of
social sensing: citizens may contribute valuable spatio-temporal observations using the low-cost,
yet powerful, sensors embedded in their smartphones/tablets, with the GPS for positioning and
the Internet access for uploading. As opposed to mere physical equipment that only senses the
environment and transfers data, crowdsensor should be treated as "social sensor".

There is a wide range of users’ engagements to sensing tasks [94, 65], which depend on how
the smartphones’ owners contribute observations [94, 65], which may be either: (i) pro-actively,
aka participatory crowdsensing [74, 90]; or (ii) passively in the background, aka opportunis-
tic crowdsensing [37, 102]. Participatory crowdsensing allows covering a specific area while
maximising the number of tasks that each participant may achieve [91] through careful path
planning. On the other hand, opportunistic crowdsensing makes it easy to collect a massive
amount of observations across time and space. Indeed, there is no burden put on the end-users.
The human presence in the sensing loop brings into the picture new research challenges, most
of which are yet to be understood and addressed. With participatory sensing, the massive col-
lection of data often necessitates the participants’ long term commitments, which are very hard
to achieve in practice, mainly due to the practical problem of "hiring" motivated volunteers.
Participants lack the technical skills required to set-up and maintain sensors. Participatory
sensing is critiqued as a top-down approach allowing non-experts to participate in scientific
progress. In other words, participatory sensing is perceived as being closer to a participatory
push [62] as opposed to a “form of science developed and enacted by citizens themselves”. On
the other hand, the opportunistically-collected observations often cover the urban space and
time unevenly, due to the mobility of citizens throughout the city. In addition, previous analysis
[83, 165] on the noise observations collected from the opportunistic crowdsensing application
Ambiciti (formerly SoundCity), showed that less than 5% of the collected data were of sufficient
quality to be considered for use in the mapping of urban noise pollution.

Our approach to support the democratisation of environmental crowdsensing, lies in sup-
porting an opportunistic and collaborative crowdsensing. State-of-the-art opportunistic crowd-
sensing systems address the aforementioned shortcoming – namely the uneven coverage of the
urban space and the low-quality of the collected observation – through the centralised analysis –
spanning filtering, aggregation and interpolation– of the contributed observations on cloud/edge
infrastructure servers [93, 108, 69, 68, 166]. The implemented centralisation then severely limits
the adoption of crowdsensing for environmental monitoring due the resulting resource cost and
threat to privacy. Instead, our approach is to allow a fully distributed, collaborative approach
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to crowdsensing: Crowdsensors interpolate data, and aggregate their respective contributions
to the observations of the phenomenon in a collaborative way, so as to overcome the spatio-
temporal sparsity and to limit –or even avoid– the use of a centralised infrastructure server. We
support a distributed solution to the problem of collection, interpolation and aggregation on the
Move, which builds upon the two following trends to support crowdsensing-based environmental
monitoring at scale:

(i) We view crowdsensors as "social sensors" that often encounter each other during crowd-
sensing campaigns or as part of their owners’ daily routine. When the crowdsensing is
opportunistic, participants follow their daily routine without being directly involved in the
sensing task [37]. Thus, at the micro level, behavioural signatures (i.e., routines) as well
as recurrent meeting patterns reflect the underlying relational dynamics of organisations
or communities to which the user is affiliated [97]. Participatory crowdsensing campaigns
bring groups of people together to meet, exchange information and share their findings
[10], with the aim of improving the quality of the data collected for better impact on the
ground [18]. Compared to the opportunistic crowdsensing, participants in participatory
campaigns meet more often and contribute finer scale measurements but cover smaller ar-
eas [169]. In both cases, the end-users are more likely to share their information, especially
in short meetings, as the risk of losing their anonymity is lower [88].

(ii) The control of the sensing process is delegated to people, who may choose to deliver (or
not) relevant information depending on their context as well as their personal constraints,
such as financial budget, time, smartphone battery, available network bandwidth. Other
factors may also influence the quality of submitted sensing measurements. In particular,
smartphone sensors are not typically of the same fidelity as task-specific sensors (e.g.,
a noise pollution monitor vs. smartphone microphone). Besides, inadvertent erroneous
handling of the phone (e.g., phone acting as a noise sensor located in the pocket) coupled
with the lack of experience in performing the sensing task (e.g. blurry photo captured by
mistake) may adversely influence the quality of the data, irrespective of the willingness
of the participants.

(iii) The collaborative and ubiquitous processing of crowdsensor observations improves the
overall efficiency of the system in terms of resource consumption [176], regarding both
the infrastructure and contributing devices. It also allows end users to collaborate and
share knowledge effortlessly and with little or no cost. In particular, D2D collaboration
enhances mobile edge computing by enabling the sharing of heterogeneous computing and
communication resources between powerful mobile end-devices [36].

The design rationale of our crowdsensing solution directly derives from the social nature and
in particular from the location-, context- and time-dependence of the crowdsensors: co-located
crowdsensors contribute related observations [96], and may thus collaborate toward improving
the provided contributions and avoiding unnecessary duplication of work. More precisely, the
crowdsensing tasks that need to be performed at the edge encompass: environment sensing,
location provisioning, data processing, and uploading to the cloud. Then, while the replica-
tion of physical sensing within a group potentially allows for the gathering of more accurate
knowledge, any of the other tasks only need to be performed by the most cost-effective group
member(s). The fact that people tend to group [43, 150] as part of their daily activity, follow
a daily/weekly routine [61, 47], and are most of the time still [83] further supports such a
edge-based collaborative strategy to opportunistic crowdsensing.
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Beyond the user’s mobility which is relevant to initiate the collaboration with the nearby
crowdsensors, to know whether the smartphone is in-/out-pocket, in-/out-door and under-
/on-ground is particularly important because the smartphone/sensing device needs to be in
a position that enables – yet does not interfere with – sensing the physical characteristics of
the surrounding. The sensing context must distinguish between in-pocket and out-pocket ob-
servations because the former lead to a quite significant deviation from the ground truth and
are thus not readily usable [130]. The same applies to in-door versus out-door – as much as
under-ground and on-ground – measurements since aggregating them together to analyse en-
vironmental phenomena obviously leads to unreliable results [106]. The context information
allows keeping more observations -and even correcting them- for aggregating environmental
knowledge, rather than filtering out drastically the crowdsensed data. We qualify as "context"
the combination of these criteria. Our aim is to create dynamic context-aware collaborative
groups of crowdsensors, which are such that the peers within any given group: (i) Stay together
for a long-enough time period so as to prevent constant changes and unnecessary grouping re-
configuration; (ii) Operate within the same physical environment (e.g., in-door vs out-door) and
hence sense related physical phenomena; and (iii) Perform the same activity so that they behave
alike –e.g., it is preferable that all the crowdsensors that collaborate either move together or are
still. Then, upon the creation of a group, the middleware distributes the crowdsensing tasks to
the most adequate group members according to the nodes’ abilities –e.g., a smartphone located
in the pocket cannot adequately sense the surrounding sound level. Overall, our approach fos-
ters opportunistic collection of the observations that puts minimum burden on the end-users,
while increasing the accuracy and resource-efficiency of the crowdsensing system.

Still, a major issue is to cope with the absence of observations due to the uneven distribution
of the crowdsensors and the resulting spatio-temporal sparsity of crowdsensors in some specific
areas. Concretely, our solution also allows a fully distributed, collaborative approach to support
the interpolation of data and aggregation of the respective contributions to the observations
of the phenomenon, so as to overcome the spatio-temporal sparsity and to limit –or even
avoid– the use of a centralised infrastructure server. There are many interpolation methods for
inferring spatio-temporal phenomena, and the smartphone is becoming increasingly powerful to
perform such advanced tasks. At the same time, P2P wireless ad hoc network technology (e.g.,
WiFi Direct) enables the discovery of nearby mobile devices and the exchange of data between
peers, making the collaboration possible [54]. Some crowdsensing systems already exploit the
P2P collaboration of crowdsensors as they meet [170, 46, 177]. However, the collaboration
primarily deals with handling the relay of data, while deployed static edge servers are in charge
of the distributed data aggregation. Our approach leverages the advantage of the former and
overcomes the disadvantage of the latter: it implements an opportunistic data relay and analysis
– spanning the interpolation and aggregation – on the move, across the crowdsensors.

4.2 Context-Awareness sustaining a Collaborative Crowd-
sensing

A major challenge is to cope with the dynamics and heterogeneity of the crowdsensors: the user
activity, the resources available on the device, and the position of the sensors/smartphones are
all criteria that characterise the crowdsensor’s contribution to the upper layer application. We
qualify as context the combination of these criteria.

The accurate monitoring of the physical environment through crowdsensing requires the
contextualisation of the contributed observations because the context impacts the quality of
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the quantitative observations that mobile crowdsensing gathers.Characterising the context
of crowdsensed observations has been extensively studied regarding the recognition of the
user activity and more specifically the mobility condition (whether moving and with which
mean) [122, 134]. On the other hand, inferring the sensing context with respect to the physical
environment under scrutiny has received less attention, while related solutions focus on a single
context element and do not account for the diversity of the contributing devices. Yet, it is
essential to infer together the context elements that impact the crowdsensing, as they are all
equally important. While considering a variety of eligible features, one should account for the
variation in the availability of features across the contributing devices. Our approach addresses
these requirement by being self-adaptive to the diversity of users (and devices). As a first step,
we start from the characterisation of the crowdsensor context, spanning from the physical en-
vironment, user’s activity and device capabilities. In particular, we provide a ranking over all
the candidate features so as to compose the most significant feature set for each classification.
Then, the user-centric classification on the user’s device may be performed on any subset of the
above set so as to account for the diversity of devices and related embedded sensors. The set
may further be customised and freely recomposed, trading off energy efficiency and accuracy,
to offer adaptiveness.

The sensing context must distinguish between in-pocket and out-pocket observations be-
cause the former leads to a quite significant deviation from the ground truth and are thus
not readily usable [43]. The same applies to both in-door versus out-door measurements as
well as under-ground versus upper-ground readings since aggregating them together to analyse
environmental phenomena obviously leads to unreliable results [83].

Overall, the major outcome of the group-based collaboration is:

• A context inference module for crowdsensor to provide explicit context information in-
cluding both device attributes and user behaviours (§ 4.2.1).

• A context-based grouping to share position/internet and optimise the crowdsensing tasks,
so as to decrease power consumption during registration and task assignments (§ 4.3).

• A context-based data aggregation/pre-processing module for crowdsensing groups in order
to decrease the Internet traffic toward the cloud (§ 4.4.1).

4.2.1 Context Characterisation
The context of a crowdsensor serves assessing the relevance of its peering with nodes in the
D2D communication range for the sake of enhanced efficiency, that is, the ability to improve
the gathered knowledge prior to transferring it to the cloud in a way that reduces resource-
consumption. In addition, determining how long the current context is going to last is critical
to ensure that the benefit of the collaborative crowdsensing at the edge outperforms the over-
head due to the group management/configuration. The context characterises the crowdsensor’s
collaboration profile, which subdivides into:

• PE (Physical Environment) defines the position of the embedded sensors, which influences
the given observations of physical phenomena. It detects if the crowdsensor is: in/out-
pocket, in/out-door and under/above-ground.

• UA (User Activity) refers to the mobility (walking, cycling, driving) or non-mobility
(still) of the end-user. In order to support the activity recognition, we rely on the activity
recognition module [57] implemented by the operating system.
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• DA (Device Attributes) characterises the ability of the device to contribute to the various
crowdsensing tasks. The attributes include the available networking and computing capa-
bilities (i.e., type of Internet access –e.g., WiFi–, (upload) bandwidth, remaining battery,
CPU frequency, and memory size), the type of embedded sensors (e.g., {"Temperature",
"Light", "Pressure", "Humidity", "Sound level"}) together with the related power consump-
tion and accuracy.

The user activity and devices attributes are obtained from the devices. In the following, our
aim is focused on the characterisation of the physical environment and on the prediction of how
long the current UA and PE are going to last. The classification of the sensing context of mobile
"crowdsensors" has been the focus of various papers [131, 73, 77]. However, the existing work
focuses on the inference of a single context element, while it is essential to accurately characterise
the sensing context as a whole, that is, to identify whether a contributed observation is sensed
with the device: in-pocket/out-pocket, in-door/out-door and under-ground/on-ground. Machine
learning is an obvious candidate to systematise such a characterisation. Thus, starting from the
sensors available on today’s smartphones, we identify the features that best serve classifying
each of the three elements of the sensing context. We then analyse the performance of candidate
updatable learning algorithms to initialise the three resulting classifiers, taking into account
their classification accuracy as well as their run-time and memory efficiency, from which we
design the hierarchical inference system. In the mean time, we leverage online machine learning
in a way similar to the inference of PE, to predict how long current UA and PE should last.

4.2.2 Feature Selection
In order to select the best feature set for each of the three classifications Mpocket, Mdoor and
Mground, we use a data set of 20K which provides the supporting ground truth, using a Crosscall
Trekker-X3 phone. The data set covers all the candidate features in all the scenarios to be
classified, i.e., in/out-pocket, in/out-door and under/on-ground ; the amount of labelled data
for each class is uniform. Among the data supplied by sensors, the candidate features are the
following: proximity, temperature, light density, GPS accuracy, abstract RSSI level, GSM RSSI
value, WiFi raw RSSI, light density, pressure, humidity. The most relevant features for each
of our three classifications are defined based on their significance, which is defined by higher
information gain and gain ratio, Gini and ReliefF while we set the required threshold value to
0.1 for both. The top three features for the Mpocket classification (see Table 4.1) are proximity,
temperature and light density. Mdoor is relatively more complex (Table 4.2) with six candidate
features (GPS accuracy, abstract RSSI level, GSM RSSI value, WiFi raw RSSI, light density,
temperature) providing an information gain and a gain ratio above 0.1. Although the under-
ground scenario (Table 4.3), which is considered as a sub-case of the in-door scenario, shares
five of them with the latter and needs new features, i.e., pressure and humidity. However, device
models do not always support the sensing of the pressure and humidity, in which case other
features remain decisive.

Feature/Metric Info. gain Gain ratio Gini χ2 ReliefF
Proximity 0.931 0.720 0.478 17776.819 0.329
Temperature 0.344 0.172 0.213 273.650 0.097
Light density 0.310 0.155 0.169 3758.434 0.034

Table 4.1 – 3 Features classifying In-pocket/Out-pocket

67



Chapter 4 – Leveraging Crowdensors to support Context-aware and Cost-effective Crowdsensing

Feature/Metric Info. gain Gain ratio Gini χ2 ReliefF
GPS accuracy 0.974 0.715 0.482 9085.097 0.996
Abstract RSSI level 0.794 0.493 0.416 15416.226 0.293
GSM RSSI value 0.738 0.370 0.384 11211.066 0.157
WiFi raw RSSI 0.320 0.180 0.148 437.694 0.133
Light density 0.255 0.127 0.157 5041.293 0.050
Temperature 0.228 0.114 0.125 50.212 0.070

Table 4.2 – 6 Features classifying In-door/Out-door

Feature/Metric Info. gain Gain ratio Gini χ2 ReliefF
Abstract RSSI level 0.547 0.340 0.296 11586.949 0.250
GPS accuracy 0.434 0.318 0.222 4182.467 0.528
Temperature 0.485 0.243 0.255 1905.520 0.255
GSM RSSI value 0.463 0.232 0.262 8031.071 0.143
Pressure 0.376 0.188 0.202 6136.352 0.224
WiFi raw RSSI 0.181 0.170 0.086 5594.195 0.103
Humidity 0.276 0.138 0.142 2475.257 0.161

Table 4.3 – 7 Features classifying Under-ground/On-ground

4.2.3 Classifier Initialisation
We further train the classifiersMpocket,Mdoor andMground using their respective most significant
features. Various algorithms are eligible for the classification problem [120] although fewer
are updatable. We have specifically selected six candidate updatable algorithms: Hoeffding
Tree (Very Fast Decision Tree), IBk (Instance Based K-nearest neighbours classifier), KStar
(Instance-based Learner), LWL (Locally Weighted Learning), updatable Naive Bayes, and SGD
(Stochastic Gradient Descent) [174].

Table 4.4 compares the selected algorithms according to the same four metrics for our three
classifications: Mpocket, Mdoor and Mground. Our selection criteria is motivated by the size of
the model on the (resource-constrained) mobile device, 10-fold Cross Validation Classification
Accuracy (CVCA) that reflects the classification accuracy, i.e., the proportion of correctly
classified examples, the Online Learning Run-time (OLSR) and the Inference Run-time (IR).

The result for Mpocket in Table 4.4 shows that all the classifiers can provide a similar high
CVCA of about 99%. However, a significant difference appears among the sterilised sizes: IBk,
KStar and LWL are storing training instances inside the learning model, which makes the size
of the classifier proportional to the size of the training dataset. Instead, H.Tree, NaiveBayes
and SGD require a much lower Size. IBk and LWL have an OLR greater than 3ms, while it is
less than 1ms for the other four. IBk, KStar and LWL all have much longer IR than H.Tree,
NaiveBayes and SGD. A better cross validation result is discovered forMdoor: All the algorithms
provide the maximum classification accuracy in cross validation of 100%. However, although the
dataset is unchanged compared to Mpocket, the serialized size of IBk, KStar and LWL increases
due to the number of selected features. Besides, the OLRs do not change significantly, and
are less than 1ms except for IBk and LWL. IBk, KStar and LWL still have a longer IR than
the other three algorithms. Result for Mground shows that LWL and NaiveBayes give lower
classification accuracy in cross validation than other algorithms, but still over 95%. The high
storage cost remains for IBk, KStar and LWL as they require storing historical data. They
further cost a much longer IR than the other three algorithms. As for H.Tree, NaiveBayes and
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SGD, both their OLR and IR remain below 1ms, with the negligible exception of the IR of
NaiveBayes at 1.223. Overall, IBk, KStar and LWL show the highest space and time costs, and
we discard them.

Finally, we select Hoeffding Tree, Naive Bayes and SGD as initial classifiers, as they show
a fairly small space and time cost as well as the highest accuracy and lowest space/time costs.

Metric/Model H.Tree IBk KStar LWL NaiveBayes SGD
Mpocket

Size (kB) 16 1158 1157 1158 3 5
CVCA (%) 99.1538 99.469 99.350 99.149 98.999 99.180
OLR (ms) 0.020 3.809 0.081 4.344 0.012 0.123
IR (ms) 0.057 10.545 165.844 91.325 1.635 0.018

Mdoor

Size (kB) 9 1612 1791 1764 4 6
CVCA (%) 100 100 100 100 100 100
OLR (ms) 0.036 5.150 0.062 5.813 0.011 0.172
IR (ms) 0.071 11.823 364.790 109.644 1.610 0.047

Mground

Size (kB) 13 1763 1763 1763 4 6
CVCA (%) 100 100 100 98.060 97.105 100
OLR (ms) 0.024 4.628 0.062 6.720 0.009 0.111
IR (ms) 0.061 15.160 238.916 128.149 1.223 0.018

Table 4.4 – Initial learning models.

In order to predict how long the current UA and PE are going to last, we leverage online
machine learning in a way similar to the inference of PE : we predict the duration of the current
UA (resp. PE) according to the current time and UA (resp. PE). The prediction of the UA/PE
duration is a regression problem, rather than a classification. Many online learning algorithms
may address the prediction model but fewer deal with regression. We have investigated three
eligible algorithms: IBk (Instance Based k-nearest neighbour algorithm), KStar (an instance-
based learner), and LWL (Locally Weighted Learning) [174]. We selected LWL as training
algorithm because it provides the lowest RMSE and latency.

4.2.4 Online Personalising
The design rationale of our online learning solution is the following: The initially trained clas-
sifier is deployed on the participating devices at the time of the installation of the embedding
crowdsensing middleware/application. While the inference of the sensing context is running
on the device, feedback is requested from the user to assess the correctness of the inference
result. The collected opportunistic feedback is then converted to a labelled training instance
that updates the current learning model.

Through the online learning, the initial classifier gets personalised on various device models,
according to diverse user behaviours and usage scenarios. In particular, the features that are
not available locally become non-contributing to the related classifiers as they get updated.
There is a well-known risk associated with online learning that is reaching a local optimum
but not a global one as the classification accuracy may not be convex due to the continuous
update. We address this limitation through opportunistic feedback where the user is given the
opportunity to notify wrong context inferences.
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Gathering feedback should be limited as much as possible to minimise the burden on the
user, while still enhancing the accuracy of our three classifiers Mpocket, Mdoor and Mground over
time. We achieve the above by applying a hierarchical inference and update of the classifiers.
While more detail about the hierarchical inference (along with the related Algorithm) can be
found in [51], the design rational of the hierarchical follows from the predominant role of the
in-pocket classifier over the two others and of the in-door classifier over the under-ground one
when sensing the physical environment. Specifically, a crowdsensed measurement is relevant if
out-pocket. Thus, the in-door/out-door detection is meaningful only when the device is out-
pocket and ready for sensing. Further, the under-ground/on-ground case is a sub-scenario of
the in-door situation. Similarly, requesting the user’s feedback is sensible only if the user is in
the position to easily do so. Typically, requesting feedback when the device is in the pocket is
too cumbersome for the user.

4.3 Assessing the Crowdsensor Utilities
We introduce a set of utility functions to evaluate the extent to which crowdsensors are eli-
gible to carry out the various crowdsensing tasks. The following crowdsensing tasks must be
implemented within any collaborative group: Coordinator (implementing the D2D network ac-
cess point for the group and assigning the crowdsensing tasks to the connected crowdsensors,
i.e.,neighbours), Location provider (supplying geographical coordinates), Internet proxy (pro-
viding Internet access and thus transferring data to the cloud), Data aggregator (analysing
together the collected data locally before sending to the cloud to, e.g., calibrate the sensors
[149], analyse the data [165]), and, of course, Sensors. In practice, we rely on the following
classical squashing function f for the normalisation of the values used in the computation and
comparison of the utilities:

f(x, k, x0) = 1
1 + ek(x0−x)

where: the range of f lays into (0, 1), k is the logistic growth rate or steepness of the curve,
and x0 is the x-value of the midpoint of sigmoid, while x is the variable to be normalised. The
values of k and x0 are set according to the domain of the specific x. In the following, we denote
kf and xf the values of k and x0 for a given function f , while the actual values of the various
parameters have been set during the prototype evaluation. Next, we further define the utility
functions for each crowdsensing tasks, relying on the squashing function that normalises the
values (as defined in Table 4.5)

Coordinator

- The selection of the coordinator is based on the following criteria:

• The number of neighbours Ni has a significant impact on the overall performance because
increasing the number of collaborators enables analysing more data locally and reducing
the transfer of data to the cloud. In contrast, there is no benefit in creating groups with
too few crowdsensors for which the minimum value δ depends on the application.

• The occurrences of collaboration hi between a crowdsensor i and its neighbours is another
relevant parameter as it reveals the relationship between crowdsensors materialised by
the sharing of daily routines, habits, activities.

• The UA and PE (except pocket) di of the crowdsensor should last sufficiently long.
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Parameter Function Parameter(s)
Sufficient number ∆i = f(max{0, |Ni| − δ}, k∆, x∆) Ni : neighbours

of neighbours δ: minimum value

Collaboration hi = f(
∑

j∈Ni
tcollab(i,j)
|Ni| , kh, xh) tcollab(i, j): number of times

occurences i collaborated with j

Context (i.e., UA, PE) di = f(min{dur(UA), dur(PE)}, dur(UA), resp. dur(PE)
durability kd, xd) predicted duration of the

current UA, resp. PE
Remaining battery bi = f(bati, kb, xb) bati: remaining

capacity battery
Accuracy li = f(accl, kl, xl)− f(powl, kl, xl) accl: accuracy

versus power pow: power
Upstream ni = f(bwup, kn, xn)− f(pownet, bwup: Bandwidth
bandwidth knp, xnp) pownet: power consumed
versus power for transmission

Accuracy vs power d′i = f(dur(PEout), kd, xd) dur(PEout): duration of the
crowdsensor being out of the pocket

Table 4.5 – Set of parameters used to measure the utility associated with a task

• The remaining battery capacity bi of the crowdsensor should obviously be taken into
account.

Next, provided the weights w∆, wh, wd, wb, all ∈ [0, 1], set for the above criteria, we define
the utility uc(i) of the crowdsensor i associated with acting as coordinator as the weighted sum
of the above functions:

uc(i) = w∆.∆i + wh.hi + wd.di + wb.bi

Location provider

On a smartphone, the location is either GPS- or network-based. While the GPS location brings
higher accuracy out-door, it also comes with higher energy consumption and latency, compared
to the network-based location. The utility function for crowdsensor i of being a location provider
is thus defined as ul(i), which accounts for the location service source1, location accuracy and
remaining battery capacity:

ul(i) = li + wd.di + wb.bi

Internet proxy

The Internet proxy transfers the (analysed) data provided by the group of crowdsensors to the
cloud server. The service may be provided using either long range cellular or short range WiFi
transmission, while we assume that a node supporting both networks will offer the WiFi based
transmission by default. The utility function up(i)) for crowdsensor i acting as Internet proxy
then accounts for the Internet connection interface, up-link network bandwidth, and remaining
battery capacity:

up(i) = ni + wd.di + wb.bi

1. Note that when the location service not operational, li = −∞.

71



Chapter 4 – Leveraging Crowdensors to support Context-aware and Cost-effective Crowdsensing

Data aggregator

The data aggregator provides in charge the analysis of the sensing data collected locally. While
lightweight data processing can be performed by the coordinator or by the proxy, complex data
analysis may be delegated to a dedicated device that holds the necessary processing capabilities
(spanning available memory, CPU frequency and remaining battery capacity). This results in
the following definition for the supporting utility function ua(i):

ua(i) = wc.[f(cpui, kc, xc) − f(powc, kcp, xcp)] + wr.f(memi, kr, xr) + wd.di + wb.bi

where: cpui is the CPU frequency, powc is the power consumption of the CPU, memi is the
available memory, and coefficients wc, wr are the weights set for the metrics.

Sensors

The utility of a crowdsensor to carry out the sensing task depends on the accuracy of the
contributed observations and their power consumption. In particular, a crowdsensor within a
pocket/bag is ignored, which we filter out using the duration of the crowdsensor being out of
the pocket (as defined by the PEout value of PE):
which leads to the following utility function, us(i) ∈ (−1, 1 + wd):

us(i) = d′i.[f(accsi , ka, xa)− f(powsi , ksp, xsp) + wd.di]

where: accsi (resp. powsi ) is the accuracy (resp. power consumption) of the sensor of type s on
crowdsensor i.

Utility-based Grouping

Provided the utility functions, the grouping algorithm leverages the communication and discov-
ery protocols implemented at the link layer by state of the art D2D communication technologies.
Without loss of generality, our grouping algorithm builds upon the WiFi Direct technology [9].
In a nutshell, WiFi Direct establishes a D2D opportunistic network through the discovery of
peer nodes followed by the election of the node acting as the network’s access point according
to the criteria provided by the upper layer (i.e., in our case, the coordinator utility value pro-
vided by the middleware). Furthermore, the grouping algorithm runs on every node i, either
on-demand or on a periodic basis according to the network’s dynamics. Once a group is created,
the arrival/departure of nodes is detected at the link layer by the underlying D2D protocol.
This enables two approaches to the reconfiguration of the group: (i) on a periodic basis, or (ii)
on-demand upon the detection of the departure/arrival of a group member. The latter per-
forms very well and induces almost no cost when very few topology changes occur and when
the context evolves slowly. On the other hand, it may lead to a unnecessarily high traffic and
constant reassignment in a highly dynamic environment. Keeping in mind that, in practice,
users are still most of the time (and hence evolving in the same context), by default we adopt
an on-demand approach (based on context change). Nevertheless, the middleware switches to
periodic re-assignment when the context gets highly dynamic. Subsequently, our work focuses
on a distributed interpolation and aggregation approach running on the crowdsensors to achieve
both higher sensing quality and efficiency.
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4.4 Opportunistic Aggregation and Interpolation
A mobile crowdsensing application dealing with urban pollution monitoring (e.g., noise, air
quality, water quality, etc.) needs to sense, pre-process, interpolate, then aggregate and relay
measurements in a P2P way so as to favour computation at the edge and thereby limit the
resource and financial costs associated with the use of the cloud infrastructure. Concretely, we
attempt to support a fully distributed, collaborative approach to crowdsensing, in which crowd-
sensors further interpolate data, and aggregate their respective contributions to the observations
of the phenomenon in a collaborative way. The intent is to overcome the spatio-temporal spar-
sity and to limit –or even avoid– the use of a centralised infrastructure server. There are many
interpolation methods for inferring spatio-temporal phenomena ; the smartphone is becoming
increasingly powerful to perform such advanced tasks. However, the collaboration [170, 46, 177]
primarily deals with handling the relay of data, while deployed static edge servers are in charge
of the distributed data aggregation. Our approach leverages the advantage of the former and
overcomes the disadvantage of the latter: it implements an opportunistic data relay and analysis
on the move, across the crowdsensors.

In particular, our solution supports the repeated monitoring of a physical phenomena over (a
possibly large) area over a given time period D using the contributions of the m crowdsensors.
The data that each crowdsensor collects is represented as a concise 3-dimensional tensor where
the first two dimensions refer to the spatial space and the third one to the temporal domain.
In particular, we discretise the target region into a I × J area, which contains equally spaced
grid points. We also discretise D into K time slots of equal duration.

We denote Ys ∈ RI×J×K the tensor that crowdsensor s (1 ≤ s ≤ m) maintains and that is
such that entry y(x) ∈ R at position x := (i, j, k) ∈ R3 is the average of the measurements col-
lected by s over the area indexed by (i, j) during the time interval indexed by k. In other words,
any crowdsensor s contributes a tensor Ys that provides a sparse/incomplete observation of the
physical phenomenon according to s behaviour. The middleware then allows the opportunistic
combination of the various tensors Ys (1 ≤ s ≤ m) using interpolation and aggregation so as
to compute an overall Y .

The periodic process runs on every participating crowdsensor to compute Y . The process
iterates over time windows of duration D. Within a given time window T+D, the process runs
in parallel: (i) the collection of the measurements provided by the embedded sensors to update
the tensor Ys(T+D) of the current time window, and (ii) the opportunistic aggregation of the
local tensor of the previous time window T with the ones of peers as they meet (see detail in
§ 4.4.2). At the end of the time window, GPR-based spatio-temporal interpolation is applied
on the associated local tensor to recover missing values (see detail in § 4.4.1). We highlight that
the interpolation is run locally, only once and prior to the aggregation process run over the
next time window because: (i) the number of occurrences must be minimised due to the high
cost of the interpolation computation, and (ii) the local interpolated tensor allows assessing the
quality of the local measurements against the ones of the peers that the node meets, which the
aggregation process leverages. Finally, at the end of the current time window T+D, the node
ultimately sends its local tensor to the cloud, unless it got aggregated and relayed by another
peer.

4.4.1 Spatio-temporal Interpolation
Given a sparse tensor Ys resulting from the averaging of the local measurements collected
at s over time duration D, interpolation allows completing the tensor by estimating missing
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observations. The dense tensor Ŷs denotes the resulting (denser) tensor. The quality of the
estimation can be established based on the approximation error (i.e., residual) at point x, that
is: e(x) := |y(x)− ŷ(x)| where we recall that the function y : R3 7→ R maps an arbitrary point
x := (i, j, k) to its observation value y(x). The overall residual is then given by E = ‖Y − Ŷ‖.

Let Ω be the set of observation points collected by a given crowdsensor. The boolean mask
tensorM ∈ BI×J×K is defined such that m(x) = 1 if there is a corresponding value within Ω,
and m(x) = 0 otherwise. Thus,M∗ Y provides the actual observations (i.e., ground truth as
sensed). When estimating Ŷ based on a sparse tensor Y with mask M, we seek to minimise
the following loss function, which is associated with the approximation Ŷ :

J(Y , Ŷ) := 1
2
∑
x∈Ω

e(x)2 = 1
2‖M ∗ (Ŷ − Y)‖2

where: ‖ · ‖ denotes the Euclidean norm of a tensor, and ∗ represents the element-wise multi-
plication.

We leverage Gaussian Process Regression (GPR) [132] to compute Ŷ out of Y . That is, we
assume that y follows a Gaussian Process (Gaussian distribution over functions), i.e.,:

y(x) ∼ GP(µ(x), k(x, x′))

where: µ(x) = E[y(x)] refers to the mean function, and k(x, x′) is the covariance matrix, i.e.,
the kernel of the GPR, which verifies k(x, x′) = E[(y(x)− µ(x))(y(x′)− µ(x′))].

The covariance function is a crucial ingredient of GPR as it encodes the notion of similarity
between two nearby data points x and x′ on the basis that observations that are close to
each other (in both time and space) are likely to have higher correlation. Various families
of covariance functions exist (see [132] for an overview), including, e.g., squared exponential,
polynomial, and Matérn class. In our case, the Matérn class [110] induced the lowest error and
runtime compared to alternative functions.

We assume that the observation y is noisy, which is more realistic. We therefore consider a
regression that aims at establishing y = y(x) + ε where: the function y(x) follows a Gaussian
Process, i.e., y(x) ∼ GP(µ, k), and the noise is additive, independent, and corresponds to an
identically distributed Gaussian noise: ε ∼ N (0, σ2

e). Furthermore, given n observed values
Y = [y1, · · · , yn]> obtained at the location points X = [x1, · · · , xn]>, the joint distribution of
[y(x1), · · · , y(xn)]> follows a Gaussian distribution:

[y(x1), · · · , y(xn)]> ∼ N (µ,K)

where: µ = [µ(x1), · · · , µ(xn)]> refers to the mean vector, and K is a n× n covariance matrix
with Kij = k(xi, xj).

Our interpolation aims at inferring Y ∗ = y(X∗), which includes m unobserved points stored
in the tensor X∗ = [x∗1, · · · , x∗m]>.
The inferred tensor Y ∗ follows a Gaussian distribution:

p(Y ∗|X∗, X, Y ) = N (µ̂, σ̂2 + σ2
eI)

With a mean and variance of Y ∗ respectively estimated as:

µ̂ = K(X,X∗)>[K(X,X) + σ2
eI]−1Y

σ̂2 = K(X∗, X∗)−K(X,X∗)>[K(X,X) + σ2
eI]−1K(X,X∗)
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Once the GPR model is trained, the mean value µ̂ and variance σ̂ of any given point x are
inferred. In addition, the complete approximation tensor Ŷ is provided along with the variance
tensor Σ̂2 ∈ RI×J×K , in which each element σ̂2 provides the variance of the corresponding µ̂,
namely ŷ(x). Note that GPR is computationally demanding as the training scales in O(n3) with
n being the number of observations. Thus, applying such a regression over the overall dataset at
the cloud incurs significant computation and financial costs. As an alternative, the middleware
distributes the training and inference load over the crowdsensors in an opportunistic way.

4.4.2 Opportunistic Aggregation
The design of the middleware is such that it favours the occurrences of aggregation among the
crowdsensors over the ones of the cloud for the sake of lowering the overall computation and
communication costs at the cloud, while maintaining the same data quality. To achieve this,
our middleware implements an opportunistic aggregation approach. Upon a meeting (involving
a shared D2D communication range) of two crowdsensors s and s′, the middleware selects one
of the two to aggregate their respective tensors Ŷs and Ŷs′ . Assuming the selected node is s,
then Ŷs is updated as the aggregation of Ŷs and Ŷs′ , and Ŷs′ is set to the null tensor. Then, s
relays Ŷs till it meets another crowdsensor or till the current time window T+D expires in which
case s sends the tensor to the cloud.

The crowdsensor that is the best suited to act as the relay node is the one that will meet
the highest number of nodes in the future and thus minimises the occurrences of Ac. We
consider that the respective inference quality of the tensors somehow hints on the probability
of encountering other crowdsensors in the future. Evaluation further shows that it is a relevant
criterion. Precisely, we use the inference quality as defined by the following loss function:

D(Ŷs, Ŷs′) := ‖(Ms′ ∗ ¬Ms) ∗ (Ŷs′ − Ŷs)‖2

2‖Ms′ ∗ ¬Ms‖2

where ¬ corresponds to the NOT Boolean operation andMs andMs′ correspond to the mask
tensors of s and s′.
The crowdsensor with the lowest loss function performs the actual aggregation. In the following,
we describe the aggregation function that crowdsensor s runs provided the tensor Ys′ from s′,
to compute the new tensor Yss′ . The aggregation function (see Eq. 4.2) sums the following :

• the sensor measurements that are only provided by s omitting the interpolated measure-
ments of s′: Ys ∗ (Ms ∗ ¬Ms′),

• the sensor measurements provided by s′ omitting the ones of s′ that are interpolated:
Ys′ ∗ (Ms′ ∗ ¬Ms),

• the actual sensor measurements provided by both s and s′, which are averaged together:
nsYs+ns′Ys′
ns+ns′

∗ (Ms ∗Ms′) with m (resp. n) measurements denoting the amount of measure-
ments collected by crowdsensor s (resp. s′). Note that the above merged average is built
upon a simple algebraic expression of addition that works well to fuse the measurements
provided by, e.g., temperature sensor. Such a merged average should be tailored to deal
with observations that do not follow an algebraic expression. This is, e.g., the case when
merging the average sound level provided by mobile crowdsensors, which is the focus of
the experiments.

• The two values resulting from interpolation, which are aggregated using the Generalised
Product-of-Expert of GPR, as detailed below.
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Overall, the aggregation function performed by crowdsensor s, provided the tensor Ys′ from s′,
to compute the new tensor Yss′ , is the following:

Yss′ =Ys ∗ (Ms ∗ ¬Ms′) + Ys′ ∗ (Ms′ ∗ ¬Ms) + nsYs + ns′Ys′
ns + ns′

∗ (Ms ∗Ms′) (4.1)

+ (βsYs/Σ2
s + βs′Ys′/Σ2

s′)/(βsΣ−2
s + βs′Σ−2

s′ ) ∗ (¬Ms ∗ ¬Ms′) (4.2)

Generalised Product-of-Expert is a method that allows combining predicted results that
have been inferred by several experts (e.g., sensor measurements and interpolation). In particu-
lar, it enables weighting the respective importance of the experts according to the reliability of
their prediction. The aggregation of multiple GPR inferences is a generalised product-of-expert,
which accounts for multiple inference distributions ps of an arbitrary point x∗. According to
[33], it combines many Gaussian distributions with mean µ̂s(x∗) and variance σ̂2

s(x∗) from any
crowdsensor s, and it is defined based on:

µ̂(x∗) = σ̂2(x∗)
m∑
s=1

βs(x∗)σ̂−2
s (x∗)µ̂s(x∗)

σ̂2(x∗) = [
m∑
s=1

βs(x∗)σ̂−2
s (x∗)]−1

with a weighting parameter βs that allows tuning the relative importance of a crowdsensor s
according to the reliability of its prediction. Regarding the value of β, we distinguish whether
the aggregation is performed at the cloud or at a crowdsensor. In the former case, the cloud
considers all the incoming data as equivalent; thereby, βs = βs′ = 1. On the other hand, the
opportunistic aggregation on the move is asymmetric, as captured by the loss function D. Our
evaluation shows that assigning a greater β to the crowdsensor acting as the merge base (i.e.,
resulting in the least loss) leads to a higher aggregation accuracy.

4.5 Performance Evaluation

4.5.1 User-centric Context Inference

Our primary aim is to evaluate the accuracy of the proposed classifications and the amount
of feedback required for personalization. In order to select the most efficient machine learning
algorithm for the classifications, we assess candidate algorithms using both negative and posi-
tive feedback. The final solution relies on the Hoeffding Tree and uses only negative feedback
hierarchically so as to keep the amount of feedback to a minimum and limit the burden put
on the end user. The initial classifier is trained once on a computer and then deployed on the
smartphones where it evolves.

We evaluate our updatable approach relying on the training dataset DATASET1 (see Sec-
tion 4.2.2), and a new testing dataset DATASET2.
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DATASET2: Similarly to DATASET1, DATASET2 contains 20k instances, each
embedding three labels representing the ground truth, and covers all the relevant sce-
narios (i.e., in/out-pocket, in/out-door and under/on-ground) uniformly. Differently
to DATASET1, the environment sensors, including temperature, humidity, pressure
are not available on the contributing device Xiaomi Redmi Note 4, and the available
sensors are from a distinct manufacturer. In addition, the user can switch off the
WiFi module. Furthermore, the data gathered for DATASET1 and DATASET2 cor-
respond to two different physical environments as they were collected in two different
city areas and at different time period (i.e., different months).

The simulation-based experiments reported in the two next sections are run multiple times
and break down into the following three steps:

1. The initial classifier, which is generated from batch training using DATASET1 is im-
ported and assessed against the entire DATASET2 to provide an initial classification
accuracy for Mpocket, Mdoor and Mground respectively.

2. The opportunism is simulated by randomly selecting 30 instances from DATASET2. The
30 instances are classified sequentially using their corresponding feature vector. Then,
the feedback is simulated: the inference result is compared to the ground truth label in
the instance. If the classification is correct, the instance represents a positive feedback.
Otherwise, it represents a negative feedback.

3. The simulated feedback is used to update the classifier. Once a classifier is updated, it is
evaluated on the entire DATASET2 again to provide a new classification accuracy. Thus,
every feedback iteration has a corresponding classification accuracy.

DATASET2 is shuffled in each run. Therefore the opportunistic feedback are randomised. The
baseline is the initial classification accuracy performed by the initial classifier on DATASET2
before any update.

Assessing the online learning algorithms and the type of feedback

Since our objective is to update the classifier for a particular user, it is important to (i) inves-
tigate the amount of feedback required to achieve a high inference accuracy and (ii) identify
the algorithm providing the highest accuracy with the least feedback. For Mpocket, Mdoor and
Mground, we evaluate the three algorithms Hoeffding Tree, Naive Bayes and SGD, as selected in
Section 4.2.3. For each learning algorithm in each classifier M , the λ parameter is configured
constantly as 10 to boost the online learning process.

We have run the experiment 100 times and in each run, the volume of feedback reaching
the highest accuracy along with the classification accuracy itself are recorded. Note that in this
experiment, the inference and update are not hierarchical, which means that the update for
each M is independent of each other.

Figure 4.1 shows the classification accuracy for the three algorithms over the three classi-
fications, when both positive and negative feedback are requested from the user. We observe
that the algorithms have different performance across the classifications. For Mpocket, the accu-
racy of Naive Bayes does not increase at all with the volume of feedback, while both Hoeffding
Tree and SGD can increase their accuracy after few feedback, and Hoeffding Tree requires less
feedback to reach the highest accuracy. For Mdoor, Naive Bayes shows both lower initial clas-
sification accuracy and updated classification accuracy than the other two. Hoeffding Tree is
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(a) Hoeffding Tree over 100 runs
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(b) Naive Bayes over 100 runs
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(c) SGD over 100 runs

Figure 4.1 – Maximum classification accuracy according to the amount of user feedback (positive
& negative)

more likely to improve the classification accuracy, although SGD may increase the accuracy
with less feedback. For Mground, SGD does not show improvement on accuracy, while in most
cases Hoeffding Tree provides higher accuracy than Naive Bayes after gathering feedback.
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(a) Hoeffding Tree over 100 runs
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(b) Naive Bayes over 100 runs
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(c) SGD over 100 runs

Figure 4.2 – Maximum classification accuracy according to the amount of user feedback (only
negative)

The experiments suggest that more positive feedback will be collected than negative feedback
if the initial classification accuracy is above 50% and even more if the accuracy keeps increasing.
Therefore, the negative feedback is always less requested, and thus the user is less prompted.
Figure 4.2 analyses the maximum classification accuracy achieved when collecting only negative
feedback. For all the algorithms, we observe that we can reach the highest classification accuracy
with less than 15 negative feedback (half of positive and negative feedback). In more detail,
for Mpocket, Hoeffding Tree reaches the highest accuracy instantly after one negative feedback,
Naive Bayes does not change the accuracy at all and SGD requires more feedback to achieve the
highest accuracy. ForMdoor, a similar phenomenon is observed: in most cases, Naive Bayes keeps
the accuracy unchanged while both Hoeffding Tree and SGD increase the accuracy following
negative feedback. ForMground, SGD still does not provide any improvement on the classification
accuracy, and in most cases, Hoeffding Tree provides a higher accuracy than Naive Bayes after
receiving negative feedback. The result has shown that using only negative feedback can reduce
the amount of feedback requests. Meanwhile, the increased classification accuracy has the same
range as using both positive and negative feedback.

Overall, the Hoeffding Tree[81] is considered as the best candidate and used for the evalu-
ation of the hierarchical inference and update approach detailed next. Also, we consider only
negative feedback in our hierarchical approach. Note that the total number of feedback required
needs be accumulated here, e.g. 15 for each and 45 in total, because the three classifiers are
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updated individually using a single instance and three labels are requested every time.

Hierarchical feedback

Instead of requesting feedback for every classifiers on each instance, the hierarchical and negative
feedback is provided to one of the three classifier. Our hierarchical approach is evaluated on
DATASET2, assessing the classification accuracy according to the amount of negative feedback.
We performed 500 experimental runs.
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Figure 4.3 – Improvement of the binary H.Tree classification accuracy according to the number
of (hierarchical and negative) feedback with λ = 10

Figure 4.3 provides the classification accuracy according to the amount of (negative and
hierarchical) feedback. Among the 13 (negative and hierarchical) feedback, at most 9 feedback
are related to Mpocket, 12 to Mdoor and 13 to Mground. The classification accuracy gets better
99%, 86% and 71% of the time for Mpocket, Mdoor and Mground, respectively. In such a case, the
mean classification accuracy for Mpocket and Mground is quite high and much better comparing
to the initial accuracy, while the mean enhanced accuracy for Mdoor is quite high, but is closer
to the initial accuracy. While the accuracy in Mpocket remains stable, the classification accuracy
for Mdoor and Mground increases and then decreases a little before reaching maximum 91%
and 90%, respectively. We undertook additional experiments that are not plotted here. These
experiments showed that when the parameter λ is larger, the accuracy is more often better,
but the runtime cost is also higher. For instance, with λ = 15, the accuracy is better 100%,
88% and 71% of the time for Mpocket, Mdoor and Mground, respectively. Overall, requesting
only negative feedback reduces the amount of feedback requested from the end user while
the hierarchical approach requires even less feedback. Indeed, 13 (negative and hierarchical)
feedback are requested rather than 90 (negative and positive, non hierarchical) feedback, or 45
(negative only, non hierarchical) feedback.

We perform 500 experiments so as to evaluate our hierarchical approach using the F1 score,
which is a measure of a test’s accuracy considering both the precision and the recall of the
test. The best (resp. worst) value attained by F1 score is 1 (resp. 0). Precisely, the initial
classifier trained with DATASET1 is evaluated by simulating negative feedback, leveraging
DATASET2.

Figure 4.5 provides the F1 score according to the number of (negative and hierarchical)
feedback. Among the 15 (negative and hierarchical) feedback, at most 4 feedback are related
to Mpocket, 12 to Mdoor and 15 to Mground. The F1 score gets an enhancement 100%, 90% and
71% of the time for Mpocket, Mdoor and Mground, respectively. The enhancement of F1 score is
most significant for Mpocket and least significant for Mdoor. Overall, 8 hierarchical feedback can
provide high F1 scores for all the three classifiers.
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Figure 4.4 – Improvement of the binary H.Tree F1 score according to the number of (hierarchical
and negative) feedback with λ = 10

Hierarchical classifiers versus multi-class classifier

We can infer the context by either performing a single multi-class classification or by using three
binary hierarchical classifications. The multi-class classifier distinguishes 8 classes as combina-
tion of in/out-pocket in/out-door and under/on-ground. To compare the multi-class classifier
with our hierarchical classifiers solution, we perform 100 experiments (because many more up-
dates are needed compared to the hierarchical way), using the same settings as in Section 4.5.1.
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Figure 4.5 – Improvement Multi-class H.Tree classification accuracy and Runtime for single
multi-class H.Tree versus hierarchical binary class, with λ = 10

As illustrated in Figure 4.5a, the initial and enhanced classification accuracy of a multi-class
classifier is much lower (around 2 times lower) compared to the ones of hierarchical classifiers
(Figure 4.3). The enhanced accuracy is on average always lower than 45%. Besides, the multi-
class classifier requires more feedback over all experiments (28 feedback are required over 30
feedback). Another drawback of the multi-class classifier is that the user has to select among 7
options as a feedback rather than answering "yes or no" to a simple and specific question.

Meanwhile, we performed 500 experiments to compare in Figure 4.5b the inference and
update runtime of multi-class classifier and hierarchical classifiers. Our hierarchical solution is
characterised by a much lower update runtime (median, mean and majority) compared to multi-
class classifier. For inference, hierarchical classifiers induce a slightly lower runtime comparing
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to the multi-class classifier because the hierarchical classifiers do not run all classifications every
time.

Overall, the advantages of using a hierarchical classifiers (rather than a multi-class classifier)
are many fold: (1) Using a classifier for each context element ensures that the classification
accuracy remains high for each of them. (2) Each classifier relies on the vector of the most
relevant features, resulting in a reduced inference and update runtime. (3) A classifier can
easily be added/removed/replaced when a new context element needs to be managed for the
benefit of the upper layer crowdsensing-based application. (4) Our hierarchical classification
limits the number of classifications that is triggered, e.g., the in-/out-door context is assessed
only if the device is outside the pocket. (5) The user feedback required for the personalisation
of the hierarchical classifiers is simple and reduced.

Power consumption and accuracy
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Figure 4.6 – Classification accuracy and power consumption

Figure 4.6a presents the power consumption of the environmental sensors embedded in the
Crosscall Trekker-X3 phone and of the networking modules2, which together serve to gather the
features. We observe that the light, temperature, pressure and humidity sensors are not power-
consuming, contrary to GPS module, proximity sensor and WiFi component. In the following,
we concentrate on evaluating the impact of disabling these three power-consuming features.
We already considered the impact caused by the unavailability of environmental sensors in
DATASET2.

DATASET3: This dataset contains a training dataset (20k instances) and a testing
dataset (20k instances): a Samsung Galaxy S4 GT-i9505 smart phone is used to
collect DATASET3 for the initial classifier and a modified version DATASET ′3 is
used for evaluation. In DATASET ′3, the proximity sensor, the GPS module and the
WiFi component are disabled on the device, thus the three features from them are
unavailable.
Again, we simulated the hierarchical inference and update by 500 experimental runs. Fig-

ure 4.6b presents the classification accuracy forMpocket,Mdoor andMground, when all the features
are available, and when the GPS module, proximity sensor and WiFi component are disabled.

2. https://source.android.com/devices/tech/power/values.html
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When the GPS module, proximity sensor and WiFi component are disabled, the classification
accuracy diminishes to respectively 50%, 40% and 20%. After getting feedback, the mean clas-
sification accuracy increases by 10%, 8% and 1% respectively, while the maximum classification
accuracy after feedback reaches 74%, 99% and 98% respectively. Overall, our approach person-
alises the classifiers and deals with the disabled power-consuming features according to user
preference.

Our implementation requires 100MB of memory on a Nokia X6 Android 9 smartphone
(Qualcomm Snapdragon 636) and leads to an increase of 5% of the CPU. The inference and
update of contexts necessitates around 3MB of memory and an increase of 5% of the CPU.
We evaluate the computation runtime of the entire inference and update phases. The inference
runtime is on average 0.2ms, 0.1ms and 0.1ms for Mpocket, Mdoor and Mground, respectively,
while the runtime necessary to update the model is 7.3ms, 7.5ms and 10.0ms on average (with
λ = 10).

4.5.2 Group-based Collaborative Crowdsensing
We evaluate the performance of our approach, assessing: (i) the impact on the power consump-
tion of the device running the BeTogether middleware in the background, and (ii) the potential
benefit of the collaborative crowdsensing at the edge from the standpoint of data quality and
communication cost based on a one-year dataset obtained from the Ambiciti application for
urban pollution monitoring. We note that due to privacy and commercial concerns, the Ambic-
iti company shared the data with us within the framework of a collaboration agreement while
data cannot be released openly.

Power consumption

Table 4.6 – Active power of components for Nexus 5X

WiFi TX WiFi Scan Cellular TX Light Sensor GPS RX
173 mA 2 mA 186 mA 0.2 mA 60 mA

We estimate theoretically the power consumption on a single crowdsensor; Table 4.6 shows
the power of the main components used in our crowdsensing middleware. The reference values
are for the Google Nexus 5X smartphone, as provided by the Android OS (https://source.
android.com/devices/tech/power/values) according to the power profile provided by the
manufacturer. Herein, we select the light sensor, which involves a power consumption compa-
rable to that of most sensors [52, 96]. Note that the power consumption associated with the
transmission depends on the transmission duration, which increases linearly with the packet
size. We assume that cellular and WiFi Direct communications have the same transmission
speed.

Figure 4.7 shows the power consumption of a crowdsensor working individually at various
sensing and upload frequencies. The upload is the most energy-demanding and the energy
consumption can be reduced by lowering the upload frequency. As a comparison, Figure 4.8
provides the power consumption of the various nodes contributing to collaborative crowdsensing
with regards to a high sensing frequency (every 1 minute) and upload frequency (every 10
minutes) for the individual case. Results show that the proxy always consumes the most energy
due to the cellular transmission that takes place with the cloud, followed by the coordinator
that communicates with the nearby devices to distribute the tasks. Other group participants
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consume much less energy compared to the individual case, even-though this consumption
includes the cost related to discovery and D2D transmission to the coordinator.

Dataset-driven evaluation

Dataset We leverage a dataset produced by the Ambiciti (formerly called SoundCity) cloud-
based crowdsensing application available on Google Play since 2015 and on Apple AppStore
since 2016 (see http://ambiciti.io). Ambiciti monitors the noise pollution using the smart-
phone’s microphone [167]. Our dataset contains 946,573 observations gathered both indoors
and outdoors in Paris over the year 2017 from 550 crowdsensors, where the average uploading
duty cycle is around 5 minutes. Each observation provides: the uploading time-stamp, the lo-
cation and (anonymized) ID of the contributing device, the noise level and its measurement
bias, a description of the user activity (still, on foot, on a bicycle, in a vehicle, unknown), and
whether the device is in/out-pocket (based on proximity). With 550 crowdsensors for the all of
Paris, the dataset is sparse. Hence, it does not provide the most suitable case for opportunistic
collaboration at the edge. Still, this allows us to assess the effectiveness of BeTogether, even
with a sparse deployment.
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Analyzing the crowdsensor behavior We first analyse the stability of the crowdsensors’
context, as used for the configuration of groups, where we only consider the User Activity (UA).
Indeed, the Physical Environment (PE) value is limited to the in-pocket case in the dataset,
which only influences the sensor utility us(i). The context is assessed daily. Starting with the
initial location l of any crowdsensor i within the dataset, we consider that i changes group when
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it reaches another location l′ that is more than the D2D range away from l, and repeatedly so
with l′ as the new reference location.

Figure 4.9 then shows the distribution of the duration of the crowdsensor staying within
the above estimated group for all the crowdsensors of our dataset according to the device’s
location: it varies from 10 minutes to 60 minutes where we recall that we set Dmin = 5 minutes
as the minimum duration of the group. Hence, many crowdsensors remain at the same location
long enough to group.

Figure 4.10 further compares the three following grouping strategies in terms of the average
number of messages sent per crowdsensor daily so as to discover nearby crowdsensors: periodic
(after every upload) that is the approach found in related work, on-demand (detected by WiFi
Direct), and context-aware that accounts for the crowdsensors’ activities. In average, the amount
of traffic generated by the on-demand strategy is 80.810% lower than the periodic approach,
and the one of our context-aware grouping is 21.844% lower than the on-demand approach.
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Analyzing the efficiency gain of grouping In order to find the clusters of crowdsensors
that are within D2D range (at 10m (re-scaled) away) from each other, we rely on the DBSCAN
algorithm [58], which handles clusters that are arbitrarily shaped and that are of varying density.
According to our parameter δ = 4, that configures groups of size 5 and more, Figure 4.11 shows
the distribution of the resulting group sizes in our dataset, with 79% of the groups being
immobile.

Figure 4.12 further compares the average duration of the identified groups depending on
whether the context is accounted for or not. Interestingly, results show that even in real life
scenarios (including both immobile and mobile groups, not considering only still grouping as in
Figure 4.9), our context-aware grouping finds groups of longer duration, which is up to 3.256
times of non context-aware grouping. As groups grow, the difference between a context-aware
and non-context-aware approaches lowers because the likelihood of grouping co-located nodes
having the same context gets higher. A decrease of lifetime is observed for groups of 12 members
and more, which is partly due to the sparsity of our dataset and also the higher probability of
members moving away from the group.

Although the crowdsensing data of our dataset is very sparse in time and space, the context-
aware collaborative crowdsensing at the edge still brings benefit in terms of data quality and
global resource consumption. It is especially efficient as the size of the group grows. Figure 4.13
shows that the context-aware collaborative approach delivers the best data quality: the collected
measurement bias is reduced by up to 615% (resp. 407%) compared to an individual (resp. non-
context-aware collaborative) crowdsensing approach. This is because of the selective sensing of
BeTogether within each group, leading to the collection of the most accurate observations rather
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than a simple average of the observations (non-context-aware collaborative crowdsensing) or
than all the raw data (individual crowdsensing).

As shown in Figure 4.14, the amount of data that a collaborative and context-aware ap-
proach uploads to the cloud is reduced by up to 197% compared to both the individual and
(non-context-aware) collaborative crowdsensing approach. There are two reasons for this: first,
collaborative crowdsensing uploads only the aggregated data (i.e., concatenated hash tables)
via the group proxy rather than uploading the raw data supplied by each crowdsensor (indi-
vidual crowdsensing). Second, our context-aware collaboration also filters out the data that are
of low-quality and that are collected in-pocket, which reduces the amount of data aggregated
and uploaded to the cloud.

Finally, Figure 4.15 focuses on the power consumed per hour, which is associated with both
WiFi Direct transmission (assuming that all the tasks are distributed) and cellular transmission:
the power is reduced by up to 181% (resp. 183%) compared to individual (resp. non-context-
aware collaborative) crowdsensing approach. Overall, these results show that the collaboration
achieves a better data quality at a lower sensing and transmission cost when the group is larger
because the tasks can be assigned to more devices, resulting in less task duplication and better
context-aware filtering and aggregation.

4.5.3 Interpolation and Aggregation
In the following evaluation, the experiments are run either on a DELL Precision 7520 work-
station - § 4.5.3 as a centralised server and § 4.4 for simulation, or on Android smartphones -
§ 4.5.3 as end-device testbed.

Accuracy metrics

We use the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) to
evaluate the accuracy of the interpolated and aggregated tensors. Given the observation data
tensor Y , the approximation data tensor Ŷ and the ground truth mask tensor M (indexing
useful values), MAPE is defined as:

MAPE(Y , Ŷ ,M) := 100%
‖M‖2

∑M∗ |Y − Ŷ|
M ∗ Y

While RMSE is defined as:

RMSE(Y , Ŷ ,M) :=

√√√√‖M ∗ (Y − Ŷ)‖2

‖M‖2

To compute MAPE and RMSE, we run 100 training rounds followed by tests. At each round,
both training and evaluation sets are randomly shuffled, where: For the interpolation, 70% of
the dataset is used for training (i.e., as actual observations to complete the tensor) and 30% to
test (i.e., to assess the estimated values against the ground truth). For aggregation, the entire
approximation tensor is used for the evaluation.

Interpolation evaluation

Figures 4.16 and 4.17 compare the robustness of the three inference strategies that are commonly
used to interpolate physical phenomena: Ordinary kriging with Gaussian variogram model (OK-
Gaussian), CP decomposition with Alternating Least Square (CP-ALS), and Gaussian Process
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Figure 4.18 – Interpolation re-
sponse time

Regression with Matern kernel (GPR-Matern). The interpolation is performed at the same
PC (without involving any aggregation), using the dataset from which we selected on the day
during which the largest amount of crowdsensing data were collected. The same experiments
were run using the whole dataset and the same trends were observed. In the figures, the box
corresponds to the interquartile range, the orange line is the median and the green triangle is
the mean. At first sight, OK-Gaussian seems to be accurate and hence promising, given the
low MAPE and low RMSE interquartile range and median. However, some wrong inferences
lead to abnormal values as illustrated by high MAPE and RMSE mean values of 16% and 47,
respectively. Similarly but to a lower extent, CP-ALS shows some abnormal RMSE. Instead,
GPR-Matern provides both an accurate and robust inference: stable MAPE and RMSE without
outliers –hence characterised by the lowest variance– is observed.

Figure 4.18 shows the response time of the three interpolation approaches. We run the
experiments over the 365 days of our dataset, where the number of observations varies everyday.
The response time of CP-ALS (R = 1) is constant in O(RIJK) regardless of the number
of available observations since the computation applies on the entire fixed-size tensor. Both
OK-Gaussian and GPR-Matern have a time complexity in O(n3) with n being the number
of observations used to fit the model. The response time of GPR-Matern is lower than OK-
Gaussian, and below CP-ALS when the number of observations is less than 2800. Note that
in our dataset, the number of observations collected by crowdsensors daily remains lower than
1500. Overall, GPR-Matern is the most efficient in terms of accuracy and robustness, while its
response time is also relatively lower.

We further evaluated the efficiency of the three interpolation methods in terms of memory
consumption. GPR-Matern consumes the least memory: around 3.114MB, with a variance
of 1.718. While the memory consumption associated with CP-ALS (resp. OK-Gaussian) is of
3.258MB with a variance of 0.422 (resp. 4.644MB with a variance of 1.437). Note that the
memory consumption is stable and does not depend on the number of observations since our
approach always uses a fixed-size tensor that is filled with zeros in the absence of observations.

Focusing on GPR, we assessed the accuracy (Figures 4.19 and 4.20) and associated response
time (Figure 4.21) of the following kernels: constant, RBF, rational quadratic, and Matérn.
The rational quadratic and Matérn kernels are the most accurate, while the former slightly
outperforms the latter. However, the response time of the quadratic kernel is twice as much as
that of the Matérn kernel. We therefore consider only GPR with Matérn kernel in our solution.

Aggregation simulation-based evaluation

The distributed aggregation encompasses several tasks: each crowdsensor converts the sensing
data into a tensor, interpolates and potentially merges the tensors when meeting another.
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Figure 4.21 – Kernel response
time

We assess the performance of the following distributed aggregation methods using our 1-year
dataset:

• Iterative aggregation is a theoretical and sequential case in which the aggregation
starts at the first crowdsensor that aggregates its tensor with the next crowdsensor and the
aggregation process repeats with the following crowdsensors until the last crowdsensor is
reached. This is the ideal case for which we ignore the actual locations of the crowdsensor.

• Stochastic aggregation represents the real-life scenario: an aggregation occurs when
at least two crowdsensors meet as detected using the location and time proximity in the
dataset. The aggregation process thus depends on the mobility of the contributing users.
Upon a meeting, the merge base is selected randomly and β = β′ = 1 for the generalised
product-of-expert. Ultimately, all data are uploaded to and merged at the cloud, either
directly or via a relay depending on the peer meetings.

• Opportunistic aggregation is similar to the above stochastic aggregation with the
exception of the selection of the merge base and the chosen β values. Here, we set βs =
1.3 and βs′ = 0.7 for crowdsensor s with lower D and crowdsensor s′ with higher D
respectively.

The above methods are further compared to the cloud-centric solution where the cloud server
(DELL workstation in our experiment) collects the sensing data and performs the interpolation
based on the whole dataset.
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Figures 4.22 and 4.23 provide the MAPE and RMSE of the three above distributed aggre-
gation approaches and of the centralized one. As expected, the centralized approach provides
the most accurate inference: The MAPE mean equals 8.5% and the MAPE median is 8.1%;
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the RMSE mean equals 10.8 and the RMSE median is 10.6. The accuracy of the distributed
aggregations are quite similar, with a MAPE of around 12.5% with a median of 12.5% and
a RMSE mean of 15.6 with a median of 15.8. In particular, our opportunistic aggregation is
comparable to the centralised approach (e.g., the MAPE accuracy difference is 4% lower than
the centralised approach). It has mean and median MAPE of 12.0%; a RMSE mean of 15.0 and
a RMSE median of 15.2. Overall, our approach is characterised by very slight decrease of the
accuracy compared to centralised aggregation.
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Figure 4.27 – Cloud server re-
sponse time

Figures 4.24 and 4.25 compare different weighting configurations (βs, βs′) for crowdsensor s
and s′. For three of the pairs, we manually set their values depending on the loss function D,
i.e. the lower loss has a higher weight. For the fourth one, we set βs = 2 ns

ns+ns′
using the ratio

depending on the history number of aggregations n. The results show that assigning a higher
weight to the crowdsensor with the lower loss function slightly increases the overall accuracy
aggregated at the cloud.

Figure 4.26 shows the response time associated with the entire procedure including data
pre-processing, interpolation and aggregation, with the simulation being run on the server. We
observe that the centralised aggregation response time is lower than the accumulated response
time of the distributed aggregation schemes. However, in the distributed approach, the cloud
does not perform any interpolation, thus the centralised interpolation requiring a high response
time is eliminated. As illustrated in Figure 4.27, the response time associated with the aggre-
gation at the cloud server significantly increases when the number of crowdsensors gets high.
Instead, when the interpolation and aggregation are mainly performed by crowdsensors, the
cloud response time is almost negligible regardless of the number of crowdsensors. In addition,
the storage requirement is minimised on cloud because the data tensor size is always unchanged
when aggregating new incoming data.
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Figures 4.28 and 4.29 compare the amount of traffic uploaded to the cloud and relayed
among the crowdsensors. The traffic is evaluated in terms of the number of actual aggrega-
tions. As expected, distributed aggregation reduces the amount of traffic uploaded to the cloud
and hence the cellular network occupancy is kept to a minimum. In particular, our opportunis-
tic aggregation drastically reduces the cloud uploading by 54.2% compared to the stochastic
aggregation. A portion of the traffic sent to cloud is replaced by the traffic forwarding among
crowdsensors; there are more aggregations and thus more P2P messages generated when the
number of crowdsensors increases. This result also validates our estimation that crowdsensors
with better inference quality tend to have more meetings and thus relay opportunities.

Aggregation testbed-based evaluation

Using Android smartphones, we empirically assess the performance associated with the proto-
type in terms of response time and energy consumption. We conduct the experiment using our
1-year dataset as data input.
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Figure 4.30 shows the interpolation response time depending on the number of observa-
tions, and the aggregation response time depending on the number of aggregations, where the
experiment is run on a SAMSUNG GALAXY S7 smartphone. Note that the figure shows no
more than 500 entries, which is in practice a very high number of observations collected by
a crowdsensor daily. As expected, interpolation is computationally intensive compared to ag-
gregation, whose response time is comparatively negligible: the interpolation takes a couple of
minutes when the number of observations is greater than 500, while the aggregation takes less
than 100 seconds for a number of aggregations below 500 and for a number of observations
per crowdsensor varying from 1 to 500. When we consider 500 observations, the interpolation
consumes the most energy with 88mAh, and the aggregation consumes only 2mAh. Figure 4.31
shows the energy consumed by a smartphone that implements our opportunistic aggregation
when the P2P meeting frequency varies: the more frequent is the aggregation, the more energy
is consumed. Recall that each crowdsensor executes the interpolation only once and it can be
piggyback, e.g., executed when the smartphone is charged during night. Nevertheless, in prac-
tice, the related energy consumption gets limited because the crowdsensor usually has already
relayed/aggregated its data before meeting ≈ 10 crowdsensors for a single day.

In order to evaluate the power consumption due to communication, we rely on the power
profile of a LG NEXUS 5X smartphone provided by the manufacturer. Assuming a constant
bandwidth, the WiFi transmission consumes 1.72mAh while the cellular transmission consumes
1.85mAh power. We estimate the energy consumption associated with all crowdsensors. Figure
4.32 shows the energy consumption associated with the local P2P traffic as well as the cellular
Internet traffic. The energy is reduced by replacing uploads with P2P relays. When the P2P
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bandwidth is higher than the cellular bandwidth (e.g., two times in figure), the advantage is
more significant. Furthermore, the local P2P traffic is not only less costly in terms of energy
aspect but also in terms of budget.

Impact on the financial cost

We estimate the financial cost associated with our crowdsensing system, using the Google
Cloud Platform (GCP, https://cloud.google.com/products/) as an example of cloud plat-
form. GCP provides the following key services: Cloud IoT Core is responsible for connecting the
cloud to the IoT devices and establishing a two-ways communication. Upon the reception of a
packet, the Cloud Pub/Sub service creates and delivers an event notification to Cloud Functions
that implements basic operations (e.g., average, maximum, minimum) needed to pre-process
the data. BigQuery is used to temporarily store the pre-processed data during the aggregation
and interpolation. Compute Engine runs a virtual machine that performs the advanced com-
putation (e.g., interpolation and aggregation). Cloud Bigtable is a NoSQL database that stores
the resulting aggregated and interpolated sensing data.

The use of each of the above services is priced: for a detailed description, one may refer to
https://cloud.google.com/pricing/list. In a nutshell, the price depends on the amount
of network traffic received/sent, the amount of storage needed, and the load associated with
the computation (e.g., number of pre-processing functions invoked and response time associated
with the interpolation and aggregation). Figure 4.33 shows the monthly financial cost associated
with running different crowdsensing in GCP, assuming that each crowdsensor sends a 2MB
packet everyday. The cost associated with the centralised approach increases linearly because
the number of uploads and the computation involved to interpolate the phenomena are both
high. Instead, the costs of the stochastic and opportunistic approaches remain low because
communication toward the cloud is reduced and only lightweight aggregation is performed
at the cloud. Our opportunistic aggregation outperforms the stochastic approach because we
further reduce the computing load on the cloud.

4.6 Conclusion
One of the major benefits of crowdsensing is the possibility to monitor environmental phenom-
ena at an urban scale, simply leveraging the abundance and capacity of people’s smartphones.
However, as the number of contributors grows, the increasing number of observations that the
crowdsensing systems must process gets challenging: the high network and financial cost associ-
ated to a cloud-centric system hinders the widespread deployment of crowdsensing, and the high
computational cost due to the large amount of data makes the modelling of the environmental
phenomenon intractable.

We tackle the above issues by exploiting the increasing computing capacity of today’s smart-
phones, that is, we enforce a collaboration strategy at the edge so as to enhance the quality of
the data transferred to the cloud while reducing the related communication cost and resource
consumption. For this purpose, we introduce a set of utility functions that assess to which
extent a device should carry out a given crowdsensing task, while achieving a trade-off between
the benefit for all (for the whole group) and the related cost for the device.

Furthermore, we distribute the interpolation and aggregation associated with the sensing
data at the powerful end devices. To do so, we introduce a middleware that runs on the smart-
phone to capture complex and potentially non-linear relationships among the collected obser-
vations across both space and time by relying on Gaussian Process Regression and 3D tensors.
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4.6. Conclusion

Then, the resulting tensors are opportunistically combined together following a stochastic pro-
cess based on the physical encounters of people. Rather than applying a naive combination
(e.g., averaging) of the tensors that would actually degrade the quality of the sensing data, our
solution performs a Product-of-Expert on the inference. The benefit our approach is threefold:
(i) a selected crowdsensor (i.e., expert) may independently establish a very precise interpolation
of the regions covered by a crowdsensor group; (ii) the aggregation resulting from the Product-
of-Experts is sharper than any of the individual tensor and renders much more tractable the
establishment of the overall tensor; and (iii) the computation achieved on the device is energy-
efficient. Indeed, the evaluation using simulation and prototype implementation, together with
a real-world dataset shows that our approach significantly reduces the transmission to, and the
computing resource consumed on, the infrastructure server, without compromising the overall
data accuracy.
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Chapter 5

Information centric Networking

5.1 Context and Motivation

IoT is an ever growing ecosystem in which the Things (e.g., smartphones, sensors, actuators,
RFIDs, just to name a few) continuously exchange some data streams with other interested
Things, applications and users spread across the Internet. IoT is an event driven ecosystem in
the sense that reactions (e.g., actuations, decisions) are triggered after an event or a series of
events is captured by the event producer (e.g., a sensor). Events correspond to some changes in
the state (e.g., a temperature increase, an excessive sound level) or simply an update. Relying on
event notification permits to minimise the need of integration among Things and applications.
As a result, Things are easily deployed and operate independently, as needed.

The IoT presents a number of challenges, especially in regard to routing and aggregation of a
continuous flow of information that is exchanged among things. Thus, our attempt is to support
an efficient communication between Things/users across heterogeneous networks by adopting
an information-centric philosophy that heralds a new communication style, in which the data
flow is governed by both the Things/users interests and the data content. More specifically,
we build upon the publish/subscribe paradigm in which event producers send notifications to
subscribers who have previously expressed their interests. The degree of expressiveness, which
permits the users to describe their interest, is of critical importance and greatly differs from
one publish/subscribe system to another. This leads to the categorisation of these systems into
the two following classes: Topic- versus content-based publish/subscribe systems.

With topic-based pub/sub systems [180, 158, 159, 119, 67, 178, 35], a subscriber identifies a
topic of interest (i.e., a keyword) and is thereby endowed with a low level of expressiveness. Each
individual topic can be viewed, and thereby abstracted, as a separate channel /pipe, which is
further mapped to a interested group of subscribers towards whom a notification is forwarded.
Partitioning the topic space - and thereby the event space - into sub-topics leads to the creation
of separate groups in which subscribing is equivalent to becoming a group member, with one
group defined per (sub)topic. Due to the simplicity and ease of use of topic-strings, topic-
based pub/sub systems became widely employed as part of enterprise and message-oriented
middlewares [158, 159, 109, 40] and are now the cornerstone of modern stream analytic pipelines
[71, 153]. Still, despite their effectiveness topic-base pub/sub systems suffer from a lack of
expressiveness, meaning that that many irrelevant notifications are disseminated.

Content-based publish/subscribe systems overcome the limitations of topic-based publish/
subscribe system by improving the expressiveness of subscriptions. A subscription is composed
of a set of filters (e.g., "String function = temperature sensing", "String unit = Celsius", "Integer
priority > 1") that are further used to match event notifications. Thus a subscriber can easily
combine several filters applying to notification attributes [34, 155, 13, 84, 124]. However this
expressive subscription process comes with a more sophisticated and fine-grained filtering, which
increases the broker workload. Indeed, the proposed filtering algorithms (§5.2) scale poorly (i.e.,
sublinearly) with an increase of the event notification size (i.e., number of attributes) and the
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Figure 5.1 – Overview of the routing structure over which routers propagate the subscriptions
and event notifications

subscription size (i.e., number of filters), not to mention the volume of event notifications.
Thus many of the approaches to scale the Publish/Subscribe system share the overheads of
subscription management (matching, update) and event filtering among distributed routers.
Whilst a variety of distributed notification systems have been proposed, a significant portion
[34, 16] assume a pre-established organisation, which is not a realistic model for large-scale and
geographically distributed networks.

Within this work we focus our attention on content-based publish/subscribe systems. Our
aim is to render our content-based publish/subscribe system accessible by/from any Things
over a wide-area network while overcoming some of the limitations of distributed content-based
publish/subscribe systems, including: (i) the lack of robustness and flexibility [70], and (ii) the
computing-gluttony associated with the fine-grained filtering. Our primary concern is hence to
define – from design to the implementation – an effective strategy for dynamically organising
the delivery of event notifications so that it scales and tolerates failures. Another key goal is
to lighten the filtering process that takes place during the event notification delivery, without
compromising the expressiveness of the subscriptions and the fine-grained nature of the filtering.

The publish subscribe system we propose is non-centralised so as to avoid using a central
access point that may become a bottleneck. The system self-organises in a cluster-based hier-
archical structure that self-adjusts upon link/device failures and device arrival and departure
while ensuring strict control over the underlying structure. Conceptually, cluster heads serve
as routers (Figure 5.1) and forward event notifications (as well as (un)subscriptions) to the
next routers, towards their final destination(s). The advantage of a hierarchical structure is
threefold. First, the cluster-based structure enables a short and situation-aware control loop,
in which cluster members (a.k.a Things) can individually adapt and react in real-time to local
events. Second, the hierarchical structure supports the aggregation [115], subsumption [85] and
correlation of event notifications and hence alleviates the traffic load. Higher-level decisions can
also be made on the basis of a macro-view/ state through an extended and hierarchical control
loop.

The key activity of a router is to convey the event notifications and the related (un)subscriptions.
In order to filter event notifications and (un)subscriptions (§ 5.3) the router maintains a reposi-
tory containing the received subscriptions. It is noteworthy that most routers get unnecessarily
overloaded because they perform the same filtering task i.e., each router goes through the
repository looking for the same subscription(s) (a.k.a. filter(s) to apply) as its neighbours. In
order to alleviate the filtering process we introduce (§ 5.4) a new, compact way of representing
filters that must be applied and that form a subscription. We rely on the Bloom filter [25],
which corresponds to a compact approximation supporting probabilistic membership queries.
Bloom filters intuitively introduce small space overheads when stored and conveyed due to
their compact nature. In addition, Bloom filters save a substantial amount of time performing
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the membership test that takes place during the notification/(un)subscription forwarding. The
probabilistic nature of the Bloom filter means that false positives may eventually occur while
there are no false negatives.

This constitutes a classical trade-off between space (i.e., storage and communication), time
(i.e.,, computation) and accuracy (false positives): increasing the performance of one of the
three factors is done at the expense of the others. We formalise the problem of approximating
and summarising the subscription filters into Bloom filters as an optimisation problem (§ 5.5).
In particular we determine the degree of approximation desired and thereby a suitable size of
Bloom filter so that the probabilities of false positive/negative always remains negligible. We
further introduce a lossy compression algorithm that conveniently compresses the Bloom filter
when needed. As a complement, we aim at improving the search algorithm that is used by a
router looking for the applicable subscription(s)/filter(s) to filter the incoming notification. As
shown during our evaluation (§ 5.6), the space cost associated with the indexing, is compen-
sated by the gain in terms of responsiveness achieved when forwarding event notifications and
(un)subscriptions. Scalability and expressiveness are two conflicting goals that a content-based
publish/subscribe faces: the more expressive the subscription, the more overloaded the router
is by the forwarding process.

5.2 Group-based Publish-Subscribe System
We adopt an event communication model that derives from the well-known asynchronous pub-
lish/subscribe paradigm in which consumers express their demands to producers during a sub-
scription process and producers transfer to subscribers the description of any event that has
been triggered locally. From a communication standpoint, our distributed event notification sys-
tem exchanges notifications and control messages (i.e., (un)subscriptions) between producers
and subscribers through a collection of intermediate routers that host our notification service.
The key objective pursued by any router lies in forwarding a notification to a router only if
there exists a consumer interested in receiving it. For the purpose of selectively forwarding
notifications, each router holds a repository that includes the received subscription along with
a list of the routers, which forwarded it. Indeed, a neighbouring router constitutes the potential
candidate towards which the corresponding notifications are forwarded. Intermediate routers
are organised into a cluster-based structure (also called an overlay) in which each cluster leader
(a.k.a, router) keeps the information concerning: (i) the cluster members under its responsibil-
ity and (ii) its connections with other cluster leaders. Such a cluster-based structure facilitates
the aggregation and the correlation of notifications and as a result of this significantly reduces
bandwidth usage.

5.2.1 Underlying Group Communication
In order to dynamically manage the delivery structure to react upon any network failure, we
rely on the Nice protocol [17], which is an application-level protocol originally developed to
support video streaming over the Internet. The Nice protocol creates a self-organised, cluster-
based hierarchy of nl layers (nl=log(nn), with nn designating the number of nodes that are
expected to join the group, in which each layer is composed of a set of bounded-size clusters
controlled by a cluster head. The reason for setting bounds on the number of layers and on the
cluster size is twofold. First, it ensures a control overhead of about log(nn) at each node. Second,
it bounds the length of the path used for delivering notifications, and thereby the related delay
(o log(nn)). In practice, to warrant a loop-free structure, each node belongs to the lowest layer
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(L0) and only the leader of a cluster located in a layer Li belongs to the upper layer Li+1. A
node keeps information restricted to its cluster(s) and each member periodically sends a keep-
alive message. Thus, a cluster leader may passively detect a node failure and initiate a cluster
merge/split if the cluster size differs significantly from the desired bound. The Nice protocol
relies on a Rendezvous Point that provides bootstrapping information to any new node that
joins the cluster-based structure. The addition of a new node N to the structure is handled as
follows (Figure 5.2a): N contacts the Rendezvous Point (RP), which provides bootstrapping
information relating to (i) the group configuration (e.g. the identity of the root R, number
of layers, the cluster’s bounded-size) and (ii) the event system configuration (e.g. the number
of hash functions, hashing algorithm in use). Next, with the bootstrapping information given
by RP , N selects the closest cluster head (B) and refines progressively its selection at each
layer so as to ultimately join the closest cluster in layer L0 (i.e., H’s cluster in Figure 5.2a).
Once created, the resulting delivery structure is used to propagate messages generated by the
publish/subscribe system.

5.2.2 Cluster-based Routing
The main challenge related to routing over the cluster-based structure stems from the need to
minimise the traffic and the computational load of routers. This calls for:

1. Duplicating messages as close as possible to their respective consumers, while filtering
notifications as close as possible to event producers.

2. Minimising the number of control messages that are propagated.
3. Minimising the processing load induced by filtering notifications.

In the following, we describe to which extent our routing strategy meets the above commitments.

Subscription Routing. In order to propagate less subscriptions, a router determines if
a subscription should be forwarded or not, and if so, towards which neighbouring router(s).
To clarify this decision making we consider two consumers, G and H (Figure 5.2b), which
declare their interests in receiving notifications for event e. Let us assume that G first sends a
subscription to its neighbouring routers B and H and that shortly after H sends an identical
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subscription to its neighbouring routers B and G. Upon receiving G’s subscription, B forwards
it to its upper-layer router R and its sibling A. Following, G’s subscription is forwarded to all
the remaining routers: R sends G’s subscription to E and F while A forwards G’s subscription
to C and D.

Later, upon receiving H’s subscription, B does not propagate it to R and G, because there
is no need for B to propagate a subscription for a notification that it has already previously
received. Herein H’s subscription is not propagated because an identical subscription ( G’s
subscription) was already propagated. The same propagation process would apply if H’s sub-
scription were covered by G’s subscription since this would mean that the events that match G’s
subscription(s) also match H’s subscription. Subscription is routed as follows: if the subscrip-
tion is ascendant1, then that subscription is forwarded2 to the upper-level router. Conversely, if
the incoming subscription corresponds to a descendant message or has been issued by a cluster-
mate, then that subscription is forwarded to all lower-level routers. The unsubscription routing
is similar to the subscription routing: a router forwards an unsubscription only if the related
subscription was previously forwarded to that router.

Event Notification Routing

Figure 5.2b illustrates our presentation on notification routing: an event producer I generates a
notification e in which two consumers are interested (G and H). I then sends a notification e to
its cluster head C, which propagates it to A since a subscription that matches e was previously
issued by A. Following, A propagates the event notification to B, which in turn propagates it
to G and H. Overall, the event notification is not propagated to all the routers: any router that
receives the notification selects the router(s) towards which the notification should be propa-
gated. The selection process consists in first matching the notification against the subscription
summary and then in extracting the list of neighbouring routers that should forward the match-
ing subscriptions. The propagation of the notification over the delivery structure formed by the
router is the same to the one carried to disseminate (un-)subscriptions.

5.3 Notification and Subscription Representation
The effectiveness of the routing depends on the structure used to represent notifications,
(un)subscriptions (§5.3.1 and §5.3.2) and on the structure used to organise all subscriptions
(§5.4).

5.3.1 Notification and Subscription Formats

An event notification (or simply a notification) is composed of a set of ne attributes that are
typed and that describe the event (Figure 5.3a); each attribute αi (with 1 ≤ i ≤ ne) consists of
a type as well as a name-value pair: αi = (typeαi , nameαi , valueαi). An attribute type belongs
to a predefined set of primitive types( e.g., string, integer or date). Figure 5.3a illustrates a
notification issued by a network-monitoring application that informs about a directory service
being stopped.

1. An ascendant subscription is conveyed to an upper-level router.
2. If we consider an edge router belonging to layer L0 (resp. LM ), the subscription is not forwarded to a

lower (resp. upper) layer.
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(a) A notification is generated by a monitoring
application. The notification is composed of a set
of attributes.

(b) Four different subscriptions. Each subscrip-
tion is made of a set/conjunction of filters ; each
filter is characterised by a type, name, operator
and value.

Figure 5.3 – Notification and subscription

A subscription refers to a conjunction3 of na filters (f1, · · · , fj, · · · , fna) where each filter fj
designates a consumer’s interest for a particular event. Each filter fj is characterised by a type,
a name, a predicate operator (e.g. =, ≤, substring) and a value. We say that an attribute
αi = (typeαi , nameαi , valueαi) is covered by a filter fj = (typefj , namefj , operatorfj , valuefj) iff
typeαi = typefj and nameαi = namefj and operatorfj(valueαi , valuefj) = true. The notation
fj ⊂ αi means that the filter fj matches / is covered by the attribute αi. More generally, an
event notification e = (α1, · · · , αne) matches a subscription a = (f1, , · · · , fna) if the subscription
matches all the filters constituting the subscription: a ⊂ n. Among the four subscriptions in
Figure 5.3b, only the second subscription matches the notification of Figure 5.3a.

Similarly, a subscription a′ is covered by a subscription a (a′ ⊂ a) if all the filters constituting
a′ are covered by those of a. This also implies that any event notification matching a also matches
a′: ∀e/a′ ⊂ e⇒ a ⊂ e. Note that the covering relations is:

• reflexive: a ⊂ a is always met.

• anti-symmetric: if a ⊂ a′ and a′ ⊂ a then a = a′.

• transitive: if a ⊂ a′ and a′ ⊂ a′′ then a ⊂ a′′.

The establishment of a covering relationship constitutes a resource-consuming process that
reiterates upon the receipt of a (un)subscription or of an event notification. In both cases
a router attempts to discover if there exists (at least one) subscription s that covers the
(un)subscription s′ or that matches the event notification e. To this end, the router should
go through all n′s filters of the (un)subscription or all the ne attributes of the notification e so

3. A disjunction is obtained using several subscriptions.
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as to assess if the attributes are covered by or match the filters constituting the subscription s.
This results in O(ns.ns′) or O(ne.na) comparisons if the attributes and filters are not ordered,
and in O(min(ne, ns)) (resp. O(min(ns, ns′)) comparisons if they are ordered. Overall, the han-
dling of a new (un)subscription or event notification is laborious with content-based pub/sub
systems while topic-based publish/subscribe systems filter events and handle (un)subscriptions
in O(1) when the subscriptions are stored in hash tables.

5.3.2 Subscription Organisation - State of the Art
Few solutions [112, 125, 34, 24, 85, 32] thus far address reorganisation of subscriptions so as to
improve the notification filtering and the (un)subscription process. All propose to organise the
subscriptions into a single data structure, which corresponds to a list, a partially ordered set (or
poset), a R-tree, a B+-tree or a binary decision diagram. As detailed in the following, perfor-
mance associated with notification filtering or with the establishment of a new (un)subscription
covering varies depending on the data structure:

• List [112, 125] - In a list containing n subscriptions, the establishment of the covering
relationship with an (un)subscription s′ is costly: the covering is established in O(n.ns.ns′)
if subscriptions are not ordered and in O(log(n).min(ns, ns′) if ordered. The filtering of
an incoming event notification e takes O(n.ne.ns) when subscriptions are not ordered
and O(log(n).min(ne, ns)) if subscriptions are ordered. With a list, the subscriptions are
stored one by one. The alternative structures described below, combine the filters that
form the subscription into a single data structure, which is organised in different ways.

• Poset [34] (see Figure 5.5 on page 103) exploits the covering relations of a set of filters
by applying a partial order on the set of subscriptions. Thus, any subscription at the
upper level covers its descendant (Figure 5.6a). In practice, a poset corresponds to a
direct acyclic graph whose size has an information-theoric lower bound of n2

p/4 + O(np)
[113] and a (worst case) space complexity of O(n2

p) [34] with np defining the number
of elements stored in the poset. Adding/removing a subscription or filtering an event
notification necessitates the lookup of subscription(s), which is done [34] by traversing the
poset following a breadth-first order and starting from the root. This lookup has a worst
case complexity of np, though in practice it may be lower. This results in a subscription
process done in O(np2), an unsubscription process of O(n3

p), and a notification matching
of O(np). The two following data structure (R-tree and B+-tree) also exploit the covering
relationship.

• R-tree [24] has been traditionally used to support spatial queries. An R-tree is a tree in
which each internal node has between m and M children. A node refers to the smallest
poly-space rectangle (a.k.a set of filters) that encloses all the rectangles of its subtree
(a.k.a covers all its descendants). A range query is answered thought a top-down traversal,
starting at the root and recursively following the subtree of each matching child. The
height of an R-tree containing nr nodes is dlogM(nr)e − 1 with nr corresponding to the
number of nodes. However, there is no acceptable guarantee, given that more than one
sub tree under a node may need to be visited. In the worst case, the lookup with an
R-tree is as expensive as a naive sequential scan.

• B+-tree is an ordered tree wherein all the intervals (all the filters) are stored and sorted
at leaf level for fast traversing. A B+-tree is designed to have a fairly high number of
children for each internal node so that the height of the tree remains relatively small.
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After insertion and deletion, a B+-tree may thus require balancing. In a tree of size n,
performing a range query with k elements occurring within the range requires O(logbn+k)
operations.

• Binary Diagram [32] structure represents a generic data structure used to represent the
Boolean functions constituting a filter. A binary decision diagram may be represented as a
DAG with a unique root, in which the internal nodes correspond to the Boolean functions.
Thus, there are exactly two outgoing edges, labelled 0 or 1, for each inner node. With the
binary decision diagram, an arbitrarily complex Boolean expression of n variables can be
straightforwardly evaluated, by simply descending the DAG in n steps according to the
values of the n Boolean functions. In counterpart, the size of the tree may exponentially
grow with the number of functions.

Overall, the list, poset, R-tree, B+-tree and the binary decision diagram all place a high load
on routers and lead to a lower throughput and higher end-to-end latency.

Overload Reduction

The cost incurred by a lookup may be reduced by keeping the number of nodes in the data
structure to a minimum , thereby ensuring a faster traversal. This can be achieved in three
ways: (i) reordering the data structure, (ii) merging the overlapping filters [111, 41, 24] or
(iii) exploiting the fact [162] that there is no need to store the (new) subscription(s) that are
already covered by other subscription(s). A (re)ordering of the nodes may lead to a smaller
data structure and hence may reduce the (worst) time complexity. Still, an optimal re-ordering
leading to a canonical form is known as an NP-hard problem. While a poset reordering was
suggested in [111], complicated heuristics have been devised in the literature on the subject to
either avoid the exponential growth of binary diagrams or of balanced R-trees. In particular,
the binary tree can be organised in regards to the frequency of attributes and the variable
dependencies (the analysis being an O(n2) process). In such a case, frequent attributes are
positioned near the root. The R-tree can be balanced by splitting an overflowing node during
the joining process. Both a linear and an enhanced quadratic method inM and in the number of
dimensions have been proposed. Going one step further, the filters that overlap can be merged
together [111, 41] so as to reduce the depth and width of the data structure.

5.4 Enhanced Forwarding
Forwarding a notification or a (un)subscription is a common and resource-consuming process
for a router as it entails the two following tasks:

• Searching for the subscriptions that (i) match the incoming notification, or (ii) cover the
incoming (un)subscription. As seen in Section 5.3.2 the matching of the notification and
the establishment of the coverage both imply going through the router’s subscriptions and
are organised in several ways (list [112, 125], R- or B+-tree [24] or binary decision tree
[32] and poset [34]). With a list, the search consists of reviewing the subscriptions one
by one ; with the remaining structures, the router traverses the structure, following the
children that match/cover. The sequential reviewing and the traversal of the structure
both involve an elementary operation that consists in either matching the notification
attribute against a subscription filter or establishing the covering relationship between
two filters.
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• The two elementary operations are relatively complex. As an illustration, matching the
attribute “String priority = 3" against the filter “Integer priority > 2" requires veri-
fying that both have (i) the same type (String), (ii) the same name (priority) and (iii)
that the value taken by the attribute (3) is indeed > 2. These elementary operations (i.e.,
matching and establishment of a covering relationship) are repeated until any subscription
that matches/covers is discovered.

It is worth stressing that each router traversed by a notification/(un)subscription often unnec-
essarily looks for the same subscription(s) and thereby performs a duplicate search. In order to
avoid any unnecessary duplication of the search while making it easier to search when necessary
our approach is threefold:

• We include in the notifications (resp. (un)subscriptions to be conveyed) the subscrip-
tion filters that need to be applied to filter the notification (resp. cover the incoming
(un)subscriptions). Based on these embedded filters, any intermediate router gains fast ac-
cess to the subscription(s) that match(es)/cover(s) the incoming subscriptions/notifications
without searching for it/them.

• We summarise/approximate the subscription filters using a Bloom filter, which is use-
ful for several purposes (§ 5.4). First, handling a summary (i.e., a Bloom filter) – in
lieu of a full subscription filter – speeds up the filtering of event notifications and the
establishment of a covering relationship between subscriptions. Second, rather than in-
cluding in the notification/(un)subscription all the subscription filters that match/cover
the notification/(un)subscription, a router adds a compact set made of the related Bloom
filters. Third, Bloom filters can be easily aggregated. This means that a set of Bloom
filters that are added to the notification/(un)subscription can be easily aggregated into a
single and comparatively smaller Bloom filter. Based on the set of Bloom filters (or the
aggregated Bloom filter) a router forwards the notification/(un)subscription to the next
router without searching for the subscription(s) that match(es)/cover(s) the incoming
notification/(un)subscription (§ 5.4.1).

• We index subscriptions (§ 5.4.2) so as to enhance the search for a matching/covering
subscription; the index is similar to a book index that allows anyone to quickly find the
chapter of interest, without sequentially going through the book. In our case, the index
corresponds to a hash table, which allows us to easily find the subscriptions covering the
incoming notifications/(un)subscriptions.

Subscription and notification summarising

In order to accelerate matching notifications against subscription filters, we propose to represent
each filter (and also each subscription) in a compact form by using Bloom filters. A short
introduction on Bloom filters is provided in the following section.
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Bloom filters are commonly used first to represent a set in a compact manner and subse-
quently to test the membership of an element. A Bloom filter [25] is a bit vector of size
m, denoted B = b(1), · · · , b(m), which is initialised to 0 (i.e., ∀i ∈ [1,m], b(i) = 0).
Updating a Bloom filter - To add an element e to the Bloom filter, k hash functions
h1, · · · , hk are used. Each hash function is applied to the element and the k bits at the
positions designated by h1(e) mod(m), · · · , hk(e) mod(m) are set to 1. Assuming that the
hash time is O(1) then the time spent adding an element is O(k).
Testing the membership of an element - Testing whether an e element belongs to
the set encoded in a Bloom filter is very similar to adding an element. The e is hashed,
which gives the values h1(e) mod(m), · · · , hk(e) mod(m). In a Bloom filter, if a bit at said
positions is 0 then the element is not stored in the Bloom filter. Otherwise (if none of the
bits are at 0), the element is considered to be contained in the Bloom filter, knowing that
a false positive may occur but no false negative can occur. The time required to test the
membership of an element is O(k).
Delete an element - An element cannot be removed from a Bloom filter simply by
resetting the k bits to 0. To solve this problem, counting Boom filters have been intro-
duced [60]. The idea is to replace the bit vector forming the Bloom filter with a u bit
counter vector. A counting Bloom filter corresponds to a vector of m counters. Each time
an element is added, the counters at h1(e) mod(m), · · · , hk(e)mod(m)mod(m) are incre-
mented. Thus, an e element can be deleted by decreasing the k counters located at the
positions h1(e) mod(m), · · · , hk(e) mod(m). A counting Bloom filter supports deletion of
data in O(k). However, the use of counters implies an increased use of storage space and
the possibility of false negatives.

The Bloom Filter in a nutshell

Encoding of subscription filters as Bloom filter

A subscription is composed of a set of p filters. Each subscription filter, denoted fj (with
1 ≤ j ≤ p), composing the subscription is hashed4 using k hash functions and stored in a
Bloom filter.

In order to limit their space footprint, there are two options for representing the Bloom filter
depending on the number of elements (i.e., filters) to be stored: as a bit vector (as is the case
with traditional Bloom filters) if the number of elements is low or as a list of hashes. Since a
set of Bloom filters can be easily aggregated, a subscription can therefore be summarised into a
single Bloom filter (Figure 5.6b). In order to summarise a set of filters, denoted f1, · · · , fj, · · · fp,
into a Bloom filter bf , we apply a bitwise OR on the corresponding Bloom filters: bf = bf1 OR
· · · OR bfj OR · · · OR fp. If the Bloom filter is encoded as a list of hashes, the resulting Bloom
filter is encoded as: bf = bf1 , · · · , bfp .

Bloom-filter based repository

Each router keeps the received subscriptions in a dedicated repository, which may be organised
as:

• A list of subscriptions in which each subscription is stored along with the corresponding
Bloom filter that summarises the subscription. Assuming that nf filters compose a sub-

4. Each field composing the filter can be hashed independently or more simply the entire filter can be hashed.
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(a) An event notification.
(b) Two subscription with their related Bloom
filters.

Figure 5.4 – An event notification matches the first subscription and does not match the second
subscription

Figure 5.5 – Subscriptions repository organised as a poset. In the poset, each node refers
to a set of filters stored along with the related Bloom filter, which is encoded as a bit vector.

scription, the space overhead associated with a Bloom filter that is encoded as a vector
of bits (or a list of hashes) is − k nf

ln(1−ρ+) k nf .

• A tree or a poset (Figure 5.5): each node of the tree/poset corresponds to one or several
filter(s) that are also summarised into a single Bloom filter. Assuming that nf filters are
present, the space overhead with a Bloom filter for each node is − k nf

ln(1−ρ+) for a Bloom
filter encoded as a vector of bits ( k nf for list of hashes).

Based on its subscription repository enriched with Bloom filters, routers forward the received
notifications/(un)subscriptions to the interested recipients.

5.4.1 Preventing Intermediate Routers From Performing Duplicate
Searches

Our goal is to prevent any router through which a notification/(un)subscription passes from
individually performing the same treatment. The design rationale is that the first router that
receives a notification/(un)subscription searches for the covering subscriptions and indicates
in the outgoing notification/(un)subscription the filters that should be applied to the notifi-
cation/(un)subscription. In order to illustrate this process we consider the scenario of Figure
5.2b: a device I emits the event notification that is forwarded by the routers C, A and B to
the two subscribers G and H. The search proceeds as follows:

1. The first router that receives the notification – C in our example – searches for the
subscription(s) that cover(s) the incoming notification/subscription and determines to
which neighbouring router(s) propagate the notification/subscription.
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2. Then the first router adds to the outgoing notification any indications about the location
of the subscription (i.e., how to access the subscription), which allows the next routers
to quickly find the subscription(s) without searching for the subscription(s). The type of
indication varies depending on the underlying structure adopted to store the subscriptions.
With a list of subscriptions the indication consists of the ordered list of subscriptions
that match (or resp. cover) the incoming notification (resp. subscription). Note that this
ordered list of filters is expressed as a compact set of Bloom filters. In the case of a binary-
decision-/R-tree or poset, the path(s) to follow to get the matching subscription(s) must
be added. This path materialises by an ordered list of filters that are aggregated into a
Bloom filter.

3. The subsequent routers (i.e., A and B) rely on the provided indications (i.e., the list
of ordered subscriptions/filters) to extract the related subscription(s) and to forward
notification/(un)subscription to the appropriate router(s).

Overall, the above outlined approach eases (and even prevents) the search for subscriptions
by intermediary routers. An intermediate router that receives a (un)subscription/ notification
containing Bloom filters proceeds by extracting each Bloom filter. If the repository is organised
as a list of subscriptions, the router checks if the filter equals a Bloom filter of the repository,
which requires O(k × nf ) comparisons per Bloom filter. If the repository is organised as a tree
or poset the router goes through the structure following the path expressed in the provided
Bloom filter, which requires O(k × np) comparisons with a path going through np filters.

Overall, the representation of subscriptions as Bloom filters speeds up the matching of a
notification against a subscription. Nonetheless false positives may occur. In such a case, a
router assumes that an incoming subscription/notification is covered/matches (while this is not
the case) and unnecessarily forwards the notification/(un)subscription. The probability of a
false positive differs depending on the representation of the Bloom filter.

• Probability of false positives with a Bloom filter corresponding to a list of hashes - Knowing
that the probable occurrence of a false positive when an filter is compared to a filter is
equal to (1 − 1

N
)k, we can therefore infer that the probability of a false positive p(E)

occurring when nf filters are compared to ne attributes is:

p(E) = Cnf
nf

(1− 1
N

)k (5.1)

• Probability of false positive with a Bloom filter expressed as a vector of bits - We will use
a balls-and-urns construct to model the handling of a Bloom filter. A Bloom filter (i.e.,
a vector of bit) is modelled as m urns. We distinguish the repository subscriptions and
incoming subscription using different colours: an incoming subscription is modelled as a
set of bright balls and a subscription of the repository as set of back balls. The addition of
nf filters in a Bloom filter is equivalent to throwing k×nf bright balls into m urns (with
m corresponding to the size of the Bloom filter). We define an urn as shiny if it contains at
least one shiny ball. Adding nf filters to a Bloom filter corresponds to randomly throwing
nf × k black balls into m urns. A false positive occurs if a subscription of the repository
does not correspond to an incoming subscription even thought the nf × k black balls
have been thrown into bright urns. Using conditional probabilities and applying the law
of total probability we infer that the p(E) probability of a false positive occurring is:

p(E) =
m∑
r=1

[ m∑
i=1

p(E/Ei/Er)p(Ei)
]
p(Er) (5.2)
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with p(E/Ei/Ej) denoting the probability that r black balls are thrown in i bright urns,
p(Ei) corresponding to the probability that i urns are bright, and p(Er) the probability
that r urns are black. For a given i and given r, we observe that p(E/Ei/Er) is:

p(E/Ei/Er) =
(
i

m

)r
(5.3)

In addition, the probability p(Ei) that i urns are bright corresponds to the quotient
between:

– The number of surjections from a set containing k × nf elements to a set of i ele-
ments [79]. This number is equal to i!.St(k × nf , i), with St symbolising Stirling’s
number.

– The number of functions of k× nf elements in a set of size m, which corresponds to
mk×nf .

So:
p(Ei) = 1

mk×nf

i∑
j=0

(−1)j Cj
i j

k×nf (5.4)

Likewise, p(Er) = 1
m
k×nf

∑r
s=0(−1)sCs

rs
k×nf . We conclude that:

p(E) = 1
mk2×nf×nf

m∑
r=1

r∑
s=0

(−1)sCs
rs
k×nf

m∑
i=1

ir

mr

i∑
j=0

(−1)j Cj
i j

k×nf (5.5)

Based on Formulas 5.2 and 5.5, the number of hash functions is set according to the number
of filters contained in the subscription/path, so that the probability of a false positive remains
bellow a given threshold.

5.4.2 Prefiltering with an Index-based Subscription Repository
The efficiency associated with the event/subscription forwarding depends of various aspects.
With a repository containing a list of subscriptions, key factor is the number of subscriptions
stored in the repository. With tree or poset, the depth and the width of the tree/poset are
two key factors. Ususally, the root tends to have many children. Visiting all the children of
the root – wich we call horizontal crossing – is laborious and very frequent. Note: if there is
no subscription filter that matches, all the children of the root are visited. In order to: (i)
speed up the subscription search (especially the horizontal crossing) and (ii) avoid starting a
subscription search when no subscription filter match, we propose to: (i) rely on hash tables
that speedup the horizontal crossing (ii) introduce a prefiltering process that avoid searching
for some covering subscriptions while no subscription covers.

Index-based Structure

We propose to index the subscriptions, leveraging hash table. With a list of subscriptions, we
propose to replace the list by a hash table. Thus, subscriptions are located with a key (as
detailed in the following paragraph), without searching for the subscription. In the case of a
poset or tree, the first level of nodes are also organised in a hash table. Similarly, subsequent
level may also be accessed using a hash table, i.e.,, the children of a given node are easily
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organised in hash table. Thus, upon the reception of a new subscription, it becomes easier to
localise the subscription in the hash table. In the case of a (ordered) list, subscriptions are
located according to a specific criterion, rather than searching for the subscription sequentially
or by dichotomy (if the list is ordered). In the case of a poset (Figure 5.6a) or tree, it allows the
router to quickly find the first level nodes. Similarly, subsequent levels can be accessed using a
hash table.

Prefiltering

Notifications are prefiltered using a counting Bloom filter stored in each router, which encom-
passes all the subscriptions, i.e., that aggregates all the Bloom filters stored by a router. As a
result, a router avoid starting an unnecessary lookup. Moreover, several counting Bloom filter
may also summarise all the filters accessible through the nodes of the poset/tree. Using these
counting Bloom filters avoid starting a search from these nodes whereas there is no matching
subscriptions.

(a) Poset

(b) Bloom filter associated with a filter.

Figure 5.6 – Subscriptions organised in poset and Bloom filter associated with a filter.

In the following, we briefly describe the way subscriptions are indexed and added to the
router repository so that incoming notifications can be filtered.

Generating an index

We hash the names of each filter fi constituting the subscription. A particular index desig-
nated by the key min(h(fi.name)) is selected and used to store the subscription. We use the
minimum value to define the position where the subscription is stored, knowing that more ad-
vanced techniques could be used to perform load balancing. In order to minimise the number
of subscriptions that are stored, a subscription is only added if there is no other subscription
propagated by the neighbouring router that covers this subscription. The identity of the neigh-
bouring router is stored along with the subscription so that later notifications can be redirected
to it.
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Adding a subscription

Adding a subscription to the repository consists of extracting each filter and hashing the filter
name so as to generate a set of keys. If the repository is organised as a list of subscriptions,
then, the subscription is simply added in the cell of the hash table, which is designated by the
lowest index. If the repository is organised as a tree/poset, each cell given by a key is inspected.
If all the concerned cells are empty, then the subscription is simply added in the cell identified
by the lowest key. Otherwise, if one cell is not empty, then there is potentially an overlapping
subscription. In such a case, the covering relationship is recursively established: the covering
relationship with the filter(s) composing the node is studied and the traversal continues with
the matching child(ren) (if any) so as to find the proper cell wherein is ultimately added the
subscription.

Looking for the subscription(s) that match(es)

Upon the reception of an event notification, the router pre-filters the notification. If the no-
tification is not pre-filtered, then the router hashes the name of the attributes that form the
subscription and inspects the location identified by the hashes so as to find the filter(s) (and
possibly the subscription) that match. With a poset/tree, this process is recursively iterated so
as to find the matching subscription.

5.4.3 Synthesis
We have proposed an event notification system that distinguishes itself in the use of Bloom
filters that improve the lookup process, thereby introducing significant performance gain (in
terms of delay and computational load). Subscription is encoded as a concise Bloom filter that
is further conveyed along with the subscription (resp. notification) so as to speed up the routing
by avoiding the sequential comparison of each subscription constraint (resp. each notification
attribute). In addition, counting Bloom filters are used to summarise the subscriptions and
avoid searching for potential subscriptions that are not existing anyway.

In the following we go one step further and focus our attention on the problem of assigning
an adequate size to Bloom filters. This is critical since dealing with:

• undersized Bloom filters induces a poor accuracy (i.e., a high false positive rate with
Bloom filters and false negative rate only for the counting Bloom filters).

• oversized Bloom Filters lead to a waste of bandwidth/storage usage with no gain in terms
of accuracy.

Thus, the Bloom filter size should be modulated (i.e., increased or decreased) when the number
of items stored in a Bloom filter substantially varies.

To cope with an undersized Bloom filter, a straightforward solution lies in adding another
Bloom filter in which new items are inserted. To deal with oversized Bloom filter, a naive (but
widely practiced) approach lies in recomputing another Bloom filter with the most suitable
size. This is impractical because it involves a significant computation cost since all the elements
must be added to the new Bloom filter.

In the following, we continue our analysis of our event notification system by focusing our
attention on the compression of Bloom filter, which is a critical factor since an oversized Bloom
Filter results in significant bandwidth/storage usage with no gain in accuracy. To this end
we introduce a lossy compression algorithm, which consists in folding the Bloom filter, so as
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to require less space for storage or transmission. Note that this approach can be applied to
counting Bloom filter. The proposed compression takes advantage of the fact that Bloom filters
contain more information than necessary.

5.5 Folding Bloom Filters
Folding a Bloom filter is beneficial in the two following circumstances:

1. the Bloom filter stored in memory should be folded because it was initially over-sized.
This situation frequently occurs because it is difficult to find a suitable size for a Bloom
filter since one must estimate in advance the amount of data that will be stored. Thus, a
conservative approach based on over-sizing Bloom filters, which is often adopted.

2. A large Bloom filter needs to be transmitted and must first be folded so as to keep
bandwidth usage and communication delay to a minimum.

In order to deal with both cases, we introduce a lossy compression algorithm, which performs
the folding of the Bloom filter and hence optimises the bandwidth/storage usage by reducing
the Bloom filter’s size.

In the following, we exemplify the folding of a Bloom filter with the following Bloom filter
of 20 bits: 10010 11111 11101 11000. The halving of the Bloom filter consists of applying a OR
on the two portions of the Bloom filter: 10010 11111 OR 11101 11000. The resulting Bloom
filter of size 10 is 10000 11000. With a counting Bloom filter, the folding is done by adding
the corresponding counters, using the maximum in case of overflow. It is worst-emphasising
that with a Bloom filter of size 20, there exists several possible folding. Instead, a Bloom filter
containing 5 bits/counters cannot be folded5. Let us understand the reason why by considering
a Bloom filter of size 20. A Bloom filter of size 20 can be folded in 7 ways because there are
7 ways of factorising the original size of the Bloom filter: 20 = 2.10 = 2.2.5 = 2.5.2 = 4.5 =
5.4 = 5.2.2 = 10.2. Remark that 5 and 2 are primes while 20, 10 and 4 are some composite
numbers, i.e., they can be expressed as a product of primes. Their composite nature implies
that a Bloom filter with a size of 20, 10 or 4 can be folded while a Bloom filter with a size equal
to 5, cannot be folded because 5 is a prime. Overall, selecting a proper size for the Bloom filter
is critical so as to guarantee that many different folding may be applied later. Then, among the
possible choice(s), our goal is then to determine which is the best folding to apply at run time.
In the following, we explore to which extend the folding may be achieved and we break the
two related optimization problems into the off-line sizing of the Bloom filters and their on-line
folding:

• Off-line sizing of the Bloom filters (§ 5.5.1) - The sizing of a Bloom filter depends on the
number of elements that are expected to be added and the required false positive rate. We
will show that the ability to fold a Bloom filter is related to the size of the Bloom filter.
We will investigate this relationship by introducing the mathematical background on
number theory as well as providing a mathematical and practical formulation for finding
the optimal Bloom filter size. Although we will show that this size should be ideally a
highly composite number (i.e., a positive number that has a larger number of divisors
than any number smaller than itself), practical considerations will lead us to formulate
the problem of finding a Bloom filter size as equivalent to finding a y-smooth-number, i.e.,
a positive number whose prime factors are little primes (i.e., ≤ y). Once the size is set,
the filter is created and may be compressed whenever needed by folding it.

5. We purposely exclude a bloom filter of size 1 that only reflects that the encoded set is empty or not empty
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• On-line folding can be modulated (§ 5.5.2) based on the amount of data actually stored
in the Bloom filter and the admissible false positive rate. The folding (§ 5.5.3) can be
viewed as a simple form of lossy compression that reduces the size of the Bloom filter and
hence requires less space for storage or transmission. The lossy nature of the compression
implies that the original Bloom filter cannot be reconstructed from the folded Bloom
filter.

5.5.1 Finding y-Smooth Numbers
Number theory comes into play here because the determining the precise sizing of Bloom filters
is critical to our approach. So before moving on with the planning of the Bloom filter size, let
us first introduce some basic notions and background on number theory and more specifically
on smooth numbers.

Any number m ∈ N∗ can be expressed in an unique way as a product of primes:

m =
∞∏
j=1

(pj)γj =
a∏
j=1

(pj)γj (5.6)

with pj ∈ N, (i, γj) ∈ N2, a = max{i ∈ N | γi > 0} and ∀i < j, pi < pj. Contrary to a prime
number, a composite number has divisor(s) apart from itself and one. Keeping in mind
that we aim at finding numbers that have a high number of divisors, we naturally exclude
primes and focus our attention on highly composite numbers. A highly composite number
(resp. a largely composite number) [129] is a number that has a larger number of divisors
(resp. a larger or equal number of divisors) than any number less than itself and is herein
the best (resp. good) candidate. Unfortunately, even though largely composite numbers
are more crowded than highly composite numbers, both remain rare. To illustrate: 34
highly composite numbers and 87 largely composite numbers are ≤ 332640; example
values are provided in Table 5.1. More formally [116], the number of highly composite
and largely composite numbers less than x, denoted Ψ(x), is subject to Ψ(x) << ln(x)b
with b being constant and respectively to exp(logc(x)) ≤ Ψ(x) ≤ exp(logd(x)) with c
and d constant, for any large x. Studying the decomposition of the largely and highly
composite numbers given in Table 5.2, we can hypothesise that a number suitable for our
purposes would be composed of little primes, because this reflects the ability to fold a
Bloom filter and thus to smoothly reduce the Bloom filter size. This suggests considering
using a smooth number, which is a number with only small prime factors [100]. Technically,
a positive integer is said to be y-smooth if it holds no prime factor exceeding y (i.e., any
constituting prime factors 6 y).These numbers are fairly numerous. Theorem 5.5.1, whose
detailed proof can be found in [78], gives a sense of the density of the smooth numbers
that belong to an interval [1, x] by showing that the proportion of y-smooth numbers up
to x that have only small primes (i.e., y ≤ x

1
u ) tends to a non-zero limit which is denoted

ρ(u).
Theorem 5.5.1 Let S(x, y) be the set of y-smooth up to x and Ψ(x, y) denote its cardi-
nality. Given y = x

1
u (∀u ≥ 1), this number tends to a non-zero limit as x → ∞. This

limit is denoted ρ(u) and the cardinality satisfies [45]:

Ψ(x, y) v x ρ(u) as x→∞ (5.7)

Digression on Number Theory
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with ρ defined as:
• ρ(u) = 1

u

∫ u
u=−1 ρ(t) dt, ∀u > 1, and,

• ρ(u) = 1 for the initial condition 0 ≤ u ≤ 1.
A closed form of ρ to express Ψ(x, y) has been established in [72]:

Ψ(x, y) = 1
π(y)

∏
p≤y

(
log x

log p

)(
1 +O

(
y2

log x log y

))
(5.8)

Although this theorem gives the global distribution of y-smooth numbers over a range
[0, x) - the values of the function ρ used in Expression 5.7 are provided in [72] (page 288)
- the density of the smooth numbers is represented by the average gap in the sequence of
two smooth numbers, denoted ni and ni+1 with ni < ni+1, is about:

≈ ni
(log ni)π(y) with c2(y) ≤ π(y) ≤ c1(y) (5.9)

Based on Equations 5.8-5.9, we observe that y-smooth numbers are quite numerous. This
implies that they constitute a good solution for our folding problem.

∗1 ∗2 ∗3 ∗4 ∗6 8 10 ∗12 18
20 ∗24 30 ∗36 ∗48 ∗60 72 84 90
96 108 ∗120 168 ∗180 ∗240 336 ∗360 420
480 504 540 600 630 660 672 ∗720 ∗840
1080 ∗1260 1440 ∗1680 2160 2520 3360 3780 3960
4200 4320 4620 4680 ∗5040 ∗7560 9240 ∗10080 12600

Table 5.1 – Largely Composite Numbers (extracted from the annotations provided as part
as [129] from the table handwritten by S. Ramanujan). Highly composite numbers are identified
by *

∗2 3 ∗4 = 22 6 = 2 ∗ 3 8 = 23 10
∗12 = 22.3 18 = 2.32 20 = 22.5 24 = 23.3 30 = 2.3.5 36 = 22.3
48 = 24.3 ∗60 = 22.3.5 72 = 23.32 84 = 22.3.7 90 = 2.32.5 96 = 25.3
108 = 22.33 ∗120 = 23.3.5 168 = 23.7 180 = 22.3.7 240 = 24.3.5 336 = 24.3.7

Table 5.2 – Decomposition of Highly and Largely Composite Numbers

Based on a Bloom filter size, denoted x, which is provided as input by the application
depending on its need, the objective is to find a y-smooth, denoted m, that is near the given
size x and that offers a large number of possible folding. In practice, we isolate a short interval
[x, x + z] near x and find a smooth number in this interval. Note that z should be selected
based on Expression 5.9 so that the interval [x, x + z] contains at least one smooth number.
Then, all the numbers x, x + 1, ...x + z should be enumerated and the divisibility with small
primes (i.e., with all the primes ≤ y) tested for each. Assuming that x is fairly large, y
relatively very small and z sufficient to find at least one smooth number, excessive calculation
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(a) Cross multiples of 2. (b) Cross multiples of 3.

Figure 5.7 – Find primes up to z=10. Primes are 2, 3, 5, 7 because these numbers are not
crossed.

(a) Cross multiples of 2, 22 and 23. (b) Cross multiples of 3, , 32.

Figure 5.8 – Find the y-smooth numbers up to z=10 with y=3. The y-smooth numbers
are 4, 6, 8, 9 because they hold at least two crosses.

would still be required given that O(
√
x) trials are expected to factorise each x. However, the

cost related to the factorisation of consecutive integers x, . . . x+ z can be alleviated by relying
on the well-known sieve of Eratosthenes. Although we may consider more recent algorithms
(e.g., the elliptic curve factoring [95]), the sieve of Eratosthenes is sufficiently fast for the
Bloom filters sizes that are needed in practice.

To apply the sieve, one first writes down all the numbers from 1 to z and crosses out all the
multiples of 2, 3, 5 and so on, until all multiple of primes not exceeding

√
z have been crossed

out. The remaining numbers are the primes.

Similarly, finding the y-smooth numbers that are ≤ x can be done (as pointed out in [128])
by crossing out all the numbers that are powers of a prime ≤ y (Figure 5.8). One then counts
the number of crossed-out powers for each number. If that count is sufficient, the number is a
smooth number.

We will need to adopt a slightly modified formulation of the problem to generate y-smooth
numbers given that we are interested in finding the y-smooth numbers that pertain to the
interval [x, x + z] rather than to the interval [1, z]. This interval encompasses the potential
candidates among which the size of the Bloom filter can be selected.

For this purpose we proceed as follows (see Algorithm 3 for the details):
1. Initialisation:

• We start with an array of bits w of length z and initialise each array location to 0 (lines
1-2).

• We assume that the primes that are ≤ y (excluding 1) are known ; these primes are easily
generated given that y is by construction small (i.e., y � x). Let us denote by Py this
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predetermined set and by π(y) the number of primes in this set.

2. Consider successively all the primes pi ≤ y, and for each perform the following actions:

• Find the starting point, i.e., the smallest number in the interval, which can be divided
by pi and cross-out all the multiple of pi until all are crossed (line 12), i.e., cross x + s,
x + s + pi, x + s + 2 pi, x + s + 3 pj ..., until all multiples of pi within [x, x + z] are
crossed. Note that such a crossing-out has to be performed not only for pi = p1

i but also
(whenever possible) for p2

i (double crossing-out), p3
i (triple crossing-out) etc, which leads

to the following step:

• Perform the same action (whenever possible) for p2
i , p

3
i , p

4
i ... until all the crossing-out

ends. More precisely, this requires shifting the starting point to x + s + pji and crossing
out x+ s+ pji , x+ s+ 2 pji , x+ s+ 3 pji , x+ s+ 4 pji ..., until all multiples of pji within
x, x+ z are crossed out (line 12).

3. Finally, we attempt to enumerate the y-smooth numbers, i.e., all the numbers m of [x, x+z]
that hold a sufficient number of crosses.

Require: x ∈ N∗, y ∈ N∗, z ∈ N∗, z > x,Py
1: for i = 0 to z do
2: w[i] = 0 {initialise the array w used to record the sum of the primes powers}
3: end for
4: for pi ∈ Py do
5: j ← 1
6: startpji

←
(
pi −

(
x−pi

2

)
mod pi

)
mod pi{find the starting point so that pji |x+ i}

7: while startpji ≤ z do

8: for k ← 0 to b
z−start

p
j
i

pji
c do

9: w[i+ k · pji ]← log(pi) {cross the multiple k.pji}
10: end for
11: startpji

← startpji
.pi

12: j ← j + 1
13: end while
14: end for
15: if w[i] ≥ log(x) then
16: SmoothNumbers = SmoothNumbers ∩ x+ i {x+ i is a y-smooth number}
17: end if

Algorithm 3: Looking for Smooth Numbers

Complexity analysis - Let us investigate the time and space complexity of the algorithm.

• Initialisation: the initialisation of an array whose length is z, requires ∼ z steps and,
according to the Prime Number Theorem, the space allocated to store the primes is
O(π(y)) ≈ y

ln(y) .

• Crossing: the time devoted to multiple crossings-out splits into the research of the starting
point startpji and then the crossing operation starting from startpji

. For all pi the time for
finding the starting point startjpi is ≈ π(y) ≈ y

log(y) . In the following, we first consider the
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5.5. Folding Bloom Filters

time devoted to the first crossing (step 2.a) and then generalise our analysis to the jth
crossing (step 2.b), with j ≥ 1. The first crossing lies in enumerating all the multiples of pi,
with pi ≤ y. This operation is the one achieved by the sieve of Eratosthenes implemented
in the usual way [117], the execution time being Θ(z log log y). More precisely, z

pi
crossing

operations are performed for a given pi. Assuming that y ≤ z, we henceforth obtain that
for all pi there are ∑

1≤pi≤y
z
pi
≈ z log log y crosses.

The general case consists of crossing all multiples of pji , with j ≥ 1. For a given prime pi
subject to pji ≤ z, the jth operation consists of crossing the multiples of pji , leading to z

pji

crosses. All pi subject to pji ≤ z hence involve ∑
1≤pi≤y

z

pji
crossing with j ≥ 2. Overall, the

time φ(x, z, y) needed for all crossing operations satisfies:

φ(x, z, y) =
y∑

pi=1

logpi (z)∑
j=1

z

pji

Let us find the upper-bound of φ:

φ(x, z, y) =
min(y,z)∑
pi=1

z
pi

+
min(y,z1/2)∑

pi=1
z
p2
i

+
min(y,z1/3)∑

pi=1
z
p3
i

+ . . . ≤
pi=y≤z∑
pi=1

z
pi

+
min(y,z1/2)∑

pi=1
z
p2
i
(1 + 1

p
+

1
p2 + · · ·+ 1

plog2(x+z)−2 ) =
min(y,z)∑
pi=1

z
pi

+ z
min(y,z1/2)∑

pi=1

1−plog(x+z)−1
i

pi(pi−1) ≤ z (log log y +O(1))

• Enumerating y-smooth Number - Finding all the smooth number in [x,x+z] requires an
O(z) time execution.

Overall, the space required is z + π(y) and the computation time is π(y) + z (log logy +O(1)).
Note that a logarithm formulation of the problem is used in the provided algorithm so as to
limit the space requirement involved in storing the crosses for any of the investigated z and for
representing the π(y) primes. It also privileges addition over multiplication by representing a

composite number in its logarithmic formulation as the following sum: log m =
a∑
j=1

γj log(pj)

rather than as the product m =
a∏
j=1

p
γj
j .

Among the resulting candidates, one y-smooth number, denoted m, is selected ; the smooth
number should be selected to ensure that the Bloom filter is highly foldable, which yields to
the following canonical factorisation of m:

m =
a∏
j=1

(pj)γj with pi ≤ y. (5.10)

Thus the operational Bloom filter can be subsequently folded when necessary.

5.5.2 On-Line Folding Strategy
The goal is to determine the optimal folding to apply at run time, keeping in mind that the
goal remains to meet the required false positives rate ρ+ (and the required false negatives rate
ρ− for the counting Bloom filter).

We express this on-line folding strategy as the following optimisation problem. Given that
mt is the actual size of the Bloom filter, nt the number of elements stored and k the number of
hash functions, our goal is to find the minimal size of the resulting folded filter mt+1 that still
meets the required false positive rate ρ+ and false negative rate ρ−, subject to mt+1 dividing
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Chapter 5 – Information centric Networking

mt (which is denoted mt+1|mt). We assume that the number of hash functions is set once,
preferably to its optimal value, minimising the false positives rate and is given by k = m0

n0
ln(2),

with m0 referring to the initial size of the Bloom filter which is about −n0 ln(ρ+)
(ln(2))2 and n0 denoting

the number of items that is expected to be added to the filter. We find that the mt+1 that still
meets the false positives rate satisfies:

mt+1 ≥
−n0 mt ln(1− (ρ+)1/k)

nt+1 f0...ft ln(2) (5.11)

Given that our goal is also to find mt+1 that divides mt, the above expressed goal can be refined
as finding all the combinations of pγii which produce mt+1 and selecting one combination. For
instance, as suggested in the following algorithm, the minimal mt+1 that matches Equation 5.11
can be used.

Recall that with mt =
∏
j∈St

p
γj
j the exhaustive enumeration of any folding is characterised by

a worst case computing time that is exponential in ∑
j∈St

γj because the maximum number6 of

distinct products mt obtainable is 2
∑
j∈St

γj

. The storage required is ∑
j∈St

γj in the worst case. But

if some combinations of folding are equivalent (i.e., have the same product) and are henceforth

not computed and not stored, the number of possible folding becomes in the order of
qt−1∑
j=0

(
qt
j

)
with qt = ∑

j∈St
γj. Then if the overall set of folding which is computed for m0 is ordered (the

duplicates being pruned), the computational cost related to finding mt+1 can be reduced to the
order of (log(

qt−1∑
j=0

Cj
q )) with a worst case of O( ∑

j∈S0
γj). Once the size of the Bloom filter is fixed,

the Bloom filter can be folded.

5.5.3 Folding
The folding of a Bloom filter consists in first dividing the Bloom filter into segments of size m′,
which are denoted s1, · · · , sm/m′ . Next, these segments are combined to create a folded Bloom
filter which is expressed as s1⊕· · ·⊕sm/m′ , with the folding operator ⊕ defined as a combination
corresponding to an or logic for a Bloom filter and an addition for a counting Bloom filter with.
Precisely, with a Bloom filter (resp. counting Bloom Filter) the folding corresponds to applying
a bitwise or on (resp. summing7) the segments.

The Bloom filter is expressed as follows:

B′ =


⊕pl−1
l=0 b(1 + l m′)

· · ·
⊕pl−1
l=0 b(i+ l m′)
· · ·

⊕pl−1
l=0 b(mt+1 + l m′)

 with B =


b(1)
· · ·
b(i)
· · ·
b(m)


This folding corresponds to a lossy compression that leads to the establishment of a Bloom

filter whose size is less than or equal to that of the filter before folding. Given that a Bloom filter
is a vector of sizem whose constituent elements are counters whose values go from {0 · · · 2u−1},

6. This number is in fact achieved for some mt.
7. if a sum exceeds the maximum value 2u − 1, the counter is set to 2u − 1

114



5.5. Folding Bloom Filters

we have proved that the folding function ϕ: {0 · · · 2u − 1}m −→ {0 · · · 2u − 1}m′ satisfies the
following properties:

1. Compression with loss - ϕ maps a set of cardinality m to a set of cardinality m′ such
that m′ divides m for any m′,m ∈ N∗.
Note: a Bloom filter Bm is indexed by its size m and a folding ϕpl by the folding ratio
pl ∈ N∗ ; this ratio can be expressed as the following quotient: pl = m/m.

2. Invariance - The folding always provides the same result and the operations correspond-
ing to the addition of elements, the membership test and the deletion of an element in the
case of a Bloom filter, are all performed on a folded Bloom filter the same as they would
be on an unfolded filter. The membership test, which is denoted ω, is performed on a folded
filter ϕpl(Bm) as it would be on a filter of size m′ = m/pl with ωk(ϕpl(Bm)) = ωk((B′m)).

3. Commutativity - A sequential folding, denoted o, corresponding to two folds ϕpl and ϕpr
is commutative: ϕpl o ϕpr = ϕpr o ϕpl

4. Associativity - sequential folding is associative: ϕplo (ϕpr : o ϕpv) = (ϕpr o ϕpl) o ϕpv

5. Efficiency - Any ϕ folding of a Bloom filter Bm ∈ {0 · · · 2u − 1}m, ϕ(B) can be done in
a polynomial time.

Verifying that the folding satisfies Condition 1 is straightforward. Condition 2 mainly relates
to the capacity to query the membership of an element and to add or delete this element in
a folded Bloom filter. In the following we concentrate on proving that Condition 2 applies to
the membership test. The proof for the addition and deletion, which can be deduced from this
equation, will be left to the reader. Recall that the membership query proceeds as follows: the
element e is hashed with the k hash functions and if all the k investigated bits are set to 1, e
is said to be stored. Thus Condition 2 holds if, for all k, b(hk(e) mod m) ≤ b′(hk(e) mod m′).
Given that b′(hk(e) mod m′) = ⊕pl−1

l=0 b(hk(e) mod m′ + l m′) ≥ b(hk(e) mod m) it follows
that Condition 2 is satisfied and that the resulting probability of false positives ρ+’ on the
folded (counting) Bloom filter B containing n elements, using k hash functions satisfies: ρ+’
= (1− (1− 1

m′
)kn)k ≈ (1− e knm′ ). For Conditions 3 and 4, we consider a folding method that is

sequentially performed.
Lemma - The sequential folding ϕpl and ϕpr satisfies:

ϕplo ϕpr = ϕpr pl (5.12)

Proof: Given a Bloom filter B, we can prove that:

ϕpl o ϕpr(B) = ϕpl pr(B)

The successive folding of B leading to B′ and the subsequent folding of B′ resulting in B′′ can
be expressed as:

∀i ∈ [1,m′′], b′′(i) =ϕpl o ϕpr
(
b(i)

)
= ϕpl

(
b′(i)

)
with: ∀i ∈ [1,m′], b′(i) = ⊕pr−1

r=0 b(i+ r ·m′).

115



Chapter 5 – Information centric Networking

Thus, ∀i ∈ [1,m′′], b′′(i) can be expressed as:
b′′(i) =⊕pl−1

l=0 ⊕
pr−1
r=0 b(i+ l ·m′′ + r ·m′)

=⊕pl−1
l=0 ⊕

pr−1
r=0 b(i+ l · m

pl pr
+ r · m

pr
)

A one-time-composite folding of B that leads to B′′ is performed as follows:

∀i ∈ [1,m′′], b′′(i) = φpr pl(b(i))
= ⊕pr pl−1

j=0 b(i+ j ·m′′)

= ⊕pr pl−1
j=0 b(i+ j · m

pr pl
)

Thus, ϕpl o ϕpr(b) = ϕpr pl(b) given l ∈ [0, pl], r ∈ [0, pr], and, j = l + rpl �.
The above lemma means that the Bloom filters resulting of a sequential folding φproφpl is
identical to a single folding (φpr pl). Based on this lemma, the proof of conditions 3 and 4 can
be established as:
ϕpr o ϕpl(Bt) = ϕpl pr(Bt) = ϕpr pl(Bt) = ϕpl o ϕpr(Bt). Thus, ϕpl o ϕpr = ϕpr o ϕpl �
In addition, ϕplo (ϕpr o ϕpv) = ϕpr pl pv = (ϕpr o ϕpl) o ϕpv
Thus, φplo (ϕpr o ϕpv) = ϕplo (ϕpr o ϕpv)�

The commutative and associative properties of the folding imply that the order of the
folding does not matter. More generally, given the folded Bloom filter B, it is impossible to
guess whether the Bloom filter went through a one-time or sequential folding; the folding
pathway cannot be inspected given the resulting Bloom filter. Although the sequential folding
φpr oφpl and a one-time folding φpr pl provide the same result, the cost in terms of time resulting
from a sequential folding is greater than the cost of a one-time folding. Indeed (as defined in
Condition 5), the computation cost associated with the folding is O(m): it depends on the size
of B even if this cost can be reduced if the folding is parallelised. But, the cost of a sequential
folding is O

(
m (1 + 1

pl
)
)
with pl defining the second folding ratio.

5.6 Performance Evaluation
Our next step is to assess the performance of our event notification system 5.6.1 via the folding
of Bloom filters 5.6.2.

5.6.1 Event Notification System
In order to reveal the scaling properties of our event notification system, we distinguish the
corresponding control traffic induced by the management of the cluster-based structure (Figures
5.9a and 5.9b) and by the dissemination of the event notifications and (un)subscriptions. For this
purpose we use a constant load of 3 events/s per publisher. The distribution of subscriptions and
notifications follow a zipf law8 ; the probability of occurrence of the ith subscription/notification
is given by 1

iα
. We will then aggregate the results obtained from several runs over a period of

20 minutes. As illustrated in Figures 5.9a and 5.9b, the group size has a low impact on the
amount of control traffic ; the bandwidth usage being indifferent to the group size, highlighting
the benefits of maintaining membership information restricted to a cluster. When we consider
the traffic associated with the event notification and (un)susbcription routing (Figure 5.9c), we

8. Zipf distribution has been observed by stock quote providers [172].
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(a) Traffic associated with the
whole group management.

(b) Traffic related to group
management per group mem-
ber.

(c) Overall susbcription and
notification traffic for a group
of 70 members.

Figure 5.9 – Bandwidth usage associated with our notification system.

can see that the volume of subscriptions and notifications decreases as their similarities (i.e.,
popularity ranking given by alpha) increases. This reveals the combined effect of (i) leveraging
the subscription covering and (ii) the aggregation and filtering capabilities made possible thanks
to our cluster-based routing.
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(a) Bloom-filter based reposi-
tory, with k=3 and m=6000.
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(b) Sienna repository.
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(c) Router repository.

Figure 5.10 – Adding a subscription organised in poset and tree.

Following this we will measure the respective performances of, in term of latency, the main
stages constituting the subscription and notification processes, i.e., the addition of a subscrip-
tion into a router repository and the filtering of an event notification. These results are then
compared with the poset-based repository promoted by Siena [34], using the delay as an ac-
curate indicator of the processing overhead incurred within each of the above stages. In order
to test the impact of a complex subscriptions and notifications scanning, we further vary the
subscription size (number of constraints) and notifications (number of attributes).

Subscription Insertion

We measure the latency associated with adding a subscription into a repository by considering
both our approach (Figure 5.10a) and the Siena approach (Figure 5.10b), with regards to a
varying number of (i) subscriptions in the repository ([1, 200]) and of (ii) subscription filters
([1,20]). Results show that Siena performs better than our approach for a number of subscription
constraints inferior to 5. To illustrate: if we consider 5 constraints per subscription filter, we
observe in our approach an average time ratio per subscription of 0.35 and an upper limit
of 283ms and a corresponding ratio of 0.44 and maximum of 369ms with Siena. This reflects
the computing cost of indexing and summarising the new subscription. However our approach
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outperforms Siena when the number of constraints per subscription is greater than 5 because the
indexing and summarising costs are compensated by the significant gain induced by the research
covering the new subscription. Indeed, if we consider 10 and 20 constraints per subscription
filter respectively, we measure a lower latency (425ms and 499ms compared to 430ms and
761ms obtained with Siena) and slower ascending rate (0.495 and 0.5925 with our approach
compared to the 0.525 and 0.87 experienced with Siena). Note that this difference, in terms
of ascending rate and maximum latency, increases when we consider an increased repository
size (i.e., number of subscriptions summarised), demonstrating that our event filtering system
performs better in large-scale networks.

A similar trend is observed in Figure 5.11a. The delay incurred by our approach and Sienna
increases in a linear way, our system performing better when the number of subscriptions
reaches a certain threshold (from 5 up to 7 filters per subscription) whose value depends of
the value of m. As expected, the latency induced by the insertion of a subscription into the
repository depends of the repository size. However such impact remains limited and is easily
minimised by adequately configuring our event notification system and in particular the Bloom
filters’ sizes (§ 5.6.2).
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(a) Adding a subscription into a router reposi-
tory.

Notification Filtering

Next we compare the performances of the event notification filtering process in our solution
(Figure 5.12) and Siena (Figure 5.13), considering varying repository sizes (Figures 5.12a and
5.13a), varying subscription sizes (Figures 5.12b and 5.13b) and varying notification sizes (Fig-
ures 5.12c and 5.13c). In all of the above cases we observe that the minima, maxima and
ascending slope obtained by our approach are always inferior to those of Siena. If we look at
Figures 5.12a and 5.13a, the difference is mostly due to the combined effect of using a summary
and an index-based structure that allows the acceleration of the retrieval of the subscription(s)
matching an incoming notification. The linear increase of the delay in Figures 5.12b and 5.13b
is attributed to the sequential comparison of each subscription filter against each notification
attribute; the lower rate of increase exhibited by our solution is due to the compact digest used
to summarise the subscription.

Finally, in Figures 5.12c and 5.13c, we measure delay as a function of repository size ([1,200])
and subscription similarity (given by the ratio of covered attributes shared by the subscriptions
which are stored in the router repositories). The delay decrease experienced by both our ap-
proach and Siena when considering an ascending similarity, is due to a reduced number of
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(a) #constraints=10.
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(b) #constraints=10 .
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(c) #constraints=10 and
#attributes=10.

Figure 5.12 – Notification Filtering with our Approach, k = 3, m = 6000.
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(a) #constraints=10.
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(b) #constraints=10.
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Figure 5.13 – Notification Matching with Siena.

matching.
We further supplement this filtering analysis with an evaluation of the traffic generated by

the event system.

5.6.2 Evaluation of the folding
Our objective is to empirically evaluate the effectiveness of the sizing (§5.6.2) and folding
(§5.6.2) of Bloom filters. The results presented hereafter, are averaged over at least 100 runs
and were obtained using a laptop with an Intel(R) Core(TM) 2 duo P8600 CPU of 2,40Ghz
and a cache size of 2 MB.

Off-line Planning

Our primary goal is to (i) investigate the ability to select a Bloom filter size that permits
many different foldings and (ii) analyse the related computing cost evaluated in terms of delay.
To this end, we explore the properties of smooth numbers, including their density and their
composition. Guided by our application, we limit the range of numbers that are investigated
to the practically relevant cases in which the size of the Bloom filters is determined so that the
probability of false positives is low. In our experiments, we first start by considering a range
of false positives rates that is low and narrow (see Figure 5.14). We then reduce the range (see
Figures 5.15 and 5.16) and show that there remain enough smooth numbers to pick the best
Bloom filter size. In addition, we investigate to what extent this reduction affects the composite
nature of the y-smooth numbers. Figure 5.14.a highlights the properties of y-smooth numbers by
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Figure 5.14 – Effectiveness of the Planning , considering n =1000, 3.10−2 ≤ ρ+ ≤ 5.10−2.
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(a) y-Smooth Numbers with an
optimal k = 17, y = 23.
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Figure 5.15 – Scalability of the Planing, setting n =1000, 3 10−6 ≤ ρ+ ≤ 5 10−6
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Figure 5.16 – Scalability of the Planning, considering 3.10−8 ≤ ρ+ ≤ 5.10−8, y = 23
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Bloom filter.
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Figure 5.17 – Folding a Bloom filter, y=23, 6247 ≤ m ≤ 7433.

plotting the y-smooth numbers as a function of the primes p ≤ y that compose them and their
respective powers. The Figure also provides a quantitative support for observing the density of
the smooth numbers: 11.86% of the numbers are y-smooth numbers. This is more than sufficient
for the selection of a satisfactory Bloom filter size. Furthermore, the density remains stable:
for instance, only 9 numbers need to be explored before finding one 23-smooth number and
only 101 before finding ten 23-smooth numbers. It is also visible that the smallest primes are
mostly present in the composition of the smooth numbers. They9 are typically compensated
by larger powers: this is illustrated in Figure 5.14.b where power is plotted as a function of the
prime. This means that the Bloom filter can be folded many times and in a smooth fashion.
In Figure 5.14.c a saturation of the amount of y-smooth numbers is observed when increasing
y. At a certain point it is unnecessary to continue increasing y because the time to search for
y-smooth numbers grows significantly (Figure 5.14.c) whereas the quantity of smooth numbers
grows only slightly.

By restricting the range of the false positives rate from ρ+ ∈ [3.10−4, 5.10−4] in Fig. 5.15
to ρ+ ∈ [3.10−8, 5.10−8] in Fig. 5.16, we see that the amount of smooth numbers naturally
decreases as the investigated range narrows. However the amount of smooth numbers remains
significant (Fig. 5.16c): if the number of hash functions k is smaller than the optimal number
of hash functions k = 4 (see Figures 5.15.a and 5.15.b), the amount of y-smooth numbers is
comparatively much greater. This illustrates the trade-off made between time (k) and space (m):
an attempt to improve the performance of one is done at the expense of the other. Nevertheless,
as demonstrated in Figure 5.16.c, a sufficient amount of y-smooth numbers is still available
even considering a worst case, i.e., a very narrow range of false positives rates. It can also be
observed that the quantity of smooth numbers is proportional to the number of elements n
that are added to the Bloom filters, because the amount smooth numbers within an interval
[m1,m2] is proportional to the number of items n to be added. Indeed, m1−m2 = n

ln(2)2 ln(ρ
+
1
ρ+

2
)

with ρ+
1 and ρ+

2 denoting the false positives rate corresponding to m1 and m2, respectively. In
the following experiments we study the folding of a range10 of sizes for a Bloom filter, which is
given by [6247,7433].
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Figure 5.18 – Folding and Compression and Decompression of a Bloom filter,6247 ≤ m ≤ 7433.

On-Line Folding

In order to evaluate the performance of our lossy-compression we compare the computation
cost, measured in terms of execution time, to the space economy, expressed as a compression
ratio (and corresponding to the original size of the Bloom filter divided by its folded size).
We also compare the cost and space economy of our lossy compression against the popular
compression format Zlib11[44] that creates a zip file. Our goal is to give the cost/gain associated
with the folding relative to the Zlib compression even though the two compression methods
are somehow not comparable because our folding-based lossy compression is specific to Bloom
filters, while Zlib provides a lossless compression for general classes of data including e.g., text.
We use MurmurHash12, a non-cryptographic hash function which is typically used for hash-
based lookup. We consider the delay associated with the folding of a Bloom filter (Figure 5.17.a)
and of a counting Bloom filter (Figure 5.17.b). This delay is expressed as a function of the size
of the Bloom filter (m) and of the folding ratio m/m′. The Bloom filter and the counting Bloom
filter both exhibit the same behaviour during folding. The easily discernible lines are related
to the repetitive combinations of the same primes: the lower y, the higher the repetition.
Although it is less observable in lower folding ratios (Figure 5.18.a), an in depth analysis
showed us that this behaviour remains unchanged regardless of the folding ratio. Returning to
Figures 5.17.a and 5.17.b, the latency, as expected increases as a function of the Bloom filter
size (recall that the theoretical cost is O(um/f), with u = 1 for a pure Bloom filter) even
though the quantitative cost is several times higher in average for a counting Bloom filter. This
points out the price to paid for handling counters rather than bits. The arithmetic addition
required to fold a counting Bloom filter is particularly costly compared to the bitwise OR
used with Bloom filter. Considering the lossless compression of a Bloom filter (Figure 5.18.c)
shows us that the compression ratio expressed as a function of the number of elements n in
the Bloom filter decreases drastically and stabilises as the Bloom filter is populated. Meanwhile
the delay related to the lossless compression remains stable (Figure 5.18.b) and lower than the
folding delay (Figure 5.17), but the two delays are still comparable for a given folding ratio.
Nonetheless, the ratio m/m′ is greater with the folding than with the lossless compression.
Specifically (see Figure 5.18.c), the highest compression ratio is obtained with an empty Bloom

9. Similarly, a high prime is compensated by either few small primes and/or smaller powers.
10. This range is the one used in Figure 5.14.
11. http://www.zlib.net/
12. https://sites.google.com/site/murmurhash/
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filter (i.e., a vector of entirely set to 0) whereas the lowest ratio stands for the highest13 value of
n (here, 1000). The monotonic decrease and the small compression ratio reflects the difficulty
of compressing random data (i.e., a Bloom filter wherein some bits are randomly set to 1) and
the practical advantage of a folding-based lossy-compression.

5.7 Conclusion
The IoT is characterised by a large number of Things scattered around the world that need to
exchange messages over the Internet. The provision of a reliable and timely means of commu-
nication over a wide area network is still a critical and problematic issue. We have addressed
this issue through the introduction of an event notification system that supports a lightweight
content-based filtering and that relies on a self-configuring grouping service that dynamically
organises the event delivery structure. Our content-based event notification system supports
a scalable group communication and novel lightweight event filtering scheme that keeps the
load on routers to a minimum. Our event notification system is automatically deployed without
requiring human intervention and is fault-tolerant as it adapts dynamically to any permanent
or transient network failure.

It is worth stressing that the routers traversed by a notification/(un)subscription dedi-
cate significant time and effort to search the matching subscriptions while the search is often
the same for all the routers. If one router – ideally, the first router receiving the notifica-
tion/(un)subscription – can indicate how to access the subscriptions, then subsequent routers
do not have to repeat the same time-consuming subscription search. In order to support such
an approach without congesting the network and routers, we represent the subscription as
highly compact Bloom filters. In this way it is possible to effectively filter event notifications.
In addition, we propose a hash-based indexing structure that allows subscriptions to be quickly
retrieved, possibly based on the provided indications.

Still, finding the correct Bloom filter size is challenging, because the quantity of data must
be estimated in advance to ensure that the required false positive rate is always respected. In
general practice this leads to a situation in which the Bloom filter is oversized. In order to
overcome this issue we propose – and further evaluate the performance of – a lossy compression
system that consists of folding the Bloom filter. We show that the foldability depends on the
the exact size of the Bloom filter, thereby establishing an interesting link between number
theory and Bloom filters. More precisely, we propose to select a y-smooth number due to their
high density and ease of production, which derives from their simple multiplicative structure.
We show that selecting y-smooth numbers is advantageous since they allow a large number of
possible folding combinations. We then present an algorithm based on a sieve of Eratosthenes,
which is efficient with regards to the envisaged sizes of Bloom filters. Once properly sized, the
Bloom filter can be folded very efficiently so that the false positive/negative rate is always met.
We further analyse the ease of selecting a size for Bloom filters that allows a large number
of folds and evaluate the associated costs. This led us to empirically explore the properties of
y-smooth numbers, their density and composition.

Overall, Bloom filter folding is advantageous in two application scenarios. The first assumes
a Bloom filter stored in memory, which needs to be folded; this is advantageous, for example, if
the Bloom filter was initially over-sized. The second scenario, and the main motivation for our
work, deals with the transmission of a Bloom filter, which should be folded prior to transmission

13. Although a highly populated Bloom filter would exhibit a high compression ratio, it would be subject to
a unacceptable false positives rate.
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in order to minimise bandwidth usage and communication delay. After appropriate sizing , the
remaining problem in both scenarios is the determination of the applied folding rate in order to
achieve the required false positive/negative rate. Ultimately this folding and filtering problem
is a classic compromise between time (computation) and space (storage and communication):
increasing the performance of one is inevitably to the detriment of the other.
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Conclusion

The forward-thinking academic John Culkin remarked that “we become what we behold. We
shape our tools and then our tools shape us.” The truth behind this observation written in
1967, has perhaps never been more obvious than it is today. We are witnessing a unique stage
in mankind’s technological history and just as technology evolves – and continues to evolve –
so do we too change with it. From this perspective, the IoT has greatly increased our intercon-
nectedness and thereby our understanding of the physical world around us. The shift towards
widespread use mobile, consumer-centric smartphones is making our immersion with comput-
ing into a permanent, and somehow dependant, state by permeating practically all aspects of
our daily lives. The real and the virtual have remained relatively dissociated since the dawn of
information technology, but are nowadays becoming increasingly intertwined.

Shaped by the Internet of Things, my own research journey is anchored in these last decades,
anticipated by Mark Weiser (1988), which has predicted a world in which "technology recedes
into the background of our lives." Since then, the IoT ecosystem has been successfully applied
to enhance our interconnection with physical spaces. Due to its ubiquity, the IoT might well
aspire to become the lingua franca of a newly emerging generation of people long immersed in an
IoT-landscape. However the path leading towards ubiquitous computing raises some challenges
and significant research efforts remain to be invested as tribute to the discrepancy in the quality
of data and services contributed by the Things.

6.1 Summary of Contributions
In an increasingly interconnected IoT where Things freely exchange data and offer services
that are accessible through open and poorly secured interfaces, the IoT raises some concerns
related to reliability, faithfulness and accuracy. In the last mile, IoT networks are predominately
driven by – and built upon – wireless networks (Near Field Communication or slightly longer
WiFi or Bluetooth-enabled technologies) that: (i) allow greater access to outsiders that exploit
vulnerabilities and may cause significant damage, and (ii) make it easier for insiders to avoid
identification. Monitoring the behaviour of things and the network is necessary in order to spot
intrusions, coming from either inside or outside the network. Intrusions manifest in the forms
of: (i) attack behaviour which differs to that of a normal user, or as (ii) a sequence of actions
undertaken by the attacker that characterises the attack pattern. We have covered both forms
of attacks and explored signature-based and anomaly detection, focusing on the communication
and computing infrastructures that span different scales from the MANETs composed of per-
sonal laptops equipping mobile users to RFIDs tags that are highly miniaturised. Unlike mobile
laptops that may undertake advanced analytics, RFID tags are passive and unintelligent; these
features imply their inability to monitor and understand their environment. In each case, we
have considered the nature of the monitored system (network/computer/object and supplied
service) and tailored the detection system accordingly. To secure MANETs, we have introduced
a distributed signature-based Intrusion Detection System (IDS) intended to monitor the attacks
against the OLSR routing protocol. We noted that the device has a limited observability and
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that the partial network view, which is gained thanks to other peers, is questionable in terms
of reliability. To address this issue we have devised an entropy-based trust system that deals
with uncertainties and incompleteness involved in trust relationships, leveraging a statistical
gathering approach that gracefully and incrementally gathers observations without sacrificing
detection accuracy. As a complement we have explored anomaly detection to identify any devi-
ations from normal behaviour. Relying on Kohonen maps, which constitute an efficient way for
automatically categorising, our IDS further compares the tagged behaviour against the normal
user’s behaviour as expressed in the user’s profile.

A lack of security is not the only flaw in the IoT. The loss of data quality is a highly debated
issue within the academic and practitioner communities who often deal with the unintentional
corruption of sensed data. A conflict between end-users’ expectations over the data and the
reliability of data gleaned from low-cost or DIY sensing devices is often present. Sensor cali-
bration in the field is essential to overcoming this issue as it: (i) ensures a proper operation
of the sensing devices, and (ii) deals with varying external conditions (e.g., solar radiation,
freezing) and other factors (e.g., activity of the end user) that affect the measurements over
time. Sensor calibration has received surprisingly little attention from researchers. We have thus
proposed a holistic approach to reduce the cost associated with calibration in smart spaces at
scale, from the fixed Things that make up the IoT infrastructure to the mobile Things that
people carry. We have developed a plan for the calibration of a large number of often inac-
curate sensors in a smart space using high-integrity reference sensors that are mobile, so as
to maintain an adequate sensing accuracy while minimising the required effort from the mo-
bile calibrators. We have in turn generalised the automated calibration to the multi-party case
to sustain a macro-calibration. In particular we have conceived a distributed, opportunistic
macro-calibration system that leverages the presence of the nearby crowdsensors that monitor
the same physical phenomenon, which we have shown improves the accuracy of the perfor-
mance sensing application. Such an approach to calibration is particularly well suited to mobile
crowdsensing scenarios in which the crowd senses and meets in public places.

Opportunistic crowdsensing shows a great potential to monitor the physical environment in
a cost-effective and dynamic way by empowering people to contribute as part of their daily life.
As such, crowdsensing is gradually becoming a cost-effective complement to fixed wireless sensor
networks. The major emerging challenge currently facing mobile crowdsensing is related to the
gathering and processing of an ever-increasing amount of data collected across time and space,
with the intention of making the best sense of it so as to provide citizens and communities with
relevant value-added information. In practice, people’s mobility makes the crowdsensing contri-
bution unevenly distributed over space and time, thus requiring the post-processing of sensing
data on the cloud. As the number of contributors grows, the increasing number of observations
that the crowdsensing platform must process becomes challenging: the high network and finan-
cial cost associated with a cloud-centric system hinders the widespread use of crowdsensing and
the high computational cost required makes the modelling of the environmental phenomenon
intractable. Given the growing volume of data involved to cover urban-scale areas, restraining
the increasing operational cost of the cloud-assisted infrastructure and keeping to a minimum
the resource consumed by the hand-held devices are a prerequisite. We have addressed this
issue by exploiting the ever-increasing computing capacity of smartphones by evenly distribute
the collection, interpolation and aggregation associated with the sensing data to powerful end
devices. To this end we have introduced a crowdsensing middleware, which supports a novel
in-network collaboration strategy that enhances the quality of the data before their transfer
to the cloud, while reducing the related communication cost and resource consumption. The
middleware tailors a set of utility functions that assess to what extent a device should carry out
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a given crowdsensing task while achieving a trade-off between the benefit for all (aka for the
group) and the related cost for the device. Rather than applying a naive combination (e.g., aver-
aging) of the data collected by the crowdsensors that would actually degrade the quality of the
sensing data, our middleware performs an advanced inference. A Crowdsensor may establish a
very precise interpolation of the regions it covers. Individual interpolations are then aggregated
on the cloud, which renders the overall interpolation on the cloud much more tractable.

We observe a paradigm shift towards "edgeness" and information-centric networking that
supports an early edge decision-making. In this perspective we have proposed a content-based
publish/subscribe system that supports flexible and scalable messaging among Things (e.g.,
sensors and actuators) and applications, delivering information across the wide range network
to interested consumers as the amount of IoT devices increases and spreads geographically. We
have built a cluster-based and hierarchical delivery structure that scales and tolerates failures
while achieving both low latency and efficient use of resources. In the delivery structure, routers
(a.k.a cluster heads) dedicate significant effort to filter and forward the messages (i.e., event
notifications and (un)subscriptions). To reduce the routers loads we have proposed to help
routers by including in the message the filters that need to be applied. In order to support
such an approach without congesting the network, we have compacted filters. As a result, the
flow of event notifications produced by any Thing can be filtered and distributed to provide
situation-awareness and trigger actions accordingly.

In this manuscript I have presented a snapshot of my research as it stands today, keep-
ing in mind that the development of a robust and resilient IoT remains a daunting task and
many improvements are needed. From hardware to middleware, data collection to analysis and
decision-making, actual practice to guiding theory, much works lies ahead in the creation of an
efficient, resilient and ultimately life-enhancing IoT.

6.2 Perspectives
Conveying and processing the massive amount of data that is produced by the IoT – and in
particular by crowdsensing applications – has become a major issue in terms of the management
and operation of the underlying applications and networks. Conventional cloud computing
systems and current communication architectures must be adapted and optimised to efficiently
process the very large volumes of data generated by the IoT, which will continue to grow in
time and space.

Further solutions and related optimisations need to be designed – acknowledging that some
services can be moved close to smartphones and that much of the data can be stored or even
analysed and filtered at an early stage to limit the amount of data transferred. Data, services and
underlying infrastructure must also be secured in a complementary fashion. I intend to address
these issues by exploring several research directions, ranging from the design of collaborative
and distributed systems capable of supporting crowdsensing applications that operate on a
large scale to the development of a secure environment for these applications.

Towards Virtual(ised) Crowdsensing
The data supplied by sensing applications, including mobile crowdsensing apps, contain insights
about the physical and social environment and concerns user’s activities and situation. Our past
work has shown us that contributed data are often unusable unless first compared, fused, con-
textualised, enriched, classified ect.. Somehow, sensors are not intended to operate individually;
they should not be considered as an autonomous pieces of hardwares and softwares capable of
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monitoring a physical or social phenomenon on their own. Sensors are heterogeneous and oper-
ate at different scales spanning the nano, personal, and urban. Yet they are domain-specific and
task-oriented: the mass of information they produce is specific to a sensor model, dedicated to
a particular use(r), and mostly tailored to a given application with little or no possibility of use
with other applications. To overcome this limitation we must abstract the set of physical sen-
sors along with the operations performed on them to increase the data usability. The aim is to
define and support virtual sensors that supply measurements that are not directly available by
combining the measurements provided by a group of heterogeneous sensors. This also involves
broadening the types of context we may thus characterise and integrating other sources of infor-
mation of a social (social networks) or environmental (such as open street maps) nature. From
this perspective it is crucial to define new methods of cooperation between physical and virtual
sensors capable of performing complex and virtual tasks sustaining the enrichment, analysis,
fusion, interpretation and transformation of data provided by both virtual and physical sen-
sors, including other sources of relevant information. During the synthesis and comparison of
the sensed information, the context/situation dependence and multi-dimensional nature of the
sensed data cause a non-stationarity, which is not adequately addressed by conventional least
square regression and derived interpolation methods. Rather than breaking down the data,
using for instance multiple regressions to deal with the multi-dimensionality of the context, we
propose an exploration of weighted regression [29] and moving weighted windows over the data,
thereby estimating groups of coefficient values that fit the samples. This method first selects
a bandwidth for an isotropic spatial weights kernel, typically a Gaussian kernel with a fixed
bandwidth chosen by leave-one-out cross-validation. The choice of the bandwidth [28] is very
demanding and requires investigation, as regressions must be fitted at each step.

Mobile and edge computing

Delivering seamless connectivity and communication to mobile users and ensuring sufficient
quality of service despite the mobility of users/things remains a vast area of research, of which
only certain challenges have been solved thus far. Our approach to improving communication
reliability relies on exploiting multiple access networks that should be further adapted to deal
with the dynamic aspects induced by mobility. As far as the mobile IoT is concerned, intelligent
and opportunistic clustering helps to structure the network architecture; "intelligent gateway
placement" techniques are prerequisites to enabling a smooth connection. Still there is a need
to establish the most suitable path based on dynamic network properties (such as link quality)
so as to convey packets to (mobile) gateways, taking into account the Braess paradox that
often occurs as certain gateways act as vortexes. Supporting algorithms lead to an overuse of
certain paths and therefore severe congestion, e.g., with video [27]. Rather than merely selecting
the optimal path our approach will aim at distributing/splitting the information using game
theory. Although theory and algorithms for game have been extensively studied, a majority of
the approaches [86] assumes that players are aware of the overall game state and previous moves
before playing. This not realistic with IoT: Things (a.k.a players) have a limited observability
and do share a consistent knowledge on their previous or ongoing actions. Incomplete knowledge
introduces uncertainty that needs to be modelled [161], a critical issue that we address by
finding an equilibrium without necessarily needing information regarding the presence of other
data streams, the strategies implemented, or the paths taken by others. In addition, content
fragmentation, network coding, joint and adaptive routing are all needed to effectively exploit
the diversity of access paths while taking into account factors such as content specifics, user
priorities and reliability.
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On securing virtualised infrastructures
Networks are made up of virtualised infrastructures – ranging from cloud computing to NFV
systems – that are constantly evolving and, as a result, highly complex and thus subject to
vulnerabilities. Their dependability/security is contingent on our skill at detecting these vul-
nerabilities and in turn updating virtualised systems as soon as new threats are discovered.
To this end it is necessary to understand how the attacker compromises the system, what vul-
nerabilities they exploit, what actions they undertake, and where vulnerabilities are located at
the system level. Detecting and combating attacks in real time for virtualised infrastructures
is tricky due to their modular structure, elasticity, rapid evolution (materialised by frequent
upgrades), and containerization as isolated components comparable to black boxes.

While classification techniques are becoming popular to resolve problems related to anomaly
detection [50], assuming the availability of a sufficiently large, diverse and labelled data set for
a virtualised infrastructures is unrealistic. With this regards, unsupervised learning has to be
privileged and new statistical profiling techniques using dynamic/multiple regressions need to
be devised. Importantly, the model need to be pre-trained to properly reconstruct multivariate
time series, using e.g., stacked denoising auto-encoders [20]. This causes significant challenges
due to the anomalies’ variability and the need for designing adapted or dedicated models. Several
sources of information should be collected and correlated in order to derive features, keeping
in mind that the relationships between them are highly complex while taking into account
real-time requirements. Rules must define the abnormal or normal character of a behaviour by
comparing predicted and real behaviours. The simplest approach to setting a threshold based
on (Euclidean) distance is likely to lead to many false positives, especially with noisy data.
It is therefore crucial to design new methods based on statistical and probabilistic profiling
approaches while also defining concrete policies to be applied to containers in order to create a
line of defence that can be applied on a large scale and on the fly.
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