Dynamics of piezoelectric structures with geometric nonlinearities: A non-intrusive reduced order modelling strategy
Résumé
A reduced-order modelling to predictively simulate the dynamics of piezoelectric structures with geometric nonlinearities is proposed in this paper. A formulation of three-dimensional finite element models with global electric variables per piezoelectric patch, and suitable with any commercial finite element code equipped with geometrically nonlinear and piezoelectric capabilities, is proposed. A modal expansion leads to a reduced model where both nonlinear and electromechanical coupling effects are governed by modal coefficients, identified thanks to a non-intrusive procedure relying on the static application of prescribed displacements. Numerical simulations can be efficiently performed on the reduced modal model, thus defining a convenient procedure to study accurately the nonlinear dynamics of any piezoelectric structure. A particular focus is made on the parametric effect resulting from the combination of geometric nonlinearities and piezoelectricity. Reference results are provided in terms of coefficients of the reduced-order model as well as of dynamic responses, computed for different test cases including realistic structures.
Origine | Fichiers produits par l'(les) auteur(s) |
---|