Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems - Cnam - Conservatoire national des arts et métiers Access content directly
Journal Articles Computational Mechanics Year : 2023

Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems

Abstract

We develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of energy, non-negative entropy production), we modify accordingly the port-Hamiltonian formalism so as to achieve a port-metriplectic one. We show that the constructed networks are able to learn the physics of complex systems by parts, thus alleviating the burden associated to the experimental characterization and posterior learning process of this kind of systems. Predictions can be done, however, at the scale of the complete system. Examples are shown on the performance of the proposed technique.
Fichier principal
Vignette du fichier
s00466-023-02296-w.pdf (520.89 Ko) Télécharger le fichier
Origin Publication funded by an institution
Licence

Dates and versions

hal-04163352 , version 1 (17-07-2023)

Licence

Identifiers

Cite

Quercus Hernández, Alberto Badías, Francisco Chinesta, Elías Cueto. Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems. Computational Mechanics, 2023, 72, pp.553-561. ⟨10.1007/s00466-023-02296-w⟩. ⟨hal-04163352⟩
61 View
46 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More