Machine learning for optimal flow control in an axial compressor - Cnam - Conservatoire national des arts et métiers
Article Dans Une Revue European Physical Journal E: Soft matter and biological physics Année : 2023

Machine learning for optimal flow control in an axial compressor

Machine learning for optimal flow control in an axial compressor

Résumé

Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., Ω=3200RPM,4500RPMand6000RPM. First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1∘to11∘. These outcomes point out a potential generalization of the control strategy applicable to other compressors.
Fichier principal
Vignette du fichier
LMFL_EPJE_2023_ELHAWARY_ROMANO_DAZIN.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04164557 , version 1 (27-11-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

M. Elhawary, Francesco Romanò, Jean-Christophe Loiseau, Antoine Dazin. Machine learning for optimal flow control in an axial compressor. European Physical Journal E: Soft matter and biological physics, 2023, 46 (4), ⟨10.1140/epje/s10189-023-00284-9⟩. ⟨hal-04164557⟩
47 Consultations
45 Téléchargements

Altmetric

Partager

More