Communication Dans Un Congrès Année : 2024

Unsupervised learning for multiview data

Résumé

With the data explosion more and more data are collected from multiple sources represented by multiple views, where each describes a perspective of the data. To deal with this kind of data in the context of unsupervised learning, one can rely on factorial approaches and clustering. Depending on the objective, these two types of methods can be used separately, successively in a two step approach or simultaneously leading to subspace clustering. In this presentation, we will review, discuss and illustrate different unsupervised approaches from the most classical to the most recent.
Fichier principal
Vignette du fichier
JOCLAD_2024_Niang_Ndeye.pdf (96.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04674055 , version 1 (20-08-2024)

Identifiants

  • HAL Id : hal-04674055 , version 1

Citer

Ndèye Niang. Unsupervised learning for multiview data. XXXI Conference on Classification and Data Analysis (JOCLAD 2024), Apr 2024, Leiria, Portugal. ⟨hal-04674055⟩
25 Consultations
29 Téléchargements

Partager

More